1
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Dawes S, Hurst N, Grey G, Wieteska L, Wright NV, Manfield IW, Hussain MH, Kalverda AP, Lewandowski JR, Chen B, Zhuravleva A. Chaperone BiP controls ER stress sensor Ire1 through interactions with its oligomers. Life Sci Alliance 2024; 7:e202402702. [PMID: 39103227 PMCID: PMC11300964 DOI: 10.26508/lsa.202402702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
The complex multistep activation cascade of Ire1 involves changes in the Ire1 conformation and oligomeric state. Ire1 activation enhances ER folding capacity, in part by overexpressing the ER Hsp70 molecular chaperone BiP; in turn, BiP provides tight negative control of Ire1 activation. This study demonstrates that BiP regulates Ire1 activation through a direct interaction with Ire1 oligomers. Particularly, we demonstrated that the binding of Ire1 luminal domain (LD) to unfolded protein substrates not only trigger conformational changes in Ire1-LD that favour the formation of Ire1-LD oligomers but also exposes BiP binding motifs, enabling the molecular chaperone BiP to directly bind to Ire1-LD in an ATP-dependent manner. These transient interactions between BiP and two short motifs in the disordered region of Ire1-LD are reminiscent of interactions between clathrin and another Hsp70, cytoplasmic Hsc70. BiP binding to substrate-bound Ire1-LD oligomers enables unfolded protein substrates and BiP to synergistically and dynamically control Ire1-LD oligomerisation, helping to return Ire1 to its deactivated state when an ER stress response is no longer required.
Collapse
Affiliation(s)
- Sam Dawes
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Chemistry Department, University of Sheffield, Sheffield, UK
| | - Nicholas Hurst
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Gabriel Grey
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Lukasz Wieteska
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nathan V Wright
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Iain W Manfield
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Mohammed H Hussain
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Arnout P Kalverda
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - Beining Chen
- Chemistry Department, University of Sheffield, Sheffield, UK
| | - Anastasia Zhuravleva
- https://ror.org/024mrxd33 School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Wu SY, Chu SJ, Tang SE, Pao HP, Huang KL, Liao WI. Monomethyl fumarate attenuates lung Ischemia/Reperfusion injury by disrupting the GAPDH/Siah1 signaling cascade. Int Immunopharmacol 2024; 137:112488. [PMID: 38889510 DOI: 10.1016/j.intimp.2024.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Monomethyl fumarate (MMF), a potent anti-inflammatory agent used to treat multiple sclerosis, has demonstrated efficacy in various inflammatory and ischemia/reperfusion (IR) models; however, its impact on IR-induced acute lung injury (ALI) has not been explored. We investigated, for the first time, whether MMF attenuates lung IR injury through inhibition of the GAPDH/Siah1 signaling pathway. Rats were subjected to IR injury using an isolated perfused lung model, and proximity ligation assays were employed to evaluate the presence and distribution of the GAPDH/Siah1 complex. In vitro studies involved pretreating human primary alveolar epithelial cells (HPAECs) with MMF and/or inducing GAPDH overexpression or silencing, followed by exposure to hypoxia-reoxygenation. The findings revealed significantly reduced lung damage indicators, including edema, proinflammatory cytokines, oxidative stress and apoptosis, in MMF-treated rats. Notably, MMF treatment inhibited GAPDH/Siah1 complex formation and nuclear translocation, indicating that disruption of the GAPDH/Siah1 cascade was the primary cause of these improvements. Our in vitro studies on pretreated HPAECs corroborate these in vivo findings, further strengthening this interpretation. Our study results suggest that the protective effects of MMF against lung IR injury may be attributed, at least in part, to its ability to disrupt the GAPDH/Siah1 signaling cascade, thereby attenuating inflammatory and apoptotic responses. Given these encouraging results, MMF has emerged as a promising therapeutic candidate for the management of lung IR injury.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
4
|
Wang X, Wu H, Yu Z, Wu J, Lu C, Wei T, Chen Q. Plant viruses exploit insect salivary GAPDH to modulate plant defenses. Nat Commun 2024; 15:6918. [PMID: 39134555 PMCID: PMC11319438 DOI: 10.1038/s41467-024-51369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Haibo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongkai Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Schmalhausen EV, Medvedeva MV, Muronetz VI. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer's disease. Arch Biochem Biophys 2024; 758:110065. [PMID: 38906311 DOI: 10.1016/j.abb.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
One of important characteristics of Alzheimer's disease is a persistent oxidative/nitrosative stress caused by pro-oxidant properties of amyloid-beta peptide (Aβ) and chronic inflammation in the brain. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is easily oxidized under oxidative stress. Numerous data indicate that oxidative modifications of GAPDH in vitro and in cell cultures stimulate GAPDH denaturation and aggregation, and the catalytic cysteine residue Cys152 is important for these processes. Both intracellular and extracellular GAPDH aggregates are toxic for the cells. Interaction of denatured GAPDH with soluble Aβ results in mixed insoluble aggregates with increased toxicity. The above-described properties of GAPDH (sensitivity to oxidation and propensity to form aggregates, including mixed aggregates with Aβ) determine its role in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia.
| | - M V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| |
Collapse
|
6
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
7
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
8
|
Moreno F, Méndez L, Raner A, Miralles-Pérez B, Romeu M, Ramos-Romero S, Torres JL, Medina I. Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomed Pharmacother 2023; 168:115708. [PMID: 37857255 DOI: 10.1016/j.biopha.2023.115708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.
Collapse
Affiliation(s)
- Francisco Moreno
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain; Universidad de Vigo, Spain
| | - Lucía Méndez
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain.
| | - Ana Raner
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Marta Romeu
- Unidad de Farmacología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain
| | - Sara Ramos-Romero
- Faculty of Biology, University of Barcelona, Av Diagonal 643, E-08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Av Diagonal 643, E-08028 Barcelona, Spain; Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josep Lluís Torres
- Nutrition & Food Safety Research Institute (INSA-UB), Maria de Maeztu Unit of Excellence, E-08921 Santa Coloma De Gramenet, Spain; Instituto de Química Avanzada de Catalunya - Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| |
Collapse
|
9
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
10
|
Itakura M, Kubo T, Kaneshige A, Nakajima H. Glyceraldehyde-3-phosphate dehydrogenase regulates activation of c-Jun N-terminal kinase under oxidative stress. Biochem Biophys Res Commun 2023; 657:1-7. [PMID: 36963174 DOI: 10.1016/j.bbrc.2023.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acts as a sensor under oxidative stress, leading to induction of various biological responses. Given that mitogen-activated protein kinase (MAPK) signaling pathways mediate cellular responses to a wide variety of stimuli, including oxidative stress, here, we aimed to elucidate whether a cross-talk cascade between GAPDH and MAPKs occurs under oxidative stress. Of the three typical MAPKs investigated-extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK)-we found that hydrogen peroxide (H2O2)-induced JNK activation is significantly reduced in HEK293 cells treated with small-interfering (si)RNA targeting GAPDH. Co-immunoprecipitation with a GAPDH antibody further revealed protein-protein interactions between GAPDH and JNK in H2O2-stmulated cells. Notably, both JNK activation and these interactions depend on oxidation of the active-site cysteine (Cys152) in GAPDH, as demonstrated by rescue experiments with either exogenous wild-type GAPDH or the cysteine-substituted mutant (C152A) in endogenous GAPDH-knockdown HEK293 cells. Moreover, H2O2-induced translocation of Bcl-2-associated X protein (Bax) into mitochondria, which occurs downstream of JNK activation, is attenuated by endogenous GAPDH knockdown in HEK293 cells. These results suggest a novel role for GAPDH in the JNK signaling pathway under oxidative stress.
