1
|
Wang Y, Xing J, Liang Y, Liang H, Liang N, Li J, Yin G, Li X, Zhang K. The structure and function of multifunctional protein ErbB3 binding protein 1 (Ebp1) and its role in diseases. Cell Biol Int 2024; 48:1069-1079. [PMID: 38884348 DOI: 10.1002/cbin.12196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.
Collapse
Affiliation(s)
- Ying Wang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Huifang Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- ShanXi Key Laboratory of Stem Cells for Immunological Dermatosis, State Key Breeding Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Nakagawa-Saito Y, Saitoh S, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C, Okada M. HDAC Class I Inhibitor Domatinostat Preferentially Targets Glioma Stem Cells over Their Differentiated Progeny. Int J Mol Sci 2022; 23:ijms23158084. [PMID: 35897656 PMCID: PMC9332065 DOI: 10.3390/ijms23158084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are in general characterized by higher resistance to cell death and cancer therapies than non-stem differentiated cancer cells. However, we and others have recently revealed using glioma stem cells (GSCs) as a model that, unexpectedly, CSCs have specific vulnerabilities that make them more sensitive to certain drugs compared with their differentiated counterparts. We aimed in this study to discover novel drugs targeting such Achilles’ heels of GSCs as anti-GSC drug candidates to be used for the treatment of glioblastoma, the most therapy-resistant form of brain tumors. Here we report that domatinostat (4SC-202), a class I HDAC inhibitor, is one such candidate. At concentrations where it showed no or minimal growth inhibitory effect on differentiated GSCs and normal cells, domatinostat effectively inhibited the growth of GSCs mainly by inducing apoptosis. Furthermore, GSCs that survived domatinostat treatment lost their self-renewal capacity. These results suggested that domatinostat is a unique drug that selectively eliminates GSCs not only physically by inducing cell death but also functionally by inhibiting their self-renewal. Our findings also imply that class I HDACs and/or LSD1, another target of domatinostat, may possibly have a specific role in the maintenance of GSCs and therefore could be an attractive target in the development of anti-GSC therapies.
Collapse
Affiliation(s)
- Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
| | - Shinichi Saitoh
- Department of Immunology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan;
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
- Correspondence: (C.K.); (M.O.); Tel.: +81-23-628-5212 (C.K.); +81-23-628-5214 (M.O.)
| | - Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan; (Y.N.-S.); (Y.M.); (A.S.); (K.T.); (S.S.)
- Correspondence: (C.K.); (M.O.); Tel.: +81-23-628-5212 (C.K.); +81-23-628-5214 (M.O.)
| |
Collapse
|
3
|
Morovicz AP, Mazloumi Gavgani F, Jacobsen RG, Skuseth Slinning M, Turcu DC, Lewis AE. Phosphoinositide 3-kinase signalling in the nucleolus. Adv Biol Regul 2021; 83:100843. [PMID: 34920983 DOI: 10.1016/j.jbior.2021.100843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) signalling pathway plays key roles in many cellular processes and is altered in many diseases. The function and mode of action of the pathway have mostly been elucidated in the cytoplasm. However, many of the components of the PI3K pathway are also present in the nucleus at specific sub-nuclear sites including nuclear speckles, nuclear lipid islets and the nucleolus. Nucleoli are membrane-less subnuclear structures where ribosome biogenesis occurs. Processes leading to ribosome biogenesis are tightly regulated to maintain protein translation capacity of cells. This review focuses on nucleolar PI3K signalling and how it regulates rRNA synthesis, as well as on the identification of downstream phosphatidylinositol (3,4,5)trisphosphate effector proteins.
Collapse
Affiliation(s)
| | | | - Rhîan G Jacobsen
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway
| | | | - Diana C Turcu
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway
| | - Aurélia E Lewis
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway.
| |
Collapse
|
4
|
Sun J, Wang R, Chao T, Wang C. Long Noncoding RNAs Involved in Cardiomyocyte Apoptosis Triggered by Different Stressors. J Cardiovasc Transl Res 2021; 15:588-603. [PMID: 34855148 DOI: 10.1007/s12265-021-10186-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
Cardiomyocytes are essential to maintain the normal cardiac function. Ischemia, hypoxia, and drug stimulation can induce pathological apoptosis of cardiomyocytes which eventually leads to heart failure, arrhythmia, and other cardiovascular diseases. Understanding the molecular mechanisms that regulate cardiomyocyte apoptosis is of great significance for the prevention and treatment of cardiovascular diseases. In recent years, more and more evidences reveal that long noncoding RNAs (lncRNAs) play important regulatory roles in myocardial cell apoptosis. They can modulate the expression of apoptosis-related genes at post-transcriptional level by altering the translation efficacy of target mRNAs or functioning as a precursor for miRNAs or competing for miRNA-mediated inhibition. Moreover, reversing the abnormal expression of lncRNAs can attenuate and even reverse the pathological apoptosis of cardiomyocytes. Therefore, apoptosis-related lncRNAs may become a potential new field for studying cardiomyocyte apoptosis and provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ru Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Coke MC, Mantelin S, Thorpe P, Lilley CJ, Wright KM, Shaw DS, Chande A, Jones JT, Urwin PE. The GpIA7 effector from the potato cyst nematode Globodera pallida targets potato EBP1 and interferes with the plant cell cycle programme. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:erab353. [PMID: 34310681 PMCID: PMC8547150 DOI: 10.1093/jxb/erab353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.
Collapse
Affiliation(s)
- Mirela C Coke
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Mantelin
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Thorpe
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | | | - Kathryn M Wright
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
| | - Daniel S Shaw
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Adams Chande
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John T Jones
- The James Hutton Institute, Dundee Effector Consortium, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Stevenson BW, Gorman MA, Koach J, Cheung BB, Marshall GM, Parker MW, Holien JK. A structural view of PA2G4 isoforms with opposing functions in cancer. J Biol Chem 2020; 295:16100-16112. [PMID: 32952126 DOI: 10.1074/jbc.rev120.014293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
The role of proliferation-associated protein 2G4 (PA2G4), alternatively known as ErbB3-binding protein 1 (EBP1), in cancer has become apparent over the past 20 years. PA2G4 expression levels are correlated with prognosis in a range of human cancers, including neuroblastoma, cervical, brain, breast, prostate, pancreatic, hepatocellular, and other tumors. There are two PA2G4 isoforms, PA2G4-p42 and PA2G4-p48, and although both isoforms of PA2G4 regulate cellular growth and differentiation, these isoforms often have opposing roles depending on the context. Therefore, PA2G4 can function either as a contextual tumor suppressor or as an oncogene, depending on the tissue being studied. However, it is unclear how distinct structural features of the two PA2G4 isoforms translate into different functional outcomes. In this review, we examine published structures to identify important structural and functional components of PA2G4 and consider how they may explain its crucial role in the malignant phenotype. We will highlight the lysine-rich regions, protein-protein interaction sites, and post-translational modifications of the two PA2G4 isoforms and relate these to the functional cellular role of PA2G4. These data will enable a better understanding of the function and structure relationship of the two PA2G4 isoforms and highlight the care that will need to be undertaken for those who wish to conduct isoform-specific structure-based drug design campaigns.
