1
|
Mullan CW, Summer L, Lopez-Giraldez F, Tobiasova Z, Manes TD, Yasothan S, Song G, Jane-Wit D, Saltzman WM, Pober JS. IL-1β Induces Human Endothelial Surface Expression of IL-15 by Relieving let-7c-3p Suppression of Protein Translation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1338-1348. [PMID: 39302113 PMCID: PMC11493510 DOI: 10.4049/jimmunol.2400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Expression of IL-15 on the surface of human graft endothelial cells (ECs) bound to the IL-15Rα subunit can increase the activation of CTLs, potentiating allograft rejection. Our previous work showed that surface expression of this protein complex could be induced by alloantibody-mediated complement activation through increased IL-1β synthesis, secretion, and autocrine/paracrine IL-1-mediated activation of NF-κB. In this article, we report that cultured human ECs express eight differently spliced IL-15 transcripts. Remarkably, IL-1β does not alter the expression level of any IL-15 transcript but induces surface expression independently of RNA polymerase II-mediated transcription while requiring new protein translation. Mechanistically, IL-1β causes an NF-κB-mediated reduction in the level of microRNA Let-7c-3p, thereby relieving a block of translation of IL-15 surface protein. Let7c-3p anti-miR can induce EC surface expression of IL-15/IL-15Rα in the absence of complement activation or of IL-1, enabling IL-15 transpresentation to boost CD8 T cell activation. Because of the complexity we have uncovered in IL-15 regulation, we recommend caution in interpreting increased total IL-15 mRNA or protein levels as a surrogate for transpresentation.
Collapse
Affiliation(s)
- Clancy W Mullan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Luanna Summer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Francesc Lopez-Giraldez
- Department of Genetics, Yale School of Medicine, New Haven, CT
- Yale Center for Genome Analysis, Yale School of Medicine, West Haven, CT
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Thomas D Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Shruthi Yasothan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Guiyu Song
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Daniel Jane-Wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiology, VA Connecticut Healthcare System, West Haven, CT
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT
- Department of Dermatology, Yale University, New Haven, CT
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
2
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
3
|
Mukherjee A, Das B. The role of inflammatory mediators and matrix metalloproteinases (MMPs) in the progression of osteoarthritis. BIOMATERIALS AND BIOSYSTEMS 2024; 13:100090. [PMID: 38440290 PMCID: PMC10910010 DOI: 10.1016/j.bbiosy.2024.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by an imbalance between (synthesis) and catabolism (degradation) in altered homeostasis of articular cartilage mediated primarily by the innate immune system. OA degenerates the joints resulting in synovial hyperplasia, degradation of articular cartilage with damage of the structural and functional integrity of the cartilage extracellular matrix, subchondral sclerosis, osteophyte formation, and is characterized by chronic pain, stiffness, and loss of function. Inflammation triggered by factors like biomechanical stress is involved in the development of osteoarthritis. In OA apart from catabolic effects, anti-inflammatory anabolic processes also occur continually. There is also an underlying chronic inflammation present, not only in cartilage tissue but also within the synovium, which perpetuates tissue destruction of the OA joint. The consideration of inflammation in OA considers synovitis and/or other cellular and molecular events in the synovium during the progression of OA. In this review, we have presented the progression of joint degradation that results in OA. The critical role of inflammation in the pathogenesis of OA is discussed in detail along with the dysregulation within the cytokine networks composed of inflammatory and anti-inflammatory cytokines that drive catabolic pathways, inhibit matrix synthesis, and promote cellular apoptosis. OA pathogenesis, fluctuation of synovitis, and its clinical impact on disease progression are presented here along with the role of synovial macrophages in promoting inflammatory and destructive responses in OA. The role of interplay between different cytokines, structure, and function of their receptors in the inter-cellular signaling pathway is further explored. The effect of cytokines in the increased synthesis and release of matrix-decomposing proteolytic enzymes, such as matrix metalloproteinase (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS), is elaborated emphasizing the potential impact of MMPs on the chondrocytes, synovial cells, articular and periarticular tissues, and other immune system cells migrating to the site of inflammation. We also shed light on the pathogenesis of OA via oxidative damage particularly due to nitric oxide (NO) via its angiogenic response to inflammation. We concluded by presenting the current knowledge about the tissue inhibitors of metalloproteinases (TIMPs). Synthetic MMP inhibitors include zinc binding group (ZBG), non-ZBG, and mechanism-based inhibitors, all of which have the potential to be therapeutically beneficial in the treatment of osteoarthritis. Improving our understanding of the signaling pathways and molecular mechanisms that regulate the MMP gene expression, may open up new avenues for the creation of therapies that can stop the joint damage associated with OA.
Collapse
Affiliation(s)
- Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, India
| |
Collapse
|
4
|
Chen J, Zheng Y, Wang L, Pang X, Gao F, Xiao H, Huo N. Expression, purification, and biological characterization of recombinant human interleukin-31 protein. Biotechnol Appl Biochem 2023; 70:1731-1740. [PMID: 37096330 DOI: 10.1002/bab.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Interleukin-31 (IL-31), belonging to the IL-6 cytokine family, is involved in skin inflammation and pruritus, as well as some tumors' progression. Here, we reported the expression and purification of recombinant human IL-31 (rhIL-31) using a prokaryotic system. This recombinant protein was expressed in the form of inclusion bodies, refolded and purified by size-exclusion chromatography. Circular dichroism analysis revealed that the secondary structure of rhIL-31 was mainly composed of alpha-helix, which is in consistence with the 3D model structure built by AlphaFold server. In vitro studies showed that rhIL-31 exhibited a good binding ability to the recombinant hIL-31 receptor alpha fused with human Fc fragment (rhIL-31RA-hFc) with EC50 value of 16.36 µg/mL in ELISA assay. Meanwhile, flow cytometry demonstrated that rhIL-31 was able to bind to hIL-31RA or hOSMRβ expressed on the cell surface, independently. Furthermore, rhIL-31 could induce the phosphorylation of STAT3 in A549 cells. In conclusion, the prepared rhIL-31 in this study possesses the binding ability to its receptors, and can activate the signal pathway of JAK/STAT. Thus, it can be applied in further studies, including investigation of hIL-31-related diseases, structural analysis, and development of therapeutic drugs, and monoclonal antibodies targeting hIL-31.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yuxin Zheng
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lixian Wang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xuefei Pang
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Feng Gao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Nairui Huo
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
5
|
Dimitrakopoulou D, Khwatenge CN, James-Zorn C, Paiola M, Bellin EW, Tian Y, Sundararaj N, Polak EJ, Grayfer L, Barnard D, Ohta Y, Horb M, Sang Y, Robert J. Advances in the Xenopus immunome: Diversification, expansion, and contraction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104734. [PMID: 37172665 PMCID: PMC10230362 DOI: 10.1016/j.dci.2023.104734] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Xenopus is a genus of African clawed frogs including two species, X. tropicalis and X. laevis that are extensively used in experimental biology, immunology, and biomedical studies. The availability of fully sequenced and annotated Xenopus genomes is strengthening genome-wide analyses of gene families and transgenesis to model human diseases. However, inaccuracies in genome annotation for genes involved in the immune system (i.e., immunome) hamper immunogenetic studies. Furthermore, advanced genome technologies (e.g., single-cell and RNA-Seq) rely on well-annotated genomes. The annotation problems of Xenopus immunome include a lack of established orthology across taxa, merged gene models, poor representation in gene pages on Xenbase, misannotated genes and missing gene IDs. The Xenopus Research Resource for Immunobiology in collaboration with Xenbase and a group of investigators are working to resolve these issues in the latest versions of genome browsers. In this review, we summarize the current problems of previously misannotated gene families that we have recently resolved. We also highlight the expansion, contraction, and diversification of previously misannotated gene families.
