1
|
Perron T, Boissan M, Bièche I, Courtois L, Dingli F, Loew D, Chouchène M, Colasse S, Levy L, Prunier C. CYYR1 promotes the degradation of the E3 ubiquitin ligase WWP1 and is associated with favorable prognosis in breast cancer. J Biol Chem 2024; 300:107601. [PMID: 39059493 PMCID: PMC11399591 DOI: 10.1016/j.jbc.2024.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Ubiquitination plays a crucial role in cellular homeostasis by regulating the degradation, localization, and activity of proteins, ensuring proper cell function and balance. Among E3 ubiquitin ligases, WW domain-containing protein 1 (WWP1) is implicated in cell proliferation, survival, and apoptosis. Notably WWP1 is frequently amplified in breast cancer and associated with poor prognosis. Here, we identify the protein cysteine and tyrosine-rich protein 1 (CYYR1) that had previously no assigned function, as a regulator of WWP1 activity and stability. We show that CYYR1 binds to the WW domains of the E3 ubiquitin ligase WWP1 through its PPxY motifs. This interaction triggers K63-linked autoubiquitination and subsequent degradation of WWP1. We furthermore demonstrate that CYYR1 localizes to late endosomal vesicles and directs polyubiquitinated WWP1 toward lysosomal degradation through binding to ANKyrin repeat domain-containing protein 13 A (ANKRD13A). Moreover, we found that CYYR1 expression attenuates breast cancer cell growth in anchorage-dependent and independent colony formation assays in a PPxY-dependent manner. Finally, we highlight that CYYR1 expression is significantly decreased in breast cancer and is associated with beneficial clinical outcome. Taken together our study suggests tumor suppressor properties for CYYR1 through regulation of WWP1 autoubiquitination and lysosomal degradation.
Collapse
Affiliation(s)
- Tiphaine Perron
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France; APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Laboratoire de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, Université Paris Cité, Paris, France
| | - Florent Dingli
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- CurieCoreTech Mass Spectrometry Proteomics, Institut Curie, PSL Research University, Paris, France
| | - Mouna Chouchène
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Sabrina Colasse
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Laurence Levy
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| | - Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
| |
Collapse
|
2
|
Gurevich VV, Gurevich EV. GPCR-dependent and -independent arrestin signaling. Trends Pharmacol Sci 2024; 45:639-650. [PMID: 38906769 PMCID: PMC11227395 DOI: 10.1016/j.tips.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/23/2024]
Abstract
Biological activity of free arrestins is often overlooked. Based on available data, we compare arrestin-mediated signaling that requires and does not require binding to G-protein-coupled receptors (GPCRs). Receptor-bound arrestins activate ERK1/2, Src, and focal adhesion kinase (FAK). Yet, arrestin-3 regulation of Src family member Fgr does not appear to involve receptors. Free arrestin-3 facilitates the activation of JNK family kinases, preferentially binds E3 ubiquitin ligases Mdm2 and parkin, and facilitates parkin-dependent mitophagy. The binding of arrestins to microtubules and calmodulin and their function in focal adhesion disassembly and apoptosis also do not involve receptors. Biased GPCR ligands and the phosphorylation barcode can only affect receptor-dependent arrestin signaling. Thus, elucidation of receptor dependence or independence of arrestin functions has important scientific and therapeutic implications.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA
| |
Collapse
|
3
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
4
|
Giorgiutti S, Rottura J, Korganow AS, Gies V. CXCR4: from B-cell development to B cell-mediated diseases. Life Sci Alliance 2024; 7:e202302465. [PMID: 38519141 PMCID: PMC10961644 DOI: 10.26508/lsa.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. The C-X-C chemokine receptor type 4 (CXCR4), one of the most studied chemokine receptors, is widely expressed in hematopoietic and immune cell populations. It is involved in leukocyte trafficking in lymphoid organs and inflammatory sites through its interaction with its natural ligand CXCL12. CXCR4 assumes a pivotal role in B-cell development, ranging from early progenitors to the differentiation of antibody-secreting cells. This review emphasizes the significance of CXCR4 across the various stages of B-cell development, including central tolerance, and delves into the association between CXCR4 and B cell-mediated disorders, from immunodeficiencies such as WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome to autoimmune diseases such as systemic lupus erythematosus. The potential of CXCR4 as a therapeutic target is discussed, especially through the identification of novel molecules capable of modulating specific pockets of the CXCR4 molecule. These insights provide a basis for innovative therapeutic approaches in the field.
Collapse
Affiliation(s)
- Stéphane Giorgiutti
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Julien Rottura
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Medicine, Université de Strasbourg, Strasbourg, France
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, Strasbourg, France
- INSERM UMR - S1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Faculty of Pharmacy, Université de Strasbourg, Illkirch, France
| |
Collapse
|
5
|
Zheng C, Nguyen KK, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Arrestin-3 binds parkin and enhances parkin-dependent mitophagy. J Neurochem 2024. [PMID: 38196269 PMCID: PMC11231064 DOI: 10.1111/jnc.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Arrestins were discovered for their role in homologous desensitization of G-protein-coupled receptors (GPCRs). Later non-visual arrestins were shown to regulate several signaling pathways. Some of these pathways require arrestin binding to GPCRs, the regulation of others is receptor independent. Here, we demonstrate that arrestin-3 binds the E3 ubiquitin ligase parkin via multiple sites, preferentially interacting with its RING0 domain. Identification of the parkin domains involved suggests that arrestin-3 likely relieves parkin autoinhibition and/or stabilizes the enzymatically active "open" conformation of parkin. Arrestin-3 binding enhances ubiquitination by parkin of the mitochondrial protein mitofusin-1 and facilitates parkin-mediated mitophagy in HeLa cells. Furthermore, arrestin-3 and its mutant with enhanced parkin binding rescue mitofusin-1 ubiquitination and mitophagy in the presence of the Parkinson's disease-associated R275W parkin mutant, which is defective in both functions. Thus, modulation of parkin activity via arrestin-3 might be a novel strategy of anti-parkinsonian therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Kevin K Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
McElrath CJ, Benzow S, Zhuo Y, Marchese A. β-arrestin1 is an E3 ubiquitin ligase adaptor for substrate linear polyubiquitination. J Biol Chem 2023; 299:105474. [PMID: 37981209 PMCID: PMC10755771 DOI: 10.1016/j.jbc.2023.105474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling and trafficking are regulated by multiple mechanisms, including posttranslational modifications such as ubiquitination by E3 ubiquitin ligases. E3 ligases have been linked to agonist-stimulated ubiquitination of GPCRs via simultaneous binding to βarrestins. In addition, βarrestins have been suggested to assist E3 ligases for ubiquitination of key effector molecules, yet mechanistic insight is lacking. Here, we developed an in vitro reconstituted system and show that βarrestin1 (βarr1) serves as an adaptor between the effector protein signal-transducing adaptor molecule 1 (STAM1) and the E3 ligase atrophin-interacting protein 4. Via mass spectrometry, we identified seven lysine residues within STAM1 that are ubiquitinated and several types of ubiquitin linkages. We provide evidence that βarr1 facilitates the formation of linear polyubiquitin chains at lysine residue 136 on STAM1. This lysine residue is important for stabilizing the βarr1:STAM1 interaction in cells following GPCR activation. Our study identifies atrophin-interacting protein 4 as only the second E3 ligase known to conjugate linear polyubiquitin chains and a possible role for linear ubiquitin chains in GPCR signaling and trafficking.
