1
|
Apostol AJ, Bragagnolo NJ, Rodriguez CS, Audette GF. Structural insights into the disulfide isomerase and chaperone activity of TrbB of the F plasmid type IV secretion system. Curr Res Struct Biol 2024; 8:100156. [PMID: 39131116 PMCID: PMC11315126 DOI: 10.1016/j.crstbi.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Bacteria have evolved elaborate mechanisms to thrive in stressful environments. F-like plasmids in gram-negative bacteria encode for a multi-protein Type IV Secretion System (T4SSF) that is functional for bacterial proliferation and adaptation through the process of conjugation. The periplasmic protein TrbB is believed to have a stabilizing chaperone role in the T4SSF assembly, with TrbB exhibiting disulfide isomerase (DI) activity. In the current report, we demonstrate that the deletion of the disordered N-terminus of TrbBWT, resulting in a truncation construct TrbB37-161, does not affect its catalytic in vitro activity compared to the wild-type protein (p = 0.76). Residues W37-K161, which include the active thioredoxin motif, are sufficient for DI activity. The N-terminus of TrbBWT is disordered as indicated by a structural model of GST-TrbBWT based on ColabFold-AlphaFold2 and Small Angle X-Ray Scattering data and 1H-15N Heteronuclear Single Quantum Correlation (HSQC) spectroscopy of the untagged protein. This disordered region likely contributes to the protein's dynamicity; removal of this region results in a more stable protein based on 1H-15N HSQC and Circular Dichroism Spectroscopies. Lastly, size exclusion chromatography analysis of TrbBWT in the presence of TraW, a T4SSF assembly protein predicted to interact with TrbBWT, does not support the inference of a stable complex forming in vitro. This work advances our understanding of TrbB's structure and function, explores the role of structural disorder in protein dynamics in the context of a T4SSF accessory protein, and highlights the importance of redox-assisted protein folding in the T4SSF.
Collapse
Affiliation(s)
- Arnold J. Apostol
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Nicholas J. Bragagnolo
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Christina S. Rodriguez
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| | - Gerald F. Audette
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
- Centre for Research on Biomolecular Interactions, York University, Canada
| |
Collapse
|
2
|
Marotta NJ, Weinert EE. Insights into the metabolism, signaling, and physiological effects of 2',3'-cyclic nucleotide monophosphates in bacteria. Crit Rev Biochem Mol Biol 2023; 58:118-131. [PMID: 38064689 PMCID: PMC10877235 DOI: 10.1080/10409238.2023.2290473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) have been discovered within both prokaryotes and eukaryotes in the past decade and a half, raising questions about their conserved existence in cells. In plants and mammals, wounding has been found to cause increased levels of 2',3'-cNMPs. Roles for 2',3'-cNMPs in plant immunity suggest that their regulation may be valuable for both plant hosts and microbial pathogens. In support of this hypothesis, a plethora of microbial enzymes have been found with activities related to these molecules. Studies in bacteria suggest that 2',3'-cNMPs are also produced in response to cellular stress and modulate expression of numerous genes. 2',3'-cNMP levels affect bacterial phenotypes, including biofilm formation, motility, and growth. Within E. coli and Salmonella enterica, 2',3'-cNMPs are produced by RNA degradation by RNase I, highlighting potential roles for Type 2 RNases producing 2',3'-cNMPs in a range of organisms. Development of cellular tools to modulate 2',3'-cNMP levels in bacteria has allowed for interrogation of the effects of 2',3'-cNMP concentration on bacterial transcriptomes and physiology. Pull-downs of cellular 2',3'-cNMP binding proteins have identified the ribosome and in vitro studies demonstrated that 2',3'-cNMPs decrease translation, suggesting a direct mechanism for 2',3-cNMP-dependent control of bacterial phenotypes. Future studies dissecting the cellular roles of 2',3'-cNMPs will highlight novel signaling pathways within prokaryotes and which can potentially be engineered to control bacterial physiology.
Collapse
Affiliation(s)
- Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative
Biosciences, Penn State University, University Park, PA, 16803, USA
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn
State University, University Park, PA, 16803, USA
- Department of Chemistry, Penn State University, University
Park, PA, 16803, USA
| |
Collapse
|
3
|
Si M, Hu M, Yang M, Peng Z, Li D, Zhao Y. Characterization of oxidative stress-induced cgahp, a gene coding for alkyl hydroperoxide reductase, from industrial importance Corynebacterium glutamicum. Biotechnol Lett 2023; 45:1309-1326. [PMID: 37606753 PMCID: PMC10460364 DOI: 10.1007/s10529-023-03421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
Alkyl hydroperoxide reductase (Ahp), comprised of four different subunits AhpC, AhpD, AhpE, and AhpF, is a thiol-based antioxidative enzyme with the ability to protect bacteria against oxidative stress. Functionally, AhpC and AhpE considered as peroxidases directly detoxify peroxides, while AhpD and AhpF as oxidoreductases restore oxidized peroxidases to their reduced form. Corynebacterium glutamicum ncgl0877 encodes a putative Ahp with a unique Cys-Pro-Phe-Cys (C-P-G-C) active-site motif, similar with those of the thiol-disulfide oxidoreductases such as thioredoxin (Trx), mycoredoxin-1 (Mrx1) and AhpD. However, its physiological and biochemical functions remain unknown in C. glutamicum. Here, we report that NCgl0877, designated CgAhp, is involved in the protection against organic peroxide (OP) stress. The cgahp-deleted strain is notably more sensitive to OP stress. The cgahp expression is controlled by a MarR-type transcriptional repressor OasR (organic peroxide- and antibiotic-sensing regulator). The physiological role of CgAhp in resistance to OP stresses is corroborated by its induced expression under stresses. Although CgAhp has a weak peroxidase activity toward OP, it mainly supports the OP-scavenging activity of the thiol-dependent peroxidase preferentially linked to the dihydrolipoamide dehydrogenase (Lpd)/dihydrolipoamide succinyltransferase (SucB)/NADH system. The C-P-G-C motif of CgAhp is essential to maintain the reductase activity. In conclusion, our study identifies CgAhp, behaving like AhpD, as a key disulfide oxidoreductase involved in the oxidative stress tolerance and the functional electron donor for peroxidase.
Collapse
Affiliation(s)
- Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mengdie Hu
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Mingfei Yang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhaoxin Peng
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Donghan Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Yuying Zhao
- College of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, Henan, China.
| |
Collapse
|
4
|
Knoke LR, Zimmermann J, Lupilov N, Schneider JF, Celebi B, Morgan B, Leichert LI. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Redox Biol 2023; 64:102800. [PMID: 37413765 DOI: 10.1016/j.redox.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo "steady state" redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from -228 mV to a more reducing -243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannik Zimmermann
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Jannis F Schneider
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Beyzanur Celebi
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Centre for Human and Molecular Biology (ZHMB), Saarland University, 66123, Saarbrücken, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
5
|
Bai J, Raustad N, Denoncourt J, van Opijnen T, Geisinger E. Genome-wide phage susceptibility analysis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity. PLoS Pathog 2023; 19:e1010928. [PMID: 37289824 PMCID: PMC10249906 DOI: 10.1371/journal.ppat.1010928] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Phage have gained renewed interest as an adjunctive treatment for life-threatening infections with the resistant nosocomial pathogen Acinetobacter baumannii. Our understanding of how A. baumannii defends against phage remains limited, although this information could lead to improved antimicrobial therapies. To address this problem, we identified genome-wide determinants of phage susceptibility in A. baumannii using Tn-seq. These studies focused on the lytic phage Loki, which targets Acinetobacter by unknown mechanisms. We identified 41 candidate loci that increase susceptibility to Loki when disrupted, and 10 that decrease susceptibility. Combined with spontaneous resistance mapping, our results support the model that Loki uses the K3 capsule as an essential receptor, and that capsule modulation provides A. baumannii with strategies to control vulnerability to phage. A key center of this control is transcriptional regulation of capsule synthesis and phage virulence by the global regulator BfmRS. Mutations hyperactivating BfmRS simultaneously increase capsule levels, Loki adsorption, Loki replication, and host killing, while BfmRS-inactivating mutations have the opposite effect, reducing capsule and blocking Loki infection. We identified novel BfmRS-activating mutations, including knockouts of a T2 RNase protein and the disulfide formation enzyme DsbA, that hypersensitize bacteria to phage challenge. We further found that mutation of a glycosyltransferase known to alter capsule structure and bacterial virulence can also cause complete phage resistance. Finally, additional factors including lipooligosaccharide and Lon protease act independently of capsule modulation to interfere with Loki infection. This work demonstrates that regulatory and structural modulation of capsule, known to alter A. baumannii virulence, is also a major determinant of susceptibility to phage.