Collapse
Affiliation(s)
- Masanori Itakura
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Takeya Kubo
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Akihiro Kaneshige
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hidemitsu Nakajima
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka, Japan.
| |
Collapse
|
11
|
Molecular Characteristics of Toxicity of Acrolein Produced from Spermine. Biomolecules 2023; 13:biom13020298. [PMID: 36830667 PMCID: PMC9952977 DOI: 10.3390/biom13020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acrolein (CH2=CH-CHO), an unsaturated aldehyde produced from spermine, is one of the major contributors to oxidative stress. Acrolein has been found to be more toxic than reactive oxygen species (H2O2 and •OH), and it can be easily conjugated with proteins, bringing about changes in nature of the proteins. Acrolein is detoxified by glutathione in cells and was found to be mainly produced from spermine through isolating two cell lines of acrolein-resistant Neuro2a cells. The molecular characteristics of acrolein toxicity and tissue damage elicited by acrolein were investigated. It was found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH); cytoskeleton proteins such as vimentin, actin, α- and β-tubulin proteins; and apolipoprotein B-100 (ApoB100) in LDL are strongly damaged by acrolein conjugation. In contrast, activities of matrix metalloproteinase-9 (MMP-9) and proheparanase (proHPSE) are enhanced, and antibody-recognizing abilities of immunoglobulins are modified by acrolein conjugation, resulting in aggravation of diseases. The functional changes of these proteins by acrolein have been elucidated at the molecular level. The findings confirmed that acrolein is the major contributor causing tissue damage in the elderly.
Collapse
|
12
|
Dutysheva EA, Mikhaylova ER, Trestsova MA, Andreev AI, Apushkin DY, Utepova IA, Serebrennikova PO, Akhremenko EA, Aksenov ND, Bon’ EI, Zimatkin SM, Chupakhin ON, Margulis BA, Guzhova IV, Lazarev VF. Combination of a Chaperone Synthesis Inducer and an Inhibitor of GAPDH Aggregation for Rehabilitation after Traumatic Brain Injury: A Pilot Study. Pharmaceutics 2022; 15:pharmaceutics15010007. [PMID: 36678636 PMCID: PMC9867013 DOI: 10.3390/pharmaceutics15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The recovery period after traumatic brain injury (TBI) is often complicated by secondary damage that may last for days or even months after trauma. Two proteins, Hsp70 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were recently described as modulating post-traumatic processes, and in this study, we test them as targets for combination therapy using an inhibitor of GAPDH aggregation (derivative of hydrocortisone RX624) and an inducer of Hsp70 synthesis (the pyrrolylazine derivative PQ-29). The protective effect of the combination on C6 rat glioblastoma cells treated with the cerebrospinal fluid of traumatized animals resulted in an increase in the cell index and in a reduced level of apoptosis. Using a rat weight drop model of TBI, we found that the combined use of both drugs prevented memory impairment and motor deficits, as well as a reduction of neurons and accumulation of GAPDH aggregates in brain tissue. In conclusion, we developed and tested a new approach to the treatment of TBI based on influencing distinct molecular mechanisms in brain cells.
Collapse
Affiliation(s)
| | - Elena R. Mikhaylova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Maria A. Trestsova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Alexander I. Andreev
- Laboratory of Experimental Pharmacology, Perm State University, 614990 Perm, Russia
- Perm State Pharmaceutical Academy, 614990 Perm, Russia
| | - Danila Yu. Apushkin
- Laboratory of Experimental Pharmacology, Perm State University, 614990 Perm, Russia
- Perm State Pharmaceutical Academy, 614990 Perm, Russia
| | - Irina A. Utepova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch, The Russian Academy of Sciences, 620108 Ekaterinburg, Russia
| | - Polina O. Serebrennikova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
| | | | - Nikolay D. Aksenov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Elizaveta I. Bon’
- Department of Histology, Cytology and Embryology, Grodno State Medical University, 230009 Grodno, Belarus
| | - Sergey M. Zimatkin
- Department of Histology, Cytology and Embryology, Grodno State Medical University, 230009 Grodno, Belarus
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch, The Russian Academy of Sciences, 620108 Ekaterinburg, Russia
| | - Boris A. Margulis
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Irina V. Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Vladimir F. Lazarev
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-931-233-1811
| |
Collapse
|
13
|
Kalapos MP, de Bari L. Hidden biochemical fossils reveal an evolutionary trajectory for glycolysis in the prebiotic era. FEBS Lett 2022; 596:1955-1968. [DOI: 10.1002/1873-3468.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies Bari Italy
| |
Collapse
|
14
|
Hyslop PA, Chaney MO. Mechanism of GAPDH Redox Signaling by H 2O 2 Activation of a Two-Cysteine Switch. Int J Mol Sci 2022; 23:4604. [PMID: 35562998 PMCID: PMC9102624 DOI: 10.3390/ijms23094604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by reactive oxygen species such as H2O2 activate pleiotropic signaling pathways is associated with pathophysiological cell fate decisions. Oxidized GAPDH binds chaperone proteins with translocation of the complex to the nucleus and mitochondria initiating autophagy and cellular apoptosis. In this study, we establish the mechanism by which H2O2-oxidized GAPDH subunits undergo a subunit conformational rearrangement. H2O2 oxidizes both the catalytic cysteine and a vicinal cysteine (four residues downstream) to their respective sulfenic acids. A 'two-cysteine switch' is activated, whereby the sulfenic acids irreversibly condense to an intrachain thiosulfinic ester resulting in a major metastable subunit conformational rearrangement. All four subunits of the homotetramer are uniformly and independently oxidized by H2O2, and the oxidized homotetramer is stabilized at low temperatures. Over time, subunits unfold forming disulfide-linked aggregates with the catalytic cysteine oxidized to a sulfinic acid, resulting from thiosulfinic ester hydrolysis via the highly reactive thiosulfonic ester intermediate. Molecular Dynamic Simulations provide additional mechanistic insights linking GAPDH subunit oxidation with generating a putative signaling conformer. The low-temperature stability of the H2O2-oxidized subunit conformer provides an operable framework to study mechanisms associated with gain-of-function activities of oxidized GAPDH to identify novel targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul A. Hyslop
- Arkley Research Labs, Arkley BioTek, LLC, 4444 Decatur Blvd., Indianapolis, IN 46241, USA
| | - Michael O. Chaney
- Eli Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA;
| |
Collapse
|
15
|
Sakthidhasan P, Kumar PS, Viswanathan MBG. Apoptotic and Antiproliferative Potential of GAPDH from Mallotus
philippensis Seed on Human Lung Carcinoma: In Vitro and In Vivo
Approach. Protein Pept Lett 2022; 29:340-349. [DOI: 10.2174/0929866529666220302104935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Aim:
The anticancer potential of a purified seed protein from Mallotus philippensis is
scientifically evaluated and reported here.
Background:
Seeds of Mallotus philippensis are used to treat various diseases in the indigenous
systems of medicine in India.
Objectives:
The present study deals with the isolation, purification, identification, and screening of
protein of interest that exhibit maximum activity against lung cancer cells from the seed crude
protein of Mallotus philippensis.
Methods:
Size-exclusion with HPLC was used to purify crude protein (15 mg) from M. philippensis
seeds. Protein of interest was identified using the LC-MS/MS method and analyzed by in vitro
(A549 cell lines) in vivo (B16-F10 cells from melanoma cancer-induced Wistar rats) to estimate
anticancer activity.
Results:
SDS-PAGE was applied to isolate and purify elution III (480 μg/ml). Elution III LCMS/
MS data were used to search the UniProt database and were eventually matched with
glyceraldehyde 3-phosphate dehydrogenase (GAPDH). MTT assay of GAPDH-treated A549 cells
exhibited an IC50 of 3.03 ± 0.39 μg (24 h) and 1.93 ± 0.19 μg (48 h). AO/EtBr staining showed
early and late apoptotic characteristics such as cell membrane blebbing, chromatin condensation,
and the formation of apoptotic bodies. Hoechst staining confirmed the death of cells by exhibiting
bright blue fluorescent, condensed, and fragmented nuclei. GAPDH-treated rats by 10 and 20 mg/kg
bw significantly increased body weight by 29.50 ± 3.06 and 31.33 ± 2.69, respectively, and
decreased melanoma metastasis in the lungs by 66.79% and 86.57%, respectively. Further, GAPDH
treatment significantly increased the levels of SOD, CAT, and GPx and reduced GST and GSH.