Collapse
Affiliation(s)
- Chandler J McElrath
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sara Benzow
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
7
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. Mol Pharmacol 2023; 104:174-186. [PMID: 37474305 PMCID: PMC11033958 DOI: 10.1124/molpharm.123.000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Qiuyan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - John J G Tesmer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| |
Collapse
|
8
|
Gupta N, Mohan CD, Shanmugam MK, Jung YY, Chinnathambi A, Alharbi SA, Ashrafizadeh M, Mahale M, Bender A, Kumar AP, Putti TC, Rangappa KS, Zhang X, Ahn KS, Sethi G. CXCR4 expression is elevated in TNBC patient derived samples and Z-guggulsterone abrogates tumor progression by targeting CXCL12/CXCR4 signaling axis in mice model. ENVIRONMENTAL RESEARCH 2023:116335. [PMID: 37290620 DOI: 10.1016/j.envres.2023.116335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Environmental factors such as exposure to ionizing radiations, certain environmental pollutants, and toxic chemicals are considered as risk factors in the development of breast cancer. Triple-negative breast cancer (TNBC) is a molecular variant of breast cancer that lacks therapeutic targets such as progesterone receptor, estrogen receptor, and human epidermal growth factor receptor-2 which makes the targeted therapy ineffective in TNBC patients. Therefore, identification of new therapeutic targets for the treatment of TNBC and the discovery of new therapeutic agents is the need of the hour. In this study, CXCR4 was found to be highly expressed in majority of breast cancer tissues and metastatic lymph nodes derived from TNBC patients. CXCR4 expression is positively correlated with breast cancer metastasis and poor prognosis of TNBC patients suggesting that suppression of CXCR4 expression could be a good strategy in the treatment of TNBC patients. Therefore, the effect of Z-guggulsterone (ZGA) on the expression of CXCR4 in TNBC cells was examined. ZGA downregulated protein and mRNA expression of CXCR4 in TNBC cells and proteasome inhibition or lysosomal stabilization had no effect on the ZGA-induced CXCR4 reduction. CXCR4 is under the transcriptional control of NF-κB, whereas ZGA was found to downregulate transcriptional activity NF-κB. Functionally, ZGA downmodulated the CXCL12-driven migration/invasion in TNBC cells. Additionally, the effect of ZGA on growth of tumor was investigated in the orthotopic TNBC mice model and ZGA presented good inhibition of tumor growth and liver/lung metastasis in this model. Western blotting and immunohistochemical analysis indicated a reduction of CXCR4, NF-κB, and Ki67 in tumor tissues. Computational analysis suggested PXR agonism and FXR antagonism as targets of ZGA. In conclusion, CXCR4 was found to be overexpressed in majority of patient-derived TNBC tissues and ZGA abrogated the growth of TNBC tumors by partly targeting the CXCL12/CXCR4 signaling axis.
Collapse
Affiliation(s)
- Nikita Gupta
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | | | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Manas Mahale
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400 098, India
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Thomas Choudary Putti
- Department of Pathology, National University of Singapore, National University Hospital, Kent Ridge Road, Singapore, 119074, Singapore
| | | | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| |
Collapse
|
9
|
Gurevich VV, Gurevich EV. Mechanisms of Arrestin-Mediated Signaling. Curr Protoc 2023; 3:e821. [PMID: 37367499 DOI: 10.1002/cpz1.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Arrestins were first discovered as proteins that selectively bind active phosphorylated GPCRs and suppress (arrest) their G protein-mediated signaling. Nonvisual arrestins are also recognized as signaling proteins regulating a variety of cellular pathways. Arrestins are highly flexible; they can assume many different conformations. In their receptor-bound conformation, arrestins have higher affinity for a subset of binding partners. This explains how receptor activation regulates certain branches of arrestin-dependent signaling via arrestin recruitment to GPCRs. However, free arrestins are also active molecular entities that regulate other signaling pathways and localize signaling proteins to particular subcellular compartments. Recent findings suggest that the two visuals, arrestin-1 and arrestin-4, which are expressed in photoreceptor cells, not only regulate signaling via binding to photopigments but also interact with several nonreceptor partners, critically affecting the health and survival of photoreceptor cells. Detailed in this overview are GPCR-dependent and independent modes of arrestin-mediated regulation of cellular signaling. © 2023 Wiley Periodicals LLC.
Collapse
|
10
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 'Senses' CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530029. [PMID: 36865154 PMCID: PMC9980177 DOI: 10.1101/2023.02.25.530029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging action mediates the availability of the chemokine CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we mapped the phosphorylation patterns and determined that GRK5 phosphorylation of ACKR3 dominates β-arrestin recruitment and chemokine scavenging over GRK2. Co-activation of CXCR4 significantly enhanced phosphorylation by GRK2 through the liberation of Gβγ. These results suggest that ACKR3 'senses' CXCR4 activation through a GRK2-dependent crosstalk mechanism. Surprisingly, we also found that despite the requirement for phosphorylation, and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet to be determined function for these adapter proteins.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Present address: Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| |
Collapse
|
11
|
Zhuo Y, Robleto VL, Marchese A. Proximity Labeling to Identify β-Arrestin1 Binding Partners Downstream of Ligand-Activated G Protein-Coupled Receptors. Int J Mol Sci 2023; 24:3285. [PMID: 36834700 PMCID: PMC9967311 DOI: 10.3390/ijms24043285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
β-arrestins are multifaceted adaptor proteins that regulate various aspects of G protein-coupled receptor (GPCR) signaling. β-arrestins are recruited to agonist-activated and phosphorylated GPCRs at the plasma membrane, thereby preventing G protein coupling, while also targeting GPCRs for internalization via clathrin-coated pits. In addition, β-arrestins can activate various effector molecules to prosecute their role in GPCR signaling; however, the full extent of their interacting partners remains unknown. To discover potentially novel β-arrestin interacting partners, we used APEX-based proximity labeling coupled with affinity purification and quantitative mass spectrometry. We appended APEX in-frame to the C-terminus of β-arrestin1 (βarr1-APEX), which we show does not impact its ability to support agonist-stimulated internalization of GPCRs. By using coimmunoprecipitation, we show that βarr1-APEX interacts with known interacting proteins. Furthermore, following agonist stimulation βarr1-APEX labeled known βarr1-interacting partners as assessed by streptavidin affinity purification and immunoblotting. Aliquots were prepared in a similar manner and analyzed by tandem mass tag labeling and high-content quantitative mass spectrometry. Several proteins were found to be increased in abundance following GPCR stimulation. Biochemical experiments confirmed two novel proteins that interact with β-arrestin1, which we predict are novel ligand-stimulated βarr1 interacting partners. Our study highlights that βarr1-APEX-based proximity labeling represents a valuable approach to identifying novel players involved in GPCR signaling.
Collapse
Affiliation(s)
| | | | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Nengroo MA, Khan MA, Verma A, Datta D. Demystifying the CXCR4 conundrum in cancer biology: Beyond the surface signaling paradigm. Biochim Biophys Acta Rev Cancer 2022; 1877:188790. [PMID: 36058380 DOI: 10.1016/j.bbcan.2022.188790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
The oncogenic chemokine duo CXCR4-CXCL12/SDF-1 (C-X-C Receptor 4-C-X-C Ligand 12/ Stromal-derived factor 1) has been the topic of intense scientific disquisitions since Muller et al., in her ground-breaking research, described this axis as a critical determinant of organ-specific metastasis in breast cancer. Elevated CXCR4 levels correlate with distant metastases, poor prognosis, and unfavourable outcomes in most solid tumors. Therapeutic impediment of the axis in clinics with Food and Drug Administration (FDA) approved inhibitors like AMD3100 or Plerixafor yield dubious results, contrary to pre-clinical developments. Clinical trials entailing inhibition of CXCR7 (C-X-C Receptor 7), another convicted chemokine receptor that exhibits affinity for CXCL12, reveal outcomes analogous to that of CXCR4-CXCL12 axis blockade. Of note, the cellular CXCR4 knockout phenotype varies largely from that of inhibitor treatments. These shaky findings pique great curiosity to delve further into the realm of this infamous chemokine receptor to provide a probable explanation. A multitude of recent reports suggests the presence of an increased intracellular CXCR4 pool in various cancers, both cytoplasmic and nuclear. This intracellular CXCR4 protein reserve seems active as it correlates with vital tumor attributes, viz. prognosis, aggressiveness, metastasis, and disease-free survival. Diminishing this entire intracellular CXCR4 load apart from the surface signals looks encouraging from a therapeutic point of view. Transcending beyond the classically accepted concept of ligand-mediated surface signaling, this review sheds new light on plausible associations of intracellularly compartmentalised CXCR4 with various aspects of tumorigenesis. Besides, this review also puts forward a comprehensive account of CXCR4 regulation in different cancers.
