1
|
Parys JB, Lemos FO. The interplay between associated proteins, redox state and Ca 2+ in the intraluminal ER compartment regulates the IP 3 receptor. Cell Calcium 2024; 117:102823. [PMID: 37976974 DOI: 10.1016/j.ceca.2023.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
There have been in the last three decades repeated publications indicating that the inositol 1,4,5-trisphosphate receptor (IP3R) is regulated not only by cytosolic Ca2+ but also by intraluminal Ca2+. Although most studies indicated that a decreasing intraluminal Ca2+ level led to an inhibition of the IP3R, a number of publications reported exactly the opposite effect, i.e. an inhibition of the IP3R by high intraluminal Ca2+ levels. Although intraluminal Ca2+-binding sites on the IP3Rs were reported, a regulatory role for them was not demonstrated. It is also well known that the IP3R is regulated by a vast array of associated proteins, but only relatively recently proteins were identified that can be linked to the regulation of the IP3R by intraluminal Ca2+. The first to be reported was annexin A1 that is proposed to associate with the second intraluminal loop of the IP3R at high intraluminal Ca2+ levels and to inhibit the IP3R. More recently, ERdj5/PDIA19 reductase was described to reduce an intraluminal disulfide bridge of IP3R1 only at low intraluminal Ca2+ levels and thereby to inhibit the IP3R. Annexin A1 and ERdj5/PDIA19 can therefore explain most of the experimental results on the regulation of the IP3R by intraluminal Ca2+. Further studies are needed to provide a fuller understanding of the regulation of the IP3R from the intraluminal side. These findings underscore the importance of the state of the endoplasmic reticulum in the control of IP3R activity.
Collapse
Affiliation(s)
- Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), Campus Gasthuisberg O&N1 - Box 802, Herestraat 49, B-3000, Leuven, Belgium.
| | - Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut (LKI), Campus Gasthuisberg O&N1 - Box 802, Herestraat 49, B-3000, Leuven, Belgium
| |
Collapse
|
2
|
Tambeaux A, Aguilar-Sánchez Y, Santiago DJ, Mascitti M, DiNovo KM, Mejía-Alvarez R, Fill M, Wayne Chen SR, Ramos-Franco J. Ligand sensitivity of type-1 inositol 1,4,5-trisphosphate receptor is enhanced by the D2594K mutation. Pflugers Arch 2023; 475:569-581. [PMID: 36881190 PMCID: PMC10105685 DOI: 10.1007/s00424-023-02796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/08/2023]
Abstract
Inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) are homologous cation channels that mediate release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) and thereby are involved in many physiological processes. In previous studies, we determined that when the D2594 residue, located at or near the gate of the IP3R type 1, was replaced by lysine (D2594K), a gain of function was obtained. This mutant phenotype was characterized by increased IP3 sensitivity. We hypothesized the IP3R1-D2594 determines the ligand sensitivity of the channel by electrostatically affecting the stability of the closed and open states. To test this possibility, the relationship between the D2594 site and IP3R1 regulation by IP3, cytosolic, and luminal Ca2+ was determined at the cellular, subcellular, and single-channel levels using fluorescence Ca2+ imaging and single-channel reconstitution. We found that in cells, D2594K mutation enhances the IP3 ligand sensitivity. Single-channel IP3R1 studies revealed that the conductance of IP3R1-WT and -D2594K channels is similar. However, IP3R1-D2594K channels exhibit higher IP3 sensitivity, with substantially greater efficacy. In addition, like its wild type (WT) counterpart, IP3R1-D2594K showed a bell-shape cytosolic Ca2+-dependency, but D2594K had greater activity at each tested cytosolic free Ca2+ concentration. The IP3R1-D2594K also had altered luminal Ca2+ sensitivity. Unlike IP3R1-WT, D2594K channel activity did not decrease at low luminal Ca2+ levels. Taken together, our functional studies indicate that the substitution of a negatively charged residue by a positive one at the channels' pore cytosolic exit affects the channel's gating behavior thereby explaining the enhanced ligand-channel's sensitivity.
Collapse
Affiliation(s)
- Allison Tambeaux
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - Yuriana Aguilar-Sánchez
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Demetrio J Santiago
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Karyn M DiNovo
- Department of Physiology, Midwestern University, Downers Grove, IL, USA
| | | | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA
| | - S R Wayne Chen
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Terry LE, Arige V, Neumann J, Wahl AM, Knebel TR, Chaffer JW, Malik S, Liston A, Humblet-Baron S, Bultynck G, Yule DI. Missense mutations in inositol 1,4,5-trisphosphate receptor type 3 result in leaky Ca 2+ channels and activation of store-operated Ca 2+ entry. iScience 2022; 25:105523. [PMID: 36444295 PMCID: PMC9700043 DOI: 10.1016/j.isci.2022.105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in all subtypes of the inositol 1,4,5-trisphosphate receptor Ca2+ release channel are associated with human diseases. In this report, we investigated the functionality of three neuropathy-associated missense mutations in IP3R3 (V615M, T1424M, and R2524C). The mutants only exhibited function when highly over-expressed compared to endogenous hIP3R3. All variants resulted in elevated basal cytosolic Ca2+ levels, decreased endoplasmic reticulum Ca2+ store content, and constitutive store-operated Ca2+ entry in the absence of any stimuli, consistent with a leaky IP3R channel pore. These variants differed in channel function; when stably over-expressed the R2524C mutant was essentially dead, V615M was poorly functional, and T1424M exhibited activity greater than that of the corresponding wild-type following threshold stimulation. These results demonstrate that a common feature of these mutations is decreased IP3R3 function. In addition, these mutations exhibit a novel phenotype manifested as a constitutively open channel, which inappropriately gates SOCE in the absence of stimulation.
Collapse
Affiliation(s)
- Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Julika Neumann
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Amanda M. Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Taylor R. Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - James W. Chaffer
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Adrian Liston
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | | | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
4
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
5
|
Baker MR, Fan G, Seryshev AB, Agosto MA, Baker ML, Serysheva II. Cryo-EM structure of type 1 IP 3R channel in a lipid bilayer. Commun Biol 2021; 4:625. [PMID: 34035440 PMCID: PMC8149723 DOI: 10.1038/s42003-021-02156-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is the predominant Ca2+-release channel in neurons. IP3R1 mediates Ca2+ release from the endoplasmic reticulum into the cytosol and thereby is involved in many physiological processes. Here, we present the cryo-EM structures of full-length rat IP3R1 reconstituted in lipid nanodisc and detergent solubilized in the presence of phosphatidylcholine determined in ligand-free, closed states by single-particle electron cryo-microscopy. Notably, both structures exhibit the well-established IP3R1 protein fold and reveal a nearly complete representation of lipids with similar locations of ordered lipids bound to the transmembrane domains. The lipid-bound structures show improved features that enabled us to unambiguously build atomic models of IP3R1 including two membrane associated helices that were not previously resolved in the TM region. Our findings suggest conserved locations of protein-bound lipids among homotetrameric ion channels that are critical for their structural and functional integrity despite the diversity of structural mechanisms for their gating. 3D structure of full-length rat type 1 inositol 1,4,5-trisphosphate receptor reconstituted in lipid nanodisc is determined using single-particle cryo-electron microscopy. The study suggests conserved locations of protein-bound lipids among structurally diverse, homo-tetrameric ion channels.