Collapse
Affiliation(s)
- Dionysia Dimitrakopoulou
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Collins N Khwatenge
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Christina James-Zorn
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthieu Paiola
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eleanor Wise Bellin
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yun Tian
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Nivitha Sundararaj
- Xenbase, Division of Developmental Biology, Cincinnti Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emma J Polak
- Biology Department, Worcester State University, MA, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Daron Barnard
- Biology Department, Worcester State University, MA, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marko Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yongming Sang
- Department of Agriculture and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Di Matteo S, Munari E, Fiore PF, Santopolo S, Sampaoli C, Pelosi A, Chouaib S, Tumino N, Vacca P, Mariotti FR, Ebert S, Machwirth M, Haas D, Pezzullo M, Pietra G, Grottoli M, Buart S, Mortier E, Maggi E, Moretta L, Caruana I, Azzarone B. The roles of different forms of IL-15 in human melanoma progression. Front Immunol 2023; 14:1183668. [PMID: 37334356 PMCID: PMC10272795 DOI: 10.3389/fimmu.2023.1183668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Piera Filomena Fiore
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Santopolo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Camilla Sampaoli
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Salem Chouaib
- Institut national de la santé et de la recherche médicale Unitè Mixte Rechercce (INSERM UMR) 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, École Pratique des Hautes Études (EPHE), Faculty De Médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Romana Mariotti
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefan Ebert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Markus Machwirth
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Marco Pezzullo
- Core Facility, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Melania Grottoli
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stephanie Buart
- Institut national de la santé et de la recherche médicale Unitè Mixte Rechercce (INSERM UMR) 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, École Pratique des Hautes Études (EPHE), Faculty De Médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Erwan Mortier
- Nantes Université, Centre national de la recherche scientifique (CNRS), Inserm, CRCI2NA, Nantes, France
- LabEx IGO, Immunotherapy, Graft, Oncology, Nantes, France
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
8
|
Antczak M, Cañete PF, Chen Z, Belle C, Yu D. Evolution of γ chain cytokines: Mechanisms, methods and applications. Comput Struct Biotechnol J 2022; 20:4746-4755. [PMID: 36147674 PMCID: PMC9465101 DOI: 10.1016/j.csbj.2022.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
The common γ chain family of cytokines and their receptors play fundamental roles in the immune system. Evolutionary studies of γ chain cytokines have elegantly illustrated how the immune system adapts to ever-changing environmental conditions. Indeed, these studies have revealed the uniqueness of cytokine evolution, which exhibits strong positive selection pressure needed to adapt to rapidly evolving threats whilst still conserving their receptor binding capabilities. In this review, we summarise the evolutionary mechanisms that gave rise to the characteristically diverse family of γ chain cytokines. We also speculate on the benefits of studying cytokine evolution, which may provide alternative ways to design novel cytokine therapeutic strategies. Additionally, we discuss current evolutionary models that elucidate the emergence of distinct cytokines (IL-4 and IL-13) and cytokine receptors (IL-2Rα and IL-15Rα). Finally, we address and reflect on the difficulties associated with evolutionary studies of rapidly evolving genes and describe a variety of computational methods that have revealed numerous aspects of cytokine evolution.
Collapse
Affiliation(s)
- Magdalena Antczak
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Pablo F. Cañete
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhian Chen
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Clémence Belle
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Ian Frazer Centre for Children’s Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Di Trani CA, Cirella A, Arrizabalaga L, Fernandez-Sendin M, Bella A, Aranda F, Melero I, Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:107-141. [PMID: 35777862 DOI: 10.1016/bs.ircmb.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
10
|
Fiore PF, Di Matteo S, Tumino N, Mariotti FR, Pietra G, Ottonello S, Negrini S, Bottazzi B, Moretta L, Mortier E, Azzarone B. Interleukin-15 and cancer: some solved and many unsolved questions. J Immunother Cancer 2021; 8:jitc-2020-001428. [PMID: 33203664 PMCID: PMC7674108 DOI: 10.1136/jitc-2020-001428] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/29/2022] Open
Abstract
Soluble interleukin (IL)-15 exists under two forms: as monomer (sIL-15) or as heterodimeric complex in association with sIL-15Rα (sIL-15/IL-15Rα). Both forms have been successfully tested in experimental tumor murine models and are currently undergoing investigation in phase I/II clinical trials. Despite more than 20 years research on IL-15, some controversial issues remain to be addressed. A first point concerns the detection of the sIL-15/IL-15Rα in plasma of healthy donors or patients with cancer and its biological significance. The second and third unsolved question regards the protumorigenic role of the IL-15/IL-15Rα complex in human cancer and the detrimental immunological consequences associated to prolonged exposure of natural killer (NK) cells to both forms of soluble IL-15, respectively. Data suggest that in vivo prolonged or repeated exposure to monomeric sIL-15 or the soluble complex may lead to NK hypo-responsiveness through the expansion of the CD8+/CD44+ T cell subset that would suppress NK cell functions. In vitro experiments indicate that soluble complex and monomeric IL-15 may cause NK hyporesponsiveness through a direct effect caused by their prolonged stimulation, suggesting that this mechanism could also be effective in vivo. Therefore, a better knowledge of IL-15 and a more appropriate use of both its soluble forms, in terms of concentrations and time of exposure, are essential in order to improve their therapeutic use. In cancer, the overproduction of sIL-15/IL-15Rα could represent a novel mechanism of immune escape. The soluble complex may act as a decoy cytokine unable to efficiently foster NK cells, or could induce NK hyporesponsiveness through an excessive and prolonged stimulation depending on the type of IL-15Rα isoforms associated. All these unsolved questions are not merely limited to the knowledge of IL-15 pathophysiology, but are crucial also for the therapeutic use of this cytokine. Therefore, in this review, we will discuss key unanswered issues on the heterogeneity and biological significance of IL-15 isoforms, analyzing both their cancer-related biological functions and their therapeutic implications.
Collapse
Affiliation(s)
| | - Sabina Di Matteo
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Gabriella Pietra
- Immuology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy
| | - Selene Ottonello
- Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genova, Italy
| | - Barbara Bottazzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute, Milan, Italy
| | - Lorenzo Moretta
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Erwan Mortier
- University of Nantes, CNRS, Inserm, CRCINA, University of Nantes, Nantes, France .,Immunotherapy, Graft, Oncology, LabEx IGO, Nantes, France
| | - Bruno Azzarone
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
11
|
Wang J, Wang W, Xu J, Jia Z, Liu Q, Zhu X, Xia C, Zou J. Structural insights into the co-evolution of IL-2 and its private receptor in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103895. [PMID: 33065202 DOI: 10.1016/j.dci.2020.103895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL) -2, a member of the four α-helical cytokine family, has broad regulatory roles in mediating vertebrate immune response. In mammals, IL-2 and IL-15 share a common evolutionary origin and possess overlapping but distinct functions. IL-2 and IL-15 bind to distinct private receptors for signaling. However, fish appear to possess a single IL-15Rα like gene whilst lack additional gene(s) coding for IL-2Rα. Whether the IL-2 and IL-15 interact with the same receptor in fish and how their functions and receptors have evolved are not fully understood. In this study, homologues of IL-2 and IL-2/15Rα were sequenced from a teleost species, grass carp (Ctenopharyngodon idella), and the crystal structure of IL-2 was determined. The grass carp IL-2 (termed CiIL-2) displayed a classical cytokine structure consisting of four helical bundles which shares significant similarity with human IL-15. The key amino acids involved in the interface interaction of IL-2/15 and their receptors are well conserved. The CiIL-2 has been shown to bind the IL-2/15Rα like homologue with an affinity of 2.45 nM, supporting the notion that fish IL-2 and IL-15 may share a single common private receptor for exerting functions. Syntenic analysis suggests that the IL-2Rα of tetrapods has evolved from an IL-15Rα like homologue, in which a second sushi domain (D2) in the extracellular region has been duplicated to facilitate the specific interaction with IL-2. The CiIL-2 was predominantly expressed in lymphocyte-rich tissues such as the spleen, kidney and thymus, and could be induced by PHA and IL-21. In vivo challenge with grass carp reovirus and Flavobacterium columnare also resulted in upregulation of CiIL-2 expression. The recombinant CiIL-2 was shown to activate expression of STAT5b, IL-1β, IL-22 and IFN-γ, and to promote the proliferation of the primary cell cultures from head kidney leucocytes. Our results shed lights into the co-evolution of IL-2 and its private receptor, and the functional divergence of IL-2 and IL-15 during evolution.
Collapse
Affiliation(s)
- Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100094, China.
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Dijkstra JM. A method for making alignments of related protein sequences that share very little similarity; shark interleukin 2 as an example. Immunogenetics 2021; 73:35-51. [PMID: 33512550 DOI: 10.1007/s00251-020-01191-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
An optimized alignment of related protein sequences helps to see their important shared features and to deduce their phylogenetic relationships. At low levels of sequence similarity, there are no suitable computer programs for making the best possible alignment. This review summarizes some guidelines for how in such instances, nevertheless, insightful alignments can be made. The method involves, basically, the understanding of molecular family features at both the protein and intron-exon level, and the collection of many related sequences so that gradual differences may be observed. The method is exemplified by identifying and aligning interleukin 2 (IL-2) and related sequences in Elasmobranchii (sharks/rays) and coelacanth, as other authors have expressed difficulty with their identification. From the point of general immunology, it is interesting that the unusual long "leader" sequence of IL-15, already known in other species, is even more impressively conserved in cartilaginous fish. Furthermore, sequence comparisons suggest that IL-2 in cartilaginous fish has lost its ability to bind an IL-2Rα/15Rα receptor chain, which would prohibit the existence of a mechanism for regulatory T cell regulation identical to mammals.