Histopathological analysis confirmed nuclear alteration in the lung tissue of the treated groups only.
Conclusion:
Apoptotic potential of GAPDH against lung carcinoma has been confirmed in the
present investigation.
Collapse
Affiliation(s)
- Periasamy Sakthidhasan
- Department of Botany, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Perumal Sathish Kumar
- Department of Internal
Medicine, Division of Gastroenterology, University of Nebraska Medical Center, Omaha 68105, Nebraska, USA
| | | |
Collapse
|
16
|
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Cancer metabolism and tumor microenvironment: fostering each other? SCIENCE CHINA. LIFE SCIENCES 2022; 65:236-279. [PMID: 34846643 DOI: 10.1007/s11427-021-1999-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live. Metabolic reprogramming supports tumor cell high demand of biogenesis for their rapid proliferation, and helps tumor cell to survive under certain genetic or environmental stresses. Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes, in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways. Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation. This cancer metabolic phenotype, described firstly by German physiologist Otto Warburg, insures enhanced glycolytic metabolism for the biosynthesis of macromolecules. The conception of metabolite signaling, i.e., metabolites are regulators of cell signaling, provides novel insights into how reactive oxygen species (ROS) and other metabolites deregulation may regulate redox homeostasis, epigenetics, and proliferation of cancer cells. Moreover, the unveiling of noncanonical functions of metabolic enzymes, such as the moonlighting functions of phosphoglycerate kinase 1 (PGK1), reassures the importance of metabolism in cancer development. The metabolic, microRNAs, and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome. Among them, cancer microenvironmental cells are immune cells which exert profound effects on cancer cells. Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China
| | - Huimin Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wang Pu
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Leilei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongfei Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Jun Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Feng Zhang
- CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Peng Jiang
- Tsinghua University School of Life Sciences, and Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Muronetz VI, Medvedeva MV, Sevostyanova IA, Schmalhausen EV. Modification of Glyceraldehyde-3-Phosphate Dehydrogenase with Nitric Oxide: Role in Signal Transduction and Development of Apoptosis. Biomolecules 2021; 11:1656. [PMID: 34827652 PMCID: PMC8615796 DOI: 10.3390/biom11111656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
This review focuses on the consequences of GAPDH S-nitrosylation at the catalytic cysteine residue. The widespread hypothesis according to which S-nitrosylation causes a change in GAPDH structure and its subsequent binding to the Siah1 protein is considered in detail. It is assumed that the GAPDH complex with Siah1 is transported to the nucleus by carrier proteins, interacts with nuclear proteins, and induces apoptosis. However, there are several conflicting and unproven elements in this hypothesis. In particular, there is no direct confirmation of the interaction between the tetrameric GAPDH and Siah1 caused by S-nitrosylation of GAPDH. The question remains as to whether the translocation of GAPDH into the nucleus is caused by S-nitrosylation or by some other modification of the catalytic cysteine residue. The hypothesis of the induction of apoptosis by oxidation of GAPDH is considered. This oxidation leads to a release of the coenzyme NAD+ from the active center of GAPDH, followed by the dissociation of the tetramer into subunits, which move to the nucleus due to passive transport and induce apoptosis. In conclusion, the main tasks are summarized, the solutions to which will make it possible to more definitively establish the role of nitric oxide in the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Maria V. Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Irina A. Sevostyanova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
| | - Elena V. Schmalhausen
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.A.S.); (E.V.S.)
| |
Collapse
|
18
|
Mustafa Rizvi SH, Shao D, Tsukahara Y, Pimentel DR, Weisbrod RM, Hamburg NM, McComb ME, Matsui R, Bachschmid MM. Oxidized GAPDH transfers S-glutathionylation to a nuclear protein Sirtuin-1 leading to apoptosis. Free Radic Biol Med 2021; 174:73-83. [PMID: 34332079 PMCID: PMC8432375 DOI: 10.1016/j.freeradbiomed.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
AIMS S-glutathionylation is a reversible oxidative modification of protein cysteines that plays a critical role in redox signaling. Glutaredoxin-1 (Glrx), a glutathione-specific thioltransferase, removes protein S-glutathionylation. Glrx, though a cytosolic protein, can activate a nuclear protein Sirtuin-1 (SirT1) by removing its S-glutathionylation. Glrx ablation causes metabolic abnormalities and promotes controlled cell death and fibrosis in mice. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme of glycolysis, is sensitive to oxidative modifications and involved in apoptotic signaling via the SirT1/p53 pathway in the nucleus. We aimed to elucidate the extent to which S-glutathionylation of GAPDH and glutaredoxin-1 contribute to GAPDH/SirT1/p53 apoptosis pathway. RESULTS Exposure of HEK 293T cells to hydrogen peroxide (H2O2) caused rapid S-glutathionylation and nuclear translocation of GAPDH. Nuclear GAPDH peaked 10-15 min after the addition of H2O2. Overexpression of Glrx or redox dead mutant GAPDH inhibited S-glutathionylation and nuclear translocation. Nuclear GAPDH formed a protein complex with SirT1 and exchanged S-glutathionylation to SirT1 and inhibited its deacetylase activity. Inactivated SirT1 remained stably bound to acetylated-p53 and initiated apoptotic signaling resulting in cleavage of caspase-3. We observed similar effects in human primary aortic endothelial cells suggesting the GAPDH/SirT1/p53 pathway as a common apoptotic mechanism. CONCLUSIONS Abundant GAPDH with its highly reactive-cysteine thiolate may function as a cytoplasmic rheostat to sense oxidative stress. S-glutathionylation of GAPDH may relay the signal to the nucleus where GAPDH trans-glutathionylates nuclear proteins such as SirT1 to initiate apoptosis. Glrx reverses GAPDH S-glutathionylation and prevents its nuclear translocation and cytoplasmic-nuclear redox signaling leading to apoptosis. Our data suggest that trans-glutathionylation is a critical step in apoptotic signaling and a potential mechanism that cytosolic Glrx controls nuclear transcription factors.
Collapse
Affiliation(s)
- Syed Husain Mustafa Rizvi
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA; Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
| | - Yuko Tsukahara
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA
| | - David Richard Pimentel
- Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Robert M Weisbrod
- Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Naomi M Hamburg
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA; Cardiology, Whitaker Cardiovascular Institute, And Boston University School of Medicine, Boston, MA, USA
| | - Mark E McComb
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Reiko Matsui
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
19
|
Zoccarato A, Nabeebaccus AA, Oexner RR, Santos CXC, Shah AM. The nexus between redox state and intermediary metabolism. FEBS J 2021; 289:5440-5462. [PMID: 34496138 DOI: 10.1111/febs.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Zoccarato
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Adam A Nabeebaccus
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Rafael R Oexner
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| |
Collapse
|
20
|
Yan Y, Ren S, Duan Y, Lu C, Niu Y, Wang Z, Inglis B, Ji W, Zheng Y, Si W. Gut microbiota and metabolites of α-synuclein transgenic monkey models with early stage of Parkinson's disease. NPJ Biofilms Microbiomes 2021; 7:69. [PMID: 34475403 PMCID: PMC8413421 DOI: 10.1038/s41522-021-00242-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. However, it is unclear whether microbiota and metabolites have demonstrated changes at early PD due to the difficulties in diagnosis and identification of early PD in clinical practice. In a previous study, we generated A53T transgenic monkeys with early Parkinson's symptoms, including anxiety and cognitive impairment. Here we analyzed the gut microbiota by metagenomic sequencing and metabolites by targeted gas chromatography. The gut microbiota analysis showed that the A53T monkeys have higher degree of diversity in gut microbiota with significantly elevated Sybergistetes, Akkermansia, and Eggerthella lenta compared with control monkeys. Prevotella significantly decreased in A53T transgenic monkeys. Glyceric acid, L-Aspartic acid, and p-Hydroxyphenylacetic acid were significantly elevated, whereas Myristic acid and 3-Methylindole were significantly decreased in A53T monkeys. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (KO0131) and the oxidative phosphorylation reaction (KO2147) were significantly increased in metabolic pathways of A53T monkeys. Our study suggested that the transgenic A53T and α-syn aggregation may affect the intestine microbiota and metabolites of rhesus monkeys, and the identified five compositional different metabolites that are mainly associated with mitochondrial dysfunction may be related to the pathogenesis of PD.