Collapse
Affiliation(s)
- Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Raustad
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Jason Denoncourt
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, CISID, Cambridge, Massachusetts, United States of America
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Paraskevopoulou V, Alissa M, Hage N, Falcone FH. Introduction of a Hexalysine (6 K) Tag Can Protect from N-Terminal Cleavage and Increase Yield of Recombinant Proteins Expressed in the Periplasm of E. coli. Methods Mol Biol 2022; 2406:155-167. [PMID: 35089556 DOI: 10.1007/978-1-0716-1859-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recombinant expression of proteins in the periplasm of E. coli is frequently used for proteins containing disulfide bonds that are essential for protein folding and activity, as the cytosol of E. coli constitutes a reducing environment. The periplasm in contrast is an oxidative environment which supports proper protein folding. However, yields can be limited compared with cytoplasmic expression, and protocols must be adjusted to avoid overloading the periplasmic transportation machinery. Another less-appreciated issue with periplasmic expression is the potential generation of unwanted N-terminal cleavage products, a persistent issue which we encountered when expressing the disulfide bond containing extracellular regions of several Helicobacter pylori adhesins (BabA, BabB, BabC, and LabA) in the periplasm of E. coli XL10 GOLD, a strain traditionally not used for proteins expression. Here, we describe how introducing a C-terminal hexa-lysine (6 K) tag enhanced solubility and protected BabA from N-terminal proteolytic degradation (BabA), enabling crystallization and subsequent X-ray structural analysis. However. the same strategy had no advantageous effect for LabA, which using this protocol could be retrieved from the periplasm in relatively high yields (20-40 mg/L).
Collapse
Affiliation(s)
- Vasiliki Paraskevopoulou
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Mohammed Alissa
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Naim Hage
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Franco H Falcone
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, Nottingham, UK.
- Institute for Parasitology, Justus-Liebig-University of Gießen, Gießen, Germany.
| |
Collapse
|
8
|
Chen K, Yu X, Zhang X, Li X, Liu Y, Si M, Su T. Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum. J GEN APPL MICROBIOL 2021; 67:225-239. [PMID: 34483223 DOI: 10.2323/jgam.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Corynebacterium glutamicum is an important industrial strain for amino acids and a key model organism for human pathogens. The study of C. glutamicum oxidoreductases, such as mycoredoxin 1 (Mrx1), dithiol-disulfide isomerase DsbA, and DsbA-like Mrx1, is helpful for understanding the survival, pathogenic infection, and stress resistance of its homologous species. However, the action mode and enzymatic function of C. glutamicum NCgl0018 preserving the Cys-Pro-Phe-Cys motif, annotated as a putative DsbA, have remained enigmatic. Here, we report that the NCgl0018-deleted strain increased sensitivity to various oxidative stresses. The ncgl0018 expression was induced in the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH- and organic peroxide- and antibiotic-sensing regulator (OasR)-dependent manner by stress. NCgl0018 reduced S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol-disulfide mechanism preferentially linking the mycothiol/mycothione reductase/NADPH electron pathway. Site-directed mutagenesis confirmed Cys107 was the resolving Cys residue, while Cys104 was the nucleophilic cysteine that was oxidized to a sulfenic acid and then could form an intramolecular disulfide bond with Cys107 or a mixed disulfide with mycothiol under stress. Biochemical analyses indicated that NCgl0018 lacked oxidase properties like the classical DsbA. Further, enzymatic rates and substrate preferences of NCgl0018 were highly similar to those of DsbA-like Mrx1. Collectively, our study presented the first evidence that NCgl0018 protected against stresses by functioning as a novel DsbA-like Mrx1 but not DsbA and Mrx1.
Collapse
Affiliation(s)
- Keyan Chen
- College of Life Sciences, Qufu Normal University
| | - Xiaoyang Yu
- College of Life Sciences, Qufu Normal University
| | - Xinyu Zhang
- College of Life Sciences, Qufu Normal University
| | - Xiaona Li
- College of Life Sciences, Qufu Normal University
| | - Yang Liu
- College of Life Sciences, Qufu Normal University
| | - Meiru Si
- College of Life Sciences, Qufu Normal University
| | - Tao Su
- College of Life Sciences, Qufu Normal University
| |
Collapse
|
9
|
Liu Y, Li X, Luo J, Su T, Si M, Chen C. A novel mycothiol-dependent thiol-disulfide reductase in Corynebacterium glutamicum involving oxidative stress resistance. 3 Biotech 2021; 11:372. [PMID: 34290951 PMCID: PMC8280269 DOI: 10.1007/s13205-021-02896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022] Open
Abstract
ncgl2478 gene from Corynebacterium glutamicum encodes a thiol–disulfide oxidoreductase enzyme annotated as dithiol–disulfide isomerase DsbA. It preserves a Cys–Pro–Phe–Cys active-site motif, which is presumed to be an exclusive characteristic of the novel DsbA–mycoredoxin 1 (Mrx1) cluster. However, the real mode of action, the nature of the electron donor pathway and biological functions of NCgl2478 in C. glutamicum have remained enigmatic so far. Herein, we report that NCgl2478 plays an important role in stress resistance. Deletion of the ncgl2478 gene increases the size of growth inhibition zones. The ncgl2478 expression is induced in the stress-responsive extra-cytoplasmic function-sigma (ECF-σ) factor SigH-dependent manner by stress. It receives electrons preferentially from the mycothiol (MSH)/mycothione reductase (Mtr)/NADPH pathway. Further, NCgl2478 reduces S-mycothiolated mixed disulfides and intramolecular disulfides via a monothiol–disulfide and a dithiol–disulfide exchange mechanism, respectively. NCgl2478 lacks oxidase activity; kinetic properties of its demycothiolation are different from those of Mrx1. Site-directed mutagenesis confirms Cys24 is the resolving Cys residue, while Cys21 is the nucleophilic cysteine that is oxidized to a sulfenic acid and then forms an intramolecular disulfide bond with Cys24 or a mixed disulfide with MSH under oxidative stress. In conclusion, our study presents the first evidence that NCgl2478 protects against various stresses by acting as an MSH-dependent thiol–disulfide reductase, belonging to a novel DsbA–Mrx1 cluster.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Sciences, Qufu Normal University, Qufu, 273165 Shandong China
| | - Xiaona Li
- College of Life Sciences, Qufu Normal University, Qufu, 273165 Shandong China
| | - Jiaxin Luo
- College of Life Sciences, Qufu Normal University, Qufu, 273165 Shandong China
| | - Tao Su
- College of Life Sciences, Qufu Normal University, Qufu, 273165 Shandong China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu, 273165 Shandong China
| | - Can Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001 Henan China
| |
Collapse
|
10
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
11
|