Collapse
Affiliation(s)
- Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alexander B Seryshev
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Terry LE, Alzayady KJ, Wahl AM, Malik S, Yule DI. Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function. J Biol Chem 2020; 295:18160-18178. [PMID: 33093175 PMCID: PMC7939385 DOI: 10.1074/jbc.ra120.015683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which form tetrameric channels, play pivotal roles in regulating the spatiotemporal patterns of intracellular calcium signals. Mutations in IP3Rs have been increasingly associated with many debilitating human diseases such as ataxia, Gillespie syndrome, and generalized anhidrosis. However, how these mutations affect IP3R function, and how the perturbation of as-sociated calcium signals contribute to the pathogenesis and severity of these diseases remains largely uncharacterized. Moreover, many of these diseases occur as the result of autosomal dominant inheritance, suggesting that WT and mutant subunits associate in heterotetrameric channels. How the in-corporation of different numbers of mutant subunits within the tetrameric channels affects its activities and results in different disease phenotypes is also unclear. In this report, we investigated representative disease-associated missense mutations to determine their effects on IP3R channel activity. Additionally, we designed concatenated IP3R constructs to create tetrameric channels with a predefined subunit composition to explore the functionality of heteromeric channels. Using calcium imaging techniques to assess IP3R channel function, we observed that all the mutations studied resulted in severely attenuated Ca2+ release when expressed as homotetramers. However, some heterotetramers retained varied degrees of function dependent on the composition of the tetramer. Our findings suggest that the effect of mutations depends on the location of the mutation in the IP3R structure, as well as on the stoichiometry of mutant subunits assembled within the tetrameric channel. These studies provide insight into the pathogenesis and penetrance of these devastating human diseases.
Collapse
Affiliation(s)
- Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Amanda M Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
7
|
Zheng L, Prestwich BD, Harrison PT, Mackrill JJ. Polycystic Kidney Disease Ryanodine Receptor Domain (PKDRR) Proteins in Oomycetes. Pathogens 2020; 9:pathogens9070577. [PMID: 32708691 PMCID: PMC7399828 DOI: 10.3390/pathogens9070577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
In eukaryotes, two sources of Ca2+ are accessed to allow rapid changes in the cytosolic levels of this second messenger: the extracellular medium and intracellular Ca2+ stores, such as the endoplasmic reticulum. One class of channel that permits Ca2+ entry is the transient receptor potential (TRP) superfamily, including the polycystic kidney disease (PKD) proteins, or polycystins. Channels that release Ca2+ from intracellular stores include the inositol 1,4,5-trisphosphate/ryanodine receptor (ITPR/RyR) superfamily. Here, we characterise a family of proteins that are only encoded by oomycete genomes, that we have named PKDRR, since they share domains with both PKD and RyR channels. We provide evidence that these proteins belong to the TRP superfamily and are distinct from the ITPR/RyR superfamily in terms of their evolutionary relationships, protein domain architectures and predicted ion channel structures. We also demonstrate that a hypothetical PKDRR protein from Phytophthora infestans is produced by this organism, is located in the cell-surface membrane and forms multimeric protein complexes. Efforts to functionally characterise this protein in a heterologous expression system were unsuccessful but support a cell-surface localisation. These PKDRR proteins represent potential targets for the development of new "fungicides", since they are of a distinctive structure that is only found in oomycetes and not in any other cellular organisms.
Collapse
Affiliation(s)
- Limian Zheng
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| | - Patrick T. Harrison
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
| | - John J. Mackrill
- Department of Physiology, School of Medicine, University College Cork, T12 XF62 Cork, Ireland; (L.Z.); (P.T.H.)
- Correspondence:
| |
Collapse
|
8
|
Alzugaray ME, Gavazzi MV, Ronderos JR. Calcium signalling in early divergence of Metazoa: mechanisms involved in the control of muscle-like cell contraction in Hydra plagiodesmica. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our laboratory has previously examined the effect of neuropeptides on the activity of the hypostome of the hydra Hydra plagiodesmica Dioni, 1968 (Cnidaria: Hydrozoa). These results showed that the hypostome, a structure extruded during feeding, responds to myoregulatory peptides and that this mechanism might be regulated by changes in the cytosolic levels of calcium (Ca2+). We analyse now the ways in which Ca2+ modulates hypostome activity during feeding. The use of calcium chelators confirms that Ca2+ is relevant in inducing hypostome extrusion. The assay of compounds that modulate the activity of Ca2+ channels in the endoplasmic reticulum suggests that, beyond the extracellular influx of calcium, intracellular sources of the ion are involved and might include both ryanodine receptors (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). Bioinformatic searches based on sequences of RyR and IP3R of humans (Homo sapiens Linnaeus, 1758) show that IP3Rs are present in all groups analysed, including Fungi and Choanoflagellata. Although H. plagiodesmica responds to caffeine and ryanodine, which are known to modulate RyRs, this family of receptors seems not to be predicted in Cnidaria, suggesting that this phylum either lacks these kinds of channels or that they possess a different structure compared with those possessed by other Metazoa.
Collapse
Affiliation(s)
- María Eugenia Alzugaray
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María Victoria Gavazzi
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra Histología y Embriología Animal, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (FCNyM–UNLP), La Plata, Argentina
| |
Collapse
|
9
|
Joseph SK, Booth DM, Young MP, Hajnóczky G. Redox regulation of ER and mitochondrial Ca 2+ signaling in cell survival and death. Cell Calcium 2019; 79:89-97. [PMID: 30889512 DOI: 10.1016/j.ceca.2019.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Physiological signaling by reactive oxygen species (ROS) and their pathophysiological role in cell death are well recognized. This review focuses on two ROS targets that are key to local Ca2+ signaling at the ER/mitochondrial interface - notably, inositol trisphosphate receptors (IP3Rs) and the mitochondrial calcium uniporter (MCU). Both transport systems are central to molecular mechanisms in cell survival and death. Methods for the measurement of the redox state of these proteins and for the detection of ROS nanodomains are described. Recent results on the redox regulation of these proteins are reviewed.