Collapse
Affiliation(s)
| | - Michael A Gorman
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Koach
- Department of Pediatrics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia; School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Glenn M Marshall
- School of Women's and Children's Health, University of New South Wales, Randwick, New South Wales, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michael W Parker
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jessica K Holien
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Surgery, University of Melbourne, Parkville, Victoria, Australia; School of Science, College of Science, Engineering, and Health, RMIT University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
The roles of multifunctional protein ErbB3 binding protein 1 (EBP1) isoforms from development to disease. Exp Mol Med 2020; 52:1039-1047. [PMID: 32719408 PMCID: PMC8080562 DOI: 10.1038/s12276-020-0476-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The roles of the two isoforms of ErbB3-binding protein 1 (Ebp1) in cellular function and its regulation in disease and development is a stimulating area in current fields of biology, such as neuroscience, cancer biology, and structural biology. Over the last two decades, a growing body of studies suggests have suggested different functions for the EBP1 isoforms in various cancers, along with their specific binding partners in the ubiquitin-proteasome system. Owing to the specific cellular context or spatial/temporal expression of the EBP1 isoforms, either transcriptional repression or the activation function of EBP1 has been proposed, and epigenetic regulation by p48 EBP1 has also been observed during in the embryo development, including in brain development and neurologic disorders, such as schizophrenia, in using an Ebp1 knockout mouse model. Here, we review recent findings that have shaped our current understanding of the emerging function of EBP1 isoforms in cellular events and gene expression, from development to disease. A pair of proteins that originate from a common gene exert strikingly different effects on embryonic development as well as tumor growth and progression. RNA transcripts generated from the PA2G4 gene can undergo enzymatic processing to yield two different protein products, p42 EB1 and p48 EB1. These proteins differ by the presence or absence of 54 amino acids at one end, and Jee-Yin Ahn at the Sungkyunkwan University School of Medicine, Suwon, South Korea, and colleagues have reviewed current insights into the functional consequences of this difference. The two proteins bind to distinct sets of molecular partners. The p48 form appears to regulate a host of genes involved in brain development, but also appears to drive cancerous growth in various tumors. In contrast, p42 is scarcer during development, and appears to inhibit tumor formation.
Collapse
|
8
|
Liu J, Xu C, Xu D, Cao L, Xue H, Meng Q, Niu Y. The expression and prognostic role of EBP1 and relationship with AR in HER2+ breast cancer. Virchows Arch 2020; 477:279-289. [PMID: 32086588 DOI: 10.1007/s00428-020-02773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
Abstract
Human epidermal growth factor receptor (HER)-2 positive (HER2+) breast cancer (BC) has a poor survival rate and is more aggressive in nature. HER2-targeting agents could be beneficial for patients with HER2+ BC. In addition, targeted therapy and chemotherapy have been successfully used. However, a few patients are resistant to treatment. ErbB3 binding protein 1 (EBP1) binds to HER3 and inhibits the proliferation and invasive potential of tumor cells. However, its role in HER2+ BC has not been demonstrated. In this study, we aimed to analyze the relationship between androgen receptor (AR) and EBP1 expression in HER2+ BC. A total of 282 cases (140 cases of HER2+ invasive BC and 142 HER2-negative invasive BC) were included in this study. We performed immunohistochemistry (IHC) to analyze the expression of AR and EBP1; thereafter, we evaluated the relationship between these two biomarkers and estrogen receptor (ER), progesterone receptor (PR), HER2, p53, Ki67 expression, and other clinicopathological parameters. Of the HER2+ cases, 67 (47.9%) showed high expression of EBP1 (EBP1high) and 73 (52.1%) showed low/no expression of EBP1 (EBP1low/no). EBP1 expression was correlated with AR expression, histological grade, and lymphatic metastasis (p < 0.001, < 0.001, and 0.013, respectively). Kaplan-Meier analysis revealed that AR+ and EBP1low/no group had poorer overall survival (OS) and disease-free survival (DFS) compared with other groups (AR- and EBP1low/no, AR+ and EBP1high, and AR- and EBP1high). AR+ and EBP1low/no expression were independent prognostic factors for OS and DFS in HER2+ BC. This study showed the clinicopathological role of EBP1 and AR in HER2+ BC. Targeting EBP1 may be an effective treatment strategy for patients with AR+ HER2+ BC.
Collapse
Affiliation(s)
- Jing Liu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Cong Xu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Danni Xu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Lu Cao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Huiqin Xue
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Qingxiang Meng
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Yun Niu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,National Clinical Research Center for Cancer,Tianjin Medical University Cancer Institute and Hospital, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy,Tianjin, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
9
|
Papaioannou D, Petri A, Dovey OM, Terreri S, Wang E, Collins FA, Woodward LA, Walker AE, Nicolet D, Pepe F, Kumchala P, Bill M, Walker CJ, Karunasiri M, Mrózek K, Gardner ML, Camilotto V, Zitzer N, Cooper JL, Cai X, Rong-Mullins X, Kohlschmidt J, Archer KJ, Freitas MA, Zheng Y, Lee RJ, Aifantis I, Vassiliou G, Singh G, Kauppinen S, Bloomfield CD, Dorrance AM, Garzon R. The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun 2019; 10:5351. [PMID: 31767858 PMCID: PMC6877618 DOI: 10.1038/s41467-019-13259-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are important regulatory molecules that are implicated in cellular physiology and pathology. In this work, we dissect the functional role of the HOXB-AS3 lncRNA in patients with NPM1-mutated (NPM1mut) acute myeloid leukemia (AML). We show that HOXB-AS3 regulates the proliferative capacity of NPM1mut AML blasts in vitro and in vivo. HOXB-AS3 is shown to interact with the ErbB3-binding protein 1 (EBP1) and guide EBP1 to the ribosomal DNA locus. Via this mechanism, HOXB-AS3 regulates ribosomal RNA transcription and de novo protein synthesis. We propose that in the context of NPM1 mutations, HOXB-AS3 overexpression acts as a compensatory mechanism, which allows adequate protein production in leukemic blasts.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Line, Tumor
- Cell Proliferation
- HEK293 Cells
- Humans
- K562 Cells
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mutation
- Nuclear Proteins/genetics
- Nucleophosmin
- Protein Biosynthesis/genetics
- RNA, Long Noncoding/genetics
- RNA, Ribosomal/genetics
- THP-1 Cells
- Transcription, Genetic
- Transplantation, Heterologous
Collapse
Affiliation(s)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Oliver M Dovey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sara Terreri
- Institute of Genetics and Biophysics (IGB-ABT), National Council of Research (CNR), Naples, Italy
| | - Eric Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Frances A Collins
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Lauren A Woodward
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Allison E Walker
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Deedra Nicolet
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Alliance for Clinical Trials in Oncology Statistics and Data Center, The Ohio State University, Columbus, OH, USA
| | - Felice Pepe
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Prasanthi Kumchala
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Marius Bill
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Malith Karunasiri
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Krzysztof Mrózek
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Miranda L Gardner
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Virginia Camilotto
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Nina Zitzer
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Jonathan L Cooper
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Xiongwei Cai
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoqing Rong-Mullins
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Jessica Kohlschmidt
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Alliance for Clinical Trials in Oncology Statistics and Data Center, The Ohio State University, Columbus, OH, USA
| | - Kellie J Archer
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Robert J Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - George Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Guramrit Singh
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Clara D Bloomfield
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Ramiro Garzon
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Nguyen DQ, Hoang DH, Nguyen Vo TT, Huynh V, Ghoda L, Marcucci G, Nguyen LXT. The role of ErbB3 binding protein 1 in cancer: Friend or foe? J Cell Physiol 2018; 233:9110-9120. [PMID: 30076717 DOI: 10.1002/jcp.26951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
ErbB3, a member of the epidermal growth factor receptor family, reportedly plays an essential role in the regulation of cancer progression and therapeutic resistance. Numerous studies have indicated that ErbB3 binding protein 1 (Ebp1), a binding partner for ErbB3, plays an important regulatory role in the expression and function of ErbB3, but there is no agreement as to whether Ebp1 also has an ErbB3-independent function in cancer and how it might contribute to tumorigenesis. In this review, we will discuss the different functions of the two Ebp1 isoforms, p48 and p42, that may be responsible for the potentially dual role of Ebp1 in cancer growth.