Collapse
Affiliation(s)
- Yaping Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shuchao Ren
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yanchao Duan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Chenyu Lu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Briauna Inglis
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
21
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
22
|
Phenethylamine in chlorella alleviates high-fat diet-induced mouse liver damage by regulating generation of methylglyoxal. NPJ Sci Food 2021; 5:22. [PMID: 34301957 PMCID: PMC8302609 DOI: 10.1038/s41538-021-00105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/06/2021] [Indexed: 01/27/2023] Open
Abstract
This study examined the effects of oral administration of water extract of chlorella (WEC) (100 mg/kg bodyweight) and phenethylamine (10 μg/kg bodyweight) on high-fat diet (HFD)-induced liver damage in mice. Phenethylamine significantly mitigated HFD-induced lipid oxidation (generation of malondialdehyde) and liver damage without markedly decreasing hepatic lipid accumulation. WEC exerted similar effects although with decreased efficacy. In addition, WEC and phenethylamine decreased the methylglyoxal levels and increased the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein levels in the liver. Methylglyoxal is generated from substrates of GAPDH, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. These facts indicate that methylglyoxal triggers oxidation of accumulated lipid, which generates malondialdehyde and consequently induces liver damage. Suppression of generation of toxic aldehydes by WEC and phenethylamine was also confirmed by maintaining hepatic cysteine, highly reactive to aldehydes. Thus, trace amounts of phenethylamine alleviate HFD-induced liver damage by regulating methylglyoxal via increase of GAPDH.
Collapse
|
23
|
Darusman HS, Saepuloh U, Mariya SS, Sajuthi D, Schapiro SJ, Hau J. Increased expression of GAPDH in cynomolgus monkeys with spontaneous cognitive decline and amyloidopathy reminiscent of an Alzheimer's-type disease is reflected in the circulation. Am J Primatol 2021; 83:e23296. [PMID: 34196425 DOI: 10.1002/ajp.23296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Previous studies of aging cynomolgus monkeys from our group identified spontaneous age-associated cognitive declines associated with biomarkers and brain lesions reminiscent of Alzheimer's Disease (AD), in a proportion of aged monkeys. However, the molecular mechanisms that underlie the spontaneous amyloid disorders and cognitive declines observed in these affected monkeys have yet to be investigated in detail. Using reverse transcriptase quantitative real time PCR techniques, normalized to the ACTB housekeeping gene, we analyzed the expression patterns of a number of genes which have been implicated in amyloid and tau abnormalities, in well-characterized aged cynomolgus monkeys with cognitive decline. A significantly increased expression of the genes coding for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was found in aged-cognitive decline monkeys compared to age-matched healthy controls. GAPDH has been implicated in several neurodegenerative diseases and interacts with beta amyloid precursor proteins. These findings provide support for the utilization of cynomolgus macaques in translational preclinical research as valid spontaneous models in experimental investigations of the relationships among aging, cognitive decline, and the neuropathy of AD.
Collapse
Affiliation(s)
- Huda S Darusman
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia.,Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Uus Saepuloh
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Sela S Mariya
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia
| | - Dondin Sajuthi
- Primate Research Center, Institute of Research and Community Service, Bogor Agricultural University (IPB University), Bogor, Indonesia.,Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Steven J Schapiro
- Department of Comparative Medicine, UTMD Anderson Cancer Center, Bastrop, Texas, USA.,Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jann Hau
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Rashed FB, Stoica AC, MacDonald D, El-Saidi H, Ricardo C, Bhatt B, Moore J, Diaz-Dussan D, Ramamonjisoa N, Mowery Y, Damaraju S, Fahlman R, Kumar P, Weinfeld M. Identification of proteins and cellular pathways targeted by 2-nitroimidazole hypoxic cytotoxins. Redox Biol 2021; 41:101905. [PMID: 33640700 PMCID: PMC7933538 DOI: 10.1016/j.redox.2021.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
Tumour hypoxia negatively impacts therapy outcomes and continues to be a major unsolved clinical problem. Nitroimidazoles are hypoxia selective compounds that become entrapped in hypoxic cells by forming drug-protein adducts. They are widely used as hypoxia diagnostics and have also shown promise as hypoxia-directed therapeutics. However, little is known about the protein targets of nitroimidazoles and the resulting effects of their modification on cancer cells. Here, we report the synthesis and applications of azidoazomycin arabinofuranoside (N3-AZA), a novel click-chemistry compatible 2-nitroimidazole, designed to facilitate (a) the LC-MS/MS-based proteomic analysis of 2-nitroimidazole targeted proteins in FaDu head and neck cancer cells, and (b) rapid and efficient labelling of hypoxic cells and tissues. Bioinformatic analysis revealed that many of the 62 target proteins we identified participate in key canonical pathways including glycolysis and HIF1A signaling that play critical roles in the cellular response to hypoxia. Critical cellular proteins such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the detoxification enzyme glutathione S-transferase P (GSTP1) appeared as top hits, and N3-AZA adduct formation significantly reduced their enzymatic activities only under hypoxia. Therefore, GAPDH, GSTP1 and other proteins reported here may represent candidate targets to further enhance the potential for nitroimidazole-based cancer therapeutics.
Collapse
Affiliation(s)
- Faisal Bin Rashed
- Department of Oncology, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | | | - Dawn MacDonald
- Department of Oncology, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Hassan El-Saidi
- Department of Oncology, University of Alberta, Edmonton, AB, T6G2R3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, El Sultan Hussein St. Azarita, Alexandria, Egypt
| | - Carolynne Ricardo
- Department of Oncology, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Bhumi Bhatt
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Jack Moore
- Alberta Proteomics and Mass Spectrometry Facility, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Diana Diaz-Dussan
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | | | - Yvonne Mowery
- Radiation Oncology, School of Medicine, Duke University, Durham, NC, 27708, United States
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G2R3, Canada.
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, AB, T6G2R3, Canada.