Banaś AM, Bocian-Ostrzycka KM, Plichta M, Dunin-Horkawicz S, Ludwiczak J, Płaczkiewicz J, Jagusztyn-Krynicka EK. C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning. PLoS One 2020; 15:e0230366. [PMID: 32203539 PMCID: PMC7089426 DOI: 10.1371/journal.pone.0230366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational generation of disulfide bonds catalyzed by bacterial Dsb (disulfide bond) enzymes is essential for the oxidative folding of many proteins. Although we now have a good understanding of the Escherichia coli disulfide bond formation system, there are significant gaps in our knowledge concerning the Dsb systems of other bacteria, including Campylobacter jejuni, a food-borne, zoonotic pathogen. We attempted to gain a more complete understanding of the process by thorough analysis of C8J_1298 functioning in vitro and in vivo. C8J_1298 is a homodimeric thiol-oxidoreductase present in wild type (wt) cells, in both reduced and oxidized forms. The protein was previously described as a homolog of DsbC, and thus potentially should be active in rearrangement of disulfides. Indeed, biochemical studies with purified protein revealed that C8J_1298 shares many properties with EcDsbC. However, its activity in vivo is dependent on the genetic background, namely, the set of other Dsb proteins present in the periplasm that determine the redox conditions. In wt C. jejuni cells, C8J_1298 potentially works as a DsbG involved in the control of the cysteine sulfenylation level and protecting single cysteine residues from oxidation to sulfenic acid. A strain lacking only C8J_1298 is indistinguishable from the wild type strain by several assays recognized as the criteria to determine isomerization or oxidative Dsb pathways. Remarkably, in C. jejuni strain lacking DsbA1, the protein involved in generation of disulfides, C8J_1298 acts as an oxidase, similar to the homodimeric oxidoreductase of Helicobater pylori, HP0231. In E. coli, C8J_1298 acts as a bifunctional protein, also resembling HP0231. These findings are strongly supported by phylogenetic data. We also showed that CjDsbD (C8J_0565) is a C8J_1298 redox partner.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
12
|
Abstract
While the bottom-up design of enzymes appears to be an intractably complex problem, a minimal approach that combines elementary, de novo-designed proteins with intrinsically reactive cofactors offers a simple means to rapidly access sophisticated catalytic mechanisms. Not only is this method proven in the reproduction of powerful oxidative chemistry of the natural peroxidase enzymes, but we show here that it extends to the efficient, abiological—and often asymmetric—formation of strained cyclopropane rings, nitrogen–carbon and carbon–carbon bonds, and the ring expansion of a simple cyclic molecule to form a precursor for NAD+, a fundamentally important biological cofactor. That the enzyme also functions in vivo paves the way for its incorporation into engineered biosynthetic pathways within living organisms. By constructing an in vivo-assembled, catalytically proficient peroxidase, C45, we have recently demonstrated the catalytic potential of simple, de novo-designed heme proteins. Here, we show that C45’s enzymatic activity extends to the efficient and stereoselective intermolecular transfer of carbenes to olefins, heterocycles, aldehydes, and amines. Not only is this a report of carbene transferase activity in a completely de novo protein, but also of enzyme-catalyzed ring expansion of aromatic heterocycles via carbene transfer by any enzyme.
Collapse
|
13
|
Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med 2019; 140:14-27. [PMID: 31201851 PMCID: PMC7041647 DOI: 10.1016/j.freeradbiomed.2019.05.035] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
The sulfur biochemistry of the thiol group endows cysteines with a number of highly specialized and unique features that enable them to serve a variety of different functions in the cell. Typically highly conserved in proteins, cysteines are predominantly found in functionally or structurally crucial regions, where they act as stabilizing, catalytic, metal-binding and/or redox-regulatory entities. As highly abundant low molecular weight thiols, cysteine thiols and their oxidized disulfide counterparts are carefully balanced to maintain redox homeostasis in various cellular compartments, protect organisms from oxidative and xenobiotic stressors and partake actively in redox-regulatory and signaling processes. In this review, we will discuss the role of protein thiols as scavengers of hydrogen peroxide in antioxidant enzymes, use thiol peroxidases to exemplify how protein thiols contribute to redox signaling, provide an overview over the diverse set of low molecular weight thiol-based redox systems found in biology, and illustrate how thiol-based redox systems have evolved not only to protect against but to take full advantage of a world full of molecular oxygen.
Collapse
Affiliation(s)
- Kathrin Ulrich
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michgan, Ann Arbor, MI, 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Smith RP, Mohanty B, Mowlaboccus S, Paxman JJ, Williams ML, Headey SJ, Wang G, Subedi P, Doak BC, Kahler CM, Scanlon MJ, Heras B. Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens. J Biol Chem 2018; 293:16559-16571. [PMID: 30181210 DOI: 10.1074/jbc.ra118.004847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
The worldwide incidence of neisserial infections, particularly gonococcal infections, is increasingly associated with antibiotic-resistant strains. In particular, extensively drug-resistant Neisseria gonorrhoeae strains that are resistant to third-generation cephalosporins are a major public health concern. There is a pressing clinical need to identify new targets for the development of antibiotics effective against Neisseria-specific processes. In this study, we report that the bacterial disulfide reductase DsbD is highly prevalent and conserved among Neisseria spp. and that this enzyme is essential for survival of N. gonorrhoeae DsbD is a membrane-bound protein that consists of two periplasmic domains, n-DsbD and c-DsbD, which flank the transmembrane domain t-DsbD. In this work, we show that the two functionally essential periplasmic domains of Neisseria DsbD catalyze electron transfer reactions through unidirectional interdomain interactions, from reduced c-DsbD to oxidized n-DsbD, and that this process is not dictated by their redox potentials. Structural characterization of the Neisseria n- and c-DsbD domains in both redox states provides evidence that steric hindrance reduces interactions between the two periplasmic domains when n-DsbD is reduced, thereby preventing a futile redox cycle. Finally, we propose a conserved mechanism of electron transfer for DsbD and define the residues involved in domain-domain recognition. Inhibitors of the interaction of the two DsbD domains have the potential to be developed as anti-neisserial agents.
Collapse
Affiliation(s)
- Roxanne P Smith
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Shakeel Mowlaboccus
- the Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth 6907, Western Australia, Australia
| | - Jason J Paxman
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Martin L Williams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Stephen J Headey
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Geqing Wang
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Pramod Subedi
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Charlene M Kahler
- the Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth 6907, Western Australia, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, Victoria, Australia, and
| | - Begoña Heras
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia,
| |
Collapse
|
15
|
|
16
|
Ganapathy US, Bai L, Wei L, Eckartt KA, Lett CM, Previti ML, Carrico IS, Seeliger JC. Compartment-Specific Labeling of Bacterial Periplasmic Proteins by Peroxidase-Mediated Biotinylation. ACS Infect Dis 2018; 4:918-925. [PMID: 29708735 DOI: 10.1021/acsinfecdis.8b00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of the bacterial periplasm requires techniques with sufficient spatial resolution and sensitivity to resolve the components and processes within this subcellular compartment. Peroxidase-mediated biotinylation has enabled targeted labeling of proteins within subcellular compartments of mammalian cells. We investigated whether this methodology could be applied to the bacterial periplasm. In this study, we demonstrated that peroxidase-mediated biotinylation can be performed in mycobacteria and Escherichia coli. To eliminate detection artifacts from natively biotinylated mycobacterial proteins, we validated two alternative labeling substrates, tyramide azide and tyramide alkyne, which enable biotin-independent detection of labeled proteins. We also targeted peroxidase expression to the periplasm, resulting in compartment-specific labeling of periplasmic versus cytoplasmic proteins in mycobacteria. Finally, we showed that this method can be used to validate protein relocalization to the cytoplasm upon removal of a secretion signal. This novel application of peroxidase-mediated protein labeling will advance efforts to characterize the role of the periplasm in bacterial physiology and pathogenesis.