Collapse
Affiliation(s)
- Dang Quan Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Thanh Thao Nguyen Vo
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vu Huynh
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| | - Le Xuan Truong Nguyen
- Department of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
11
|
The long non-coding RNA H19 promotes cardiomyocyte apoptosis in dilated cardiomyopathy. Oncotarget 2018; 8:28588-28594. [PMID: 28430627 PMCID: PMC5438674 DOI: 10.18632/oncotarget.15544] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 12/23/2022] Open
Abstract
In the previous study, we generated a rat model of dilated cardiomyopathy (DCM) induced by adriamycin and found that the expression of lncRNA H19 was significantly upregulated in myocardial tissue. The present study was aimed to investigate the potential role of H19 in the pathogenesis of adriamycin-induced DCM. H19 knockdown in the myocardium of DCM rats attenuated cardiomyocyte apoptosis and improved left ventricular structure and function. Adriamycin treatment was associated with elevated H19 and miR-675 expression and increased apoptosis in neonatal cardiomyocytes. Enforced expression of miR-675 was found to induce apoptosis in cardiomyocytes with adriamycin treatment and H19-siRNA transfection. The 3'-untranslated region of PA2G4 was cloned downstream of a luciferase reporter construct and cotransfected into HEK293 cells with miR-675 mimic. The results of luciferase assay showed that PA2G4 was a direct target of miR-675. The expression of PA2G4 was reduced in cardiomyocytes transfected with miR-675 mimic. Moreover, H19 knockdown was found to increase PA2G4 expression and suppress apoptosis in cardiomyocytes exposed to adriamycin. In conclusion, our study suggests that H19/miR-675 axis is involved in the promotion of cardiomyocyte apoptosis by targeting PA2G4, which may provide a new therapeutic strategy for the treatment of adriamycin-induced DCM.
Collapse
|
12
|
Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, Venkatraman G, Goh KL, Ho B, Vadivelu J. Helicobacter pylori outer inflammatory protein A (OipA) suppresses apoptosis of AGS gastric cells in vitro. Cell Microbiol 2017; 19. [PMID: 28776327 DOI: 10.1111/cmi.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022]
Abstract
Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sook Yin Lui
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nur Siti Khadijah Ramli
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Precision Medicine Centre Pte Ltd, Singapore, Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Wang Y, Zhang P, Wang Y, Zhan P, Liu C, Mao JH, Wei G. Distinct Interactions of EBP1 Isoforms with FBXW7 Elicits Different Functions in Cancer. Cancer Res 2017; 77:1983-1996. [PMID: 28209614 DOI: 10.1158/0008-5472.can-16-2246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
The ErbB3 receptor-binding protein EBP1 encodes two alternatively spliced isoforms P48 and P42. While there is evidence of differential roles for these isoforms in tumorigenesis, little is known about their underlying mechanisms. Here, we demonstrate that EBP1 isoforms interact with the SCF-type ubiquitin ligase FBXW7 in distinct ways to exert opposing roles in tumorigenesis. EBP1 P48 bound to the WD domain of FBXW7 as an oncogenic substrate of FBXW7. EBP1 P48 binding sequestered FBXW7α to the cytosol, modulating its role in protein degradation and attenuating its tumor suppressor function. In contrast, EBP1 P42 bound to both the F-box domain of FBXW7 as well as FBXW7 substrates. This adapter function of EBP1 P42 stabilized the interaction of FBXW7 with its substrates and promoted FBXW7-mediated degradation of oncogenic targets, enhancing its overall tumor-suppressing function. Overall, our results establish distinct physical and functional interactions between FBXW7 and EBP1 isoforms, which yield their mechanistically unique isoform-specific functions of EBP1 in cancer. Cancer Res; 77(8); 1983-96. ©2017 AACR.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Yunshan Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Panpan Zhan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Chunyan Liu
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Shandong, PR China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Shandong, PR China.
| |
Collapse
|
14
|
Mishra P, Dixit U, Pandey AK, Upadhyay A, Pandey VN. Modulation of HCV replication and translation by ErbB3 binding protein1 isoforms. Virology 2016; 500:35-49. [PMID: 27770702 DOI: 10.1016/j.virol.2016.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
We recently identified a cell-factor, ErbB3 binding protein 1 (Ebp-1), which specifically interacts with the viral RNA genome and modulates HCV replication and translation. Ebp1 has two isoforms, p48, and p42, that result from differential splicing. We found that both isoforms interact with HCV proteins NS5A and NS5B, as well as cell-factor PKR. The p48 isoform, which localizes in the cytoplasm and nuclei, promoted HCV replication, whereas the shorter p42 isoform, which resides exclusively in the cytoplasm, strongly inhibited HCV replication. Transient expression of individual isoforms in Ebp1-knockdown MH14 cells confirmed that the p48 isoform promotes HCV replication, while the p42 isoform inhibits it. We found that Ebp1-p42 significantly enhanced autophosphorylation of PKR, while Ebp1-p48 isoform strongly inhibited it. We propose that modulation of autophosphorylation of PKR by p48 isoform is an important mechanism whereby the HCV virus escapes innate antiviral immune responses by circumventing p42-mediated inhibition of its replication.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Updesh Dixit
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Ashutosh K Pandey
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alok Upadhyay
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Virendra N Pandey
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
15
|
Ko HR, Chang YS, Park WS, Ahn JY. Opposing roles of the two isoforms of ErbB3 binding protein 1 in human cancer cells. Int J Cancer 2016; 139:1202-8. [DOI: 10.1002/ijc.30165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology; Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine; Suwon Korea
| | - Yun Sil Chang
- Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Won Soon Park
- Department of Pediatrics; Samsung Medical Center, Sungkyunkwan University School of Medicine; Seoul Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology; Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine; Suwon Korea
| |
Collapse
|
16
|
A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem J 2016; 473:2033-47. [PMID: 27118868 PMCID: PMC4941749 DOI: 10.1042/bcj20160274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
We reveal the identification of a polybasic motif necessary for polyphosphoinositide interaction and nucleolar targeting of ErbB3 binding protein 1 (EBP1). EBP1 interacts directly with phosphatidylinositol(3,4,5)-triphosphate and their association is detected in the nucleolus, implying regulatory roles of nucleolar processes. Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1.
Collapse
|
17
|
Nguyen LXT, Zhu L, Lee Y, Ta L, Mitchell BS. Expression and Role of the ErbB3-Binding Protein 1 in Acute Myelogenous Leukemic Cells. Clin Cancer Res 2016; 22:3320-7. [PMID: 26813358 DOI: 10.1158/1078-0432.ccr-15-2282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The ErbB3-binding protein 1 (Ebp1) has been implicated in diverse cancers as having either oncogenic or tumor suppressor activities. The present study was undertaken to determine the effects of Ebp1 expression in AML cells and to determine the mechanisms by which Ebp1 promotes cell proliferation in these cells. EXPERIMENTAL DESIGN The expression of Ebp1 was studied in mononuclear cells obtained from the peripheral blood of 54 patients with AML by Western blot analysis. The effects of Ebp1 expression on proliferating cell nuclear antigen (PCNA) expression and cell proliferation was measured using Western blot analysis, immunoprecipitation, in vitro ubiquitination, and colony-forming assays. The role of Ebp1 in promoting rRNA synthesis and cell proliferation was evaluated by measuring the level of pre-rRNA and the recruitment of Pol I to rDNA. RESULTS Ebp1 is highly expressed in acute myelogenous leukemia (AML) cells and regulates the level of ribosomal RNA (rRNA) synthesis by binding to RNA Polymerase I (Pol I) and enhancing the formation of the Pol I initiation complex. Ebp1 also increases the stability of PCNA protein by preventing its interaction with Mdm2, for which it is a substrate. CONCLUSIONS These results demonstrate an important role of Ebp1 in promoting cell proliferation in AML cells through the regulation of both rRNA synthesis and PCNA expression. Clin Cancer Res; 22(13); 3320-7. ©2016 AACR.