Collapse
Affiliation(s)
- Suresh K Joseph
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - David M Booth
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael P Young
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare, Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
10
|
Cryo-EM reveals ligand induced allostery underlying InsP 3R channel gating. Cell Res 2018; 28:1158-1170. [PMID: 30470765 PMCID: PMC6274648 DOI: 10.1038/s41422-018-0108-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/02/2018] [Accepted: 10/22/2018] [Indexed: 01/06/2023] Open
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.
Collapse
|
11
|
Joseph SK, Young MP, Alzayady K, Yule DI, Ali M, Booth DM, Hajnóczky G. Redox regulation of type-I inositol trisphosphate receptors in intact mammalian cells. J Biol Chem 2018; 293:17464-17476. [PMID: 30228182 PMCID: PMC6231128 DOI: 10.1074/jbc.ra118.005624] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
A sensitization of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release is associated with oxidative stress in multiple cell types. These effects are thought to be mediated by alterations in the redox state of critical thiols in the IP3R, but this has not been directly demonstrated in intact cells. Here, we utilized a combination of gel-shift assays with MPEG-maleimides and LC-MS/MS to monitor the redox state of recombinant IP3R1 expressed in HEK293 cells. We found that under basal conditions, ∼5 of the 60 cysteines are oxidized in IP3R1. Cell treatment with 50 μm thimerosal altered gel shifts, indicating oxidation of ∼20 cysteines. By contrast, the shifts induced by 0.5 mm H2O2 or other oxidants were much smaller. Monitoring of biotin-maleimide attachment to IP3R1 by LC-MS/MS with 71% coverage of the receptor sequence revealed modification of two cytosolic (Cys-292 and Cys-1415) and two intraluminal cysteines (Cys-2496 and Cys-2533) under basal conditions. The thimerosal treatment modified an additional eleven cysteines, but only three (Cys-206, Cys-767, and Cys-1459) were consistently oxidized in multiple experiments. H2O2 also oxidized Cys-206 and additionally oxidized two residues not modified by thimerosal (Cys-214 and Cys-1397). Potentiation of IP3R channel function by oxidants was measured with cysteine variants transfected into a HEK293 IP3R triple-knockout cell line, indicating that the functionally relevant redox-sensitive cysteines are predominantly clustered within the N-terminal suppressor domain of IP3R. To our knowledge, this study is the first that has used proteomic methods to assess the redox state of individual thiols in IP3R in intact cells.
Collapse
Affiliation(s)
- Suresh K Joseph
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| | - Michael P Young
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kamil Alzayady
- the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and
| | - David I Yule
- the Department of Pharmacology & Physiology, University of Rochester, Rochester, New York 14642, and
| | - Mehboob Ali
- the Center for Perinatal Research, Research Institute, Nationwide Children's Hospital, Columbus, Ohio 43205
| | - David M Booth
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - György Hajnóczky
- From the MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
12
|
Pathophysiological consequences of isoform-specific IP 3 receptor mutations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1707-1717. [PMID: 29906486 DOI: 10.1016/j.bbamcr.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Ca2+ signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca2+-signaling network is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a tetrameric channel that mediates Ca2+ release from the endoplasmic reticulum (ER) in response to IP3. IP3R function is controlled by a myriad of factors, such as Ca2+, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IP3R-mediated Ca2+ signaling is the result of the existence of three main isoforms (IP3R1, IP3R2 and IP3R3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IP3R1 is highly expressed in neurons, IP3R2 in cardiomyocytes and hepatocytes and IP3R3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IP3R isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IP3R1 to dysfunctional exocrine tissues and autoimmune diseases for IP3R2 and -3. Over the past years, several IP3R mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IP3R isoform and the subsequent molecular mechanisms underlying the etiology of the disease.
Collapse
|
13
|
Egorova PA, Bezprozvanny IB. Inositol 1,4,5-trisphosphate receptors and neurodegenerative disorders. FEBS J 2018; 285:3547-3565. [PMID: 29253316 DOI: 10.1111/febs.14366] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Hisatsune C, Mikoshiba K. IP 3 receptor mutations and brain diseases in human and rodents. J Neurochem 2017; 141:790-807. [PMID: 28211945 DOI: 10.1111/jnc.13991] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/03/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is a huge Ca2+ channel that is localized at the endoplasmic reticulum. The IP3 R releases Ca2+ from the endoplasmic reticulum upon binding to IP3 , which is produced by various extracellular stimuli through phospholipase C activation. All vertebrate organisms have three subtypes of IP3 R genes, which have distinct properties of IP3 -binding and Ca2+ sensitivity, and are differently regulated by phosphorylation and by their associated proteins. Each cell type expresses the three subtypes of IP3 R in a distinct proportion, which is important for creating and maintaining spatially and temporally appropriate intracellular Ca2+ level patterns for the regulation of specific physiological phenomena. Of the three types of IP3 Rs, the type 1 receptor (IP3 R1) is dominantly expressed in the brain and is important for brain function. Recent emerging evidence suggests that abnormal Ca2+ signals from the IP3 R1 are closely associated with human brain pathology. In this review, we focus on the recent advances in our knowledge of the regulation of IP3 R1 and its functional implication in human brain diseases, as revealed by IP3 R mutation studies and analysis of human disease-associated genes. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| |
Collapse
|
15
|
Emergence of ion channel modal gating from independent subunit kinetics. Proc Natl Acad Sci U S A 2016; 113:E5288-97. [PMID: 27551100 DOI: 10.1073/pnas.1604090113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior.
Collapse
|
16
|
McEntagart M, Williamson KA, Rainger JK, Wheeler A, Seawright A, De Baere E, Verdin H, Bergendahl LT, Quigley A, Rainger J, Dixit A, Sarkar A, López Laso E, Sanchez-Carpintero R, Barrio J, Bitoun P, Prescott T, Riise R, McKee S, Cook J, McKie L, Ceulemans B, Meire F, Temple IK, Prieur F, Williams J, Clouston P, Németh AH, Banka S, Bengani H, Handley M, Freyer E, Ross A, van Heyningen V, Marsh JA, Elmslie F, FitzPatrick DR. A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect. Am J Hum Genet 2016; 98:981-992. [PMID: 27108798 PMCID: PMC4863663 DOI: 10.1016/j.ajhg.2016.03.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions.