Collapse
|
17
|
Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the Function of Glutathione in Oxidative Protein Folding and Secretion. Antioxid Redox Signal 2017; 27:1178-1199. [PMID: 28791880 DOI: 10.1089/ars.2017.7148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Disturbance of glutathione (GSH) metabolism is a hallmark of numerous diseases, yet GSH functions are poorly understood. One key to this question is to consider its functional compartmentation. GSH is present in the endoplasmic reticulum (ER), where it competes with substrates for oxidation by the oxidative folding machinery, composed in eukaryotes of the thiol oxidase Ero1 and proteins from the disulfide isomerase family (protein disulfide isomerase). Yet, whether GSH is required for proper ER oxidative protein folding is a highly debated question. Recent Advances: Oxidative protein folding has been thoroughly dissected over the past decades, and its actors and their mode of action elucidated. Genetically encoded GSH probes have recently provided an access to subcellular redox metabolism, including the ER. CRITICAL ISSUES Of the few often-contradictory models of the role of GSH in the ER, the most popular suggest it serves as reducing power. Yet, as a reductant, GSH also activates Ero1, which questions how GSH can nevertheless support protein reduction. Hence, whether GSH operates in the ER as a reductant, an oxidant, or just as a "blank" compound mirroring ER/periplasm redox activity is a highly debated question, which is further stimulated by the puzzling occurrence of GSH in the Escherichia coli periplasmic "secretory" compartment, aside from the Dsb thiol-reducing and oxidase pathways. FUTURE DIRECTIONS Addressing the mechanisms controlling GSH traffic in and out of the ER/periplasm and its recycling will help address GSH function in secretion. In addition, as thioredoxin reductase was recently implicated in ER oxidative protein folding, the relative contribution of each of these two reducing pathways should now be addressed. Antioxid. Redox Signal. 27, 1178-1199.
Collapse
Affiliation(s)
- Agnès Delaunay-Moisan
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alise Ponsero
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel B Toledano
- Institute for Integrative Biology of the Cell (I2BC), LSOC, SBIGEM, CEA, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Muñoz-Sanz JV, Zuriaga E, Badenes ML, Romero C. A disulfide bond A-like oxidoreductase is a strong candidate gene for self-incompatibility in apricot (Prunus armeniaca) pollen. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5069-5078. [PMID: 29036710 PMCID: PMC5853662 DOI: 10.1093/jxb/erx336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/14/2017] [Indexed: 05/21/2023]
Abstract
S-RNase based gametophytic self-incompatibility (SI) is a widespread prezygotic reproductive barrier in flowering plants. In the Solanaceae, Plantaginaceae and Rosaceae gametophytic SI is controlled by the pistil-specific S-RNases and the pollen S-locus F-box proteins but non-S-specific factors, namely modifiers, are also required. In apricot, Prunus armeniaca (Rosaceae), we previously mapped two pollen-part mutations that confer self-compatibility in cultivars Canino and Katy at the distal end of chromosome 3 (M-locus) unlinked to the S-locus. Here, we used high-resolution mapping to identify the M-locus with an ~134 kb segment containing ParM-1-16 genes. Gene expression analysis identified four genes preferentially expressed in anthers as modifier gene candidates, ParM-6, -7, -9 and -14. Variant calling of WGS Illumina data from Canino, Katy, and 10 self-incompatible cultivars detected a 358 bp miniature inverted-repeat transposable element (MITE) insertion in ParM-7 shared only by self-compatible apricots, supporting ParM-7 as strong candidate gene required for SI. ParM-7 encodes a disulfide bond A-like oxidoreductase protein, which we named ParMDO. The MITE insertion truncates the ParMDO ORF and produces a loss of SI function, suggesting that pollen rejection in Prunus is dependent on redox regulation. Based on phylogentic analyses we also suggest that ParMDO may have originated from a tandem duplication followed by subfunctionalization and pollen-specific expression.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - Elena Zuriaga
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - María L Badenes
- Fruit Tree Breeding Department. Instituto Valenciano de Investigaciones Agrarias (IVIA). CV-315, Km. 10, Moncada (Valencia), Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas. C/Ingeniero Fausto Elio s/n, Valencia, Spain
- Correspondence:
| |
Collapse
|
19
|
Neal SE, Dabir DV, Wijaya J, Boon C, Koehler CM. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space. Mol Biol Cell 2017; 28:2773-2785. [PMID: 28814504 PMCID: PMC5638582 DOI: 10.1091/mbc.e16-10-0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Osm1 transfers electrons from fumarate to succinate and functions with Mia40 and Erv1 in the redox-regulated import pathway for proteins that form disulfide bonds in the mitochondrial intermembrane space. Expression of Osm1 and cytochrome c is reciprocally regulated, indicating that the cell has strategies to coordinate expression of terminal electron acceptors. Prokaryotes have aerobic and anaerobic electron acceptors for oxidative folding of periplasmic proteins. The mitochondrial intermembrane space has an analogous pathway with the oxidoreductase Mia40 and sulfhydryl oxidase Erv1, termed the mitochondrial intermembrane space assembly (MIA) pathway. The aerobic electron acceptors include oxygen and cytochrome c, but an acceptor that can function under anaerobic conditions has not been identified. Here we show that the fumarate reductase Osm1, which facilitates electron transfer from fumarate to succinate, fills this gap as a new electron acceptor. In addition to microsomes, Osm1 localizes to the mitochondrial intermembrane space and assembles with Erv1 in a complex. In reconstitution studies with reduced Tim13, Mia40, and Erv1, the addition of Osm1 and fumarate completes the disulfide exchange pathway that results in Tim13 oxidation. From in vitro import assays, mitochondria lacking Osm1 display decreased import of MIA substrates, Cmc1 and Tim10. Comparative reconstitution assays support that the Osm1/fumarate couple accepts electrons with similar efficiency to cytochrome c and that the cell has strategies to coordinate expression of the terminal electron acceptors. Thus Osm1/fumarate is a new electron acceptor couple in the mitochondrial intermembrane space that seems to function in both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Sonya E Neal
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045
| | - Juwina Wijaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Cennyana Boon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Carla M Koehler
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 .,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
20
|
Yang N, Wang X, Teng D, Mao R, Hao Y, Feng X, Wang J. Deleting the first disulphide bond in an arenicin derivative enhances its expression in Pichia pastoris. Lett Appl Microbiol 2017; 65:241-248. [PMID: 28656630 DOI: 10.1111/lam.12770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
The marine antimicrobial peptide NZ17074, a variant of arenicin-3 from Arenicola marina that has broad antimicrobial activity and high bioavailability, can be designed to treat bacterial and fungal diseases. To reduce the toxicity of NZ17074, N6 was designed by replacing a cysteine in positions 3 and 20 with alanine, fused to the C-terminus of the small ubiquitin-like modifier tag (SUMO), and expressed in yeast. SUMO-N6 yielded as much as 921 mg l-1 at 72 h after induction in a fermentor and increased 1·8-fold over SUMO-NZ17074. After cleavage with 30% formic acid and purification by a Sephadex G-25 column, 9·7 mg of the recombinant peptide N6 (rN6) was obtained from one-litre fermentation broth, increasing 1·4-fold over NZ17074. Compared to NZ17074, rN6 displayed almost identical antimicrobial activity with a minimal inhibitory concentration of 0·5, 0·25-0·5, 4, 0·25-16 and 16 μg ml-1 against Escherichia, Salmonella, Pseudomonas, Staphylococcus and Streptococcus strains. Our results indicate that the first disulphide bond, Cys3-Cys20, in NZ17074 is not necessary for antimicrobial activity and that its deletion might reduce toxicity to host cells. These findings may help design new antimicrobial peptides harbouring fewer disulphide bridges and may have more potent activity. SIGNIFICANCE AND IMPACT OF THE STUDY Disulphide bond formation is an important step in the protein expression and can also influence protein secretion. A deletion of the first disulphide bond in NZ17074 increased the secreted level of target protein, and its antimicrobial activity was almost unaffected by the deletion of the first disulphide bond. The first disulphide bond in NZ17074 is favourable for correctly forming another disulphide bond during expression but not necessary for its activity. This may help design and produce a novel class of antimicrobial peptides harbouring fewer disulphide bridges to save the cost.