Collapse
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Li Zhu
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Yunqin Lee
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Lynn Ta
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Beverly S Mitchell
- Departments of Medicine and Chemical and Systems Biology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
18
|
High expression of ErbB3 binding protein 1 (EBP1) predicts poor prognosis of pancreatic ductal adenocarcinoma (PDAC). Tumour Biol 2015; 36:9189-99. [PMID: 26088450 DOI: 10.1007/s13277-015-3625-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/27/2015] [Indexed: 02/04/2023] Open
Abstract
Recent studies have identified that ErbB3 binding protein 1 (EBP1) is broadly expressed in various cancer tissues and critically involved in plenty of biological processes in this regard. However, the functional role of EBP1 in pancreatic ductal adenocarcinoma (PDAC) has never been elucidated. In this study, we found that EBP1 could serve as a prognostic biomarker of PDAC. Western blot analysis revealed that EBP1 was remarkably upregulated in PDAC tissues and cell lines. Using immunohistochemical analysis, we showed that the expression of EBP1 was correlated with tumor size (P = 0.004), histological differentiation (P = 0.041), and tumor node metastasis (TNM) stage (P = 0.000). Notably, Kaplan-Meier curve showed that high expression of EBP1 predicted significantly worsened prognosis of PDAC patients (P = 0.001). In addition, knockdown of EBP1 expression suppressed PDAC cell proliferation and retarded cell cycle progression. Furthermore, depletion of EBP1 induced the apoptosis of Panc-1 cells. Of great interest, we found that EBP1 interacted with anti-apoptotic protein, Bcl-xL, and promoted its accumulation. In summary, our results suggest that EBP1 is a novel prognostic indicator and potential therapeutic target of PDAC, shedding new insights into the important role of EBP1 in cancer development.
Collapse
|
19
|
Nguyen LXT, Lee Y, Urbani L, Utz PJ, Hamburger AW, Sunwoo JB, Mitchell BS. Regulation of ribosomal RNA synthesis in T cells: requirement for GTP and Ebp1. Blood 2015; 125:2519-29. [PMID: 25691158 PMCID: PMC4400289 DOI: 10.1182/blood-2014-12-616433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, an effective immunosuppressive drug. Both MPA and mycophenolate mofetil are highly specific inhibitors of guanine nucleotide synthesis and of T-cell activation. However, the mechanism by which guanine nucleotide depletion suppresses T-cell activation is unknown. Depletion of GTP inhibits ribosomal RNA synthesis in T cells by inhibiting transcription initiation factor I (TIF-IA), a GTP-binding protein that recruits RNA polymerase I to the ribosomal DNA promoter. TIF-IA-GTP binds the ErbB3-binding protein 1, and together they enhance the transcription of proliferating cell nuclear antigen (PCNA). GTP binding by TIF-IA and ErbB3-binding protein 1 phosphorylation by protein kinase C δ are both required for optimal PCNA expression. The protein kinase C inhibitor sotrastaurin markedly potentiates the inhibition of ribosomal RNA synthesis, PCNA expression, and T-cell activation induced by MPA, suggesting that the combination of the two agents are more highly effective than either alone in inducing immunosuppression.
Collapse
Affiliation(s)
| | - Yunqin Lee
- Department of Otolaryngology (Head and Neck Surgery), Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Lenore Urbani
- Departments of Medicine and Chemical and Systems Biology, and
| | - Paul J Utz
- Division of Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford CA; and
| | - Anne W Hamburger
- Department of Pathology and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - John B Sunwoo
- Department of Otolaryngology (Head and Neck Surgery), Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
20
|
Ko HR, Kim CK, Ahn JY. Phosphorylation of the N-terminal domain of p48 Ebp1 by CDK2 is required for tumorigenic function of p48. Mol Carcinog 2014; 54:1283-91. [DOI: 10.1002/mc.22203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/07/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Hyo Rim Ko
- Department of Molecular Cell Biology; Center for Molecular Medicine; Samsung Biomedical Research Institute; Sungkyunkwan University School of Medicine; Suwon Korea
| | - Chung Kwon Kim
- Department of Molecular Cell Biology; Center for Molecular Medicine; Samsung Biomedical Research Institute; Sungkyunkwan University School of Medicine; Suwon Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology; Center for Molecular Medicine; Samsung Biomedical Research Institute; Sungkyunkwan University School of Medicine; Suwon Korea
| |
Collapse
|
21
|
Hu B, Xiong Y, Ni R, Wei L, Jiang D, Wang G, Wu D, Xu T, Zhao F, Zhu M, Wan C. The downregulation of ErbB3 binding protein 1 (EBP1) is associated with poor prognosis and enhanced cell proliferation in hepatocellular carcinoma. Mol Cell Biochem 2014; 396:175-85. [PMID: 25081333 DOI: 10.1007/s11010-014-2153-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
ErbB3 binding protein 1 (EBP1) has been recently reported to function as a tumor suppressor in the progression of multiple cancers, including breast cancer, prostate cancer, salivary adenoid cystic carcinoma (ACC), and oral squamous cell carcinoma (OSCC). However, the expression and physiological significance of EBP1 in hepatocellular carcinoma (HCC) remain unclear. In the study, we showed that EBP1 was significantly downregulated in clinical HCC specimens, and that decreased expression of EBP1 was associated with enhanced proliferation in HCC cells. Western blot and immunohistochemical analyses revealed that EBP1 was remarkably downregulated in HCC tissues compared with the adjacent normal ones. The levels of EBP1 were significantly associated with histological grade (P = 0.034), tumor size (P = 0.001), and Ki67 expression (P < 0.001) in HCC specimens. Univariate and multivariate analyses showed that EBP1 could serve as an independent prognostic indicator of patients' survival. Serum starvation and refeeding assay indicated that EBP1 was accumulated in growth-arrested HCC cells, and was progressively decreased when cells entered into S phase. Moreover, the depletion of EBP1 induced growth acceleration and cell cycle progression in L02 hepatocytes. On the basis of these findings, we conclude that EBP1 may be a valuable prognostic marker and promising therapeutic target of HCC.
Collapse
Affiliation(s)
- Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Expression of ErbB3-binding protein-1 (EBP1) during primordial follicle formation: role of estradiol-17ß. PLoS One 2013; 8:e67068. [PMID: 23840586 PMCID: PMC3688617 DOI: 10.1371/journal.pone.0067068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/14/2013] [Indexed: 01/18/2023] Open
Abstract
The formation of primordial follicles involves the interaction between the oocytes and surrounding somatic cells, which differentiate into granulosa cells. Estradiol-17ß (E) promotes primordial follicle formation in vivo and in vitro; however, the underlying mechanisms are poorly understood. The expression of an ERBB3-binding protein 1 (EBP1) is downregulated in 8-day old hamster ovaries concurrent with the increase in serum estradiol levels and the formation of primordial follicles. The objectives of the present study were to determine the spatio-temporal expression and putative E regulation of EBP1 in ovarian cells during perinatal development with respect to primordial follicle formation. Hamster EBP1 nucleic acid and amino acid sequences were more than 93% and 98% similar, respectively, to those of mouse and human, and contained nucleolar localization signal, RNA-binding domain and several phosphorylation sites. EBP1 protein was present in somatic cells and oocytes from E15, and declined in oocytes by P1 and in somatic cells by P5. Thereafter, EBP1 expression increased through P7 with a transient decline on P8 primarily in interstitial cells. EBP1 mRNA levels mirrored protein expression pattern. E treatment on P1 and P4 upregulated EBP1 expression by P8 whereas E treatment on P4 downregulated it by 72 h suggesting a compensatory upregulation due to E pretreatment. Treatment with an FSH-antiserum, which suppressed primordial follicle formation, prevented the decline in EBP1 levels, and the effect was reversed by E treatment. Therefore, the results provide the first evidence that EBP1 may play an important role in mediating the effect of E in the differentiation of somatic cells into granulosa cells during primordial follicle formation.