Collapse
Affiliation(s)
- Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengaku-gakubo 1-98Toyoake-shi, Aichi-ken, 470-1192, Japan.
| |
Collapse
|
13
|
Rodríguez-Álvarez Y, Cabrales-Rico A, Diago-Abreu D, Correa-Arguelles E, Reyes-Acosta O, Puente-Pérez P, Pichardo-Díaz D, Urquiza-Noa D, Hernández-Santana A, Garay-Pérez HE. d-Amino acid substitutions and dimerization increase the biological activity and stability of an IL-15 antagonist peptide. J Pept Sci 2020; 27:e3293. [PMID: 33331098 DOI: 10.1002/psc.3293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022]
Abstract
Interleukin (IL)-15 plays an important role in several inflammatory diseases. We have previously identified an IL-15 antagonist called P8 peptide, which binds specifically to IL-15 receptor alpha subunit. However, the P8 peptide rapidly degraded by proteases, limiting its therapeutic application. Thus, we replaced each P8 peptide l-amino acid by its corresponding d-isomers. First, we determined the biological activity of the resulting peptides in a proliferation assay by using CTLL-2 cells. The substitution of l-Ala by d-Ala ([A4a]P8 peptide) increased the inhibitory effect of the P8 peptide in CTLL-2 cells in five-fold. In addition to that, the [A4a]P8 peptide dimer showed the most inhibitory effect. To protect the [A4a]P8 peptide and its dimer against exopeptidase activity, we acetylated the N-terminal of these peptides. At least a three-fold reduction in antagonist activity of acetylated peptides was exhibited. However, the substitution of the N-terminal l-Lys residue of [A4a]P8 peptide and its dimer by d-Lys ([K1k;A4a]P8 peptide) did not affect the antagonist effect of the aforementioned peptides. The [K1k;A4a]P8 peptide dimer was stable to the degradation of trypsin, chymotrypsin, and pepsin up until 48 min. Also, the safety and immunogenicity studies in healthy BALB/c mice demonstrated that the administration of this peptide did not affect the clinical parameters of the animals nor generated antipeptide antibodies. Our findings reveal that two distinct d-amino acid substitutions and dimerization increase the biological activity and stability of P8 peptide. The resulting peptide constitutes a novel IL-15 antagonist with potential applicability in inflammatory diseases.
Collapse
Affiliation(s)
| | - Ania Cabrales-Rico
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - David Diago-Abreu
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Osvaldo Reyes-Acosta
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Pedro Puente-Pérez
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dagmara Pichardo-Díaz
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dioslaida Urquiza-Noa
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Hilda E Garay-Pérez
- Chemistry and Physics Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
14
|
Yamaguchi T, Chang CJ, Karger A, Keller M, Pfaff F, Wangkahart E, Wang T, Secombes CJ, Kimoto A, Furihata M, Hashimoto K, Fischer U, Dijkstra JM. Ancient Cytokine Interleukin 15-Like (IL-15L) Induces a Type 2 Immune Response. Front Immunol 2020; 11:549319. [PMID: 33193315 PMCID: PMC7658486 DOI: 10.3389/fimmu.2020.549319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Related interleukin-2, -15, and -15-like (IL-2, -15, and -15L) are ancient cytokines, with all three genes surviving in extant fish and some mammals. The present study is the first to identify IL-15L functions, namely in rainbow trout. In isolated trout splenocytes, and in vivo, purified recombinant IL-15L+IL-15Rα molecules induced expression of IL-4 and IL-13 homologs, which are markers of type 2 immunity. In contrast, trout IL-15 stimulated type 1 immunity markers, thus IL-15 and IL-15L can have opposing functions. Trout IL-15L was more dependent on "in trans" presentation by the receptor chain IL-15Rα than IL-15, and stimulated CD4-CD8-(IgM-) lymphocytes from thymus and spleen. We propose an important role for IL-15L early in the type 2 immunity cytokine cascade. Trout IL-2 and IL-15 exhibited features reminiscent of their mechanistic and functional dichotomy observed in mammals; for example, IL-15 but not IL-2 required a receptor alpha chain (only IL-15Rα in the case of fish) for its stability, and only IL-15 was efficient in stimulating lymphocytes from mucosal tissues. Data suggest that IL-15L and IL-15 may be particularly effective in stimulating innate lymphocyte type 2 cells (ILC2) and natural killer (NK) cells, respectively, but further identification of the cell types is needed. An interesting finding different from in mammals was the efficient stimulation of CD4+CD8+ thymocytes by IL-2. In short, this study presents fundamental information on the evolution of the IL-2/15/15L cytokine family.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Chia Jung Chang
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Azusa Kimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, Nagano, Japan
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Uwe Fischer
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
15
|
Ahmed N, Afroze B, Abbas R, Khan MA, Akram M, Tahir S, Bakht S, Munir A, Shahid AA. Method for efficient soluble expression and purification of recombinant human interleukin-15. Protein Expr Purif 2020; 177:105746. [PMID: 32916300 DOI: 10.1016/j.pep.2020.105746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
Periplasmic expression of recombinant proteins ensures the production of biologically active proteins in a correctly folded state with several key advantages. This research focused on the in-frame cloning of rhIL-15 in pET-20 (+) vector with pelB-leader sequence to direct the protein to the bacterial periplasm. The target construct periplasmic expression was evaluated in four strains, BL21 (DE3), BL21 (DE3) pLysS, Rosetta 2 (DE3) and Rosetta-gami 2 (DE3). Soluble periplasmic expression of IL-15 was highest in Rosetta-gami 2 (DE3) followed by Rossetta 2 (DE3) whereas negligible expression was observed with rest of two expression host. Best expression clone was selected for purification by dye ligand affinity chromatography. Purified rhIL-15 was characterized by SDS-PAGE, Western blotting and SEC-HPLC. This is the first report of functional recombinant human interleukin-15 being expressed and purified with yield of 120 mg/L in the periplasmic space of E. coli.
Collapse
Affiliation(s)
- Nadeem Ahmed
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan.
| | - Bakht Afroze
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Rabia Abbas
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Mohsin Ahmed Khan
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Akram
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Saad Tahir
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Shehman Bakht
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Ayesha Munir
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
16
|
The anti-inflammatory potential of cefazolin as common gamma chain cytokine inhibitor. Sci Rep 2020; 10:2886. [PMID: 32076052 PMCID: PMC7031511 DOI: 10.1038/s41598-020-59798-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/03/2020] [Indexed: 12/02/2022] Open
Abstract
A continuing quest for specific inhibitors of proinflammatory cytokines brings promise for effective therapies designed for inflammatory and autoimmune disorders. Cefazolin, a safe, first-generation cephalosporin antibiotic, has been recently shown to specifically interact with interleukin 15 (IL-15) receptor subunit α (IL-15Rα) and to inhibit IL-15-dependent TNF-α and IL-17 synthesis. The aim of this study was to elucidate cefazolin activity against IL-2, IL-4, IL-15 and IL-21, i.e. four cytokines sharing the common cytokine receptor γ chain (γc). In silico, molecular docking unveiled two potential cefazolin binding sites within the IL-2/IL-15Rβ subunit and two within the γc subunit. In vitro, cefazolin decreased proliferation of PBMC (peripheral blood mononuclear cells) following IL-2, IL-4 and IL-15 stimulation, reduced production of IFN-γ, IL-17 and TNF-α in IL-2- and IL-15-treated PBMC and in IL-15 stimulated natural killer (NK) cells, attenuated IL-4-dependent expression of CD11c in monocyte-derived dendritic cells and suppressed phosphorylation of JAK3 in response to IL-2 and IL-15 in PBMC, to IL-4 in TF-1 (erythroleukemic cell line) and to IL-21 in NK-92 (NK cell line). The results of the study suggest that cefazolin may exert inhibitory activity against all of the γc receptor-dependent cytokines, i.e. IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.