Collapse
Affiliation(s)
- Meriel McEntagart
- Medical Genetics, St George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK
| | - Kathleen A Williamson
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jacqueline K Rainger
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ann Wheeler
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Anne Seawright
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Elfride De Baere
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Medical Research Building (MRB), 1st Floor, Room 110.029, De Pintelaan 185, 9000 Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Medical Research Building (MRB), 1st Floor, Room 110.029, De Pintelaan 185, 9000 Ghent, Belgium
| | - L Therese Bergendahl
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Alan Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Joe Rainger
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Abhijit Dixit
- Clinical Genetics, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Ajoy Sarkar
- Clinical Genetics, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Eduardo López Laso
- Pediatric Neurology Unit, Department of Pediatrics, Reina Sofia University Hospital, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Rocio Sanchez-Carpintero
- Paediatric Neurology Unit, Department of Paediatrics, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Jesus Barrio
- Department of Ophthalmology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Pierre Bitoun
- Service de pédiatrie, CHU Paris Seine-Saint-Denis - Hôpital Jean Verdier Avenue du 14 juillet, 93140 Bondy, France
| | - Trine Prescott
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Ruth Riise
- Department of Ophthalmology, Innland Hospital, 2418 Elverum, Norway
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | - Lisa McKie
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Berten Ceulemans
- Department of Neurology-Pediatric Neurology, University and University Hospital Antwerp, Antwerp 2650, Belgium
| | - Françoise Meire
- Department of Ophthalmology, Queen Fabiola Children's University Hospital, 1020 Brussels, Belgium
| | - I Karen Temple
- Human Development and Health Academic Unit, University Hospital Southampton, Tremona Road, University of Southampton, Southampton SO16 6YD, UK
| | - Fabienne Prieur
- Service Génétique, Plateau de biologie, CHU Saint Etienne, 42055 Saint Etienne cedex 2, France
| | - Jonathan Williams
- Oxford University Hospitals NHS Trust, Oxford Medical Genetics Laboratories, The Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Penny Clouston
- Oxford University Hospitals NHS Trust, Oxford Medical Genetics Laboratories, The Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 7LJ, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, University of Manchester, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Mark Handley
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Elisabeth Freyer
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Allyson Ross
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Veronica van Heyningen
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Frances Elmslie
- Medical Genetics, St George's University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| |
Collapse
|
17
|
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors are the channels responsible for Ca(2+)release from the endoplasmic and sarcoplasmic reticulum. Research inScience Signalingby Alzayadyet al show that all four IP3-binding sites within the tetrameric IP3R must bind IP3before the channel can open, which has important consequences for the distribution of both IP3and IP3R activity within cells.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Vera Konieczny
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
18
|
Chandrasekhar R, Alzayady KJ, Wagner LE, Yule DI. Unique Regulatory Properties of Heterotetrameric Inositol 1,4,5-Trisphosphate Receptors Revealed by Studying Concatenated Receptor Constructs. J Biol Chem 2016; 291:4846-60. [PMID: 26755721 DOI: 10.1074/jbc.m115.705301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 02/02/2023] Open
Abstract
The ability of inositol 1,4,5-trisphosphate receptors (IP3R) to precisely initiate and generate a diverse variety of intracellular Ca(2+) signals is in part mediated by the differential regulation of the three subtypes (R1, R2, and R3) by key functional modulators (IP3, Ca(2+), and ATP). However, the contribution of IP3R heterotetramerization to Ca(2+) signal diversity has largely been unexplored. In this report, we provide the first definitive biochemical evidence of endogenous heterotetramer formation. Additionally, we examine the contribution of individual subtypes within defined concatenated heterotetramers to the shaping of Ca(2+) signals. Under conditions where key regulators of IP3R function are optimal for Ca(2+) release, we demonstrate that individual monomers within heteromeric IP3Rs contributed equally toward generating a distinct 'blended' sensitivity to IP3 that is likely dictated by the unique IP3 binding affinity of the heteromers. However, under suboptimal conditions where [ATP] were varied, we found that one subtype dictated the ATP regulatory properties of heteromers. We show that R2 monomers within a heterotetramer were both necessary and sufficient to dictate the ATP regulatory properties. Finally, the ATP-binding site B in R2 critical for ATP regulation was mutated and rendered non-functional to address questions relating to the stoichiometry of IP3R regulation. Two intact R2 monomers were sufficient to maintain ATP regulation in R2 homotetramers. In summary, we demonstrate that heterotetrameric IP3R do not necessarily behave as the sum of the constituent subunits, and these properties likely extend the versatility of IP3-induced Ca(2+) signaling in cells expressing multiple IP3R isoforms.
Collapse
Affiliation(s)
- Rahul Chandrasekhar
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - David I Yule
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
19
|
Fan G, Baker ML, Wang Z, Baker MR, Sinyagovskiy PA, Chiu W, Ludtke SJ, Serysheva II. Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 2015; 527:336-41. [PMID: 26458101 DOI: 10.1038/nature15249] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.
Collapse
Affiliation(s)
- Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Zhao Wang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Pavel A Sinyagovskiy
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
20
|
Kim TJ, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang N, Ha T, Jakobsson E, Sun J, Wang Y. Distinct mechanisms regulating mechanical force-induced Ca²⁺ signals at the plasma membrane and the ER in human MSCs. eLife 2015; 4:e04876. [PMID: 25667984 PMCID: PMC4337650 DOI: 10.7554/elife.04876] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca2+ signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca2+, ER Ca2+ release is the source of intracellular Ca2+ oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca2+ release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca2+ permeable channels on the plasma membrane, specifically TRPM7. However, Ca2+ influx at the plasma membrane via mechanosensitive Ca2+ permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane. DOI:http://dx.doi.org/10.7554/eLife.04876.001 Cells receive many signals from their environment, for example, when they are compressed or pulled about by neighboring cells. Information about these ‘mechanical stimuli’ can be transmitted within the cell to trigger changes in gene expression and cell behavior. When a cell receives a mechanical stimulus, it can activate the release of calcium ions from storage compartments within the cell, including from a compartment called the endoplasmic reticulum. Calcium ions can also enter the cell from outside via channels located in the membrane that surrounds the cell (the plasma membrane). Kim et al. investigated how mechanical forces are transmitted in a type of human cell called mesenchymal stem cells using optical tweezers to apply a gentle force to the outside of a cell. These tweezers use a laser to attract tiny objects, in this case a bead attached to proteins in the cell's outer membrane. The cell's response to this mechanical stimulation was measured using a sensor protein that fluoresces a different color when it binds to calcium ions. With this set-up, Kim et al. found that mesenchymal stem cells are able to transmit mechanical forces to different depths within the cell. The forces can travel deep to trigger the release of calcium ions from the endoplasmic reticulum. This process involves a network of protein fibers that criss-cross to support the structure of a cell—called the cytoskeleton—and also requires proteins that are associated with the cytoskeleton to contract. However, calcium ion entry through the plasma membrane due to a mechanical force does not require these contractile proteins—only the cytoskeleton is involved. These results demonstrate that the transmission of mechanical signals to different depths within mesenchymal stem cells involves different components. Future work should shed light on how these mechanical signals control gene expression and the development of mesenchymal stem cells. DOI:http://dx.doi.org/10.7554/eLife.04876.002