Collapse
|
23
|
Lo SJ, Fan LC, Tsai YF, Lin KY, Huang HL, Wang TH, Liu H, Chen TC, Huang SF, Chang CJ, Lin YJ, Yung BYM, Hsieh SY. A novel interaction of nucleophosmin with BCL2-associated X protein regulating death evasion and drug sensitivity in human hepatoma cells. Hepatology 2013; 57:1893-905. [PMID: 23258611 DOI: 10.1002/hep.26209] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/06/2012] [Indexed: 12/07/2022]
Abstract
UNLABELLED Death evasion is crucial for both carcinogenesis and resistance to anticancer therapies. Recently, we identified nucleophosmin (NPM) as a key factor counteracting death stimuli in human hepatocellular carcinoma (HCC) cells. Here we report the identification of a novel NPM-BCL2-associated X protein (BAX) pathway orchestrating death evasion in human HCC cells. Silencing of NPM expression significantly sensitized HCC cells-particularly those bearing inactivated p53 gene (Huh7, Hep3B, and Mahlavu)-to ultraviolet irradiation, mitomycin C, doxorubicin, cisplatin, sorafenib, and lapatinib. This sensitizing effect was not changed further, as p53 expression had been simultaneously silenced. Following cell stress, NPM and BAX were induced and exported out of the nucleoli and nucleus, respectively. BAX was translocated to cytoplasm in cells with relatively high NPM level, or accumulated in the mitochondria in cells with relatively low NPM level and undergoing apoptosis. Subcellular fractionation revealed that silencing of NPM expression greatly enhanced mitochondrial translocation and oligomerization of BAX in Huh7 and Mahlavu cells. In situ proximity ligation assays and reciprocal co-immunoprecipitation revealed a direct interaction between NPM and BAX in the cytoplasm. Silencing of BAX expression abolished the sensitization effect exerted by silencing of NPM in HCC cells. Clinically, up-regulation of NPM was significantly associated with advanced tumor stage and poor prognosis. CONCLUSION By directly blockading BAX mitochondrial translocation and activation, NPM helps human HCC cells evade death induction independently of p53-mediated cell death. Silencing of NPM significantly sensitized HCC cells to anticancer therapies. NPM is a potential cotarget in combination with other therapies for HCC, particularly those that harbor inactivated p53 gene. Our findings are of clinical significance because NPM up-regulation and p53 mutations are usually found in advanced human cancers, including HCC.
Collapse
Affiliation(s)
- Shao-Jung Lo
- Liver Research Unit, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Down-regulation of the ErbB3 binding protein 1 in human bladder cancer promotes tumor progression and cell proliferation. Mol Biol Rep 2013; 40:3799-805. [PMID: 23283744 DOI: 10.1007/s11033-012-2458-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/18/2012] [Indexed: 01/23/2023]
Abstract
The ErbB3 binding protein 1 (Ebp1) represents a downstream effector of the ErbB signaling network and has been demonstrated to be a potent tumor suppressor in various human malignancies, however, its involvement in human bladder cancer is still unclear.To investigate the clinical significance and potential role of ErbB3 binding protein 1 (Ebp1) in bladder cancer. Ebp1 expression at protein and gene levels in 52 surgically removed bladder cancer specimens as well as 21 adjacent normal bladder specimens were respectively detected by immunohistochemistry and qRT-PCR. The association of Ebp1 protein expression with the clinicopathological features of bladder cancer was also statistically analyzed. Its roles in bladder cancer cell line were further evaluated. The expression level of Ebp1 protein and gene in bladder cancer tissues was significantly lower than that in adjacent normal bladder tissues (P < 0.01). When categorized into low vs. high expression, the down-regulation of Ebp1 protein was associated with the advanced pathologic stage (P = 0.036) and the high histologic grade (P = 0.001) of patients with bladder cancer. Moreover, following the transfection of Ebp1 in bladder cancer cells, not only cell proliferation and cell invasion decreased significantly, but also the cell cycle was blocked at G0/G1 stage. Our data suggest for the first time that the down-regulation of Ebp1 closely correlates with advanced clinicopathological characteristics of human bladder cancer. Furthermore, Ebp1 plays an important role in the bladder cancer cells' proliferation by regulating the cancer cell cycle from G0/G1 to S.
Collapse
|
25
|
Okada M, Hozumi Y, Tanaka T, Suzuki Y, Yanagida M, Araki Y, Evangelisti C, Yagisawa H, Topham MK, Martelli AM, Goto K. DGKζ is degraded through the cytoplasmic ubiquitin–proteasome system under excitotoxic conditions, which causes neuronal apoptosis because of aberrant cell cycle reentry. Cell Signal 2012; 24:1573-82. [DOI: 10.1016/j.cellsig.2012.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
|
26
|
Okada M, Hozumi Y, Iwazaki K, Misaki K, Yanagida M, Araki Y, Watanabe T, Yagisawa H, Topham MK, Kaibuchi K, Goto K. DGKζ is involved in LPS-activated phagocytosis through IQGAP1/Rac1 pathway. Biochem Biophys Res Commun 2012; 420:479-84. [DOI: 10.1016/j.bbrc.2012.03.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/12/2012] [Indexed: 12/25/2022]
|
27
|
Meleady P, Gallagher M, Clarke C, Henry M, Sanchez N, Barron N, Clynes M. Impact of miR-7 over-expression on the proteome of Chinese hamster ovary cells. J Biotechnol 2012; 160:251-62. [PMID: 22445466 DOI: 10.1016/j.jbiotec.2012.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
MicroRNAs play critical roles in the regulation of biological processes such as growth, apoptosis, productivity and secretion thus representing a potential route toward enhancing desirable characteristics of mammalian cells for biopharmaceutical production. We have previously found that miR-7 over-expression significantly inhibits the growth of CHO-SEAP cells without impacting cellular viability, with an associated increase in normalised productivity. Understanding the biological basis of this effect might open the way to new strategies for bioprocess-relevant growth regulation. In this study we have carried out a quantitative label-free LC-MS profiling study of proteins exhibiting altered levels following over-expression of miR-7 to gain insights into potential mechanisms involved in the observed phenotype. From the analysis we found 93 proteins showing decreased levels and 74 proteins with increased levels following over-expression of miR-7. Pathway analysis suggests that proteins involved in protein translation (e.g. ribosomal proteins), RNA and DNA processing (including histones) are enriched in the list of proteins showing decreased expression. Proteins involved in protein folding and secretion were found to be up-regulated following miR-7 over-expression. In silico bioinformatic analysis using miRWalk, which combined the output from 6 selected miRNA target prediction algorithms, was used to evaluate if any of the down-regulated proteins were potential direct targets of miR-7. Two genes, stathmin and catalase, which both have known roles in the regulation of cellular growth, were found to overlap a number of the predictive target database searches in both mouse and rat, and are likely to be possible direct targets of miR-7 in CHO cells. This is the first report investigating the impact of a miRNA on the proteome of CHO cells.