Collapse
Affiliation(s)
- Mushtaq Ahmad Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Muqtada Ali Khan
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
13
|
Kotb RM, Ibrahim SS, Mostafa OM, Shahin NN. Potential role of CXCR4 in trastuzumab resistance in breast cancer patients. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166520. [PMID: 35985446 DOI: 10.1016/j.bbadis.2022.166520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Despite the efficacy of trastuzumab in treating HER2-positive breast cancer patients, a significant proportion of patients relapse after treatment. The role of C-X-C chemokine receptor type 4 (CXCR4) in trastuzumab resistance was studied only in cell lines and the underlying mechanisms remain largely unclear. This study investigated the role of CXCR4 in trastuzumab resistance in breast cancer patients and explored the possible underlying mechanisms. The study was performed retrospectively on tissue samples from 62 breast cancer patients including 42 who were treated with trastuzumab and chemotherapy and 20 who received chemotherapy alone in adjuvant setting. Expression levels of CXCR4 and its regulators hypoxia-inducible factor 1-alpha (HIF-1α), tristetraprolin (TTP), human antigen R (HuR), itchy E3 ubiquitin protein ligase (ITCH), miR-302a and miR-494 were determined and their associations with tumor recurrence and disease-free survival were analyzed. In trastuzumab-treated patients, high CXCR4 expression was associated with recurrence and was an independent predictor of progression risk after therapy. CXCR4 correlated positively with its transcriptional regulator, HIF-1α, and negatively with its post-translational regulator, ITCH. HIF-1α, HuR and ITCH were significantly associated with clinical outcome. In chemotherapy-treated patients, neither CXCR4 nor any of its regulators were associated with recurrence or predicted disease progression risk after chemotherapy. In conclusion, this study suggests a potential role for CXCR4 in recurrence after trastuzumab-based therapy in human breast cancer that could be mediated, at least in part, by hypoxia and/or decreased ubiquitination. These findings highlight the potential utility of CXCR4 as a promising target for enhancing trastuzumab therapeutic outcome.
Collapse
Affiliation(s)
- Ranim M Kotb
- General Administration of Clinical Trials, Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority, Giza, Egypt
| | - Safinaz S Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama M Mostafa
- Department of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
14
|
Zhuo Y, Crecelius JM, Marchese A. G protein-coupled receptor kinase phosphorylation of distal C-tail sites specifies βarrestin1-mediated signaling by chemokine receptor CXCR4. J Biol Chem 2022; 298:102351. [PMID: 35940305 PMCID: PMC9465349 DOI: 10.1016/j.jbc.2022.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 10/25/2022] Open
|
15
|
Li Q, Wang M, Zeng L, Guo W, Xu Y, Li C, Lai Y, Ye L, Peng X. Deletion of Wild-type p53 Facilitates Bone Metastatic Function by Blocking the AIP4 Mediated Ligand-Induced Degradation of CXCR4. Front Pharmacol 2022; 12:792293. [PMID: 35177982 PMCID: PMC8844016 DOI: 10.3389/fphar.2021.792293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Management of patients with prostate cancer and bone metastatic disease remains a major clinical challenge. Loss or mutation of p53 has been identified to be involved in the tumor progression and metastasis. Nevertheless, direct evidence of a specific role for wild-type p53 (wt-p53) in bone metastasis and the mechanism by which this function is mediated in prostate cancer remain obscure. Methods: The expression and protein levels of wt-53, AIP4, and CXCR4 in prostate cancer cells and clinical specimens were assessed by real-time PCR, immunohistochemistry and western blot analysis. The role of wt-p53 in suppressing aggressive and metastatic tumor phenotypes was assessed using in vitro transwell chemotaxis, wound healing, and competitive colocalization assays. Furthermore, whether p53 deletion facilitates prostate cancer bone-metastatic capacity was explored using an in vivo bone-metastatic model. The mechanistic model of wt-p53 in regulating gene expression was further explored by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. Results: Our findings revealed that wt-p53 suppressed the prostate cancer cell migration rate, chemotaxis and attachment toward the osteoblasts in vitro. The bone-metastatic model showed that deletion of wt-p53 remarkably increased prostate cancer bone-metastatic capacity in vivo. Mechanistically, wt-p53 could induce the ligand-induced degradation of the chemokine receptor CXCR4 by transcriptionally upregulating the expression of ubiquitin ligase AIP4. Treatment with the CXCR4 inhibitor AMD3100 or transduction of the AIP4 plasmid abrogated the pro-bone metastasis effects of TP53 deletion. Conclusion: Wt-p53 suppresses the metastasis of prostate cancer cells to bones by regulating the CXCR4/CXCL12 activity in the tumor cells/bone marrow microenvironment interactions. Our findings suggest that targeting the wt-p53/AIP4/CXCR4 axis might be a promising therapeutic strategy to manage prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China
| | - Min Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wei Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuandong Xu
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenxin Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingrong Lai
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liping Ye
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Guangzhou, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Jean-Alphonse FG, Sposini S. Confocal and TIRF microscopy based approaches to visualize arrestin trafficking in living cells. Methods Cell Biol 2021; 166:179-203. [PMID: 34752332 DOI: 10.1016/bs.mcb.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrestins are key proteins that serve as versatile scaffolds to control and mediate G protein coupled receptors (GPCR) activity. Arrestin control of GPCR functions involves their recruitment from the cytosol to plasma membrane-localized GPCRs and to endosomal compartments, where they mediate internalization, sorting and signaling of GPCRs. Several methods can be used to monitor trafficking of arrestins; however, live fluorescence imaging remains the method of choice to both assess arrestin recruitment to ligand-activated receptors and to monitor its dynamic subcellular localization. Here, we present two approaches based on Total Internal Fluorescence (TIRF) microscopy and confocal microscopy to visualize arrestin trafficking in live cells in real time and to assess their co-localization with the GPCR of interest and their localization at specific subcellular locations.
Collapse
Affiliation(s)
- Frédéric Gaëtan Jean-Alphonse
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France; Université Paris-Saclay, Inria, Inria Saclay-Île-de-France, Palaiseau, France
| | - Silvia Sposini
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom; University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France.
| |
Collapse
|
17
|
Dissecting the structural features of β-arrestins as multifunctional proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140603. [PMID: 33421644 DOI: 10.1016/j.bbapap.2021.140603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
β-arrestins bind active G protein-coupled receptors (GPCRs) and play a crucial role in receptor desensitization and internalization. The classical paradigm of arrestin function has been expanded with the identification of many non-receptor-binding partners, which indicated the multifunctional role of β-arrestins in cellular functions. To elucidate the molecular mechanism of β-arrestin-mediated signaling, the structural features of β-arrestins were investigated using X-ray crystallography and cryogenic electron microscopy (cryo-EM). However, the intrinsic conformational flexibility of β-arrestins hampers the elucidation of structural interactions between β-arrestins and their binding partners using conventional structure determination tools. Therefore, structural information obtained using complementary structure analysis techniques would be necessary in combination with X-ray crystallography and cryo-EM data. In this review, we describe how β-arrestins interact with their binding partners from a structural point of view, as elucidated by both traditional methods (X-ray crystallography and cryo-EM) and complementary structure analysis techniques.