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Chirlmin Joo
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Jihye Seong
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Reza Vafabakhsh
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, United States
| | - Michael W Berns
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, United States
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, United States
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Taekjip Ha
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Jie Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| |
Collapse
|
21
|
Mak DOD, Foskett JK. Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 2014; 58:67-78. [PMID: 25555684 DOI: 10.1016/j.ceca.2014.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
As an intracellular Ca(2+) release channel at the endoplasmic reticulum membrane, the ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a crucial role in the generation, propagation and regulation of intracellular Ca(2+) signals that regulate numerous physiological and pathophysiological processes. This review provides a concise account of the fundamental single-channel properties of the InsP3R channel: its conductance properties and its regulation by InsP3 and Ca(2+), its physiological ligands, studied using nuclear patch clamp electrophysiology.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
22
|
Liu Y, Li C, Gao J, Wang W, Huang L, Guo X, Li B, Wang J. Comparative characterization of two intracellular Ca²⁺-release channels from the red flour beetle, Tribolium castaneum. Sci Rep 2014; 4:6702. [PMID: 25330781 PMCID: PMC4204029 DOI: 10.1038/srep06702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
Ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP3Rs) are members of a family of tetrameric intracellular Ca2+-release channels (CRCs). While it is well known in mammals that RyRs and IP3Rs modulate multiple physiological processes, the roles of these two CRCs in the development and physiology of insects remain poorly understood. In this study, we cloned and functionally characterized RyR and IP3R cDNAs (named TcRyR and TcIP3R) from the red flour beetle, Tribolium castaneum. The composite TcRyR gene contains an ORF of 15,285 bp encoding a protein of 5,094 amino acid residues. The TcIP3R contains an 8,175 bp ORF encoding a protein of 2,724 amino acids. Expression analysis of TcRyR and TcIP3R revealed significant differences in mRNA expression levels among T. castaneum during different developmental stages. When the transcript levels of TcRyR were suppressed by RNA interference (RNAi), an abnormal folding of the adult hind wings was observed, while the RNAi-mediated knockdown of TcIP3R resulted in defective larval–pupal and pupal–adult metamorphosis. These results suggested that TcRyR is required for muscle excitation-contraction (E-C) coupling in T. castaneum, and that calcium release via IP3R might play an important role in regulating ecdysone synthesis and release during molting and metamorphosis in insects.
Collapse
Affiliation(s)
- Yaping Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingkun Gao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Wenlong Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Huang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuezhu Guo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
23
|
Klar J, Hisatsune C, Baig SM, Tariq M, Johansson ACV, Rasool M, Malik NA, Ameur A, Sugiura K, Feuk L, Mikoshiba K, Dahl N. Abolished InsP3R2 function inhibits sweat secretion in both humans and mice. J Clin Invest 2014; 124:4773-80. [PMID: 25329695 DOI: 10.1172/jci70720] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/11/2014] [Indexed: 12/12/2022] Open
Abstract
There are 3 major sweat-producing glands present in skin; eccrine, apocrine, and apoeccrine glands. Due to the high rate of secretion, eccrine sweating is a vital regulator of body temperature in response to thermal stress in humans; therefore, an inability to sweat (anhidrosis) results in heat intolerance that may cause impaired consciousness and death. Here, we have reported 5 members of a consanguineous family with generalized, isolated anhidrosis, but morphologically normal eccrine sweat glands. Whole-genome analysis identified the presence of a homozygous missense mutation in ITPR2, which encodes the type 2 inositol 1,4,5-trisphosphate receptor (InsP3R2), that was present in all affected family members. We determined that the mutation is localized within the pore forming region of InsP3R2 and abrogates Ca2+ release from the endoplasmic reticulum, which suggests that intracellular Ca2+ release by InsP3R2 in clear cells of the sweat glands is important for eccrine sweat production. Itpr2-/- mice exhibited a marked reduction in sweat secretion, and evaluation of sweat glands from Itpr2-/- animals revealed a decrease in Ca2+ response compared with controls. Together, our data indicate that loss of InsP3R2-mediated Ca2+ release causes isolated anhidrosis in humans and suggest that specific InsP3R inhibitors have the potential to reduce sweat production in hyperhidrosis.
Collapse
|
24
|
Mak DOD, Vais H, Cheung KH, Foskett JK. Patch-clamp electrophysiology of intracellular Ca2+ channels. Cold Spring Harb Protoc 2013; 2013:787-97. [PMID: 24003191 DOI: 10.1101/pdb.top066217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The modulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) is a universal intracellular signaling pathway that regulates numerous cellular physiological processes. Ubiquitous intracellular Ca(2+)-release channels localized to the endoplasmic/sarcoplasmic reticulum-inositol 1,4,5-trisphosphate receptor (InsP3R) and ryanodine receptor (RyR) channels-play a central role in [Ca(2+)]i signaling in all animal cells. Despite their intracellular localization, electrophysiological studies of the single-channel permeation and gating properties of these Ca(2+)-release channels using the powerful patch-clamp approach have been possible by application of this technique to isolated nuclei because the channels are present in membranes of the nuclear envelope. Here we provide a concise description of how nuclear patch-clamp experiments have been used to study single-channel properties of different InsP3R channels in the outer nuclear membrane. We compare this with other methods for studying intracellular Ca(2+) release. We also briefly describe application of the technique to InsP3R channels in the inner nuclear membrane and to channels in the outer nuclear membrane of HEK293 cells expressing recombinant RyR.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
25
|