| |
Collapse
|
25
|
Selinski J, Scheibe R. Central Metabolism in Mammals and Plants as a Hub for Controlling Cell Fate. Antioxid Redox Signal 2021; 34:1025-1047. [PMID: 32620064 PMCID: PMC8060724 DOI: 10.1089/ars.2020.8121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
Significance: The importance of oxidoreductases in energy metabolism together with the occurrence of enzymes of central metabolism in the nucleus gave rise to the active research field aiming to understand moonlighting enzymes that undergo post-translational modifications (PTMs) before carrying out new tasks. Recent Advances: Cytosolic enzymes were shown to induce gene transcription after PTM and concomitant translocation to the nucleus. Changed properties of the oxidized forms of cytosolic glyceraldehyde 3-phosphate dehydrogenase, and also malate dehydrogenases and others, are the basis for a hypothesis suggesting moonlighting functions that directly link energy metabolism to adaptive responses required for maintenance of redox-homeostasis in all eukaryotes. Critical Issues: Small molecules, such as metabolic intermediates, coenzymes, or reduced glutathione, were shown to fine-tune the redox switches, interlinking redox state, metabolism, and induction of new functions via nuclear gene expression. The cytosol with its metabolic enzymes connecting energy fluxes between the various cell compartments can be seen as a hub for redox signaling, integrating the different signals for graded and directed responses in stressful situations. Future Directions: Enzymes of central metabolism were shown to interact with p53 or the assumed plant homologue suppressor of gamma response 1 (SOG1), an NAM, ATAF, and CUC transcription factor involved in the stress response upon ultraviolet exposure. Metabolic enzymes serve as sensors for imbalances, their inhibition leading to changed energy metabolism, and the adoption of transcriptional coactivator activities. Depending on the intensity of the impact, rerouting of energy metabolism, proliferation, DNA repair, cell cycle arrest, immune responses, or cell death will be induced. Antioxid. Redox Signal. 34, 1025-1047.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Renate Scheibe
- Department of Plant Physiology, Faculty of Biology/Chemistry, Osnabrueck University, Osnabrueck, Germany
| |
Collapse
|
26
|
Irokawa H, Numasaki S, Kato S, Iwai K, Inose-Maruyama A, Ohdate T, Hwang GW, Toyama T, Watanabe T, Kuge S. Comprehensive analyses of the cysteine thiol oxidation of PKM2 reveal the effects of multiple oxidation on cellular oxidative stress response. Biochem J 2021; 478:1453-1470. [PMID: 33749780 DOI: 10.1042/bcj20200897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Redox regulation of proteins via cysteine residue oxidation is involved in the control of various cellular signal pathways. Pyruvate kinase M2 (PKM2), a rate-limiting enzyme in glycolysis, is critical for the metabolic shift from glycolysis to the pentose phosphate pathway under oxidative stress in cancer cell growth. The PKM2 tetramer is required for optimal pyruvate kinase (PK) activity, whereas the inhibition of inter-subunit interaction of PKM2 induced by Cys358 oxidation has reduced PK activity. In the present study, we identified three oxidation-sensitive cysteine residues (Cys358, Cys423 and Cys424) responsible for four oxidation forms via the thiol oxidant diamide and/or hydrogen peroxide (H2O2). Possibly due to obstruction of the dimer-dimer interface, H2O2-induced sulfenylation (-SOH) and diamide-induced modification at Cys424 inhibited tetramer formation and PK activity. Cys423 is responsible for intermolecular disulfide bonds with heterologous proteins via diamide. Additionally, intramolecular polysulphide linkage (-Sn-, n ≧ 3) between Cys358 and an unidentified PKM2 Cys could be induced by diamide. We observed that cells expressing the oxidation-resistant PKM2 (PKM2C358,424A) produced more intracellular reactive oxygen species (ROS) and exhibited greater sensitivity to ROS-generating reagents and ROS-inducible anti-cancer drugs compared with cells expressing wild-type PKM2. These results highlight the possibility that PKM2 inhibition via Cys358 and Cys424 oxidation contributes to eliminating excess ROS and oxidative stress.
Collapse
Affiliation(s)
- Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Satoshi Numasaki
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shin Kato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Kenta Iwai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Atsushi Inose-Maruyama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Takumi Ohdate
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Toshihiko Watanabe
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| |
Collapse
|
27
|
Guimaraes de Souza Melo C, Nelisis Zanoni J, Raquel Garcia de Souza S, Zignani I, de Lima Leite A, Domingues Heubel A, Vanessa Colombo Martins Perles J, Afonso Rabelo Buzalaf M. Global Proteomic Profile Integrated to Quantitative and Morphometric Assessment of Enteric Neurons: Investigation of the Mechanisms Involved in the Toxicity Induced by Acute Fluoride Exposure in the Duodenum. Neurotox Res 2021; 39:800-814. [PMID: 33689147 DOI: 10.1007/s12640-020-00296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 10/21/2022]
Abstract
The enteric nervous system is responsible for controlling the gastrointestinal tract (GIT) functions. Enteric neuropathies are highly correlated to the development of several intestinal disturbances. Fluoride (F) is extensively applied for dental health improvement and its ingestion can promote systemic toxicity with mild to severe GIT symptomatology and neurotoxicity. Although F harmful effects have been published, there is no information regarding noxiousness of a high acute F exposure (25 mg F/kg) on enteric neurons and levels of expression of intestinal proteins in the duodenum. Quantitative proteomics of the duodenum wall associated to morphometric and quantitative analysis of enteric neurons displayed F effects of a high acute exposure. F-induced myenteric neuroplasticity was characterized by a decrease in the density of nitrergic neurons and morphometric alterations in the general populations of neurons, nitrergic neurons, and substance P varicosities. Proteomics demonstrated F-induced alterations in levels of expression of 356 proteins correlated to striated muscle cell differentiation; generation of precursor metabolites and energy; NADH and glutathione metabolic process and purine ribonucleoside triphosphate biosynthesis. The neurochemical role of several intestinal proteins was discussed specially related to the modulation of enteric neuroplasticity. The results provide a new perspective on cell signaling pathways of gastrointestinal symptomatology promoted by acute F toxicity.
Collapse
Affiliation(s)
| | | | | | - Isabela Zignani
- Department of Morphophysiological Sciences, State University of Maringá, Paraná, Brazil
| | - Aline de Lima Leite
- Department of Biological Sciences, School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | | | | |
Collapse
|
28
|
Disruption of the Complex between GAPDH and Hsp70 Sensitizes C6 Glioblastoma Cells to Hypoxic Stress. Int J Mol Sci 2021; 22:ijms22041520. [PMID: 33546324 PMCID: PMC7913589 DOI: 10.3390/ijms22041520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, which commonly accompanies tumor growth, depending on its strength may cause the enhancement of tumorigenicity of cancer cells or their death. One of the proteins targeted by hypoxia is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and we demonstrated here that hypoxia mimicked by treating C6 rat glioblastoma cells with cobalt chloride caused an up-regulation of the enzyme expression, while further elevation of hypoxic stress caused the enzyme aggregation concomitantly with cell death. Reduction or elevation of GAPDH performed with the aid of specific shRNAs resulted in the augmentation of the tumorigenicity of C6 cells or their sensitization to hypoxic stress. Another hypoxia-regulated protein, Hsp70 chaperone, was shown to prevent the aggregation of oxidized GAPDH and to reduce hypoxia-mediated cell death. In order to release the enzyme molecules from the chaperone, we employed its inhibitor, derivative of colchicine. The compound was found to substantially increase aggregation of GAPDH and to sensitize C6 cells to hypoxia both in vitro and in animals bearing tumors with distinct levels of the enzyme expression. In conclusion, blocking the chaperonic activity of Hsp70 and its interaction with GAPDH may become a promising strategy to overcome tumor resistance to multiple environmental stresses and enhance existing therapeutic tools.
Collapse
|
29
|
Tossounian MA, Zhang B, Gout I. The Writers, Readers, and Erasers in Redox Regulation of GAPDH. Antioxidants (Basel) 2020; 9:antiox9121288. [PMID: 33339386 PMCID: PMC7765867 DOI: 10.3390/antiox9121288] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde 3–phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, which is crucial for the breakdown of glucose to provide cellular energy. Over the past decade, GAPDH has been reported to be one of the most prominent cellular targets of post-translational modifications (PTMs), which divert GAPDH toward different non-glycolytic functions. Hence, it is termed a moonlighting protein. During metabolic and oxidative stress, GAPDH is a target of different oxidative PTMs (oxPTM), e.g., sulfenylation, S-thiolation, nitrosylation, and sulfhydration. These modifications alter the enzyme’s conformation, subcellular localization, and regulatory interactions with downstream partners, which impact its glycolytic and non-glycolytic functions. In this review, we discuss the redox regulation of GAPDH by different redox writers, which introduce the oxPTM code on GAPDH to instruct a redox response; the GAPDH readers, which decipher the oxPTM code through regulatory interactions and coordinate cellular response via the formation of multi-enzyme signaling complexes; and the redox erasers, which are the reducing systems that regenerate the GAPDH catalytic activity. Human pathologies associated with the oxidation-induced dysregulation of GAPDH are also discussed, featuring the importance of the redox regulation of GAPDH in neurodegeneration and metabolic disorders.