Collapse
Affiliation(s)
- N Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - D Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - R Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - X Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - J Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Rosado LA, Wahni K, Degiacomi G, Pedre B, Young D, de la Rubia AG, Boldrin F, Martens E, Marcos-Pascual L, Sancho-Vaello E, Albesa-Jové D, Provvedi R, Martin C, Makarov V, Versées W, Verniest G, Guerin ME, Mateos LM, Manganelli R, Messens J. The antibacterial prodrug activator Rv2466c is a mycothiol-dependent reductase in the oxidative stress response of Mycobacterium tuberculosis. J Biol Chem 2017; 292:13097-13110. [PMID: 28620052 DOI: 10.1074/jbc.m117.797837] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/12/2017] [Indexed: 12/19/2022] Open
Abstract
The Mycobacterium tuberculosis rv2466c gene encodes an oxidoreductase enzyme annotated as DsbA. It has a CPWC active-site motif embedded within its thioredoxin fold domain and mediates the activation of the prodrug TP053, a thienopyrimidine derivative that kills both replicating and nonreplicating bacilli. However, its mode of action and actual enzymatic function in M. tuberculosis have remained enigmatic. In this study, we report that Rv2466c is essential for bacterial survival under H2O2 stress. Further, we discovered that Rv2466c lacks oxidase activity; rather, it receives electrons through the mycothiol/mycothione reductase/NADPH pathway to activate TP053, preferentially via a dithiol-disulfide mechanism. We also found that Rv2466c uses a monothiol-disulfide exchange mechanism to reduce S-mycothiolated mixed disulfides and intramolecular disulfides. Genetic, phylogenetic, bioinformatics, structural, and biochemical analyses revealed that Rv2466c is a novel mycothiol-dependent reductase, which represents a mycoredoxin cluster of enzymes within the DsbA family different from the glutaredoxin cluster to which mycoredoxin-1 (Mrx1 or Rv3198A) belongs. To validate this DsbA-mycoredoxin cluster, we also characterized a homologous enzyme of Corynebacterium glutamicum (NCgl2339) and observed that it demycothiolates and reduces a mycothiol arsenate adduct with kinetic properties different from those of Mrx1. In conclusion, our work has uncovered a DsbA-like mycoredoxin that promotes mycobacterial resistance to oxidative stress and reacts with free mycothiol and mycothiolated targets. The characterization of the DsbA-like mycoredoxin cluster reported here now paves the way for correctly classifying similar enzymes from other organisms.
Collapse
Affiliation(s)
- Leonardo Astolfi Rosado
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Khadija Wahni
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | | | - Brandán Pedre
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - David Young
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Alfonso G de la Rubia
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | - Edo Martens
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Laura Marcos-Pascual
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | - Enea Sancho-Vaello
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain
| | - David Albesa-Jové
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain.,the Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | | | - Charlotte Martin
- the Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Vadim Makarov
- the A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Wim Versées
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium.,Structural Biology Brussels and
| | - Guido Verniest
- the Research Group of Organic Chemistry, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Marcelo E Guerin
- the Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain.,the Departamento de Bioquímica, Universidad del País Vasco, Leioa, Bizkaia 48940, Spain.,the Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain, and
| | - Luis M Mateos
- the Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain
| | | | - Joris Messens
- From the Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), B-1050 Brussels, Belgium, .,the Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels and
| |
Collapse
|
22
|
Bacterial thiol oxidoreductases - from basic research to new antibacterial strategies. Appl Microbiol Biotechnol 2017; 101:3977-3989. [PMID: 28409380 PMCID: PMC5403849 DOI: 10.1007/s00253-017-8291-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
The recent, rapid increase in bacterial antimicrobial resistance has become a major public health concern. One approach to generate new classes of antibacterials is targeting virulence rather than the viability of bacteria. Proteins of the Dsb system, which play a key role in the virulence of many pathogenic microorganisms, represent potential new drug targets. The first part of the article presents current knowledge of how the Dsb system impacts function of various protein secretion systems that influence the virulence of many pathogenic bacteria. Next, the review describes methods used to study the structure, biochemistry, and microbiology of the Dsb proteins and shows how these experiments broaden our knowledge about their function. The lessons gained from basic research have led to a specific search for inhibitors blocking the Dsb networks.
Collapse
|
23
|
McCarver AC, Lessner FH, Soroeta JM, Lessner DJ. Methanosarcina acetivorans utilizes a single NADPH-dependent thioredoxin system and contains additional thioredoxin homologues with distinct functions. MICROBIOLOGY-SGM 2017; 163:62-74. [PMID: 27902413 DOI: 10.1099/mic.0.000406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thioredoxin system plays a central role in the intracellular redox maintenance in the majority of cells. The canonical system consists of an NADPH-dependent thioredoxin reductase (TrxR) and thioredoxin (Trx), a disulfide reductase. Although Trx is encoded in almost all sequenced genomes of methanogens, its incorporation into their unique physiology is not well understood. Methanosarcina acetivorans contains a single TrxR (MaTrxR) and seven Trx (MaTrx1-MaTrx7) homologues. We previously showed that MaTrxR and at least MaTrx7 compose a functional NADPH-dependent thioredoxin system. Here, we report the characterization of all seven recombinant MaTrxs. MaTrx1, MaTrx3, MaTrx4 and MaTrx5 lack appreciable disulfide reductase activity, unlike previously characterized MaTrx2, MaTrx6 and MaTrx7. Enzyme assays demonstrated that, of the MaTrxs, only the reduction of disulfide-containing MaTrx7 is linked to the oxidation of reduced coenzymes. NADPH is shown to be supplied to the MaTrxR-MaTrx7 system through the oxidation of the primary methanogen electron carriers F420H2 and ferredoxin, indicating that it serves as a primary intracellular reducing system in M. acetivorans. Bioinformatic analyses also indicate that the majority of methanogens likely utilize an NADPH-dependent thioredoxin system. The remaining MaTrxs may have specialized functions. MaTrx1 and MaTrx3 exhibited thiol oxidase activity. MaTrx3 and MaTrx6 are targeted to the membrane of M. acetivorans and likely function in the formation and the reduction of disulfides in membrane and/or extracellular proteins, respectively. This work provides insight into the incorporation of Trx into the metabolism of methanogens, and this reveals that methanogens contain Trx homologues with alternative properties and activities.