Collapse
|
18
|
Lee KS, Navaluna E, Marsh NM, Janezic EM, Hague C. Development of a Novel SNAP-Epitope Tag/Near-Infrared Imaging Assay to Quantify G Protein-Coupled Receptor Degradation in Human Cells. SLAS DISCOVERY 2021; 26:570-578. [PMID: 33402011 DOI: 10.1177/2472555220979793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a novel reporter assay that leverages SNAP-epitope tag/near-infrared (NIR) imaging technology to monitor G protein-coupled receptor (GPCR) degradation in human cell lines. N-terminal SNAP-tagged GPCRs were subcloned and expressed in human embryonic kidney (HEK) 293 cells and then subjected to 24 h of cycloheximide (CHX)-chase degradation assays to quantify receptor degradation half-lives (t1/2) using LICOR NIR imaging-polyacrylamide gel electrophoresis (PAGE) analysis. Thus far, we have used this method to quantify t1/2 for all nine adrenergic (ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3), five somatostatin (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5), four chemokine (CXCR1, CXCR2, CXCR3, CXCR5), and three 5-HT2 (5HT2A, 5HT2B, 5HT2C) receptor subtypes. SNAP-GPCR-CHX degradation t1/2 values ranged from 0.52 h (ADRA1D) to 5.5 h (SSTR3). On the contrary, both the SNAP-tag alone and SNAP-tagged and endogenous β-actin were resistant to degradation with CHX treatment. Treatment with the proteasome inhibitor bortezomib produced significant but variable increases in SNAP-GPCR protein expression levels, indicating that SNAP-GPCR degradation primarily occurs through the proteasome. Remarkably, endogenous β2-adrenergic receptor/ADRB2 dynamic mass redistribution functional responses to norepinephrine were significantly decreased following CHX treatment, with a time course equivalent to that observed with the SNAP-ADRB2 degradation assay. We subsequently adapted this assay into a 96-well glass-bottom plate format to facilitate high-throughput GPCR degradation screening. t1/2 values quantified for the α1-adrenergic receptor subtypes (ADRA1A, ADRA1B, ADR1D) using the 96-well-plate format correlated with t1/2 values quantified using NIR-PAGE imaging analysis. In summary, this novel assay permits precise quantitative analysis of GPCR degradation in human cells and can be readily adapted to quantify degradation for any membrane protein of interest.
Collapse
Affiliation(s)
- Kyung-Soon Lee
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Edelmar Navaluna
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicole M Marsh
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric M Janezic
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Chris Hague
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
19
|
Shinde SR, Nager AR, Nachury MV. Ubiquitin chains earmark GPCRs for BBSome-mediated removal from cilia. J Biophys Biochem Cytol 2020; 219:211536. [PMID: 33185668 PMCID: PMC7716378 DOI: 10.1083/jcb.202003020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
Regulated trafficking of G protein-coupled receptors (GPCRs) controls cilium-based signaling pathways. β-Arrestin, a molecular sensor of activated GPCRs, and the BBSome, a complex of Bardet-Biedl syndrome (BBS) proteins, are required for the signal-dependent exit of ciliary GPCRs, but the functional interplay between β-arrestin and the BBSome remains elusive. Here we find that, upon activation, ciliary GPCRs become tagged with ubiquitin chains comprising K63 linkages (UbK63) in a β-arrestin-dependent manner before BBSome-mediated exit. Removal of ubiquitin acceptor residues from the somatostatin receptor 3 (SSTR3) and from the orphan GPCR GPR161 demonstrates that ubiquitination of ciliary GPCRs is required for their regulated exit from cilia. Furthermore, targeting a UbK63-specific deubiquitinase to cilia blocks the exit of GPR161, SSTR3, and Smoothened (SMO) from cilia. Finally, ubiquitinated proteins accumulate in cilia of mammalian photoreceptors and Chlamydomonas cells when BBSome function is compromised. We conclude that Ub chains mark GPCRs and other unwanted ciliary proteins for recognition by the ciliary exit machinery.
Collapse
|
20
|
D'Agostino G, Artinger M, Locati M, Perez L, Legler DF, Bianchi ME, Rüegg C, Thelen M, Marchese A, Rocchi MBL, Cecchinato V, Uguccioni M. β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4. Front Immunol 2020; 11:550824. [PMID: 33072091 PMCID: PMC7533569 DOI: 10.3389/fimmu.2020.550824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
The chemokine receptor CXCR4 plays a fundamental role in homeostasis and pathology by orchestrating recruitment and positioning of immune cells, under the guidance of a CXCL12 gradient. The ability of chemokines to form heterocomplexes, enhancing their function, represents an additional level of regulation on their cognate receptors. In particular, the multi-faceted activity of the heterocomplex formed between CXCL12 and the alarmin HMGB1 is emerging as an unexpected player able to modulate a variety of cell responses, spanning from tissue regeneration to chronic inflammation. Nowadays, little is known on the selective signaling pathways activated when CXCR4 is triggered by the CXCL12/HMGB1 heterocomplex. In the present work, we demonstrate that this heterocomplex acts as a CXCR4 balanced agonist, activating both G protein and β-arrestins-mediated signaling pathways to sustain chemotaxis. We generated β-arrestins knock out HeLa cells by CRISPR/Cas9 technology and show that the CXCL12/HMGB1 heterocomplex-mediated actin polymerization is primarily β-arrestin1 dependent, while chemotaxis requires both β-arrestin1 and β-arrestin2. Triggering of CXCR4 with the CXCL12/HMGB1 heterocomplex leads to an unexpected receptor retention on the cell surface, which depends on β-arrestin2. In conclusion, the CXCL12/HMGB1 heterocomplex engages the β-arrestin proteins differently from CXCL12, promoting a prompt availability of CXCR4 on the cell surface, and enhancing directional cell migration. These data unveil the signaling induced by the CXCL12/HMGB1 heterocomplex in view of identifying biased CXCR4 antagonists or agonists targeting the variety of functions it exerts.
Collapse
Affiliation(s)
- Gianluca D'Agostino
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Massimo Locati
- Humanitas Clinical and Research Center IRCCS, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Laurent Perez
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marco E Bianchi
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Curzio Rüegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, Biostatistics Unit, University of Urbino, Urbino, Italy
| | - Valentina Cecchinato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
21
|
Identification of Matrine as a Novel Regulator of the CXCR4 Signaling Axis in Tumor Cells. Int J Mol Sci 2020; 21:ijms21134731. [PMID: 32630806 PMCID: PMC7370290 DOI: 10.3390/ijms21134731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Matrine, a quinolizidine alkaloid, is commonly employed for treating various viral and inflammatory disorders. Here, we have evaluated matrine for its activity on C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinases (MMP-9/2) expression, and its potential to affect tumor metastasis and invasion. The effects of matrine on CXCR4, MMP-9/2, and nuclear factor κB (NF-κB) activation in lung (A549), prostate (DU145), and pancreas (MIA PaCa-2) cells were investigated by diverse techniques. The expression level of CXCR4 and MMP-9/2 was analyzed by western blot analysis and reverse transcription polymerase chain reaction. NF-κB activation was also evaluated by western blot analysis, electrophoretic mobility shift assay as well as immunocytochemical experiments. Furthermore, we monitored cell invasion and metastasis activities by wound healing and Boyden chamber assays. We noted that matrine induced a down-regulation of CXCR4 and MMP-9/2 at both protein and mRNA levels. In addition, matrine negatively regulated human epidermal growth factor receptor 2 (HER2) and C-X-C Motif Chemokine Ligand 12 (CXCL12)-induced CXCR4 expression. Moreover, NF-κB suppression by matrine led to inhibition of metastatic potential of tumor cells. Our results suggest that matrine can block the cancer metastasis through the negative regulation of CXCR4 and MMP-9/2 and consequently it can be considered as a potential candidate for cancer therapy.