Collapse
|
17
|
Design and characterisation of a novel interleukin-15 receptor alpha fusion protein and analysis of interleukin-15 complexation. PLoS One 2019; 14:e0219313. [PMID: 31348785 PMCID: PMC6660064 DOI: 10.1371/journal.pone.0219313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Interleukin-15 (IL15) is one of the most important cytokines currently being considered for cancer therapy applications. It is thought that by administering IL15 in complex with its cognate receptor alpha chain (IL15Rα) its biological activity could be increased manifold. We produced a fusion protein of mouse IL15Rα and the F8 antibody, that targets the alternatively-spliced extra-domain A (EDA) of fibronectin, which is overexpressed in many types of cancer. The fusion protein F8IL15Rα was cloned, expressed and characterized in vitro and its ability to bind to mouse IL15 was assessed with both size exclusion chromatography (SEC) and surface plasmon resonance (SPR) experiments. Furthermore, mouse and human IL15 and their corresponding Fc fused IL15Rα subunits were purchased, characterized and used to compare the capacity of F8IL15Rα to generate complexes. Surprisingly, none of the IL15Rα fusion proteins showed IL15 complexation on SEC. However, on SPR, F8IL15Rα displayed the ability to bind IL15. In a cell-based activity assay none of the IL15Rα fusions were able to increase cellular proliferation in combination with IL15 compared to IL15 alone. A better understanding of the molecular requirements for effective IL15 signalling are likely to be important for the development of IL15-based biopharmaceuticals.
Collapse
|
18
|
Nadeau L, Aguer C. Reply to “Discussion of ‘Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism’ – Interleukin-15 and interleukin-15Rα-dependent/-independent functions in human skeletal muscle are largely unknown”. Appl Physiol Nutr Metab 2019; 44:338-339. [DOI: 10.1139/apnm-2018-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lucien Nadeau
- Institut du Savoir Montfort - Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Céline Aguer
- Institut du Savoir Montfort - Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
19
|
Nadeau L, Aguer C. Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism. Appl Physiol Nutr Metab 2019; 44:229-238. [DOI: 10.1139/apnm-2018-0022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-15 is a cytokine with important immunological functions. It is highly expressed in skeletal muscle and is believed to be a myokine, a hypothesis supported by the rapid increase in circulating levels of IL-15 in response to exercise. Treatment with high doses of IL-15 results in metabolic adaptations such as improved insulin sensitivity and whole-body fatty acid oxidation and protection from high-fat-diet-induced obesity and insulin resistance. IL-15 secreted by contracting muscle may therefore act as an endocrine factor to improve adiposity and energy metabolism in different tissues. Most studies have used supraphysiological doses of IL-15 that do not represent circulating IL-15 in response to exercise. However, evidence shows that IL-15 levels are higher in muscle interstitium and that IL-15 might improve muscle glucose homeostasis and oxidative metabolism in an autocrine/paracrine manner. Nevertheless, how IL-15 signals in skeletal muscle to improve muscle energy metabolism is not understood completely, especially because the absence of the α subunit of the IL-15 receptor (IL-15Rα) results in a phenotype similar to that of overexpressing/oversecreting IL-15 in mice. In this article, we review the literature to propose a model for the regulation of IL-15 by the soluble form of IL-15Rα to explain why some findings in the literature seem, at first glance, to be contradictory.
Collapse
Affiliation(s)
- Lucien Nadeau
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Céline Aguer
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
20
|
Tang A, Harding F. The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. Cytokine X 2019. [PMCID: PMC7885892 DOI: 10.1016/j.cytox.2018.100001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IL2-based cancer therapies are limited by their toxicity and pleiotropy. Current engineering approaches target IL2 half-life and cell/receptor specificity. IL2 may enhance the efficacy of checkpoint inhibitors and CAR-T-based therapies.
Interleukin-2 has had a long history as a promising cancer therapeutic, being capable of eliciting complete and durable remissions in patients with metastatic renal cell carcinoma and metastatic melanoma. Despite high toxicity and efficacy limited to only certain patient subpopulations and cancer types, the prospective use of novel, engineered IL2 formats in combination with the presently expanding repertoire of immuno-oncological targets remains very encouraging. This is possible due to the significant research efforts in the IL2 field that have yielded critical structural and biological insights that have made IL2 more effective and more broadly applicable in the clinic. In this review, we discuss some of the molecular approaches that have been used to further improve IL2 therapy for cancer.
Collapse
|
21
|
Development of a recombinant human IL-15·sIL-15Rα/Fc superagonist with improved half-life and its antitumor activity alone or in combination with PD-1 blockade in mouse model. Biomed Pharmacother 2019; 112:108677. [PMID: 30798123 DOI: 10.1016/j.biopha.2019.108677] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/02/2019] [Accepted: 02/09/2019] [Indexed: 12/25/2022] Open
Abstract
Recombinant human interleukin-15 (IL-15) is a potent cancer immunotherapeutic candidate due to its excellent immune stimulating effects. Previous work demonstrated that IL-15 appeared with short half-life in circulation system, while the complex with its receptor can prolong the half-life as well as benefit its activities in vivo. Therefore, IL-15 complex was more favorably considered for clinical development. Herein we developed IL-15·sIL-15Rα/Fc, a complex comprising of IL-15 and the extracellular region of its receptor alpha subunit which fused to Immunoglobulin G (IgG1) Fc to further prolong the half-life in plasma. Through transient gene expression in HEK293 cells, we expressed the superagonist by co-transfection of plasmids encoding IL-15 and sIL-15Rα/Fc respectively, yielding 36 mg/L of product after purification. Pharmacokinetic study demonstrated that the combination profoundly prolonged the half-life of IL-15 to 13.1 h in mice, about 18 folds longer than that of IL-15 monomer which is around 0.7 h. The bioactivity of the superagonist was characterized by CTLL-2 cells proliferation assay in vitro, showing its capability of stimulating the expansion of memory CD8+ T cells (cluster of differentiation) in mouse spleen. Using a HT-29 xenograft NOD-SCID mouse model, we observed tumor growth inhibition in all groups that received the superagonist, indicating its anti-tumor efficacy via stimulating infused human immune cells. In addition, combo cancer treatment by IL-15·sIL-15Rα/Fc and programmed death-1 (PD-1) antibody have shown stronger inhibitory effects as compared with treatment with either single molecule. Therefore, we developed IL-15·sIL-15Rα/Fc to be a long half-life potential cancer immunotherapy candidate that can be applied alone or in synergy with PD-1/PD-L1 blockade.
Collapse
|
22
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
23
|
Yang H, Kureshi R, Spangler JB. Structural Basis for Signaling Through Shared Common γ Chain Cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:1-19. [PMID: 31628649 DOI: 10.1007/978-981-13-9367-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The common γ chain (γc) family of hematopoietic cytokines consists of six distinct four α-helix bundle soluble ligands that signal through receptors which include the shared γc subunit to coordinate a wide range of physiological processes, in particular, those related to innate and adaptive immune function. Since the first crystallographic structure of a γc family cytokine/receptor signaling complex (the active Interleukin-2 [IL-2] quaternary complex) was determined in 2005 [1], tremendous progress has been made in the structural characterization of this protein family, transforming our understanding of the molecular mechanisms underlying immune activity. Although many conserved features of γc family cytokine complex architecture have emerged, distinguishing details have been observed for individual cytokine complexes that rationalize their unique functional properties. Much work remains to be done in the molecular characterization of γc family signaling, particularly with regard to intracellular activation events, and looking forward, new technologies in structural biophysics will offer further insight into the biology of cytokine signaling to inform the design of targeted therapeutics for treatment of immune-linked diseases such as cancer, infection, and autoimmune disorders.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Molecular characterization and expression analysis of interleukin 15 (IL15) and interleukin-15 receptor subunit alpha (IL15Rα) in dojo loach (Misgurnus anguillicaudatus): Their salient roles during bacterial, parasitic and fungal infection. Mol Immunol 2018; 103:293-305. [DOI: 10.1016/j.molimm.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
|
25
|
Beilin C, Choudhuri K, Bouma G, Malinova D, Llodra J, Stokes DL, Shimaoka M, Springer TA, Dustin ML, Thrasher AJ, Burns SO. Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Wellcome Open Res 2018; 3:84. [PMID: 30483599 PMCID: PMC6234741 DOI: 10.12688/wellcomeopenres.14493.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Mutations of the common cytokine receptor gamma chain (γc) cause Severe Combined Immunodeficiency characterized by absent T and NK cell development. Although stem cell therapy restores these lineages, residual immune defects are observed that may result from selective persistence of γc-deficiency in myeloid lineages. However, little is known about the contribution of myeloid-expressed γc to protective immune responses. Here we examine the importance of γc for myeloid dendritic cell (DC) function. Methods: We utilize a combination of in vitro DC/T-cell co-culture assays and a novel lipid bilayer system mimicking the T cell surface to delineate the role of DC-expressed γc during DC/T-cell interaction. Results: We observed that γc in DC was recruited to the contact interface following MHCII ligation, and promoted IL-15Rα colocalization with engaged MHCII. Unexpectedly, trans-presentation of IL-15 was required for optimal CD4+T cell activation by DC and depended on DC γc expression. Neither recruitment of IL-15Rα nor IL-15 trans-signaling at the DC immune synapse (IS), required γc signaling in DC, suggesting that γc facilitates IL-15 transpresentation through induced intermolecular cis associations or cytoskeletal reorganization following MHCII ligation. Conclusions: These findings show that DC-expressed γc is required for effective antigen-induced CD4+ T cell activation. We reveal a novel mechanism for recruitment of DC IL-15/IL-15Rα complexes to the IS, leading to CD4+ T cell costimulation through localized IL-15 transpresentation that is coordinated with antigen-recognition.