Bhanumathy C, da Fonseca PCA, Morris EP, Joseph SK. Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors. J Biol Chem 2012; 287:43674-84. [PMID: 23086950 PMCID: PMC3527953 DOI: 10.1074/jbc.m112.415786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have combined alanine mutagenesis and functional assays to identify amino acid residues in the channel domain that are critical for inositol 1,4,5-trisphosphate receptor (IP(3)R) channel function. The residues selected were highly conserved in all three IP(3)R isoforms and were located in the cytosolic end of the S6 pore-lining helix and proximal portion of the C-tail. Two adjacent hydrophobic amino acids (Ile-2588 and Ile-2589) at the putative cytosolic interface of the S6 helix inactivated channel function and could be candidates for the channel gate. Of five negatively charged residues mutated, none completely eliminated channel function. Of five positively charged residues mutated, only one inactivated the channel (Arg-2596). In addition to the previously identified role of a pair of cysteines in the C-tail (Cys-2610 and Cys-2613), a pair of highly conserved histidines (His-2630 and His-2635) were also essential for channel function. Expression of the H2630A and H2635A mutants (but not R2596A) produced receptors with destabilized interactions between the N-terminal fragment and the channel domain. A previously unrecognized association between the cytosolic C-tail and the TM 4,5-loop was demonstrated using GST pulldown assays. However, none of the mutations in the C-tail interfered with this interaction or altered the ability of the C-tail to assemble into dimers. Our present findings and recent information on IP(3)R structure from electron microscopy and crystallography are incorporated into a revised model of channel gating.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- COS Cells
- Chlorocebus aethiops
- HEK293 Cells
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/chemistry
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Ion Channel Gating/physiology
- Models, Molecular
- Mutation, Missense
- Protein Multimerization/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rats
Collapse
Affiliation(s)
- Cunnigaiper Bhanumathy
- From the Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Paula C. A. da Fonseca
- the Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Edward P. Morris
- the Institute for Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, United Kingdom
| | - Suresh K. Joseph
- From the Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
- To whom correspondence should be addressed: Dept. of Pathology & Cell Biology, Rm. 230A JAH, 1020 Locust St., Philadelphia, PA 19107. Tel.: 215-503-1222; E-mail:
| |
Collapse
|
26
|
Abstract
The Ca(2) (+) signals evoked by inositol 1,4,5-trisphosphate (IP(3)) are built from elementary Ca(2) (+) release events involving progressive recruitment of IP(3) receptors (IP(3)R), intracellular Ca(2) (+) channels that are expressed in almost all animal cells. The smallest events ('blips') result from opening of single IP(3)R. Larger events ('puffs') reflect the near-synchronous opening of a small cluster of IP(3)R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca(2) (+) waves that propagate across the cell. This hierarchical recruitment of IP(3)R is important in allowing Ca(2) (+) signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP(3)R by Ca(2) (+) and IP(3), the ability of a single IP(3)R rapidly to mediate a large efflux of Ca(2) (+) from the endoplasmic reticulum, and the assembly of IP(3)R into clusters are key features that allow IP(3)R to propagate Ca(2) (+) signals regeneratively. We review these properties of IP(3)R and the structural basis of IP(3)R behavior.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, Tennis Court Road, CB2 1PD, Cambridge, UK,
| | | |
Collapse
|
27
|
Ryanodine receptor calcium release channels: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:159-82. [PMID: 22453942 DOI: 10.1007/978-94-007-2888-2_7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ryanodine receptors (RyRs), along with the related inositol 1,4,5-trisphosphate receptors (IP(3)Rs), mediate the release of Ca(2+) from intracellular organelles of eukaryotes. As discussed in other chapters, such increases in intracellular Ca(2+) levels act a fundamental second messenger, regulating a diverse array of cellular processes. For over two decades, it has been reported that vertebrates express multiple RYR genes, whereas non-vertebrate multicellular organisms possess a single homologue within their genomes. Recently, the existence of RyR-like channels in unicellular organisms has also been reported. This chapter exploits recent expansions in available genome data to generate an overview of the expression of RyR-like genes in organisms representing a broad range of viral, archaeal, bacterial and eukaryotic taxa. Analyses of the multidomain structures and phylogenetic relationships of these proteins has lead to a model in which, early during eukaryotic evolution, IP(3)R-like ancestral Ca(2+) release channels were converted to RyR proteins via the addition of promiscuous protein domains, possibly via horizontal gene transfer mechanisms.
Collapse
|
28
|
Rossi AM, Tovey SC, Rahman T, Prole DL, Taylor CW. Analysis of IP3 receptors in and out of cells. Biochim Biophys Acta Gen Subj 2011; 1820:1214-27. [PMID: 22033379 DOI: 10.1016/j.bbagen.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/07/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
BACKGROUND Inositol 1,4,5-trisphosphate receptors (IP3R) are expressed in almost all animal cells. Three mammalian genes encode closely related IP3R subunits, which assemble into homo- or hetero-tetramers to form intracellular Ca2+ channels. SCOPE OF THE REVIEW In this brief review, we first consider a variety of complementary methods that allow the links between IP3 binding and channel gating to be defined. How does IP3 binding to the IP3-binding core in each IP3R subunit cause opening of a cation-selective pore formed by residues towards the C-terminal? We then describe methods that allow IP3, Ca2+ signals and IP3R mobility to be examined in intact cells. A final section briefly considers genetic analyses of IP3R signalling. MAJOR CONCLUSIONS All IP3R are regulated by both IP3 and Ca2+. This allows them to initiate and regeneratively propagate intracellular Ca2+ signals. The elementary Ca2+ release events evoked by IP3 in intact cells are mediated by very small numbers of active IP3R and the Ca2+-mediated interactions between them. The spatial organization of these Ca2+ signals and their stochastic dependence on so few IP3Rs highlight the need for methods that allow the spatial organization of IP3R signalling to be addressed with single-molecule resolution. GENERAL SIGNIFICANCE A variety of complementary methods provide insight into the structural basis of IP3R activation and the contributions of IP3-evoked Ca2+ signals to cellular physiology. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signaling.
Collapse
|
29
|
Cai X, Clapham DE. Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol Biol Evol 2011; 29:91-100. [PMID: 21680871 PMCID: PMC4037924 DOI: 10.1093/molbev/msr149] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animals and fungi diverged from a common unicellular ancestor of Opisthokonta, yet they exhibit significant differences in their components of Ca2+ signaling pathways. Many Ca2+ signaling molecules appear to be either animal-specific or fungal-specific, which is generally believed to result from lineage-specific adaptations to distinct physiological requirements. Here, by analyzing the genomic data from several close relatives of animals and fungi, we demonstrate that many components of animal and fungal Ca2+ signaling machineries are present in the apusozoan protist Thecamonas trahens, which belongs to the putative unicellular sister group to Opisthokonta. We also identify the conserved portion of Ca2+ signaling molecules in early evolution of animals and fungi following their divergence. Furthermore, our results reveal the lineage-specific expansion of Ca2+ channels and transporters in the unicellular ancestors of animals and in basal fungi. These findings provide novel insights into the evolution and regulation of Ca2+ signaling critical for animal and fungal biology.
Collapse
Affiliation(s)
- Xinjiang Cai
- Molecular Pathogenesis Program, The Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, NY, USA.