Collapse
Affiliation(s)
- Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mukherjee A, Reisdorph N, Guda B, Pandey S, Roy SK. Changes in ovarian protein expression during primordial follicle formation in the hamster. Mol Cell Endocrinol 2012; 348:87-94. [PMID: 21821096 PMCID: PMC3418795 DOI: 10.1016/j.mce.2011.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/01/2023]
Abstract
Although many proteins have been shown to affect the transition of primordial follicles to the primary stage, factors regulating the formation of primordial follicles remains sketchy at best. Differentiation of somatic cells into early granulosa cells during ovarian morphogenesis is the hallmark of primordial follicle formation; hence, critical changes are expected in protein expression. We wanted to identify proteins, the expression of which would correlate with the formation of primordial follicles as a first step to determine their biological function in folliculogenesis. Proteins were extracted from embryonic (E15) and 8-day-old (P8) hamster ovaries and fractionated by two-dimensional gel electrophoresis. Gels were stained with Proteosilver, and images of protein profiles corresponding to E15 and P8 ovaries were overlayed to identify protein spots showing altered expression. Some of the protein spots were extracted from SyproRuby-stained preparative gels, digested with trypsin, and analyzed by mass spectrometry. Both E15 and P8 ovaries had high molecular weight proteins at acidic, basic, and neutral ranges; however, we focused on small molecular weight proteins at 4-7 pH range. Many of those spots might represent post-translational modification. Mass spectrometric analysis revealed the identity of these proteins. The formation of primordial follicles on P8 correlated with many differentially and newly expressed proteins. Whereas Ebp1 expression was downregulated in ovarian somatic cells, Sfrs3 expression was specifically upregulated in newly formed granulosa cells of primordial follicles on P8. The results show for the first time that the morphogenesis of primordial follicles in the hamster coincides with altered and novel expression of proteins involved in cell proliferation, transcriptional regulation, and metabolism. Therefore, formation of primordial follicles is an active process requiring differentiation of somatic cells into early granulosa cells and their interaction with the oocytes.
Collapse
Affiliation(s)
- Anindit Mukherjee
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Nichole Reisdorph
- Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson St, K924, Denver, CO 80206
| | - Babu Guda
- Department of Genetics, Cell Biology and Anatomy, and Center for Bioinformatics and System Biology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, and Center for Bioinformatics and System Biology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| | - Shyamal K Roy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
- Department of Cellular and Integrative Physiology, Department of OB/GYN and Olson Center for Women's Health, and Eppley Institute for Cancer Research, University of Nebraska Medical Center 984515 Nebraska Medical Center, Omaha, NE 68198-4515
| |
Collapse
|
29
|
Wang QQ, Zhang ZY, Xiao JY, Yi C, Li LZ, Huang Y, Yun JP. Knockdown of nucleophosmin induces S-phase arrest in HepG2 cells. CHINESE JOURNAL OF CANCER 2011; 30:853-60. [PMID: 22098949 PMCID: PMC4013333 DOI: 10.5732/cjc.011.10362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nucleophosmin/B23 (NPM) is a universally expressed nucleolar phosphoprotein that participates in proliferation, apoptosis, ribosome assembly, and centrosome duplication; however, the role of NPM in cell cycle regulation is not well characterized. We investigated the mechanism by which NPM is involved in cell cycle regulation. NPM was knocked down using siRNA in HepG2 hepatoblastoma cells. NPM translocation following actinomycin D (ActD) treatment was investigated using immunofluorescent staining. Expression of NPM and other factors involved in cell cycle regulation was examined by Western blotting. Cell cycle distribution was measured using flow cytometry to detect 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Cell proliferation was quantified by the MTT assay. Knockdown of NPM increased the percentage of HepG2 cells in S phase and led to decreased expression of P53 and P21Cip1/WAF1. S-phase arrest in HepG2 cells was significantly enhanced by ActD treatment. Furthermore, knockdown of NPM abrogated ActD-induced G2/M phase cell cycle arrest. Taken together, these data demonstrate that inhibition of NPM has a significant effect on the cell cycle.
Collapse
Affiliation(s)
- Qing-Qing Wang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ejima M, Kadoi K, Honda A. Influenza virus infection induces cellular Ebp1 gene expression. Genes Cells 2011; 16:927-37. [DOI: 10.1111/j.1365-2443.2011.01541.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Abstract
CONTENTS Summary 319 I. Introduction 320 II. The cell biology and biophysics of growth 320 III. Timing is everything: what determines when proliferation gives way to expansion? 323 IV. Anisotropic growth and the importance of polarity 325 V. How does organ identity and developmental patterning modulate growth behaviour? 326 VI. Coordination of growth at different scales 327 VII. Conclusions 329 Acknowledgements 329 References 330 SUMMARY The growth of plant organs is under genetic control. Work in model species has identified a considerable number of genes that regulate different aspects of organ growth. This has led to an increasingly detailed knowledge about how the basic cellular processes underlying organ growth are controlled, and which factors determine when proliferation gives way to expansion, with this transition emerging as a critical decision point during primordium growth. Progress has been made in elucidating the genetic basis of allometric growth and the role of tissue polarity in shaping organs. We are also beginning to understand how the mechanisms that determine organ identity influence local growth behaviour to generate organs with characteristic sizes and shapes. Lastly, growth needs to be coordinated at several levels, for example between different cell layers and different regions within one organ, and the genetic basis for such coordination is being elucidated. However, despite these impressive advances, a number of basic questions are still not fully answered, for example, whether and how a growing primordium keeps track of its size. Answering these questions will likely depend on including additional approaches that are gaining in power and popularity, such as combined live imaging and modelling.
Collapse
Affiliation(s)
- Kim Johnson
- Cell & Developmental Biology Department, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
32
|
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30:2595-609. [PMID: 21278791 DOI: 10.1038/onc.2010.646] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.
Collapse
Affiliation(s)
- E Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
33
|
Kwon IS, Ahn JY. p48 Ebp1 acts as a downstream mediator of Trk signaling in neurons, contributing neuronal differentiation. Neurochem Int 2010; 58:215-23. [PMID: 21145366 DOI: 10.1016/j.neuint.2010.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Two Ebp1 isoproteins, p48 and p42, regulate cell survival and differentiation distinctively. Here we show that p48 is the major isoform in hippocampal neurons and is localized throughout the entire neuron. Notably, reduction of p48 Ebp1 expression inhibited BDNF-mediated neurite outgrowth in hippocampal neurons. The p48 protein acts as a downstream effector of the Trk receptor, which mediates the functions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in hippocampal cells. Trk receptor activation by both NGF and BDNF induced phosphorylation of Ebp1 at the S360 upon the activation of protein kinase Cδ (PKCδ) and triggered dissociation of p48 from retinoblastoma (Rb). Although both NGF and BDNF activate mitogen-activated protein kinase (MAPK; extracellular signal-related kinase (ERK)) as well as phosphatidylinositide 3-kinase (PI3K)/Akt, their activation is regulated in different time-frame upon growth factor specificity, especially, eliciting PKCδ mediated p48 S360 phosphorylation. Thus, p48 Ebp1 contributes to neuronal cell differentiation and growth factor specificity through the activation of PKCδ, acting as a crucial downstream effector of neurotrophin signaling.