Collapse
Affiliation(s)
- Chiara Beilin
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kaushik Choudhuri
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - Gerben Bouma
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Dessislava Malinova
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Jaime Llodra
- Program in Structural Biology, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - David L. Stokes
- Program in Structural Biology, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - Motumu Shimaoka
- Immune Disease Institute, Children's Hospital Boston, Boston, MA, 02115, USA
| | - Timothy A. Springer
- Program in Structural Biology, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - Michael L. Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, OX3 7FY, UK
| | - Adrian J. Thrasher
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Siobhan O. Burns
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- University College London Institute of Immunity and Transplantation, Department of Immunology, Royal Free London NHS Foundation Trust, London, NW3 2PF, UK
| |
Collapse
|
26
|
Beilin C, Choudhuri K, Bouma G, Malinova D, Llodra J, Stokes DL, Shimaoka M, Springer TA, Dustin ML, Thrasher AJ, Burns SO. Dendritic cell-expressed common gamma-chain recruits IL-15 for trans-presentation at the murine immunological synapse. Wellcome Open Res 2018; 3:84. [PMID: 30483599 PMCID: PMC6234741 DOI: 10.12688/wellcomeopenres.14493.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 10/05/2023] Open
Abstract
Background: Mutations of the common cytokine receptor gamma chain (γc) cause Severe Combined Immunodeficiency characterized by absent T and NK cell development. Although stem cell therapy restores these lineages, residual immune defects are observed that may result from selective persistence of γc-deficiency in myeloid lineages. However, little is known about the contribution of myeloid-expressed γc to protective immune responses. Here we examine the importance of γc for myeloid dendritic cell (DC) function. Methods: We utilize a combination of in vitro DC/T-cell co-culture assays and a novel lipid bilayer system mimicking the T cell surface to delineate the role of DC-expressed γc during DC/T-cell interaction. Results: We observed that γc in DC was recruited to the contact interface following MHCII ligation, and promoted IL-15Rα colocalization with engaged MHCII. Unexpectedly, trans-presentation of IL-15 was required for optimal CD4+T cell activation by DC and depended on DC γc expression. Neither recruitment of IL-15Rα nor IL-15 trans-signaling at the DC immune synapse (IS), required γc signaling in DC, suggesting that γc facilitates IL-15 transpresentation through induced intermolecular cis associations or cytoskeletal reorganization following MHCII ligation. Conclusions: These findings show that DC-expressed γc is required for effective antigen-induced CD4+ T cell activation. We reveal a novel mechanism for recruitment of DC IL-15/IL-15Rα complexes to the IS, leading to CD4+ T cell costimulation through localized IL-15 transpresentation that is coordinated with antigen-recognition.
Collapse
Affiliation(s)
- Chiara Beilin
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kaushik Choudhuri
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - Gerben Bouma
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Dessislava Malinova
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Jaime Llodra
- Program in Structural Biology, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - David L. Stokes
- Program in Structural Biology, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - Motumu Shimaoka
- Immune Disease Institute, Children's Hospital Boston, Boston, MA, 02115, USA
| | - Timothy A. Springer
- Program in Structural Biology, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
| | - Michael L. Dustin
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York University, New York, NY, 10016, USA
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, OX3 7FY, UK
| | - Adrian J. Thrasher
- Molecular Immunology Unit, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - Siobhan O. Burns
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
- University College London Institute of Immunity and Transplantation, Department of Immunology, Royal Free London NHS Foundation Trust, London, NW3 2PF, UK
| |
Collapse
|
27
|
Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci Rep 2018; 8:7675. [PMID: 29769573 PMCID: PMC5955975 DOI: 10.1038/s41598-018-25987-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Interleukin-15 (IL-15) can promote both innate and adaptive immune reactions by stimulating CD8+/CD4+ T cells and natural killer cells (NK) while showing no effect in activating T-regulatory (Treg) cells or inducing activation-associated death among effector T cells and NK cells. Thus, IL-15 is considered as one of the most promising molecules for antitumor immune therapy. To improve the drug-like properties of natural IL-15, we create an IL-15-based molecule, named P22339, with the following characteristics: 1) building a complex of IL-15 and the Sushi domain of IL-15 receptor α chain to enhance the agonist activity of IL-15 via transpresentation; 2) through a rational structure-based design, creating a disulfide bond linking the IL-15/Sushi domain complex with an IgG1 Fc to augment its half-life. P22339 demonstrates excellent developability, pharmacokinetic and pharmacodynamic properties as well as antitumor efficacy in both in vitro assessments and in vivo studies. It significantly suppresses tumor growth and metastasis in rodent models, and activates T effector cells and NK cells in cynomolgus monkey. Overall, these data suggest that P22339 has a great potential for cancer immunotherapy.
Collapse
|
28
|
Toomer KH, Malek TR. Cytokine Signaling in the Development and Homeostasis of Regulatory T cells. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028597. [PMID: 28620098 DOI: 10.1101/cshperspect.a028597] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytokine signaling is indispensable for regulatory T-cell (Treg) development in the thymus, and also influences the homeostasis, phenotypic diversity, and function of Tregs in the periphery. Because Tregs are required for establishment and maintenance of immunological self-tolerance, investigating the role of cytokines in Treg biology carries therapeutic potential in the context of autoimmune disease. This review discusses the potent and diverse influences of interleukin (IL)-2 signaling on the Treg compartment, an area of knowledge that has led to the use of low-dose IL-2 as a therapy to reregulate autoaggressive immune responses. Evidence suggesting Treg-specific impacts of the cytokines transforming growth factor β (TGF-β), IL-7, thymic stromal lymphopoietin (TSLP), IL-15, and IL-33 is also presented. Finally, we consider the technical challenges and knowledge limitations that must be overcome to bring other cytokine-based, Treg-targeted therapies into clinical use.
Collapse
Affiliation(s)
- Kevin H Toomer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136.,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136
| |
Collapse
|
29
|
Loro E, Ramaswamy G, Chandra A, Tseng WJ, Mishra MK, Shore EM, Khurana TS. IL15RA is required for osteoblast function and bone mineralization. Bone 2017; 103:20-30. [PMID: 28602725 PMCID: PMC5598756 DOI: 10.1016/j.bone.2017.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Interleukin-15 receptor alpha (IL15RA) is an important component of interleukin-15 (IL15) pro-inflammatory signaling. In addition, IL15 and IL15RA are present in the circulation and are detected in a variety of tissues where they influence physiological functions such as muscle contractility and overall metabolism. In the skeletal system, IL15RA was previously shown to be important for osteoclastogenesis. Little is known, however, about its role in osteoblast function and bone mineralization. In this study, we evaluated bone structural and mechanical properties of an Il15ra whole-body knockout mouse (Il15ra-/-) and used in vitro and bioinformatic analyses to understand the role IL15/IL15RA signaling on osteoblast function. We show that lack of IL15RA decreased bone mineralization in vivo and in isolated primary osteogenic cultures, suggesting a cell-autonomous effect. Il15ra-/- osteogenic cultures also had reduced Rankl/Opg mRNA ratio, indicating defective osteoblast/osteoclast coupling. We analyzed the transcriptome of primary pre-osteoblasts from normal and Il15ra-/- mice and identified 1150 genes that were differentially expressed at a FDR of 5%. Of these, 844 transcripts were upregulated and 306 were downregulated in Il15ra-/- cells. The largest functional clusters, highlighted using DAVID analysis, were related to metabolism, immune response, bone mineralization and morphogenesis. The transcriptome analysis was validated by qPCR of some of the most significant hits. Using bioinformatic approaches, we identified candidate genes, including Cd200 and Enpp1, that could contribute to the reduced mineralization. Silencing Il15ra using shRNA in the calvarial osteoblast MC3T3-E1 cell line decreased ENPP1 activity. Taken together, these data support that IL15RA plays a cell-autonomous role in osteoblast function and bone mineralization.