Collapse
|
30
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
31
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
32
|
Davoudi M, Moradi-Sardareh H, Emamgholipour S, Nabatchian F, Paknejad M. The possible effect of silver nanoparticles on glyceraldehyde-3-phosphate dehydrogenase activity and formation of amyloid-like aggregates in MCF-7 cell line. IUBMB Life 2020; 72:2214-2224. [PMID: 32819028 DOI: 10.1002/iub.2362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 11/06/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in medicine, however, the underlying mechanisms of their action on cellular signaling have not been completely determined, and fundamental studies are required to clarify them. We aimed to investigate AgNPs effects on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as both the internal control gene and the redox-sensitive enzyme involved in apoptosis-related pathways and the formation of amyloid aggregates. To achieve this purpose, MCF-7 cells were treated with different concentrations (0, 3, 22, and 200 μg/ml) of AgNPs and then cell viability, generation of reactive oxygen species (ROS), induction of apoptosis, expression of GAPDH gene, the formation of amyloid aggregates, and GAPDH activity were assessed. The results indicated that treatment with AgNPs significantly reduced cell viability and increased apoptosis in a dose-dependent manner. The ROS levels increased at lower concentrations of AgNPs (up to 22 μg/ml) and during short-term exposure (30 min). The level of GAPDH gene expression was significantly upregulated by 1.22, 1.47, and 1.56 fold, in the concentrations of 3, 22, and 200 μg/ml, respectively. The amount of amyloid aggregates was significantly increased in a dose-dependent manner. The results of enzyme activity showed that AgNPs were affected on the activity of GAPDH protein, however, it has fluctuated that could not be interpreted by our limited data. In conclusion, our results suggested that AgNPs could affect the GAPDH gene expression and enzyme activity, therefore the selection of GAPDH as a gene and protein internal control in the (AgNPs)-related studies requires careful consideration. Additionally, AgNPs may cause apoptosis due to the increase in the production of amyloid aggregates.
Collapse
Affiliation(s)
- Maryam Davoudi
- Department of Medical Laboratory, School of Allied Health Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hemen Moradi-Sardareh
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Nabatchian
- Department of Medical Laboratory, School of Allied Health Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Paknejad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Pachauri S, Gupta GD, Mukherjee PK, Kumar V. Expression of a heptelidic acid-insensitive recombinant GAPDH from Trichoderma virens, and its biochemical and biophysical characterization. Protein Expr Purif 2020; 175:105697. [PMID: 32681951 DOI: 10.1016/j.pep.2020.105697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022]
Abstract
Trichoderma virens genome harbors two isoforms of GAPDH, one (gGPD) involved in glycolysis and the other one (vGPD) in secondary metabolism. vGPD is expressed as part of the "vir" cluster responsible for the biosynthesis of volatile sesquiterpenes. The secondary metabolism-associated GAPDH is tolerant to the anti-cancer metabolite heptelidic acid (HA), produced by T. virens. Characterizing the HA-tolerant form of GAPDH, thus has implications in cancer therapy. In order to get insight into the mechanism of HA-tolerance of vGPD, we have purified recombinant form of this protein. The protein displays biochemical and biophysical characteristics analogous to the gGPD isoform. It exists as a tetramer with Tm of about 56.5 °C, and displays phosphorylation enzyme activity with Km and Kcat of 0.38 mM and 2.55 sec-1, respectively. The protein weakly binds to the sequence upstream of the vir4 gene that codes for the core enzyme (a terpene cyclase) of the "vir" cluster. The EMSA analysis indicates that vGPD may not act as a transcription factor driving the "vir" cluster, at least not by directly binding to the promoter region. We also succeeded in obtaining small crystals of this protein. We have constructed structural models of vGPD and gGPD of T. virens. In silico constrained docking analysis reveals weaker binding of heptelidic acid in vGPD, compared to gGPD protein.
Collapse
Affiliation(s)
- Shikha Pachauri
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Gagan D Gupta
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India; Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Vinay Kumar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
34
|
Muronetz VI, Melnikova AK, Saso L, Schmalhausen EV. Influence of Oxidative Stress on Catalytic and Non-glycolytic Functions of Glyceraldehyde-3-phosphate Dehydrogenase. Curr Med Chem 2020; 27:2040-2058. [PMID: 29848267 DOI: 10.2174/0929867325666180530101057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Aleksandra K Melnikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza, University of Rome, Rome, Italy
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
35
|
Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020; 12:pharmaceutics12050416. [PMID: 32370188 PMCID: PMC7285110 DOI: 10.3390/pharmaceutics12050416] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell’s fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme’s function in some pathologic states.
Collapse
|
36
|
Wan L, Wang B, Zhang J, Zhu B, Pu Y. Associations of Genetic Variation in Glyceraldehyde 3-Phosphate Dehydrogenase Gene with Noise-Induced Hearing Loss in a Chinese Population: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082899. [PMID: 32331439 PMCID: PMC7216219 DOI: 10.3390/ijerph17082899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 11/30/2022]
Abstract
Objective: The purpose of this paper was to clarify the association between genetic variation in the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene and the risk of noise-induced hearing loss (NIHL). Methods: A case-control study (633 cases and 625 controls) was conducted in this study. Logistic regression was used to analyze the relationships between environmental and individual factors and NIHL. Gene expression levels were compared among each GAPDH rs6489721 genotype and between the case and control groups based on real-time fluorescence quantitative Polymerase Chain Reaction (PCR). Results: The T allele of GADPH rs6489721 was significantly associated with NIHL (odds ratio (OR) = 1.262, 95% confidence interval (CI) (1.066, 1.493), p = 0.006) and showed strong associations in the codominant and dominant models (TT vs. CC: OR = 1.586, 95% CI (1.131, 2.225), p = 0.008; TT vs. TC/CC: OR = 1.391, 95% CI (1.073, 1.804), p = 0.013). The expression level of the TT genotype was significantly higher than that of the CC genotype (p = 0.012), and the expression of the case group was also higher than that of the control group (p = 0.013). Conclusions: The homozygous risk allele (TT) of rs6489721 was associated with an enhanced GAPDH expression, resulting in the development of NIHL in a Chinese population.
Collapse
Affiliation(s)
- Liu Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
| | - Boshen Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
| | - Baoli Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (L.W.); (B.W.); (J.Z.); (B.Z.)
- Correspondence: ; Tel.: +86-13951966696
| |
Collapse
|
37
|
Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates. Proc Natl Acad Sci U S A 2019; 116:26057-26065. [PMID: 31772010 DOI: 10.1073/pnas.1914484116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.
Collapse
|
38
|
Lévy E, El Banna N, Baïlle D, Heneman-Masurel A, Truchet S, Rezaei H, Huang ME, Béringue V, Martin D, Vernis L. Causative Links between Protein Aggregation and Oxidative Stress: A Review. Int J Mol Sci 2019; 20:ijms20163896. [PMID: 31405050 PMCID: PMC6719959 DOI: 10.3390/ijms20163896] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Compelling evidence supports a tight link between oxidative stress and protein aggregation processes, which are noticeably involved in the development of proteinopathies, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. The literature is tremendously rich in studies that establish a functional link between both processes, revealing that oxidative stress can be either causative, or consecutive, to protein aggregation. Because oxidative stress monitoring is highly challenging and may often lead to artefactual results, cutting-edge technical tools have been developed recently in the redox field, improving the ability to measure oxidative perturbations in biological systems. This review aims at providing an update of the previously known functional links between oxidative stress and protein aggregation, thereby revisiting the long-established relationship between both processes.