Collapse
|
22
|
Yin Q, Wyatt CJ, Han T, Smalley KSM, Wan L. ITCH as a potential therapeutic target in human cancers. Semin Cancer Biol 2020; 67:117-130. [PMID: 32165318 DOI: 10.1016/j.semcancer.2020.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The ITCH/AIP4 ubiquitin E3 ligase was discovered independently by two groups searching for atrophin-1 interacting proteins and studying the genetics of mouse coat color alteration, respectively. ITCH is classified as a NEDD4 family E3 ligase featured with the C-terminal HECT domain for E3 ligase function and WW domains for substrate recruiting. ITCH deficiency in the mouse causes severe multi-organ autoimmune disease. Its roles in maintaining a balanced immune response have been extensively characterized over the past two and a half decades. A wealth of reports demonstrate a multifaceted role of ITCH in human cancers. Given the versatility of ITCH in catalyzing both proteolytic and non-proteolytic ubiquitination of its over fifty substrates, ITCH's role in malignancies is believed to be context-dependent. In this review, we summarize the downstream substrates of ITCH, the functions of ITCH in both tumor cells and the immune system, as well as the implications of such functions in human cancers. Moreover, we describe the upstream regulatory mechanisms of ITCH and the efforts have been made to target ITCH using small molecule inhibitors.
Collapse
Affiliation(s)
- Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Clayton J Wyatt
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Zenko D, Thompson D, Hislop JN. Endocytic sorting and downregulation of the M2 acetylcholine receptor is regulated by ubiquitin and the ESCRT complex. Neuropharmacology 2020; 162:107828. [PMID: 31654703 DOI: 10.1016/j.neuropharm.2019.107828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023]
Abstract
Cholinergic dysfunction plays a critical role in a number of disease states, and the loss of functional muscarinic acetylcholine receptors plays a key role in disease pathogenesis. Therefore, preventing receptor downregulation would maintain functional receptor number, and be predicted to alleviate symptoms. However, the molecular mechanism(s) underlying muscarinic receptor downregulation are currently unknown. Here we demonstrate that the M2 muscarinic receptor undergoes rapid lysosomal proteolysis, and this lysosomal trafficking is facilitated by ubiquitination of the receptor. Importantly, we show that this trafficking is driven specifically by ESCRT mediated involution. Critically, we provide evidence that disruption of this process leads to a re-routing of the trafficking of the M2 receptor away from the lysosome and into recycling pathway, and eventually back to the plasma membrane. This study is the first to identify the process by which the M2 muscarinic acetylcholine receptor undergoes endocytic sorting, and critically reveals a regulatory checkpoint that represents a target to pharmacologically increase the number of functional muscarinic receptors within the central nervous system.
Collapse
Affiliation(s)
- Dmitry Zenko
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK
| | - Dawn Thompson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK
| | - James N Hislop
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
24
|
Regulation of Cancer Immune Checkpoint: Mono- and Poly-Ubiquitination: Tags for Fate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:295-324. [PMID: 32185716 DOI: 10.1007/978-981-15-3266-5_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antagonism, stalemate and compromise between the immune system and tumor cells is closely associated with tumor development and progression. In recent years, tumor immunotherapy has made continuous breakthroughs. It has become an important approach for cancer treatment, improving the survival and prognosis of more and more tumor patients. Further investigating the mechanism of tumor immune regulation, and exploring tumor immunotherapy targets with high specificity and wide applicability will provide researchers and clinicians with favorable weapons towards cancer. Ubiquitination affects protein fate through influencing the activity, stability and location of target protein. The regulation of substrate protein fate by ubiquitination is involved in cell cycle, apoptosis, transcriptional regulation, DNA repair, immune response, protein degradation and quality control. E3 ubiquitin ligase selectively recruits specific protein substrates through specific protein-protein interactions to determine the specificity of the overall ubiquitin modification reaction. Immune-checkpoint inhibitory pathway is an important mechanism for tumor cells to evade immune killing, which can inhibit T cell activity. Blocking the immune checkpoints and activating T cells through targeting the negative regulatory factors of T cell activation and removing the "brake" of T lymphocytes can enhance T cells immune response against tumors. Therefore, blocking the immune checkpoint is one of the methods to enhance the activity of T cells, and it is also a hot target for the development of anti-tumor drugs in recent years, whose inhibitors have shown good effect in specific tumor treatment. Ubiquitination, as one of the most important posttranslational modification of proteins, also modulates the expression, intracellular trafficking, subcellular and membranous location of immune checkpoints, regulating the immune surveillance of T cells to tumors.
Collapse
|
25
|
Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019; 76:4413-4421. [PMID: 31422444 PMCID: PMC11105767 DOI: 10.1007/s00018-019-03272-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Mammalian arrestins are a family of four highly homologous relatively small ~ 45 kDa proteins with surprisingly diverse functions. The most striking feature is that each of the two non-visual subtypes can bind hundreds of diverse G protein-coupled receptors (GPCRs) and dozens of non-receptor partners. Through these interactions, arrestins regulate the G protein-dependent signaling by the desensitization mechanisms as well as control numerous signaling pathways in the G protein-dependent or independent manner via scaffolding. Some partners prefer receptor-bound arrestins, some bind better to the free arrestins in the cytoplasm, whereas several show no apparent preference for either conformation. Thus, arrestins are a perfect example of a multi-functional signaling regulator. The result of this multi-functionality is that reduction (by knockdown) or elimination (by knockout) of any of these two non-visual arrestins can affect so many pathways that the results are hard to interpret. The other difficulty is that the non-visual subtypes can in many cases compensate for each other, which explains relatively mild phenotypes of single knockouts, whereas double knockout is lethal in vivo, although cultured cells lacking both arrestins are viable. Thus, deciphering the role of arrestins in cell biology requires the identification of specific signaling function(s) of arrestins involved in a particular phenotype. This endeavor should be greatly assisted by identification of structural elements of the arrestin molecule critical for individual functions and by the creation of mutants where only one function is affected. Reintroduction of these biased mutants, or introduction of monofunctional stand-alone arrestin elements, which have been identified in some cases, into double arrestin-2/3 knockout cultured cells, is the most straightforward way to study arrestin functions. This is a laborious and technically challenging task, but the upside is that specific function of arrestins, their timing, subcellular specificity, and relations to one another could be investigated with precision.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
26
|
Caballero A, Mahn SA, Ali MS, Rogers MR, Marchese A. Heterologous regulation of CXCR4 lysosomal trafficking. J Biol Chem 2019; 294:8023-8036. [PMID: 30936203 DOI: 10.1074/jbc.ra118.005991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CXC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CXC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation. Our results demonstrate that direct activation of PKC via the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal trafficking of CXCR4. In agreement, heterologous activation of PKC by stimulating the chemokine receptor CXCR5 with its ligand, CXCL13, also mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal degradation of CXCR4. Similar to CXCL12, PMA promotes PKC-dependent phosphorylation of serine residues within CXCR4 C-tail that are required for binding and ubiquitination by the E3 ubiquitin ligase AIP4 (atrophin-interacting protein 4). However, inhibition of PKC activity does not alter CXCL12-mediated ubiquitination and degradation of CXCR4, suggesting that other kinases are also required. Accordingly, siRNA-mediated depletion of GRK6 results in decreased degradation and ubiquitination of CXCR4. Overall, these results suggest that PKC and GRK6 contribute to unique aspects of CXCR4 phosphorylation and lysosomal degradation to ensure proper signal propagation and termination.