Collapse
Affiliation(s)
- Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Girish Ramaswamy
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN, USA
| | - Wei-Ju Tseng
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manoj K Mishra
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors. Eur J Med Chem 2017; 136:543-547. [DOI: 10.1016/j.ejmech.2017.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
|
31
|
Haddad JF, Yang Y, Yeung S, Couture JF. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1605-1612. [PMID: 28652208 DOI: 10.1016/j.bbapap.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/14/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- John Faissal Haddad
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Yidai Yang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Sylvain Yeung
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
32
|
Nowak K, Linzner D, Thrasher AJ, Lambert PF, Di WL, Burns SO. Absence of γ-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment. J Invest Dermatol 2017. [PMID: 28634034 DOI: 10.1016/j.jid.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4+ T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches.
Collapse
Affiliation(s)
- Karolin Nowak
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK
| | - Daniela Linzner
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Wei-Li Di
- Immunobiology, Institute of Child Health, University College London, London, UK
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK; Department of Immunology, Royal Free Hospital Foundation Trust, London, UK.
| |
Collapse
|
33
|
Escudero-Hernández C, Martínez-Abad B, Ruipérez V, Garrote JA, Arranz E. New IL-15 receptor-α splicing variants identified in intestinal epithelial Caco-2 cells. Innate Immun 2016; 23:44-53. [PMID: 27794069 DOI: 10.1177/1753425916674263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IL-15 is a pleiotropic cytokine related to IL-2 which acts at a broader level than its counterpart. It is presented through its specific high-affinity receptor, IL-15Rα. Both cytokine and receptor are tightly regulated at multiple levels and are widely distributed. Thus, deregulation of their expression leads to an inflammatory immune response. Variants of splicing of IL-15Rα have been described in immune and barrier cells; however, their presence has not been focused on intestinal epithelial cells. In this study, we describe five new alternative variants of splicing of IL-15Rα in Caco-2 cells. Four of them were expressed into proteins inside Caco-2 cells, but these were unable to bind IL-15 or to follow the secretory pathway. However, the expression of mRNA itself might be relevant to diseases such as celiac disease, inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Celia Escudero-Hernández
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Beatriz Martínez-Abad
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Violeta Ruipérez
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - José A Garrote
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain.,2 Laboratory of Molecular Genetics, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Eduardo Arranz
- 1 Mucosal Immunology Laboratory, Instituto de Biología y Genética Molecular (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
34
|
Azzi S, Gallerne C, Romei C, Le Coz V, Gangemi R, Khawam K, Devocelle A, Gu Y, Bruno S, Ferrini S, Chouaib S, Eid P, Azzarone B, Giron-Michel J. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia 2016; 17:509-17. [PMID: 26152359 PMCID: PMC4719000 DOI: 10.1016/j.neo.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023] Open
Abstract
Intrarenal interleukin-15 (IL-15) participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15) isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC) to peritumoral (ptumTEC), tumoral (RCC), and cancer stem cells (CSC/CD105+). RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα) chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15) isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα). This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa) displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression.
Collapse
Affiliation(s)
- Sandy Azzi
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Cindy Gallerne
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Cristina Romei
- Department of Clinical and Experimental Immunology, Istituto G. Gaslini, Genoa, Italy
| | - Vincent Le Coz
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Rosaria Gangemi
- Biotherapy Unit, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, Genoa, Italy
| | - Krystel Khawam
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Aurore Devocelle
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Yanhong Gu
- Department of Oncology and Department of Experimental Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Stefania Bruno
- Department of Molecular Biotechnologies and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Silvano Ferrini
- Biotherapy Unit, IRCCS A.O.U. San Martino-IST, Largo R. Benzi 10, Genoa, Italy
| | - Salem Chouaib
- INSERM UMR 753, Université de Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | - Pierre Eid
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France
| | - Bruno Azzarone
- Department of Clinical and Experimental Immunology, Istituto G. Gaslini, Genoa, Italy.
| | - Julien Giron-Michel
- INSERM UMR 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud (Paris 11), Orsay, France.
| |
Collapse
|
35
|
Kim TK, Bheda-Malge A, Lin Y, Sreekrishna K, Adams R, Robinson MK, Bascom CC, Tiesman JP, Isfort RJ, Gelinas R. A systems approach to understanding human rhinovirus and influenza virus infection. Virology 2015; 486:146-57. [PMID: 26437235 PMCID: PMC7111289 DOI: 10.1016/j.virol.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/28/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023]
Abstract
Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation. Human bronchial epithelial cells (BEAS-2B) were infected with rhinovirus (RV16), influenza A virus (H1N1) or both viruses. Steady-state RNA was profiled from five biological replicate samples by microarray hybridization at multiple times over three days. The changing patterns of key biological processes for each virus or both viruses together were analyzed. The data reveal similarities and differences in innate immune responses, cytokine activation, regulation of apoptosis as well as other processes that have implications for host recovery from viral infection.
Collapse
Affiliation(s)
- Taek-Kyun Kim
- The Institute for Systems Biology, Seattle, WA 98109, USA.
| | | | - Yakang Lin
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | - Rachel Adams
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | | | - Jay P Tiesman
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | | |
Collapse
|
36
|
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res 2015; 3:219-27. [PMID: 25736261 DOI: 10.1158/2326-6066.cir-15-0009] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IL2 and IL15, members of the 4α-helix bundle family of cytokines, play pivotal roles in the control of the life and death of lymphocytes. Although their heterotrimeric receptors have two receptor subunits in common, these two cytokines have contrasting roles in adaptive immune responses. The unique role of IL2 through maintenance of fitness of regulatory T cells and activation-induced cell death is the elimination of self-reactive T cells to prevent autoimmunity. In contrast with IL2, IL15 is dedicated to the prolonged maintenance of memory T-cell responses to invading pathogens. Blockade of IL2 and IL15 using monoclonal antibodies has been reported to be of value in the treatment of patients with leukemia, autoimmune disorders, and in the prevention of allograft rejection. IL2 has been approved by the FDA for the treatment of patients with malignant renal cell cancer and metastatic malignant melanoma. Clinical trials involving recombinant human IL15 given by bolus infusions have been completed, and studies assessing subcutaneous and continuous intravenous infusions are under way in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL15 with IL15Rα(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
37
|
Abstract
The development and homeostasis of γδ T cells is highly dependent on distinct cytokine networks. Here we examine the role of IL-15 and its unique receptor, IL-15Rα, in the development of IL-17-producing γδ (γδ-17) T cells. Phenotypic analysis has shown that CD44(high) γδ-17 cells express IL-15Rα and the common gamma chain (CD132), yet lack the IL-2/15Rβ chain (CD122). Surprisingly, we found an enlarged population of γδ-17 cells in the peripheral and mesenteric lymph nodes of adult IL-15Rα KO mice, but not of IL-15 KO mice. The generation of mixed chimeras from neonatal thymocytes indicated that cell-intrinsic IL-15Rα expression was required to limit IL-17 production by γδ T cells. γδ-17 cells also were increased in the peripheral lymph nodes of transgenic knock-in mice, where the IL-15Rα intracellular signaling domain was replaced with the intracellular portion of the IL-2Rα chain (that lacks signaling capacity). Finally, an analysis of neonatal thymi revealed that the CD44(lo/int) precursors of γδ-17 cells, which also expressed IL-15Rα, were increased in newborn mice deficient in IL-15Rα signaling, but not in IL-15 itself. Thus, these findings demonstrate that signaling through IL-15Rα regulates the development of γδ-17 cells early in ontogeny, with long-term effects on their peripheral homeostasis in the adult.