Collapse
Affiliation(s)
- Elise Lévy
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Nadine El Banna
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Dorothée Baïlle
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Amélie Heneman-Masurel
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Sandrine Truchet
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Human Rezaei
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Béringue
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Davy Martin
- Molecular Virology and Immunology Unit (VIM-UR892), INRA, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Laurence Vernis
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
39
|
Piceatannol effectively counteracts glyceraldehyde-3-phosphate dehydrogenase aggregation and nuclear translocation in hippocampal cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Butera G, Mullappilly N, Masetto F, Palmieri M, Scupoli MT, Pacchiana R, Donadelli M. Regulation of Autophagy by Nuclear GAPDH and Its Aggregates in Cancer and Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20092062. [PMID: 31027346 PMCID: PMC6539768 DOI: 10.3390/ijms20092062] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Several studies indicate that the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has pleiotropic functions independent of its canonical role in glycolysis. The GAPDH functional diversity is mainly due to post-translational modifications in different amino acid residues or due to protein–protein interactions altering its localization from cytosol to nucleus, mitochondria or extracellular microenvironment. Non-glycolytic functions of GAPDH include the regulation of cell death, autophagy, DNA repair and RNA export, and they are observed in physiological and pathological conditions as cancer and neurodegenerative disorders. In disease, the knowledge of the mechanisms regarding GAPDH-mediated cell death is becoming fundamental for the identification of novel therapies. Here, we elucidate the correlation between autophagy and GAPDH in cancer, describing the molecular mechanisms involved and its impact in cancer development. Since autophagy is a degradative pathway associated with the regulation of cell death, we discuss recent evidence supporting GAPDH as a therapeutic target for autophagy regulation in cancer therapy. Furthermore, we summarize the molecular mechanisms and the cellular effects of GAPDH aggregates, which are correlated with mitochondrial malfunctions and can be considered a potential therapeutic target for various diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy.
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
41
|
Xu L, Liu And L, Cheng TY. Cloning and Expression Profile of Glyceraldehyde-3-Phosphate Dehydrogenase in Haemaphysalis flava (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:569-575. [PMID: 30418636 DOI: 10.1093/jme/tjy200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 06/09/2023]
Abstract
Haemaphysalis flava (Acari: Ixodidae) harbors pathogenic microorganisms and transfers these to hosts during blood feeding. Proteomic analysis in the midgut contents of H. flava detected glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and contig 1683 was retrieved as a GAPDH gene fragment by searching our previous transcriptomic library. In the study, the 5' and 3' ends of contig 1683 were cloned by rapid amplification of cDNA ends (RACE) and a full length, 1340 bp cDNA of Hf-GAPDH was obtained. The open-reading frame had 999 bp and coded for 333 amino acids. Hf-GAPDH was predicted to have an N-terminal NAD binding domain and a C-terminal glyceraldehyde dehydrogenase catalytic domain. The molecular structure of Hf-GAPDH was analyzed and the evolutionary relationship also established. The GAPDH protein sequence was conserved among ticks. The expression pattern of Hf-GAPDH, analyzed by real-time PCR, significantly differed among life phases, feeding stages, and tissues. As the ticks grew, the expression level of Hf-GAPDH was up-regulated. The expression levels of Hf-GAPDH in salivary glands and midguts from half-engorged ticks were lower than the same tissues from engorged ticks. This study will provide reference data for the follow-up verification of the GAPDH-related function and the feasibility as a potential anti-tick vaccine.
Collapse
Affiliation(s)
- Lv Xu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, China
| | - Lei Liu And
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
GAPDH as a model non-canonical AU-rich RNA binding protein. Semin Cell Dev Biol 2019; 86:162-173. [DOI: 10.1016/j.semcdb.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
43
|
Gerszon J, Rodacka A. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weight compounds in counteracting its aggregation and nuclear translocation. Ageing Res Rev 2018; 48:21-31. [PMID: 30254002 DOI: 10.1016/j.arr.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/26/2022]
Abstract
A number of independent studies have shown the contribution of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the pathogenesis of several neurodegenerative disorders. Indeed, GAPDH aggregates have been found in many post-mortem samples of brains of patients diagnosed with Alzheimer's and Parkinson disease. Currently, it is accepted that GAPDH-mediated cell death pathways in the neurodegenerative processes are associated with apoptosis caused by GAPDH nuclear translocation and excessive aggregation under oxidative stress conditions. Also the role of GAPDH in neurodegenerative diseases is linked to it directly binding to specific amyloidogenic proteins and petides such as β-amyloid precursor protein, β-amyloid peptide and tau protein in Alzheimer's disease, huntingtin in Huntington's disease and α-synuclein in Parkinson disease. One of the latest studies indicated that GAPDH aggregates significantly accelerate amyloidogenesis of the β-amyloid peptide, which implies that aggregates of GAPDH may act as a specific aggregation "seed" in vitro. Previous detailed studies revealed that the active-site cysteine (Cys152) of GAPDH plays an essential role in the oxidative stress-induced aggregation of GAPDH associated with cell death. Furthermore, oxidative modification of this cysteine residue initiates the translocation of the enzyme to the nucleus, subsequently leading to apoptosis. The crystallographic structure of GAPDH shows that the Cys152 residue is located close to the surface of the molecule in a hydrophilic environment, which means that it can react with low molecular weight compounds such as hydroxynonenal or piceatannol. Therefore, it is highly possible that GAPDH may serve as a target for small molecule compounds with the potential to slow down or prevent the progression of neurodegenerative disorders. Recently appearing new evidence has highlighted the significance of low molecular weight compounds in counteracting the oxidation of GAPDH and consequently its aggregation and other unfavourable pathological processes. Hence, this review aims to present all recent findings concerning molecules that are able to interact with GAPDH and counteract its aggregation and translocation to the nucleus.
Collapse
Affiliation(s)
- Joanna Gerszon
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Bionanopark Ltd., Lodz, Poland.
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Lazarev VF, Dutysheva EA, Komarova EY, Mikhaylova ER, Guzhova IV, Margulis BA. GAPDH-targeted therapy - A new approach for secondary damage after traumatic brain injury on rats. Biochem Biophys Res Commun 2018; 501:1003-1008. [PMID: 29777694 DOI: 10.1016/j.bbrc.2018.05.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/15/2018] [Indexed: 11/30/2022]
Abstract
Massive neuronal death caused by a neurodegenerative pathology or damage due to ischaemia or traumatic brain injury leads to the appearance of cytosolic proteins in the extracellular space. We found that one of the most abundant cellular polypeptides, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), appearing in the medium of dying cells or body fluids is able to form aggregates that are cytotoxic to adjacent cells. Since we previously showed that the hydrocortisone derivative RX624 can inhibit the ability of GAPDH to transport the enzyme complex with polyglutamine and reduce the cytotoxicity of the complex, we explored the effects of GAPDH on SH-SY5Y neuroblastoma cells. We found that the latter treated with particular forms of GAPDH molecules die with a high efficiency, suggesting that the exogenous enzyme does kill adjacent cells. RX624 prevented the interaction of exogenous GAPDH with the cell membrane and reduced the level of death by more than 10%. We also demonstrated the efficiency of RX624 treatment in a rat model of traumatic brain injury. The chemical blocked the formation of GAPDH aggregates in the brain, inhibited the cytotoxic effects of cerebrospinal fluid and rescued the motor function of injured rats. Importantly, RX624 treatment of rats had a similar effect as the intracranial injection of anti-GAPDH antibodies.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Science, Tikhoretsky pr. 4, St-Petersburg, 194064, Russia.