| | | |
Collapse
|
30
|
Taylor CW, Tovey SC. IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2010; 2:a004010. [PMID: 20980441 DOI: 10.1101/cshperspect.a004010] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
31
|
Joseph SK. Role of thiols in the structure and function of inositol trisphosphate receptors. CURRENT TOPICS IN MEMBRANES 2010; 66:299-322. [PMID: 22353485 DOI: 10.1016/s1063-5823(10)66013-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Molecular architecture of the inositol 1,4,5-trisphosphate receptor pore. CURRENT TOPICS IN MEMBRANES 2010; 66:191-207. [PMID: 22353481 DOI: 10.1016/s1063-5823(10)66009-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Anyatonwu G, Khan MT, Schug ZT, da Fonseca PCA, Morris EP, Joseph SK. Calcium-dependent conformational changes in inositol trisphosphate receptors. J Biol Chem 2010; 285:25085-93. [PMID: 20530483 DOI: 10.1074/jbc.m110.123208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used limited trypsin digestion and reactivity with PEG-maleimides (MPEG) to study Ca(2+)-induced conformational changes of IP(3)Rs in their native membrane environment. We found that Ca(2+) decreased the formation of the 95-kDa C-terminal tryptic fragment when detected by an Ab directed at a C-terminal epitope (CT-1) but not with an Ab recognizing a protected intraluminal epitope. This suggests that Ca(2+) induces a conformational change in the IP(3)R that allows trypsin to cleave the C-terminal epitope. Half-maximal effects of Ca(2+) were observed at approximately 0.5 microm and was sensitive to inhibition by IP(3). Ca(2+) also stimulated the reaction of MPEG-5 with an endogenous thiol in the 95-kDa fragment. This effect was eliminated when six closely spaced cysteine residues proximal to the transmembrane domains were mutated (C2000S, C2008S, C2010S, C2043S, C2047S, and C2053S) or when the N-terminal suppressor domain (amino acids 1-225) was deleted. A cysteine substitution mutant introduced at the C-terminal residue (A2749C) was freely accessible to MPEG-5 or MPEG-20 in the absence of Ca(2+). However, cysteine substitution mutants in the interior of the tail were poorly reactive with MPEG-5, although reactivity was enhanced by Ca(2+). We conclude the following: a) that large conformational changes induced by Ca(2+) can be detected in IP(3)Rs in situ; b) these changes may be driven by Ca(2+) binding to the N-terminal suppressor domain and expose a group of closely spaced endogenous thiols in the channel domain; and c) that the C-terminal cytosol-exposed tail of the IP(3)R may be relatively inaccessible to regulatory proteins unless Ca(2+) is present.
Collapse
Affiliation(s)
- Georgia Anyatonwu
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wolfram F, Morris E, Taylor C. Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 2010; 428:483-9. [PMID: 20377523 PMCID: PMC3685215 DOI: 10.1042/bj20100143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 11/17/2022]
Abstract
IP3Rs (inositol 1,4,5-trisphosphate receptors) are the intracellular channels that mediate release of Ca2+ from the endoplasmic reticulum in response to the many stimuli that evoke Ins(1,4,5)P3 formation. We characterized and purified type 1 IP3R heterologously expressed in Sf9 insect cells, and used the purified IP3R1 to determine its three-dimensional structure by electron microscopy and single-particle analysis. Recombinant IP3R1 has 4-fold symmetry with overall dimensions of approx. 19.5 nm x 19.5 nm x 17.5 nm. It comprises a small domain, which is likely to include the pore, linked by slender bridges to a large cytoplasmic domain with four petal-like regions. Our structures of recombinant IP3R1 and native cerebellar IP3R have similar appearances and dimensions. The only notable difference is the absence of a central stigma-like domain from the cytoplasmic region of recombinant IP3R1. The first structure of a recombinant IP3R is an important step towards developing three-dimensional structures of IP3R that better contribute to our understanding of the structural basis of IP3R activation.
Collapse
Key Words
- calcium channel
- electron microscopy (em)
- inositol 1,4,5-trisphosphate receptor (ip3r)
- single-particle analysis (spa)
- clm, cytosol-like medium
- ddm, dodecyl maltoside
- ecfp, enhanced cyan fluorescent protein
- em, electron microscopy
- er, endoplasmic reticulum
- ip3r, inositol 1,4,5-trisphosphate receptor
- pbm, phosphate-buffered medium
- peg, poly(ethylene glycol)
- ryr, ryanodine receptor
- spa, single-particle analysis
- tem, tris/edta medium
Collapse
Affiliation(s)
- Francis Wolfram
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Edward Morris
- †Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, U.K
| | - Colin W. Taylor
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
35
|
Yule DI, Betzenhauser MJ, Joseph SK. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium 2010; 47:469-79. [PMID: 20510450 DOI: 10.1016/j.ceca.2010.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022]
Abstract
Great insight has been gained into the structure and function of the inositol 1,4,5 trisphosphate receptor (InsP(3)R) by studies employing mutagenesis of the cDNA encoding the receptor. Notably, early studies using this approach defined the key constituents required for InsP(3) binding in the N-terminus and the membrane spanning regions in the C-terminal domain responsible for channel formation, targeting and function. In this article we evaluate recent studies which have used a similar approach to investigate key residues underlying the in vivo modulation by select regulatory factors. In addition, we review studies defining the structural requirements in the channel domain which comprise the conduction pathway and are suggested to be involved in the gating of the channel.
Collapse
Affiliation(s)
- David I Yule
- Department of Pharmacology and Physiology, University of Rochester, NY, United States.
| | | | | |
Collapse
|
36
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|
37
|
Rahman T, Taylor CW. Nuclear Patch-Clamp Recording from Inositol 1,4,5-Trisphosphate Receptors. Methods Cell Biol 2010; 99:199-224. [DOI: 10.1016/b978-0-12-374841-6.00008-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Taylor CW, Rahman T, Tovey SC, Dedos SG, Taylor EJA, Velamakanni S. IP3 receptors: some lessons from DT40 cells. Immunol Rev 2009; 231:23-44. [PMID: 19754888 DOI: 10.1111/j.1600-065x.2009.00807.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol-1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that are regulated by IP3 and Ca2+ and are modulated by many additional signals. These properties allow them to initiate and, via Ca2+-induced Ca2+ release, regeneratively propagate Ca2+ signals evoked by receptors that stimulate formation of IP3. The ubiquitous expression of IP3R highlights their importance, but it also presents problems when attempting to resolve the behavior of defined IP3R. DT40 cells are a pre-B-lymphocyte cell line in which high rates of homologous recombination afford unrivalled opportunities to disrupt endogenous genes. DT40-knockout cells with both alleles of each of the three IP3R genes disrupted provide the only null-background for analysis of homogenous recombinant IP3R. We review the properties of DT40 cells and consider three areas where they have contributed to understanding IP3R behavior. Patch-clamp recording from the nuclear envelope and Ca2+ release from intracellular stores loaded with a low-affinity Ca2+ indicator address the mechanisms leading to activation of IP(3)R. We show that IP3 causes intracellular IP3R to cluster and re-tune their responses to IP3 and Ca2+, better equipping them to mediate regenerative Ca2+ signals. Finally, we show that DT40 cells reliably count very few IP3R into the plasma membrane, where they mediate about half the Ca2+ entry evoked by the B-cell antigen receptor.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Taylor CW, Pantazaka E. Targeting and clustering of IP3 receptors: key determinants of spatially organized Ca2+ signals. CHAOS (WOODBURY, N.Y.) 2009; 19:037102. [PMID: 19798811 DOI: 10.1063/1.3127593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca2+ channels that are almost ubiquitously expressed in animal cells. The spatiotemporal complexity of the Ca2+ signals evoked by IP3R underlies their versatility in cellular signaling. Here we review the mechanisms that contribute to the subcellular targeting of IP3R and the dynamic interplay between IP3R that underpin their ability to generate complex intracellular Ca2+ signals.