Collapse
Affiliation(s)
- Addison C McCarver
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA
| | - Faith H Lessner
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA
| | - Jose M Soroeta
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA
| | - Daniel J Lessner
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA
| |
Collapse
|
24
|
Xue Y, Tu F, Shi M, Wu CQ, Ren G, Wang X, Fang W, Song H, Yang M. Redox pathway sensing bile salts activates virulence gene expression in Vibrio cholerae. Mol Microbiol 2016; 102:909-924. [PMID: 27610607 DOI: 10.1111/mmi.13497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
Abstract
Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, has evolved signal transduction systems to control co-ordinately the expression of virulence determinants. It was previously shown that the presence of the bile salts glycocholate and taurocholate in the small intestine causes dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulphide bonds in the TcpP periplasmic domain. In this study, they further investigated the mechanism of how taurocholate affects V. cholerae virulence determinants. In vitro assay of TcpP oxidation by VcDsbA showed that VcDsbA induced TcpP dimerization in the presence of taurocholate. Taurocholate bound to VcDsbA with a KD of 40 ± 2.5 μM, and also bound other Dsb proteins, including EcDsbA, EcDsbC and VcDsbC. Taurocholate inhibited VcDsbA reductase activity without affecting VcDsbA secondary structure or thermostability. VcDsbA and its substrates were more extensively reduced in the presence of taurocholate, as compared with their redox state in the absence of taurocholate. The data presented here not only provide new insights into the mechanism by which bile salts induce V. cholerae virulence but also suggest a means by which to develop inhibitors against DsbA.
Collapse
Affiliation(s)
- Yuanyuan Xue
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Fei Tu
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Mengting Shi
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Chun-Qin Wu
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China.,Department of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | - Guoping Ren
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Xiaojie Wang
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Houhui Song
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Menghua Yang
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| |
Collapse
|
25
|
Chatelle C, Kraemer S, Ren G, Chmura H, Marechal N, Boyd D, Roggemans C, Ke N, Riggs P, Bardwell J, Berkmen M. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase. Antioxid Redox Signal 2015; 23:945-57. [PMID: 26191605 PMCID: PMC4624244 DOI: 10.1089/ars.2014.6235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. RESULTS We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. INNOVATION AND CONCLUSIONS Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization.
Collapse
Affiliation(s)
- Claire Chatelle
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Stéphanie Kraemer
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts.,2 Actelion, Allschwil, Switzerland
| | - Guoping Ren
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Hannah Chmura
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Nils Marechal
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Dana Boyd
- 3 Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts
| | - Caroline Roggemans
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts.,4 Novartis, Basel, Switzerland
| | - Na Ke
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - Paul Riggs
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| | - James Bardwell
- 5 Howard Hughes Medical Institute Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, Michigan
| | - Mehmet Berkmen
- 1 Protein Expression and Modification, New England Biolabs, Ipswich, Massachusetts
| |
Collapse
|
26
|
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 2015; 6:1065. [PMID: 26500620 PMCID: PMC4597128 DOI: 10.3389/fmicb.2015.01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobactercysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Collapse
Affiliation(s)
- Katarzyna M Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Anna M Łasica
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Magdalena J Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Karolina Drabik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Aneta M Dobosz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jean-Francois Collet
- de Duve Institute, Université catholique de Louvain (UCL)/Walloon Excellence in Life Sciences and Biotechnology Brussels, Belgium
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
27
|
Roszczenko P, Grzeszczuk M, Kobierecka P, Wywial E, Urbanowicz P, Wincek P, Nowak E, Jagusztyn-Krynicka EK. Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol 2015; 15:135. [PMID: 26141380 PMCID: PMC4491210 DOI: 10.1186/s12866-015-0471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Department of Cell Biology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland.
| | - Magdalena Grzeszczuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Patrycja Kobierecka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | - Paweł Urbanowicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Piotr Wincek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Elzbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| | | |
Collapse
|
28
|
Arts IS, Gennaris A, Collet JF. Reducing systems protecting the bacterial cell envelope from oxidative damage. FEBS Lett 2015; 589:1559-68. [DOI: 10.1016/j.febslet.2015.04.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 02/07/2023]
|
29
|
Loh Q, Leong SW, Tye GJ, Choong YS, Lim TS. Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system. Anal Biochem 2015; 477:56-61. [PMID: 25769419 DOI: 10.1016/j.ab.2015.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.
Collapse
Affiliation(s)
- Qiuting Loh
- Institute for Research in Molecular Medicine, University Sains Malaysia, 11800 Penang, Malaysia
| | - Siew Wen Leong
- Institute for Research in Molecular Medicine, University Sains Malaysia, 11800 Penang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine, University Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, University Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, University Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
30
|
Abstract
SIGNIFICANCE The thioredoxin (Trx) superfamily proteins, including protein disulfide isomerases (PDI) and Dsb protein family, are major players in oxidative protein folding, which involves native disulfide bond formation. These proteins contain Trx folds with CXXC active sites and fulfill their physiological functions in oxidative cellular compartments such as the endoplasmic reticulum (ER) or the bacterial periplasm. RECENT ADVANCES The structure of the Trx superfamily protein PDI has been solved by X-ray crystallography and shown to be a flexible molecule, having a horseshoe shape with a closed reduced and an open oxidized conformation, which is important for exerting its catalytic activity. Atomic force microscopy revealed that PDI works as a placeholder to prevent early non-native disulfide bond formation and further misfolding. S-nitrosylation of the active site of PDI inhibits the PDI activity and links protein misfolding to neurodegenerative diseases like Alzheimer's and Parkinson's diseases. CRITICAL ISSUES Electron transfer pathways of the oxidative protein folding show conserved Trx-like thiol-disulfide chemistry. Overall, mammalian cells have a large number of disulfide-containing proteins, the folding of which involves non-native disulfide bond isomerization. The process is sensitive to oxidative stress and ER stress. FUTURE DIRECTIONS The correct oxidative protein folding is critical for the substrate protein stability and function, and protein misfolding is linked to, for example, neurodegenerative diseases. Further understanding on the mechanisms and specific roles of Trx superfamily proteins in oxidative protein folding may lead to drug development for the treatment of bacterial infection and various human diseases in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | | |
Collapse
|
31
|
Van Gerven N, Goyal P, Vandenbussche G, De Kerpel M, Jonckheere W, De Greve H, Remaut H. Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol Microbiol 2014; 91:1022-35. [PMID: 24417346 DOI: 10.1111/mmi.12515] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2014] [Indexed: 01/04/2023]
Abstract
Curli are functional amyloids expressed as fibres on the surface of Enterobacteriaceae. Contrary to the protein misfolding events associated with pathogenic amyloidosis, curli are the result of a dedicated biosynthetic pathway. A specialized transporter in the outer membrane, CsgG, operates in conjunction with the two accessory proteins CsgE and CsgF to secrete curlin subunits to the extracellular surface, where they nucleate into cross-beta strand fibres. Here we investigate the substrate tolerance of the CsgG transporter and the capability of heterologous sequences to be built into curli fibres. Non-native polypeptides ranging up to at least 260 residues were exported when fused to the curli subunit CsgA. Secretion efficiency depended on the folding properties of the passenger sequences, with substrates exceeding an approximately 2 nm transverse diameter blocking passage through the transport channel. Secretion of smaller passengers was compatible with prior DsbA-mediated disulphide bridge formation in the fusion partner, indicating that CsgG is capable of translocating non-linear polypeptide stretches. Using fusions we further demonstrate the exported or secreted heterologous passenger proteins can attain their native, active fold, establishing curli biogenesis pathway as a platform for the secretion and surface display of small heterologous proteins.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural & Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
PVC bacteria: variation of, but not exception to, the Gram-negative cell plan. Trends Microbiol 2014; 22:14-20. [DOI: 10.1016/j.tim.2013.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/17/2022]
|
33
|
Hemmis CW, Schildbach JF. Thioredoxin-like proteins in F and other plasmid systems. Plasmid 2013; 70:168-89. [PMID: 23721857 DOI: 10.1016/j.plasmid.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 11/29/2022]
Abstract
Bacterial conjugation is the process by which a conjugative plasmid transfers from donor to recipient bacterium. During this process, single-stranded plasmid DNA is actively and specifically transported from the cytoplasm of the donor, through a large membrane-spanning assembly known as the pore complex, and into the cytoplasm of the recipient. In Gram negative bacteria, construction of the pore requires localization of a subset of structural and catalytically active proteins to the bacterial periplasm. Unlike the cytoplasm, the periplasm contains proteins that promote disulfide bond formation within or between cysteine-containing proteins. To ensure proper protein folding and assembly, bacteria employ periplasmic redox systems for thiol oxidation, disulfide bond/sulfenic acid reduction, and disulfide bond isomerization. Recent data suggest that plasmid-based proteins belonging to the disulfide bond formation family play an integral role in the conjugative process by serving as mediators in folding and/or assembly of pore complex proteins. Here we report the identification of 165 thioredoxin-like family members across 89 different plasmid systems. Using phylogenetic analysis, all but nine family members were categorized into thioredoxin-like subfamilies. In addition, we discuss the diversity, conservation, and putative roles of thioredoxin-like proteins in plasmid systems, which include homologs of DsbA, DsbB, DsbC, DsbD, DsbG, and CcmG from Escherichia coli, TlpA from Bradyrhizobium japonicum, Com1 from Coxiella burnetii, as well as TrbB and TraF from plasmid F, and the absolute conservation of a disulfide isomerase in plasmids containing homologs of the transfer proteins TraH, TraN, and TraU.