Collapse
|
38
|
An alternatively spliced IL-15 isoform modulates abrasion-induced keratinocyte activation. J Invest Dermatol 2015; 135:1329-1337. [PMID: 25615554 DOI: 10.1038/jid.2015.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/08/2014] [Accepted: 12/31/2014] [Indexed: 11/08/2022]
Abstract
In a routine phenotype-driven screen, we identified a point mutation in exon 7 of the IL-15 gene in Pedigree 191 (deficient memory (DM)) of N-ethyl-N-nitrosourea mutagenized mice. The DM epidermis expressed an alternatively spliced IL-15 mRNA isoform, IL-15ΔE7, and a wild-type (WT) IL-15 isoform at comparable levels. Mechanical stimulation of DM skin or DM skin graft transplanted onto the WT host resulted in reduced keratinocyte activation and inhibition of neutrophil infiltration into the dermis, demonstrating that DM keratinocytes produced less inflammatory response to external stimulation. Ectopic expression of IL-15ΔE7 in WT skin prevented abrasion-induced epidermal thickening, blocked the accumulation of nuclear antigen Ki67(+) cells in the basal and the suprabasal cell layers, increased loricrin expression, and also increased keratinocyte CXCL1 and G-CSF production. IL-15ΔE7 also profoundly blocked neutrophil infiltration in SDS- or immiquimod (IMQ)-treated WT skin. Recombinant IL-15ΔE7 failed to activate STAT-5 and its downstream target bcl-2 expression. Our study points to IL-15ΔE7 as a potential therapeutic agent for treating neutrophilia-associated inflammatory skin disorders.
Collapse
|
39
|
Abstract
IL-15 is a 14-15 kDa member of the four α-helix bundle of cytokines that acts through a heterotrimeric receptor involving IL-2/IL-15R β, γc and the IL-15 specific receptor subunit IL-15R α. IL-15 stimulates the proliferation of T, B and NK cells, and induces stem, central and effector memory CD8 T cells. In rhesus macaques, continuous infusion of recombinant human IL-15 at 20 μg/kg/day was associated with approximately a 10-fold increase in the numbers of circulating NK, γ/δ cells and monocytes, and an 80- to 100-fold increase in the numbers of effector memory CD8 T cells. IL-15 has shown efficacy in murine models of malignancy. Clinical trials involving recombinant human IL-15 given by bolus infusions have been completed and by subcutaneous and continuous intravenous infusions are underway in patients with metastatic malignancy. Furthermore, clinical trials are being initiated that employ the combination of IL-15 with IL-15R α(+/-) IgFc.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 4N115, Bethesda, MD 20892-1374, USA
| |
Collapse
|
40
|
Díaz-Torné C, Ortiz de Juana MA, Geli C, Cantó E, Laiz A, Corominas H, Casademont J, de Llobet JM, Juárez C, Díaz-López C, Vidal S. Rituximab-induced interleukin-15 reduction associated with clinical improvement in rheumatoid arthritis. Immunology 2014; 142:354-62. [PMID: 24219764 DOI: 10.1111/imm.12212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022] Open
Abstract
Rituximab therapy alters all aspects of B-cell participation in the disturbed immune response of rheumatoid arthritis patients. To determine the impact of B-cell depletion on other immune compartments, we analysed levels of soluble and surface interleukin-15 (IL-15) along with the frequency of IL-15-related subsets after rituximab treatment. We then studied the correlation of observed changes with clinical activity. Heparinized blood samples from 33 rheumatoid arthritis patients were collected on days 0, 30, 90 and 180 after each of three rituximab cycles. Serum cytokine levels were determined by ELISA. Interleukin-15 trans-presentation was analysed by cytometry. Flow cytometry with monoclonal antibodies was performed to analyse circulating cell subsets. Interleukin-15 was detected in the serum of 25 patients before initiating the treatment. Rituximab then progressively reduced serum IL-15 (138 ± 21 pg/ml at baseline, 48 ± 18 pg/ml after third cycle, P = 0·03) along with IL-17 (1197 ± 203 pg/ml at baseline, 623 ± 213 pg/ml after third cycle, P = 0·03) and tended to increase the frequency of circulating regulatory T cells (3·1 ± 1 cells/μl at baseline, 7·7 ± 2 cells/μl after third cycle). Rituximab also significantly decreased IL-15 trans-presentation on surface monocytes of patients negative for IL-15 serum (mean fluorescence intensity: 4·82 ± 1·30 at baseline, 1·42 ± 0·69 after third cycle P = 0·05). Reduction of serum IL-15 was associated with decrease in CD8(+) CD45RO(+) /RA(+) ratio (1·17 ± 0·21 at baseline, 0·36 ± 0·06 at third cycle, P = 0·02). DAS28, erythrocyte sedimentation rate and C-reactive protein correlated significantly with CD8(+) CD45RO(+) /RA(+) ratio (R = 0·323, R = 0·357, R = 0·369 respectively, P < 0·001). Our results suggest that sustained clinical improvement after rituximab treatment is associated with IL-15/memory T-cell-related mechanisms beyond circulating B cells.
Collapse
Affiliation(s)
- César Díaz-Torné
- Rheumatology Unit, Internal Medicine Department Hospital Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ribot JC, Ribeiro ST, Correia DV, Sousa AE, Silva-Santos B. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:2237-43. [PMID: 24489097 DOI: 10.4049/jimmunol.1303119] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytotoxicity and IFN-γ production by human γδ T cells underlie their potent antitumor functions. However, it remains unclear where and how human γδ T cells acquire these key effector properties. Given the recent disclosure of a major contribution of the thymus to murine γδ T cell functional differentiation, in this study we have analyzed a series of human pediatric thymuses. We found that ex vivo-isolated γδ thymocytes produced negligible IFN-γ and lacked cytolytic activity against leukemia cells. However, these properties were selectively acquired upon stimulation with IL-2 or IL-15, but not IL-4 or IL-7. Unexpectedly, TCR activation was dispensable for these stages of functional differentiation. The effects of IL-2/IL-15 depended on MAPK/ERK signaling and induced de novo expression of the transcription factors T-bet and eomesodermin, as well as the cytolytic enzyme perforin, required for the cytotoxic type 1 program. These findings have implications for the manipulation of γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
42
|
Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Rα. Immunogenetics 2013; 66:93-103. [PMID: 24276591 PMCID: PMC3894449 DOI: 10.1007/s00251-013-0747-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
Abstract
Interleukins 2 and 15 (IL-2 and IL-15) are highly differentiated but related cytokines with overlapping, yet also distinct functions, and established benefits for medical drug use. The present study identified a gene for an ancient third IL-2/15 family member in reptiles and mammals, interleukin 15-like (IL-15L), which hitherto was only reported in fish. IL-15L genes with intact open reading frames (ORFs) and evidence of transcription, and a recent past of purifying selection, were found for cattle, horse, sheep, pig and rabbit. In human and mouse the IL-15L ORF is incapacitated. Although deduced IL-15L proteins share only ~21 % overall amino acid identity with IL-15, they share many of the IL-15 residues important for binding to receptor chain IL-15Rα, and recombinant bovine IL-15L was shown to interact with IL-15Rα indeed. Comparison of sequence motifs indicates that capacity for binding IL-15Rα is an ancestral characteristic of the IL-2/15/15L family, in accordance with a recent study which showed that in fish both IL-2 and IL-15 can bind IL-15Rα. Evidence reveals that the species lineage leading to mammals started out with three similar cytokines IL-2, IL-15 and IL-15L, and that later in evolution (1) IL-2 and IL-2Rα receptor chain acquired a new and specific binding mode and (2) IL-15L was lost in several but not all groups of mammals. The present study forms an important step forward in understanding this potent family of cytokines, and may help to improve future strategies for their application in veterinarian and human medicine.
Collapse
|
43
|
Bae JS, Shim SH, Hwang SD, Kim JW, Park DW, Park CI. Molecular cloning and expression analysis of interleukin (IL)-15 and IL-15 receptor α from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1209-1215. [PMID: 23911652 DOI: 10.1016/j.fsi.2013.07.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Mammalian interleukin (IL)-15 plays an important role in the activation of CD8(+) T cells and natural killer (NK) cells along with its receptor α (IL-15Rα). To understand the potential roles of IL-15 and IL-15Rα in fish, we identified IL-15 and IL-15Rα cDNA from rock bream (Oplegnathus fasciatus) and investigated their gene expression profiles after bacterial and viral infection. Coding regions of rock bream (Rb) IL-15 and RbIL-15Rα cDNAs were 534 and 402 bp encoding 177 and 133 amino acid residues, respectively. The sushi domain of IL-15Rα was highly conserved between rock bream and other species. Unlike other IL-15Rαs, RbIL-15Rα does not have a transmembrane region. Gene expression of RbIL-15 and RbIL-15Rα was widely expressed in different tissues of healthy fish, especially immune-related tissues. RbIL-15 and RbIL-15Rα were highly induced in the kidney and spleen after infection with Edwardsiella tarda, Streptococcus iniae and red seabream iridovirus. Gene expression patterns of RbIL-15 and RbIL-15Rα were similar in the kidney and spleen after pathogen infection. However, these genes were differentially induced in the liver after pathogen infection. These results suggest that the different responses of RbIL-15 and RbIL-15Rα to pathogen infection may be induced by different tissues or cell types.