| | - Elizaveta A Dutysheva
- Institute of Cytology of Russian Academy of Science, Tikhoretsky pr. 4, St-Petersburg, 194064, Russia
| | - Elena Y Komarova
- Institute of Cytology of Russian Academy of Science, Tikhoretsky pr. 4, St-Petersburg, 194064, Russia
| | - Elena R Mikhaylova
- Institute of Cytology of Russian Academy of Science, Tikhoretsky pr. 4, St-Petersburg, 194064, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Science, Tikhoretsky pr. 4, St-Petersburg, 194064, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Science, Tikhoretsky pr. 4, St-Petersburg, 194064, Russia
| |
Collapse
|
45
|
Strumillo J, Nowak KE, Krokosz A, Rodacka A, Puchala M, Bartosz G. The role of resveratrol and melatonin in the nitric oxide and its oxidation products mediated functional and structural modifications of two glycolytic enzymes: GAPDH and LDH. Biochim Biophys Acta Gen Subj 2018; 1862:877-885. [DOI: 10.1016/j.bbagen.2017.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/06/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022]
|
46
|
Mahmoud YI, Taha A, Soliman S. 3-Monochloropropane-1,2-diol (alpha-chlorohydrin) disrupts spermatogenesis and causes spermatotoxicity in males of the Egyptian fruit-bat (Rousettus aegyptiacus). Biotech Histochem 2018; 93:293-300. [DOI: 10.1080/10520295.2018.1437471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- YI Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - A Taha
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - S Soliman
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
47
|
Baig MH, Ahmad K, Rabbani G, Choi I. Use of Peptides for the Management of Alzheimer's Disease: Diagnosis and Inhibition. Front Aging Neurosci 2018; 10:21. [PMID: 29467644 PMCID: PMC5808296 DOI: 10.3389/fnagi.2018.00021] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a form of dementia and the most common progressive neurodegenerative disease (ND). The targeting of amyloid-beta (Aβ) aggregation is one of the most widely used strategies to manage AD, and efforts are being made globally to develop peptide-based compounds for the early diagnosis and treatment of AD. Here, we briefly discuss the use of peptide-based compounds for the early diagnosis and treatment of AD and the use of peptide-based inhibitors targeting various Aβ aggregation checkpoints. In addition, we briefly discuss recent applications of peptide-based inhibitors against various AD targets including amyloid beta, β-site amyloid precursor protein cleaving enzyme 1 (BACE1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), tyrosine phosphatase (TP) and potassium channel KV1.3.
Collapse
Affiliation(s)
- Mohammad H Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Gulam Rabbani
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
48
|
Gerszon J, Serafin E, Buczkowski A, Michlewska S, Bielnicki JA, Rodacka A. Functional consequences of piceatannol binding to glyceraldehyde-3-phosphate dehydrogenase. PLoS One 2018; 13:e0190656. [PMID: 29298351 PMCID: PMC5752021 DOI: 10.1371/journal.pone.0190656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 11/24/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the key redox-sensitive proteins whose activity is largely affected by oxidative modifications at its highly reactive cysteine residue in the enzyme’s active site (Cys149). Prolonged exposure to oxidative stress may cause, inter alia, the formation of intermolecular disulfide bonds leading to accumulation of GAPDH aggregates and ultimately to cell death. Recently these anomalies have been linked with the pathogenesis of Alzheimer’s disease. Novel evidences indicate that low molecular compounds may be effective inhibitors potentially preventing the GAPDH translocation to the nucleus, and inhibiting or slowing down its aggregation and oligomerization. Therefore, we decided to establish the ability of naturally occurring compound, piceatannol, to interact with GAPDH and to reveal its effect on functional properties and selected parameters of the dehydrogenase structure. The obtained data revealed that piceatannol binds to GAPDH. The ITC analysis indicated that one molecule of the tetrameric enzyme may bind up to 8 molecules of polyphenol (7.3 ± 0.9). Potential binding sites of piceatannol to the GAPDH molecule were analyzed using the Ligand Fit algorithm. Conducted analysis detected 11 ligand binding positions. We indicated that piceatannol decreases GAPDH activity. Detailed analysis allowed us to presume that this effect is due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Consequently, our studies strongly indicate that piceatannol would be an exceptional inhibitor thanks to its ability to break the aforementioned pathologic disulfide linkage, and therefore to inhibit GAPDH aggregation. We demonstrated that by binding with GAPDH piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation.
Collapse
Affiliation(s)
- Joanna Gerszon
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Bionanopark Ltd., Lodz, Poland
- * E-mail:
| | - Eligiusz Serafin
- Laboratory of Computer and Analytical Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
49
|
Dando I, Pacchiana R, Pozza ED, Cataldo I, Bruno S, Conti P, Cordani M, Grimaldi A, Butera G, Caraglia M, Scarpa A, Palmieri M, Donadelli M. UCP2 inhibition induces ROS/Akt/mTOR axis: Role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism. Free Radic Biol Med 2017; 113:176-189. [PMID: 28962872 DOI: 10.1016/j.freeradbiomed.2017.09.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Several studies indicate that mitochondrial uncoupling protein 2 (UCP2) plays a pivotal role in cancer development by decreasing reactive oxygen species (ROS) produced by mitochondrial metabolism and by sustaining chemoresistance to a plethora of anticancer drugs. Here, we demonstrate that inhibition of UCP2 triggers Akt/mTOR pathway in a ROS-dependent mechanism in pancreatic adenocarcinoma cells. This event reduces the antiproliferative outcome of UCP2 inhibition by genipin, creating the conditions for the synergistic counteraction of cancer cell growth with the mTOR inhibitor everolimus. Inhibition of pancreatic adenocarcinoma cell growth and induction of apoptosis by genipin and everolimus treatment are functionally related to nuclear translocation of the cytosolic glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The synthetic compound (S)-benzyl-2-amino-2-(S)-3-bromo-4,5-dihydroisoxazol-5-yl-acetate (AXP3009), which binds GAPDH at its redox-sensitive Cys152, restores cell viability affected by the combined treatment with genipin and everolimus, suggesting a role for ROS production in the nuclear translocation of GAPDH. Caspase-mediated apoptosis by genipin and everolimus is further potentiated by the autophagy inhibitor 3-methyladenine revealing a protective role for Beclin1-mediated autophagy induced by the treatment. Mice xenograft of pancreatic adenocarcinoma further confirmed the antiproliferative outcome of drug combination without toxic effects for animals. Tumor masses from mice injected with UCP2 and mTOR inhibitors revealed a strong reduction in tumor volume and number of mitosis associated with a marked GAPDH nuclear positivity. Altogether, these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation and support the combined inhibition of UCP2 and of Akt/mTOR pathway as a novel therapeutic strategy in the treatment of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Ivana Cataldo
- Applied Research on Cancer Centre (ARC-Net) and Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefano Bruno
- Food and Dug Department, University of Parma, Parma, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco Cordani
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giovanna Butera
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Aldo Scarpa
- Applied Research on Cancer Centre (ARC-Net) and Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
50
|
Samson AL, Ho B, Au AE, Schoenwaelder SM, Smyth MJ, Bottomley SP, Kleifeld O, Medcalf RL. Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells. Open Biol 2017; 6:rsob.160098. [PMID: 27810968 PMCID: PMC5133435 DOI: 10.1098/rsob.160098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Amyloidogenic protein aggregation impairs cell function and is a hallmark of many chronic degenerative disorders. Protein aggregation is also a major event during acute injury; however, unlike amyloidogenesis, the process of injury-induced protein aggregation remains largely undefined. To provide this insight, we profiled the insoluble proteome of several cell types after acute injury. These experiments show that the disulfide-driven process of nucleocytoplasmic coagulation (NCC) is the main form of injury-induced protein aggregation. NCC is mechanistically distinct from amyloidogenesis, but still broadly impairs cell function by promoting the aggregation of hundreds of abundant and essential intracellular proteins. A small proportion of the intracellular proteome resists NCC and is instead released from necrotic cells. Notably, the physicochemical properties of NCC-resistant proteins are contrary to those of NCC-sensitive proteins. These observations challenge the dogma that liberation of constituents during necrosis is anarchic. Rather, inherent physicochemical features including cysteine content, hydrophobicity and intrinsic disorder determine whether a protein is released from necrotic cells. Furthermore, as half of the identified NCC-resistant proteins are known autoantigens, we propose that physicochemical properties that control NCC also affect immune tolerance and other host responses important for the restoration of homeostasis after necrotic injury.
Collapse
Affiliation(s)
- Andre L Samson
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, Victoria 3004, Australia .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Heart Research Institute, and Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Bosco Ho
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Amanda E Au
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, Victoria 3004, Australia
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute, and Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Stephen P Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Oded Kleifeld
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Alfred Medical Research and Education Precinct (AMREP), Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|