Collapse
Affiliation(s)
- Il-Sun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Center for Molecular Medicine, Samsung Biomedical Research Institute, 300, Cheoncheon-dong Jangan-gu, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
34
|
NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int 2010; 2011:195209. [PMID: 21152184 PMCID: PMC2989734 DOI: 10.1155/2011/195209] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/29/2010] [Indexed: 12/21/2022] Open
Abstract
At a first glance, ribosome biogenesis and chromatin remodeling are quite different processes, but they share a common problem involving interactions between charged nucleic acids and small basic proteins that may result in unwanted intracellular aggregations. The multifunctional nuclear acidic chaperone NPM1 (B23/nucleophosmin) is active in several stages of ribosome biogenesis, chromatin remodeling, and mitosis as well as in DNA repair, replication and transcription. In addition, NPM1 plays an important role in the Myc-ARF-p53 pathway as well as in SUMO regulation. However, the relative importance of NPM1 in these processes remains unclear. Provided herein is an update on the expanding list of the diverse activities and interacting partners of NPM1. Mechanisms of NPM1 nuclear export functions of NPM1 in the nucleolus and at the mitotic spindle are discussed in relation to tumor development. It is argued that the suggested function of NPM1 as a histone chaperone could explain several, but not all, of the effects observed in cells following changes in NPM1 expression. A future challenge is to understand how NPM1 is activated, recruited, and controlled to carry out its functions.
Collapse
|
35
|
Duan X, Kelsen SG, Clarkson AB, Ji R, Merali S. SILAC analysis of oxidative stress-mediated proteins in human pneumocytes: new role for treacle. Proteomics 2010; 10:2165-74. [PMID: 20340163 DOI: 10.1002/pmic.201000020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To better understand lung oxidant stress responses, we examined A549 lung cells exposed to H(2)O(2) using "stable isotope labeling by amino acids." We identified 466 cytosolic and 387 nuclear proteins; H(2)O(2) exposure produced >or=twofold differences in 31, all were downregulations. None were previously reported as oxidant stress response proteins, although they share common functions. One of the responders, treacle, was linked to p53, an important oxidative stress response. The Treacher Collins-Franceschetti syndrome can result from treacle mutation and insufficiency was suggested to cause increased p53 leading to the syndrome. However, results here indicate p53 and treacle responses to H(2)O(2) are independent: treacle remains suppressed after p53 recovery; the threshold for treacle reduction is well above that for p53 induction; and treacle suppression by short interfering RNA does not modify the p53 response. Evidence of treacle antioxidant activity include reduction being driven by proteasome degradation independently of mRNA, typical for oxidant-absorbing proteins, and increased sensitivity to H(2)O(2) consequent to short interfering RNA suppression. Data here show a link between oxidative stress and treacle reduction, demonstrate that treacle does not control p53, provide evidence of a treacle oxidant defense role, support the hypothesis that oxidant stress plays a role in the Treacher Collins-Franceschetti syndrome, and raise the possibility that treacle plays an anti-oxidant role in lungs.
Collapse
Affiliation(s)
- Xunbao Duan
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
36
|
Lu Y, Zhou H, Chen W, Zhang Y, Hamburger AW. The ErbB3 binding protein EBP1 regulates ErbB2 protein levels and tamoxifen sensitivity in breast cancer cells. Breast Cancer Res Treat 2010; 126:27-36. [PMID: 20379846 DOI: 10.1007/s10549-010-0873-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/24/2010] [Indexed: 01/13/2023]
Abstract
The ErbB2/3 heterodimer plays a critical role in breast cancer progression and in the development of endocrine resistance. EBP1, an ErbB3 binding protein, inhibits HRG-stimulated breast cancer growth, decreases ErbB2 protein levels and contributes to tamoxifen sensitivity. We report here that ectopic expression of EBP1 in Estrogen Receptor (ER) positive breast cancers that express ErbB2 at both high and low levels decreased ErbB2 protein levels. ErbB2 protein expression was also increased in mammary glands of Ebp1 knock out mice. To define the mechanism of ErbB2 down regulation, we examined the effects of EBP1 on ErbB2 mRNA levels, transcription of the ErbB2 gene and ErbB2 protein stability. We found that ectopic expression of EBP1 decreased steady state levels of endogenous ErbB2 mRNA in all cell lines tested. EBP1 overexpression decreased the activity of an ErbB2 promoter reporter in cells which overxpress ErbB2. However, reporter activity was unchanged or increased in cells which express low endogenous levels of ErbB2. We also found that ectopic expression of EBP1 accelerated ErbB2 protein degradation and enhanced ErbB2 ubiquitination in cells which express both low and high levels of ErbB2. Treatment with proteasome inhibitors prevented this decrease in ErbB2 protein levels. Ablation of EBP1 expression led to tamoxifen resistance that was abrogated by inhibition of ErbB2 activity. These results suggest that EBP1 inhibits expression of ErbB2 protein levels by multiple mechanisms and that EBP1's effects on tamoxifen sensitivity are mediated in part by its ability to modulate ErbB2 levels.
Collapse
Affiliation(s)
- Yan Lu
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
37
|
Altraja S, Jaama J, Altraja A. Proteome changes of human bronchial epithelial cells in response to pro-inflammatory mediator leukotriene E4 and pro-remodelling factor TGF-β1. J Proteomics 2010; 73:1230-40. [DOI: 10.1016/j.jprot.2010.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/30/2009] [Accepted: 02/22/2010] [Indexed: 12/13/2022]
|
38
|
Gopinath M, Raju S, Honda A, Shaila MS. Host factor Ebp1 inhibits rinderpest virus transcription in vivo. Arch Virol 2010; 155:455-62. [PMID: 20127373 DOI: 10.1007/s00705-010-0599-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/06/2009] [Indexed: 11/26/2022]
Abstract
ErbB3 binding protein Ebp1 has been shown to downregulate ErbB3 receptor-mediated signaling to inhibit cell proliferation. Rinderpest virus belongs to the family Paramyxoviridae and is characterized by the presence of a non-segmented negative-sense RNA genome. In this work, we show that rinderpest virus infection of Vero cells leads to the down-regulation of the host factor Ebp1, at both the mRNA and protein levels. Ebp1 protein has been shown to co-localize with viral inclusion bodies in infected cells, and it is packaged into virions, presumably through its interaction with the N protein or the N-RNA itself. Overexpression of Ebp1 inhibits viral transcription and multiplication in infected cells, suggesting that a mutual antagonism operates between host factor Ebp1 and the virus.
Collapse
Affiliation(s)
- M Gopinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
39
|
Abstract
Ebp1, an ErbB3 receptor-binding protein, inhibits cell proliferation and acts as a putative tumor suppressor. Ebp1 translocates into the nucleus and functions as a transcription corepressor for E2F-1. Here, we show that Ebp1 p42 isoform can be sumoylated on both K93 and K298 residues, which mediate its nuclear translocation and is required for its anti-proliferative activity. We find that TLS/FUS, an RNA-binding nuclear protein that is involved in pre- mRNA processing and nucleocytoplasmic shuttling, has Sumo1 E3 ligase activity for Ebp1 p42. Ebp1 directly binds TLS/FUS, which is regulated by genotoxic stress-triggered phosphorylation on Ebp1. Ebp1 sumoylation facilitates its nucleolar distribution and protein stability. Overexpression of TLS enhances Ebp1 sumoylation, while depletion of TLS abolishes Ebp1 sumoylation. Moreover, Unsumoylated Ebp1 mutants fail to suppress E2F-1- regulated transcription, resulting in loss of its anti-proliferation activity. Hence, TLS-mediated sumoylation is required for Ebp1 transcription repressive activity.