Collapse
Affiliation(s)
- Adriana Caballero
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153
| | - Sarah A Mahn
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mudassir S Ali
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - M Rose Rogers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Department of Pharmacology, Loyola University Chicago, Maywood, Illinois 60153; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
27
|
Burton JC, Grimsey NJ. Ubiquitination as a Key Regulator of Endosomal Signaling by GPCRs. Front Cell Dev Biol 2019; 7:43. [PMID: 30984758 PMCID: PMC6449645 DOI: 10.3389/fcell.2019.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of therapeutic targets for FDA approved drugs. Therefore, understanding the molecular regulation of their signaling pathways is of paramount importance. Similarly, the mitogen activated protein kinase (MAPK) p38 is a critical mediator of proinflammatory disease. Yet despite decades of intense investigation, therapeutically viable inhibitors have struggled to make it into the clinic. New studies describing the regulation and activation of a GPCR dependent atypical p38 signaling pathway represents a novel therapeutic avenue to the treatment of many proinflammatory disorders. These recent studies have defined how thrombin and ADP can induce Src dependent activation of the E3 ubiquitin ligase NEDD4-2. Src dependent phosphorylation of a 2,3-linker peptide releases NEDD4-2 auto-inhibition and triggers the induction of proinflammatory atypical p38 signaling from the endosome. Activation of the atypical p38 pathway requires the direct interaction between an adaptor protein TAB1 and p38, that bypasses the requirement for the classical MKK3/6 dependent activation of p38. Therefore, providing a mechanism to specifically block proinflammatory GPCR atypical p38 activation while leaving basic p38 activity intact. Critically, new studies demonstrated that disruption of the TAB1-p38 interface is a druggable target, that would enable the selective inhibition of proinflammatory p38 signaling and ischemic injury. Atypical p38 signaling is linked to multiple clinically relevant pathologies including inflammation, cardiotoxicity, myocardial ischemia and ischemia reperfusion injury. Therefore, GPCR induced endosomal p38 signaling represents a novel understudied branch of proinflammatory p38 signaling and an ideal potential therapeutic target that warrants further investigation.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| |
Collapse
|
28
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
29
|
Shanmugam MK, Ahn KS, Hsu A, Woo CC, Yuan Y, Tan KHB, Chinnathambi A, Alahmadi TA, Alharbi SA, Koh APF, Arfuso F, Huang RYJ, Lim LHK, Sethi G, Kumar AP. Thymoquinone Inhibits Bone Metastasis of Breast Cancer Cells Through Abrogation of the CXCR4 Signaling Axis. Front Pharmacol 2018; 9:1294. [PMID: 30564115 PMCID: PMC6288203 DOI: 10.3389/fphar.2018.01294] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Overexpression of chemokine receptor type 4 (CXCR4) has been found to be associated with increased cell proliferation, metastasis and also act as an indicator of poor prognosis in patients with breast cancer. Therefore, new agents that can abrogate CXCR4 expression have potential against breast cancer metastasis. In this study, we examined the potential effect of thymoquinone (TQ), derived from the seeds of Nigella sativa, on the expression and regulation of CXCR4 in breast cancer cells. TQ was found to inhibit the expression of CXCR4 in MDA-MB-231 triple negative breast cancer (TNBC) cells in a dose- and time-dependent manner. It was noted that suppression of CXCR4 by TQ was possibly transcriptionally regulated, as treatment with this drug caused down-regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and suppression of NF-κB binding to the CXCR4 promoter. Pretreatment with a proteasome inhibitor and/or lysosomal stabilization did not affect TQ induced suppression of CXCR4. Down-regulation of CXCR4 was further correlated with the inhibition of CXCL12-mediated migration and invasion of MDA-MB-231 cells. Interestingly, it was observed that the deletion of p65 could reverse the observed anti-invasive/anti-migratory effects of TQ in breast cancer cells. TQ also dose-dependently inhibited MDA-MB-231 tumor growth and tumor vascularity in a chick chorioallantoic membrane assay model. We also observed TQ (2 and 4 mg/kg) treatment significantly suppressed multiple lung, brain, and bone metastases in a dose-dependent manner in a metastasis breast cancer mouse model. Interestingly, H&E and immunohistochemical analysis of bone isolated from TQ treated mice indicated a reduction in number of osteolytic lesions and the expression of metastatic biomarkers. In conclusion, the results indicate that TQ primarily exerts its anti-metastatic effects by down-regulation of NF-κB regulated CXCR4 expression and thus has potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Annie Hsu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chern Chiuh Woo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Yuan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Kwong Huat Benny Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Angele Pei Fern Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Program, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Medical Sciences Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia.,National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
30
|
Dores MR, Trejo J. Endo-lysosomal sorting of G-protein-coupled receptors by ubiquitin: Diverse pathways for G-protein-coupled receptor destruction and beyond. Traffic 2018; 20:101-109. [PMID: 30353650 DOI: 10.1111/tra.12619] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein-coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin-binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo-lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo-lysosomal sorting and beyond.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Biology, Hofstra University, Hempstead, New York
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Gurevich VV, Gurevich EV. Arrestin mutations: Some cause diseases, others promise cure. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:29-45. [PMID: 30711028 DOI: 10.1016/bs.pmbts.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrestins play a key role in homologous desensitization of G protein-coupled receptors (GPCRs) and regulate several other vital signaling pathways in cells. Considering the critical roles of these proteins in cellular signaling, surprisingly few disease-causing mutations in human arrestins were described. Most of these are loss-of-function mutations of visual arrestin-1 that cause excessive rhodopsin signaling and hence night blindness. Only one dominant arrestin-1 mutation was discovered so far. It reduces the thermal stability of the protein, which likely results in photoreceptor death via unfolded protein response. In case of the two nonvisual arrestins, only polymorphisms were described, some of which appear to be associated with neurological disorders and altered response to certain treatments. Structure-function studies revealed several ways of enhancing arrestins' ability to quench GPCR signaling. These enhanced arrestins have potential as tools for gene therapy of disorders associated with excessive signaling of mutant GPCRs.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
32
|
English EJ, Mahn SA, Marchese A. Endocytosis is required for C XC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling. J Biol Chem 2018; 293:11470-11480. [PMID: 29899118 DOI: 10.1074/jbc.ra118.001872] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Signaling activated by binding of the CXC motif chemokine ligand 12 (CXCL12) to its cognate G protein-coupled receptor (GPCR), chemokine CXC motif receptor 4 (CXCR4), is linked to metastatic disease. However, the mechanisms governing CXCR4 signaling remain poorly understood. Here, we show that endocytosis and early endosome antigen 1 (EEA1), which is part of the endosome fusion machinery, are required for CXCL12-mediated AKT Ser/Thr kinase (Akt) signaling selective for certain Akt substrates. Pharmacological inhibition of endocytosis partially attenuated CXCL12-induced phosphorylation of Akt, but not phosphorylation of ERK-1/2. Similarly, phosphorylation of Akt, but not ERK-1/2, stimulated by CXCL13, the cognate ligand for the chemokine receptor CXCR5, was also attenuated by inhibited endocytosis. Furthermore, siRNA-mediated depletion of the Rab5-effector EEA1, but not of adaptor protein, phosphotyrosine-interacting with PH domain and leucine zipper 1 (APPL1), partially attenuated Akt, but not ERK-1/2, phosphorylation promoted by CXCR4. Attenuation of Akt phosphorylation through inhibition of endocytosis or EEA1 depletion was associated with reduced signaling to Akt substrate forkhead box O1/3a but not the Akt substrates TSC complex subunit 2 or glycogen synthase kinase 3β. This suggested that endocytosis and endosomes govern discrete aspects of CXCR4- or CXCR5-mediated Akt signaling. Consistent with this hypothesis, depletion of EEA1 reduced the ability of CXCL12 to attenuate apoptosis in suspended, but not adherent, HeLa cells. Our results suggest a mechanism whereby compartmentalized chemokine-mediated Akt signaling from endosomes suppresses the cancer-related process known as anoikis. Targeting this signaling pathway may help inhibit metastatic cancer involving receptors such as CXCR4.