Collapse
Affiliation(s)
- Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 445, Inpyong-dong, Tongyeong, Gyeongnam 650-160, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation. PLoS Comput Biol 2013; 9:e1003222. [PMID: 24068905 PMCID: PMC3772054 DOI: 10.1371/journal.pcbi.1003222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/28/2013] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15Rα on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation. Natural killer (NK) cells are innate immune cells that are important in our bodies' initial defenses against pathogens, like viruses. NK cells rapidly proliferate early during viral infections to provide an expanded pool of effector cells to suppress the infection. This proliferative response is driven by a cytokine called interleukin-15 (IL-15); however, the influence of IL-15 and its receptor (IL-15R) in stimulating NK cell proliferation has not been quantitatively characterized at the cellular level. To better understand the factors controlling the vigorous expansion of NK cells during infections, we developed a mathematical model incorporating IL-15R binding and trafficking parameters that regulate the number of cell-surface IL-15/IL-15R signaling complexes. The analysis of this model provided us with insight on how IL-15-driven NK cell expansion can be modulated through changes in receptor kinetics and expression. Based on model predictions, we were able to draw inferences about NK cell population dynamics and to compare these conclusions with quantitative experimental results. Our results and model have applicability to studies designed to manipulate cell responses in the context of immunotherapies.
Collapse
|
45
|
IL-15 cis Presentation Is Required for Optimal NK Cell Activation in Lipopolysaccharide-Mediated Inflammatory Conditions. Cell Rep 2013; 4:1235-49. [DOI: 10.1016/j.celrep.2013.08.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/12/2013] [Accepted: 08/08/2013] [Indexed: 12/12/2022] Open
|
46
|
Colpitts SL, Stonier SW, Stoklasek TA, Root SH, Aguila HL, Schluns KS, Lefrançois L. Transcriptional regulation of IL-15 expression during hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2013; 191:3017-24. [PMID: 23966624 DOI: 10.4049/jimmunol.1301389] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dendritic cells (DCs) are the most commonly studied source of the cytokine IL-15. Using an IL-15 reporter transgenic mouse, we have recently shown previously unappreciated differences in the levels of IL-15 expressed by subsets of conventional DCs (CD8⁺ and CD8⁻). In this study, we show that IL-15 promoter activity was differentially regulated in subsets of hematopoietically derived cells with IL-15 expression largely limited to myeloid lineages. In contrast, mature cells of the lymphoid lineages expressed little to no IL-15 activity. Surprisingly, we discovered that hematopoietic stem cells (lineage⁻Sca-1⁺c-Kit⁺) expressed high levels of IL-15, suggesting that IL-15 expression was extinguished during lymphoid development. In the case of T cells, this downregulation was Notch-dependent and occurred in a stepwise pattern coincident with increasing maturation and commitment to a T cell fate. Finally, we further demonstrate that IL-15 expression was also controlled throughout DC development, with key regulatory activity of IL-15 production occurring at the pre-DC branch point, leading to the generation of both IL-15⁺CD8⁺ and IL-15(⁻/low)CD8⁻ DC subsets. Thus, IL-15 expression is coordinated with cellular fate in myeloid versus lymphoid immune cells.
Collapse
Affiliation(s)
- Sara L Colpitts
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Walsh STR. Structural insights into the common γ-chain family of cytokines and receptors from the interleukin-7 pathway. Immunol Rev 2013; 250:303-16. [PMID: 23046137 DOI: 10.1111/j.1600-065x.2012.01160.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past 13 years, numerous crystal structures of complexes of the common γ-chain (γ(c)) cytokine receptors and their cytokines have been solved. Even with the remarkable progress in the structural biology of γ(c) receptors and their cytokines or interleukins, there are valuable lessons to be learned from the structural and biophysical studies of interleukin-7 (IL-7) and its α-receptor (IL-7Rα) and comparisons with other γ(c) family members. The structure of the IL-7/IL-7Rα complex teaches that interfaces between the γ(c) interleukins and their receptors can vary in size, polarity, and specificity, and that significant conformational changes might be necessary for complexes of interleukins and their receptors to bind the shared, activating γ(c) receptor. Binding, kinetic, and thermodynamic studies of IL-7 and IL-7Rα show that glycosylation and electrostatics can be important to interactions between interleukins and their receptor, even where the glycans and charged residues are distant from the interface. The structure of the IL-7Rα homodimer is a reminder that often-ignored non-activating complexes likely perform roles just as important to signaling as activating complexes. And last but not least, the structural and biophysical studies help explain and potentially treat the diseases caused by aberrant IL-7 signaling.
Collapse
Affiliation(s)
- Scott T R Walsh
- Department of Cell Biology and Molecular Genetics, Institute for Bioscience and Biotechnology Research, W. M. Keck Laboratory for Structural Biology, Rockville, MD, USA.
| |
Collapse
|
48
|
Ikemizu S, Chirifu M, Davis SJ. IL-2 and IL-15 signaling complexes: different but the same. Nat Immunol 2012; 13:1141-2. [DOI: 10.1038/ni.2472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Stone JD, Chervin AS, Schreiber H, Kranz DM. Design and characterization of a protein superagonist of IL-15 fused with IL-15Rα and a high-affinity T cell receptor. Biotechnol Prog 2012; 28:1588-97. [PMID: 22961781 DOI: 10.1002/btpr.1631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/22/2012] [Indexed: 12/15/2022]
Abstract
To avoid high systemic doses, strategies involving antigen-specific delivery of cytokine via linked antibodies or antibody fragments have been used. Targeting cancer-associated peptides presented by major histocompatibility complex (MHC) molecules (pepMHC) increases the number of potential target antigens and takes advantage of cross-presentation on tumor stroma and in draining lymph nodes. Here, we use a soluble, high-affinity single-chain T cell receptor Vα-Vβ (scTv), to deliver cytokines to intracellular tumor-associated antigens presented as pepMHC. As typical wild-type T cell receptors (TCRs) exhibit low affinity (K(d) = 1-100 μM or more), we used an engineered TCR, m33, that binds its antigenic peptide SIYRYYGL (SIY) bound to the murine class I major histocompatability complex protein H2-K(b) (SIY/K(b) ) with nanomolar affinity (K(d) = 30 nM). We generated constructs consisting of m33 scTv fused to murine interleukin 2 (IL-2), interleukin 15 (IL-15), or IL-15/IL-15Rα (IL-15 linked to IL-15Rα sushi domain, called "superfusion"). The fusions were purified with good yields and bound specifically to SIY/K(b) with high affinity. Proper cytokine folding and binding were confirmed, and the fusions were capable of stimulating proliferation of cytokine-dependent cells, both when added directly and when presented in trans, bound to cells with the target pepMHC. The m33 superfusion was particularly potent and stable and represents a promising design for targeted antitumor immunomodulation.
Collapse
Affiliation(s)
- Jennifer D Stone
- Dept. of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
50
|
Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine 2012; 59:479-90. [PMID: 22795955 DOI: 10.1016/j.cyto.2012.06.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 02/07/2023]
Abstract
Transpresentation has emerged as an important mechanism mediating IL-15 responses in a subset of lymphocytes during the steady state. In transpresentation, cell surface IL-15, bound to IL-15Rα is delivered to opposing lymphocytes during a cell-cell interaction. The events most dependent on IL-15 include the development and homeostasis of memory CD8 T cells, Natural Killer cells, invariant Natural Killer T cells, and intraepithelial lymphocytes. As lymphocyte development and homeostasis involve multiple steps and mechanisms, IL-15 transpresentation can have diverse roles throughout. Moreover, distinct stages of lymphocyte differentiation require IL-15 transpresented by different cells, which include both hematopoietic and non-hematopoietic cell types. Herein, we will describe the points where IL-15 transpresentation impacts these processes, the specific cells thought to drive IL-15 responses, as well as their role in the course of development and homeostasis.
Collapse
Affiliation(s)
- Eliseo F Castillo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|