Collapse
Affiliation(s)
- Casey W Hemmis
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
34
|
Abstract
SIGNIFICANCE The cell envelope of aerobic bacteria is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, reducing redox pathways are also present in this cellular compartment where they provide electrons to a variety of cellular processes. The membrane protein DsbD plays a central role in these pathways by functioning as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases. RECENT ADVANCES Recent data have revealed that DsbD provides reducing equivalents to a large array of periplasmic redox proteins. Those proteins use the reducing power received from DsbD to correct non-native disulfides, mature c-type cytochromes, protect cysteines on secreted proteins from irreversible oxidation, reduce methionine sulfoxides, and scavenge reactive oxygen species such as hydrogen peroxide. CRITICAL ISSUES Despite the prominent role played by DsbD, we have a poor understanding of how this protein transfers electrons across the inner membrane. Another critical issue will be to grasp the full physiological significance of the new reducing pathways that have been identified in the cell envelope such as the peroxide reduction pathway. FUTURE DIRECTIONS A detailed understanding of DsbD's mechanism will require solving the structure of this intriguing protein. Moreover, bioinformatic, biochemical, and genetic approaches need to be combined for a better comprehension of the broad spectrum of periplasmic reducing systems present in bacteria, which will likely lead to the discovery of novel pathways.
Collapse
Affiliation(s)
- Seung-Hyun Cho
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
35
|
Disulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity. J Bacteriol 2013; 195:1825-33. [PMID: 23435972 DOI: 10.1128/jb.01949-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracytoplasmic assembly of the Dot/Icm type IVb secretion system (T4SS) of Legionella pneumophila is dependent on correct disulfide bond (DSB) formation catalyzed by a novel and essential disulfide bond oxidoreductase DsbA2 and not by DsbA1, a second nonessential DSB oxidoreductase. DsbA2, which is widely distributed in the microbial world, is phylogenetically distinct from the canonical DsbA oxidase and the DsbC protein disulfide isomerase (PDI)/reductase of Escherichia coli. Here we show that the extended N-terminal amino acid sequence of DsbA2 (relative to DsbA proteins) contains a highly conserved 27-amino-acid dimerization domain enabling the protein to form a homodimer. Complementation tests with E. coli mutants established that L. pneumophila dsbA1, but not the dsbA2 strain, restored motility to a dsbA mutant. In a protein-folding PDI detector assay, the dsbA2 strain, but not the dsbA1 strain, complemented a dsbC mutant of E. coli. Deletion of the dimerization domain sequences from DsbA2 produced the monomer (DsbA2N), which no longer exhibited PDI activity but complemented the E. coli dsbA mutant. PDI activity was demonstrated in vitro for DsbA2 but not DsbA1 in a nitrocefin-based mutant TEM β-lactamase folding assay. In an insulin reduction assay, DsbA2N activity was intermediate between those of DsbA2 and DsbA1. In L. pneumophila, DsbA2 was maintained as a mixture of thiol and disulfide forms, while in E. coli, DsbA2 was present as the reduced thiol. Our studies suggest that DsbA2 is a naturally occurring bifunctional disulfide bond oxidoreductase that may be uniquely suited to the majority of intracellular bacterial pathogens expressing T4SSs as well as in many slow-growing soil and aquatic bacteria.
Collapse
|
36
|
Gad W, Nair MG, Van Belle K, Wahni K, De Greve H, Van Ginderachter JA, Vandenbussche G, Endo Y, Artis D, Messens J. The quiescin sulfhydryl oxidase (hQSOX1b) tunes the expression of resistin-like molecule alpha (RELM-α or mFIZZ1) in a wheat germ cell-free extract. PLoS One 2013; 8:e55621. [PMID: 23383248 PMCID: PMC3561318 DOI: 10.1371/journal.pone.0055621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 01/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although disulfide bond formation in proteins is one of the most common types of post-translational modifications, the production of recombinant disulfide-rich proteins remains a challenge. The most popular host for recombinant protein production is Escherichia coli, but disulfide-rich proteins are here often misfolded, degraded, or found in inclusion bodies. METHODOLOGY/PRINCIPAL FINDINGS We optimize an in vitro wheat germ translation system for the expression of an immunological important eukaryotic protein that has to form five disulfide bonds, resistin-like alpha (mFIZZ1). Expression in combination with human quiescin sulfhydryl oxidase (hQSOX1b), the disulfide bond-forming enzyme of the endoplasmic reticulum, results in soluble, intramolecular disulfide bonded, monomeric, and biological active protein. The mFIZZ1 protein clearly suppresses the production of the cytokines IL-5 and IL-13 in mouse splenocytes cultured under Th2 permissive conditions. CONCLUSION/SIGNIFICANCE The quiescin sulfhydryl oxidase hQSOX1b seems to function as a chaperone and oxidase during the oxidative folding. This example for mFIZZ1 should encourage the design of an appropriate thiol/disulfide oxidoreductase-tuned cell free expression system for other challenging disulfide rich proteins.
Collapse
Affiliation(s)
- Wael Gad
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Meera G. Nair
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, United States of America
| | - Karolien Van Belle
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Khadija Wahni
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Guy Vandenbussche
- Centre de Biologie Structurale et de Bioinformatique, Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Yaeta Endo
- Cell Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - David Artis
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joris Messens
- Brussels Center for Redox Biology, Brussels, Belgium
- Department of Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
37
|
Denoncin K, Nicolaes V, Cho SH, Leverrier P, Collet JF. Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues. Methods Mol Biol 2013; 966:325-336. [PMID: 23299744 DOI: 10.1007/978-1-62703-245-2_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many proteins secreted to the bacterial cell envelope contain cysteine residues that are involved in disulfide bonds. These disulfides either play a structural role, increasing protein stability, or reversibly form in the catalytic site of periplasmic oxidoreductases. Monitoring the in vivo redox state of cysteine residues, i.e., determining whether those cysteines are oxidized to a disulfide bond or not, is therefore required to fully characterize the function and structural properties of numerous periplasmic proteins. Here, we describe a reliable and rapid method based on trapping reduced cysteine residues with 4'-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), a maleimide compound. We use the Escherichia coli DsbA protein to illustrate the method, which can be applied to all envelope proteins.