Collapse
Affiliation(s)
- Elizabeth J English
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sarah A Mahn
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
33
|
Liu Y, Wei S, Zou Q, Luo Y. Stachydrine suppresses viability & migration of astrocytoma cells via CXCR4/ERK & CXCR4/Akt pathway activity. Future Oncol 2018; 14:1443-1459. [PMID: 29873242 DOI: 10.2217/fon-2017-0562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Pilocytic astrocytomas (PAs) are a common adolescent malignancy. We evaluated the effects of the betaine stachydrine on human PA cells as well as its associated molecular mechanism(s). MATERIALS & METHODS Various experiments assessing stachydrine's effects on the human PA cell line Res186 were performed. RESULTS & CONCLUSION Stachydrine dose-dependently suppressed proliferation and colony formation in Res186 cells with no such effect on normal astrocytes. Stachydrine downregulated CXCR4 transcription through enhancing IκBα-based NF-κB inhibition. Stachydrine promoted apoptosis and cyclin D1/p27Kip1-associated G0/G1 phase arrest in a CXCR4/ERK- and CXCR4/Akt-dependent manner. Stachydrine suppressed MMP-associated migration and invasiveness via inhibiting CXCR4/Akt/MMP-9/2 and CXCR4/ERK/MMP-9/2 pathway activity. Stachydrine inhibits the viability, migration and invasiveness of human PA cells via inhibiting CXCR4/ERK and CXCR4/Akt signaling.
Collapse
Affiliation(s)
- Yun Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Songzhi Wei
- Department of Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Qin Zou
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yan Luo
- Department of Nursing, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
34
|
Itch/β-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis. Nat Commun 2018. [PMID: 29515120 PMCID: PMC5841288 DOI: 10.1038/s41467-018-03339-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis. SuFu is a tumour suppressor in medulloblastoma and regulates Gli proteins in the Sonic Hedgehog pathway; however, the molecular mechanisms behind this regulation are unclear. Here, the authors show that the Itch/β-arrestin2 complex binds and ubiquitylates SuFu, facilitating the interaction with Gli3 and its conversion into the repressive form, thus counteracting medulloblastoma formation.
Collapse
|
35
|
Liu H, Zhang Q, Li K, Gong Z, Liu Z, Xu Y, Swaney MH, Xiao K, Chen Y. Prognostic significance of USP33 in advanced colorectal cancer patients: new insights into β-arrestin-dependent ERK signaling. Oncotarget 2018; 7:81223-81240. [PMID: 27835898 PMCID: PMC5348388 DOI: 10.18632/oncotarget.13219] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Patients with liver metastases of colorectal cancer (CRCLM) have a poorer prognosis compared to colorectal cancer (CRC) patients in local stage. Evaluating the recurrence and overall survival of advanced patients is critical in improving disease treatment and clinical outcome. Here we investigated the expression pattern of USP33, a deubiquitinating enzyme, in both primary CRC tissues and liver metastases tissues. Univariate and multivariate analyses identified that low expression of USP33 in CRCLM tissues indicated high recurrence risk and poor overall prognosis. Overexpression of USP33 can significantly inhibit cell proliferation, migration, and invasion. On the other hand, USP33 knock-down promoted cell proliferation and invasion under SDF-1 stimulation; whereas dynasore (an internalization inhibitor) pretreatment in USP33 silencing cells showed a distinct antipromoting effect, revealing the participation of CXCR4 internalization in regulating tumor progress. Further results verified that USP33 can deubiquitinate β-arrestin2, subsequently block the internalization of SDF-1-stimulated CXCR4, and disrupt β-arrestin-dependent ERK activation. The existence and functions of β-arrestin-dependent signaling have been previously determined in several Gs-coupled receptors, such as β2-adrenergic receptor and angiotensin receptor subtype 1a; however, little is known about this in Gi-coupled receptors. Our study not only established USP33 as a novel prognosis biomarker in advanced CRCLM patients, but also highlighted the significance of β-arrestin-dependent ERK signaling in cancer development.
Collapse
Affiliation(s)
- Hongda Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Kangshuai Li
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Zheng Gong
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaochen Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| | - Mary Hannah Swaney
- Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kunhong Xiao
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Yuxin Chen
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
36
|
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that relay extracellular signals to the inside of the cells. C-X-C chemokine receptor 4 (CXCR4) is a GPCR that undergoes receptor internalization and recycling upon stimulation with its cognate ligand, C-X-C chemokine 12 (CXCL12). Using this receptor/ligand pair we describe the use of two techniques, enzyme-linked immunosorbent assay (ELISA) and flow cytometry, widely used to quantify GPCR internalization from the plasma membrane and its return to the cell surface by recycling.
Collapse
Affiliation(s)
- Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
37
|
Human melanocortin 1 receptor-mediated ubiquitination of nonvisual arrestins. Role of Mahogunin Ring Finger 1 E3 ligase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:76-94. [DOI: 10.1016/j.bbamcr.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022]
|
38
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
39
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
40
|
Zenko D, Hislop JN. Regulation and trafficking of muscarinic acetylcholine receptors. Neuropharmacology 2017; 136:374-382. [PMID: 29138081 DOI: 10.1016/j.neuropharm.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
Fidelity of signal transduction relies on cells expressing the appropriate number of functional receptors. Fluctuation in the total number of muscarinic acetylcholine receptors has been implicated in a range of physiological and pathophysiological processes, and the mechanisms responsible for this regulation represent potential molecular targets for therapeutic intervention. This article will review the current literature on the endocytic trafficking of muscarinic receptors and how knowledge of the trafficking of related receptors might influence future studies. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Dmitry Zenko
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|
41
|
Lear T, Dunn SR, McKelvey AC, Mir A, Evankovich J, Chen BB, Liu Y. RING finger protein 113A regulates C-X-C chemokine receptor type 4 stability and signaling. Am J Physiol Cell Physiol 2017; 313:C584-C592. [PMID: 28978524 DOI: 10.1152/ajpcell.00193.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023]
Abstract
As an α-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also called CXCL12), C-X-C chemokine receptor type 4 (CXCR4) plays a vital role in chemotactically attracting lymphocytes during inflammation. CXCR4 also regulates HIV infection due to its role as one of the chemokine coreceptors for HIV entry into CD4+ T cells. Chemokine receptors and their signaling pathways have been shown to be regulated by the process of ubiquitination, a posttranslational modification, guided by ubiquitin E3 ligases, which covalently links ubiquitin chains to lysine residues within target substrates. Here we describe a novel mechanism regulating CXCR4 protein levels and subsequent CXCR4/CXCL12 signaling pathway through the ubiquitination and degradation of the receptor in response to ligand stimulation. We identify that an uncharacterized really interesting new gene (RING) finger ubiquitin E3 ligase, RING finger protein 113A (RNF113A), directly ubiquitinates CXCR4 in cells, leading to CXCR4 degradation, and therefore disrupts the signaling cascade. We determined that the K331 residue within CXCR4 is essential for RNF113A-mediated ubiquitin conjugation. Overexpression of RNF113A significantly reduces CXCL12-induced kinase activation in HeLa cells, whereas RNF113A knockdown enhances CXCL12-induced downstream signaling. Further, RNF113A expression and silencing directly affect cell motility in a wound healing assay. These results suggest that RNF113A plays an important role in CXCR4 signaling through the ubiquitination and degradation of CXCR4. This mechanistic study might provide new understanding of HIV immunity and neutrophil activation and motility regulated by CXCR4.