Collapse
|
40
|
Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev Anticancer Ther 2009; 9:1283-94. [PMID: 19761432 DOI: 10.1586/era.09.84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein implicated in the regulation of multiple cellular functions, which possesses both oncogenic and tumor-suppressor properties. Mutations of the NPM1 gene leading to the expression of a cytoplasmic mutant protein, NPMc+, are the most frequent genetic abnormalities found in acute myeloid leukemias. Acute myeloid leukemias with mutated NPM1 have distinct characteristics, including a significant association with a normal karyotype, involvement of different hematopoietic lineages, a specific gene-expression profile and clinically, a better response to induction therapy and a favorable prognosis. NPMc+ maintains the capacity of wild-type NPM to interact with a variety of cellular proteins, and impairs their activity by delocalizing them to the cytoplasm. In this review we summarize recent discoveries concerning NPM function, and discuss their possible impact on the pathogenesis of acute myeloid leukemias with mutated NPM1.
Collapse
Affiliation(s)
- Natalia Meani
- Istituto Europeo di Oncologia, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
41
|
Stepiński D. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery. PROTOPLASMA 2009; 235:77-89. [PMID: 19241118 DOI: 10.1007/s00709-009-0033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/19/2009] [Indexed: 05/03/2023]
Abstract
The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.
Collapse
Affiliation(s)
- Dariusz Stepiński
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231, Łódź, Poland.
| |
Collapse
|
42
|
Mota S, Mendes M, Freitas N, Penque D, Coelho AV, Cunha C. Proteome analysis of a human liver carcinoma cell line stably expressing hepatitis delta virus ribonucleoproteins. J Proteomics 2008; 72:616-27. [PMID: 19136081 DOI: 10.1016/j.jprot.2008.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/26/2023]
Abstract
Hepatitis delta virus (HDV) infects human hepatocytes already infected with the hepatitis B virus increasing about ten fold the risk of cirrhosis and fulminant hepatitis. The lack of an appropriate cell culture system capable of supporting virus replication has so far impaired the detailed investigation of the HDV biology including the identification of host factors involved in pathogenesis. Here, we made use of a HDV cDNA stably transfected cell line, Huh7-D12, in a proteomic approach to identify the changes in the protein expression profiles in human liver cells that arise as a consequence of HDV replication. Total protein extracts from Huh7-D12 cells and of the corresponding non transfected human liver carcinoma cell line, Huh7, were separated by 2-DE. Differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 23 differentially expressed proteins of which 15 were down regulated and 8 up regulated in Huh7-D12 cells. These proteins were found to be involved in different cellular pathways. The down regulation of the histone H1-binding protein and of triosephosphate isomerase was confirmed by Real time PCR, and the up regulation of the La protein and lamin A/C was validated by western blot.
Collapse
Affiliation(s)
- Sérgio Mota
- Unidade de Biologia Molecular, Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Rua da Junqueira 96, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Lu Y, Zhou H, Lee M, Liu Z, Hassel BA, Hamburger AW. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1) deficient mice. BMC Cell Biol 2008; 9:69. [PMID: 19094237 PMCID: PMC2648959 DOI: 10.1186/1471-2121-9-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 12/18/2008] [Indexed: 11/29/2022] Open
Abstract
Background The ErbB3 binding protein-1 (Ebp1) belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4) gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.
Collapse
Affiliation(s)
- Yuexing Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu Z, Oh SM, Okada M, Liu X, Cheng D, Peng J, Brat DJ, Sun SY, Zhou W, Gu W, Ye K. Human BRE1 is an E3 ubiquitin ligase for Ebp1 tumor suppressor. Mol Biol Cell 2008; 20:757-68. [PMID: 19037095 DOI: 10.1091/mbc.e08-09-0983] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human Bre1, an E3 ligase for H2B monoubiquitination, binds p53 and enhances activator-dependent transcription. Ebp1, an ErbB3 receptor-binding protein, inhibits cell proliferation and acts as a tumor suppressor. Here, we show that hBre1 acts as an E3 ubiquitin ligase for Ebp1 tumor suppressor and promotes its polyubiquitination and degradation. Ebp1 is polyubiquitinated in cancer cells, which is regulated by its phosphorylation. We identified hBre1 acting as an E3 ligase for Ebp1 and increasing its polyubiquitination. Depletion of hBre1 blocks Ebp1's polyubiquitination and elevates its protein level, preventing cancer proliferation. hBre1 binds Ebp1 and suppresses its repressive effect on E2F-1. Moreover, Ebp1 protein level is substantially diminished in human cancers. It is robustly phosphorylated and localized in the nucleus of primary gliomas, correlating with hBre1 subcellular residency. Thus, hBre1 inhibits Ebp1's tumor suppressive activity through mediating its polyubiquitination and degradation.
Collapse
Affiliation(s)
- Zhixue Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yao H, Li P, Venters BJ, Zheng S, Thompson PR, Pugh BF, Wang Y. Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 2008; 283:20060-8. [PMID: 18499678 PMCID: PMC2459274 DOI: 10.1074/jbc.m802940200] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/21/2008] [Indexed: 11/06/2022] Open
Abstract
Protein Arg methyltransferases function as coactivators of the tumor suppressor p53 to regulate gene expression. Peptidylarginine deiminase 4 (PAD4/PADI4) counteracts the functions of protein Arg methyltransferases in gene regulation by deimination and demethylimination. Here we show that the expression of a tumor suppressor gene, OKL38, is activated by the inhibition of PAD4 or the activation of p53 following DNA damage. Chromatin immunoprecipitation assays showed a dynamic change of p53 and PAD4 occupancy and histone Arg modifications at the OKL38 promoter during DNA damage, suggesting a direct role of PAD4 and p53 in the expression of OKL38. Furthermore, we found that OKL38 induces apoptosis through localization to mitochondria and induction of cytochrome c release. Together, our studies identify OKL38 as a novel p53 target gene that is regulated by PAD4 and plays a role in apoptosis.
Collapse
Affiliation(s)
- Hongjie Yao
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kitakura S, Terakura S, Yoshioka Y, Machida C, Machida Y. Interaction between Agrobacterium tumefaciens oncoprotein 6b and a tobacco nucleolar protein that is homologous to TNP1 encoded by a transposable element of Antirrhinum majus. JOURNAL OF PLANT RESEARCH 2008; 121:425-33. [PMID: 18463947 DOI: 10.1007/s10265-008-0160-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/12/2008] [Indexed: 05/26/2023]
Abstract
When gene 6b on the T-DNA of Agrobacterium tumefaciens is transferred to plant cells, its expression causes plant hormone-independent division of cells in in vitro culture and abnormal cell growth, which induces various morphological defects in 6b-expressing transgenic Arabidopsis thaliana and Nicotiana tabacum plants. Protein 6b localizes to the nuclei, a requirement for the abnormal cell growth, and binds to a tobacco nuclear protein called NtSIP1 and histone H3. In addition, 6b has histone chaperone-like activity in vitro and affects the expression of various plant genes, including cell division-related genes and meristem-related class 1 KNOX homeobox genes, in transgenic Arabidopsis. Here, we report that 6b binds to a newly identified protein NtSIP2, whose amino acid sequence is predicted to be 30% identical and 51% similar to that of the TNP1 protein encoded by the transposon Tam1 of Antirrhinum majus. Immunolocalization analysis using anti-T7 antibodies showed nucleolar localization of most of the T7 epitope-tagged NtSIP2 proteins. A similar analysis with the T7-tagged 6b protein also showed subnucleolar as well as nuclear localization of the 6b protein. These results suggest the involvement of 6b along with NtSIP2 in certain molecular processes in the nucleolus as well as the nucleoplasm.
Collapse
Affiliation(s)
- Saeko Kitakura
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | |
Collapse
|