Collapse
Affiliation(s)
- Katleen Denoncin
- Brussels Center for Redox Biology and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
38
|
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 2012; 82:240-51. [DOI: 10.1016/j.pep.2011.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
39
|
Abstract
The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.
Collapse
Affiliation(s)
- Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
40
|
Abstract
Correct formation of disulfide bonds is critical for protein folding. We find that cells lacking protein disulfide isomerases (PDIs) can use alternative mechanisms for correct disulfide bond formation. By linking correct disulfide bond formation to antibiotic resistance, we selected mutants that catalyze correct disulfide formation in the absence of DsbC, Escherichia coli's PDI. Most of our mutants massively overproduce the disulfide oxidase DsbA and change its redox status. They enhance DsbA's ability to directly form the correct disulfides by increasing the level of mixed disulfides between DsbA and substrate proteins. One mutant operates via a different mechanism; it contains mutations in DsbB and CpxR that alter the redox environment of the periplasm and increases the level of the chaperone/protease DegP, allowing DsbA to gain disulfide isomerase ability in vivo. Thus, given the proper expression level, redox status, and chaperone assistance, the oxidase DsbA can readily function in vivo to catalyze the folding of proteins with complex disulfide bond connectivities. Our selection reveals versatile strategies for correct disulfide formation in vivo. Remarkably, our evolution of new pathways for correct disulfide bond formation in E. coli mimics eukaryotic PDI, a highly abundant partially reduced protein with chaperone activity.
Collapse
Affiliation(s)
- Guoping Ren
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
41
|
Wallis AK, Freedman RB. Assisting Oxidative Protein Folding: How Do Protein Disulphide-Isomerases Couple Conformational and Chemical Processes in Protein Folding? Top Curr Chem (Cham) 2011; 328:1-34. [DOI: 10.1007/128_2011_171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Mori M, Wang S. Sco proteins are involved in electron transfer processes. J Biol Inorg Chem 2010; 16:391-403. [DOI: 10.1007/s00775-010-0735-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/09/2010] [Indexed: 12/01/2022]
|
43
|
Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 2010; 13:1231-46. [PMID: 20367276 PMCID: PMC2959184 DOI: 10.1089/ars.2010.3187] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond-forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.
| | | |
Collapse
|
44
|
Sideris DP, Tokatlidis K. Oxidative protein folding in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1189-204. [PMID: 20214493 DOI: 10.1089/ars.2010.3157] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disulfide bond formation is a crucial step for oxidative folding and necessary for the acquisition of a protein's native conformation. Introduction of disulfide bonds is catalyzed in specialized subcellular compartments and requires the coordinated action of specific enzymes. The intermembrane space of mitochondria has recently been found to harbor a dedicated machinery that promotes the oxidative folding of substrate proteins by shuttling disulfide bonds. The newly identified oxidative pathway consists of the redox-regulated receptor Mia40 and the sulfhydryl oxidase Erv1. Proteins destined to the intermembrane space are trapped by a disulfide relay mechanism that involves an electron cascade from the incoming substrate to Mia40, then on to Erv1, and finally to molecular oxygen via cytochrome c. This thiol-disulfide exchange mechanism is essential for the import and for maintaining the structural stability of the incoming precursors. In this review we describe the mechanistic parameters that define the interaction and oxidation of the substrate proteins in light of the recent publications in the mitochondrial oxidative folding field.
Collapse
Affiliation(s)
- Dionisia P Sideris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Crete, Greece
| | | |
Collapse
|
45
|
Denoncin K, Vertommen D, Paek E, Collet JF. The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD. J Biol Chem 2010; 285:29425-33. [PMID: 20615876 PMCID: PMC2937975 DOI: 10.1074/jbc.m110.119321] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/23/2010] [Indexed: 11/06/2022] Open
Abstract
The assembly of the β-barrel proteins present in the outer membrane (OM) of Gram-negative bacteria is poorly characterized. After translocation across the inner membrane, unfolded β-barrel proteins are escorted across the periplasm by chaperones that reside within this compartment. Two partially redundant chaperones, SurA and Skp, are considered to transport the bulk mass of β-barrel proteins. We found that the periplasmic disulfide isomerase DsbC cooperates with SurA and the thiol oxidase DsbA in the folding of the essential β-barrel protein LptD. LptD inserts lipopolysaccharides in the OM. It is also the only β-barrel protein with more than two cysteine residues. We found that surAdsbC mutants, but not skpdsbC mutants, exhibit a synthetic phenotype. They have a decreased OM integrity, which is due to the lack of the isomerase activity of DsbC. We also isolated DsbC in a mixed disulfide complex with LptD. As such, LptD is identified as the first substrate of DsbC that is localized in the OM. Thus, electrons flowing from the cytoplasmic thioredoxin system maintain the integrity of the OM by assisting the folding of one of the most important β-barrel proteins.
Collapse
Affiliation(s)
- Katleen Denoncin
- From the de Duve Institute, Université catholique de Louvain and
- the Brussels Center for Redox Biology, B-1200 Brussels, Belgium and
| | - Didier Vertommen
- From the de Duve Institute, Université catholique de Louvain and
| | - Eunok Paek
- the Department of Mechanical and Information Engineering, University of Seoul, Seoul 130–743, Korea
| | - Jean-François Collet
- From the de Duve Institute, Université catholique de Louvain and
- the Brussels Center for Redox Biology, B-1200 Brussels, Belgium and
| |
Collapse
|
46
|
Michelon D, Abraham S, Ebel B, De Coninck J, Husson F, Feron G, Gervais P, Cachon R. Contribution of exofacial thiol groups in the reducing activity of Lactococcus lactis. FEBS J 2010; 277:2282-90. [PMID: 20423456 DOI: 10.1111/j.1742-4658.2010.07644.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lactococcus lactis can decrease the redox potential at pH 7 (E(h7)) from 200 to -200 mV in oxygen free Man-Rogosa-Sharpe media. Neither the consumption of oxidizing compounds or the release of reducing compounds during lactic acid fermentation were involved in the decrease in E(h7) by the bacteria. Thiol groups located on the bacterial cell surface appear to be the main components that are able to establish a greater exchange current between the Pt electrode and the bacteria. After the final E(h7) (-200 mV) was reached, only thiol-reactive reagents could restore the initial E(h7) value. Inhibition of the proton motive force showed no effect on maintaining the final E(h7) value. These results suggest that maintaining the exofacial thiol (-SH) groups in a reduced state does not depend on an active mechanism. Thiol groups appear to be displayed by membrane proteins or cell wall-bound proteins and may participate in protecting cells against oxidative stress.
Collapse
Affiliation(s)
- D Michelon
- Laboratoire de Génie des Procédés Microbiologiques et Alimentaires, AgroSup Dijon, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Banci L, Bertini I, McGreevy KS, Rosato A. Molecular recognition in copper trafficking. Nat Prod Rep 2010; 27:695-710. [DOI: 10.1039/b906678k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Wouters MA, Fan SW, Haworth NL. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 2010; 12:53-91. [PMID: 19634988 DOI: 10.1089/ars.2009.2510] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30-40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redox-sensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.
Collapse
Affiliation(s)
- Merridee A Wouters
- Structural & Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | | | | |
Collapse
|
49
|
Shouldice SR, Cho SH, Boyd D, Heras B, Eser M, Beckwith J, Riggs P, Martin JL, Berkmen M. In vivooxidative protein folding can be facilitated by oxidationâreduction cycling. Mol Microbiol 2010; 75:13-28. [DOI: 10.1111/j.1365-2958.2009.06952.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics 2009; 10:771-84. [DOI: 10.1002/pmic.200900461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|