Collapse
Affiliation(s)
- Travis Lear
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah R Dunn
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison C McKelvey
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aazrin Mir
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Evankovich
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania; .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Ahmadzai MM, Broadbent D, Occhiuto C, Yang C, Das R, Subramanian H. Canonical and Noncanonical Signaling Roles of β-Arrestins in Inflammation and Immunity. Adv Immunol 2017; 136:279-313. [PMID: 28950948 DOI: 10.1016/bs.ai.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
β-Arrestins are a highly conserved family of cytosolic adaptor proteins that contribute to many immune functions by orchestrating the desensitization and internalization of cell-surface G protein-coupled receptors (GPCRs) via well-studied canonical interactions. In cells of the innate and adaptive immune system, β-arrestins also subserve a parallel but less understood role in which they propagate, rather than terminate, intracellular signal transduction cascades. Because β-arrestins are promiscuous in their binding, they are capable of interacting with several different GPCRs and downstream effectors; in doing so, they vastly expand the repertoire of cellular responses evoked by agonist binding and the scope of responses that may contribute to inflammation during infectious and sterile insults. In this chapter, we attempt to provide an overview of the canonical and noncanonical roles of β-arrestins in inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | - Canchai Yang
- Michigan State University, East Lansing, MI, United States
| | - Rupali Das
- Michigan State University, East Lansing, MI, United States
| | | |
Collapse
|
43
|
Regulation of G Protein-Coupled Receptors by Ubiquitination. Int J Mol Sci 2017; 18:ijms18050923. [PMID: 28448471 PMCID: PMC5454836 DOI: 10.3390/ijms18050923] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.
Collapse
|
44
|
Wenzel ED, Bachis A, Avdoshina V, Taraballi F, Tasciotti E, Mocchetti I. Endocytic Trafficking of HIV gp120 is Mediated by Dynamin and Plays a Role in gp120 Neurotoxicity. J Neuroimmune Pharmacol 2017; 12:492-503. [PMID: 28349243 DOI: 10.1007/s11481-017-9739-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
Neurons that endocytose the human immunodeficiency virus-1 (HIV) protein gp120 exhibit neurite retraction and activation of caspase-3, suggesting that the endocytic process may be crucial for gp120-mediated neuronal injury. The goal of this study is to demonstrate that internalization and accumulation of gp120 play a role in its neurotoxic effects. In mammalian cells, endocytosis is primarily a dynamin-dependent process. To establish whether gp120 is endocytosed in a dynamin-dependent manner, we used fibroblasts in which deletion of dynamins was induced by tamoxifen. We observed a robust reduction of intracellular gp120 immunoreactivity in tamoxifen-treated cells. To examine whether endocytosis of gp120 is crucial for its neurotoxic effect, we blocked gp120 internalization into primary rat cortical neurons by dynasore, an inhibitor of the dynamin GTP-ase activity. We found that dynasore blocks both gp120 internalization and neurotoxicity. We then utilized gp120-loaded mesoporous silica nanoparticles to deliver gp120 intracellularly. We established that once internalized, gp120 is neurotoxic regardless of chemokine receptor activation. Our data suggest that dynamin-dependent endocytosis of gp120 is critical for its neurotoxicity.
Collapse
Affiliation(s)
- Erin D Wenzel
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.,Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Alessia Bachis
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Valeria Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Department of Orthopedics, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, EP09 New Research Building, 3970 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
45
|
Alekhina O, Marchese A. β-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem 2016; 291:26083-26097. [PMID: 27789711 DOI: 10.1074/jbc.m116.757138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
The chemokine receptor CXCR4 and its chemokine ligand CXCL12 mediate directed cell migration during organogenesis, immune responses, and metastatic disease. However, the mechanisms governing CXCL12/CXCR4-dependent chemotaxis remain poorly understood. Here, we show that the β-arrestin1·signal-transducing adaptor molecule 1 (STAM1) complex, initially identified to govern lysosomal trafficking of CXCR4, also mediates CXCR4-dependent chemotaxis. Expression of minigene fragments from β-arrestin1 or STAM1, known to disrupt the β-arrestin1·STAM1 complex, and RNAi against β-arrestin1 or STAM1, attenuates CXCL12-induced chemotaxis. The β-arrestin1·STAM1 complex is necessary for promoting autophosphorylation of focal adhesion kinase (FAK). FAK is necessary for CXCL12-induced chemotaxis and associates with and localizes with β-arrestin1 and STAM1 in a CXCL12-dependent manner. Our data reveal previously unknown roles in CXCR4-dependent chemotaxis for β-arrestin1 and STAM1, which we propose act in concert to regulate FAK signaling. The β-arrestin1·STAM1 complex is a promising target for blocking CXCR4-promoted FAK autophosphorylation and chemotaxis.
Collapse
Affiliation(s)
- Olga Alekhina
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
46
|
Characterization of the interaction between the dopamine D4 receptor, KLHL12 and β-arrestins. Cell Signal 2016; 28:1001-14. [DOI: 10.1016/j.cellsig.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/11/2023]
|
47
|
Gurevich VV, Gurevich EV. Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Crit Rev Biochem Mol Biol 2016; 50:440-52. [PMID: 26453028 DOI: 10.3109/10409238.2015.1067185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most proteins have multiple functions. Obviously, conventional methods of manipulating the level of the protein of interest in the cell, such as over-expression, knockout or knockdown, affect all of its functions simultaneously. The key advantage of these methods is that over-expression, knockout or knockdown does not require any knowledge of the molecular mechanisms of the function(s) of the protein of interest. The disadvantage is that these approaches are inadequate to elucidate the role of an individual function of the protein in a particular cellular process. An alternative is the use of re-engineered proteins, in which a single function is eliminated or enhanced. The use of mono-functional elements of a multi-functional protein can also yield cleaner answers. This approach requires detailed knowledge of the structural basis of each function of the protein in question. Thus, a lot of preliminary structure-function work is necessary to make it possible. However, when this information is available, replacing the protein of interest with a mutant in which individual functions are modified can shed light on the biological role of those particular functions. Here, we illustrate this point using the example of protein kinases, most of which have additional non-enzymatic functions, as well as arrestins, known multi-functional signaling regulators in the cell.
Collapse
Affiliation(s)
| | - Eugenia V Gurevich
- a Department of Pharmacology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
48
|
Abstract
Itch or itchy E3 ubiquitin ligase was initially discovered by genetic studies on the mouse coat color changes, and its deletion results in an itchy phenotype with constant skin scratching and multi-organ inflammation. It is a member of the homologous to E6-associated protein C-terminus (HECT)-type family of E3 ligases, with the protein-interacting WW-domains for the recruitment of substrate and the HECT domain for the transfer of ubiquitin to the substrate. Since its discovery, numerous studies have demonstrated that Itch is involved in the control of many aspects of immune responses including T-cell activation and tolerance and T-helper cell differentiation. Itch is also implicated in other biological contexts such as tumorigenesis, development, and stress responses. Many signaling pathways are regulated by Itch-promoted ubiquitylation of diverse target proteins. Itch is also involved in human diseases. Here, we discuss the major progress in understanding the biological significance of Itch-promoted protein ubiquitylation in the immune and other systems and in Itch-mediated regulation of signal transduction.
Collapse
Affiliation(s)
- Daisuke Aki
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Wen Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
49
|
Kim B, Kim YC, Park B. Pomolic acid inhibits metastasis of HER2 overexpressing breast cancer cells through inactivation of the ERK pathway. Int J Oncol 2016; 49:744-52. [DOI: 10.3892/ijo.2016.3568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/01/2016] [Indexed: 11/05/2022] Open
|
50
|
Kim B, Yoon J, Yoon SW, Park B. Onbaekwon Suppresses Colon Cancer Cell Invasion by Inhibiting Expression of the CXC Chemokine Receptor 4. Integr Cancer Ther 2016; 16:244-251. [PMID: 27160279 PMCID: PMC5739121 DOI: 10.1177/1534735416645182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.
Collapse
Affiliation(s)
- Buyun Kim
- 1 Keimyung University, Daegu, South Korea
| | | | - Seong Woo Yoon
- 2 Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | | |
Collapse
|