Collapse
|
40
|
Wojcikiewicz RJH, Pearce MMP, Sliter DA, Wang Y. When worlds collide: IP(3) receptors and the ERAD pathway. Cell Calcium 2009; 46:147-53. [PMID: 19709743 DOI: 10.1016/j.ceca.2009.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 12/13/2022]
Abstract
While cell signaling devotees tend to think of the endoplasmic reticulum (ER) as a Ca(2+) store, those who study protein synthesis tend to see it more as site for protein maturation, or even degradation when proteins do not fold properly. These two worldviews collide when inositol 1,4,5-trisphosphate (IP(3)) receptors are activated, since in addition to acting as release channels for stored ER Ca(2+), IP(3) receptors are rapidly destroyed via the ER-associated degradation (ERAD) pathway, a ubiquitination- and proteasome-dependent mechanism that clears the ER of aberrant proteins. Here we review recent studies showing that activated IP(3) receptors are ubiquitinated in an unexpectedly complex manner, and that a novel complex composed of the ER membrane proteins SPFH1 and SPFH2 (erlin 1 and 2) binds to IP(3) receptors immediately after they are activated and mediates their ERAD. Remarkably, it seems that the conformational changes that underpin channel opening make IP(3) receptors resemble aberrant proteins, which triggers their binding to the SPFH1/2 complex, their ubiquitination and extraction from the ER membrane and finally, their degradation by the proteasome. This degradation of activated IP(3) receptors by the ERAD pathway serves to reduce the sensitivity of ER Ca(2+) stores to IP(3) and may protect cells against deleterious effects of over-activation of Ca(2+) signaling pathways.
Collapse
|
41
|
Betzenhauser MJ, Fike JL, Wagner LE, Yule DI. Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937. J Biol Chem 2009; 284:25116-25. [PMID: 19608738 DOI: 10.1074/jbc.m109.010132] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) represents a mechanism for shaping intracellular Ca(2+) signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca(2+) release in cells that express predominantly InsP(3)R2. PKA is known to phosphorylate InsP(3)R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP(3)R2 in DT40-3KO cells that are devoid of endogenous InsP(3)R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca(2+) signals and augmented the single channel open probability of InsP(3)R2. A PKA phosphorylation site unique to the InsP(3)R2 was identified at Ser(937). The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser(937), since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca(2+) signaling following PKA activation in cells that express predominantly InsP(3)R2.
Collapse
Affiliation(s)
- Matthew J Betzenhauser
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
42
|
Samsó M, Feng W, Pessah IN, Allen PD. Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 2009; 7:e85. [PMID: 19402748 PMCID: PMC2672603 DOI: 10.1371/journal.pbio.1000085] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/03/2009] [Indexed: 01/01/2023] Open
Abstract
Ryanodine receptor type 1 (RyR1) produces spatially and temporally defined Ca2+ signals in several cell types. How signals received in the cytoplasmic domain are transmitted to the ion gate and how the channel gates are unknown. We used EGTA or neuroactive PCB 95 to stabilize the full closed or open states of RyR1. Single-channel measurements in the presence of FKBP12 indicate that PCB 95 inverts the thermodynamic stability of RyR1 and locks it in a long-lived open state whose unitary current is indistinguishable from the native open state. We analyzed two datasets of 15,625 and 18,527 frozen-hydrated RyR1-FKBP12 particles in the closed and open conformations, respectively, by cryo-electron microscopy. Their corresponding three-dimensional structures at 10.2 A resolution refine the structure surrounding the ion pathway previously identified in the closed conformation: two right-handed bundles emerging from the putative ion gate (the cytoplasmic "inner branches" and the transmembrane "inner helices"). Furthermore, six of the identifiable transmembrane segments of RyR1 have similar organization to those of the mammalian Kv1.2 potassium channel. Upon gating, the distal cytoplasmic domains move towards the transmembrane domain while the central cytoplasmic domains move away from it, and also away from the 4-fold axis. Along the ion pathway, precise relocation of the inner helices and inner branches results in an approximately 4 A diameter increase of the ion gate. Whereas the inner helices of the K+ channels and of the RyR1 channel cross-correlate best with their corresponding open/closed states, the cytoplasmic inner branches, which are not observed in the K+ channels, appear to have at least as important a role as the inner helices for RyR1 gating. We propose a theoretical model whereby the inner helices, the inner branches, and the h1 densities together create an efficient novel gating mechanism for channel opening by relaxing two right-handed bundle structures along a common 4-fold axis.
Collapse
Affiliation(s)
- Montserrat Samsó
- Division of Anesthesia Research, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
43
|
Anyatonwu G, Joseph SK. Surface accessibility and conformational changes in the N-terminal domain of type I inositol trisphosphate receptors: studies using cysteine substitution mutagenesis. J Biol Chem 2009; 284:8093-102. [PMID: 19141613 DOI: 10.1074/jbc.m806932200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify surface-accessible residues and monitor conformational changes of the type I inositol 1,4,5-trisphosphate receptor protein in membranes, we have introduced 10 cysteine substitutions into the N-terminal ligand-binding domain. The reactivity of these mutants with progressively larger maleimide-polyethylene glycol derivatives (MPEG) was measured using a gel shift assay of tryptic fragments. The results indicate that the mutations fall into four categories as follows: sites that are highly accessible based on reactivity with the largest 20-kDa MPEG (S2C); sites that are moderately accessible based on reactivity only with 5-kDa MPEG (S6C, S7C, A189C, and S277C); sites whose accessibility is markedly enhanced by Ca(2+) (S171C, S277C, and A575C); and sites that are inaccessible irrespective of incubation conditions (S217C, A245C, and S436C). The stimulation of accessibility induced by Ca(2+) at the S277C site occurred with an EC(50) of 0.8 mum and was mimicked by Sr(2+) but not Ba(2+). Inositol 1,4,5-trisphosphate alone did not affect reactivity of any of the mutants in the presence or absence of Ca(2+). The data are interpreted using crystal structures and EM reconstructions of the receptor. Our data identify N-terminal regions of the protein that become exposed upon Ca(2+) binding and suggest possible orientations of the suppressor and ligand-binding domains that have implications for the mechanism of gating of the channel.
Collapse
Affiliation(s)
- Georgia Anyatonwu
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
44
|
A calmodulin antagonist reveals a calmodulin-independent interdomain interaction essential for activation of inositol 1,4,5-trisphosphate receptors. Biochem J 2008; 416:243-53. [PMID: 18637794 DOI: 10.1042/bj20080861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CaM (calmodulin) has been implicated in the regulation of IP3R [IP3 (inositol 1,4,5-trisphosphate) receptors] and a recent report suggested that CaM tightly tethered to IP3R was essential for IP3R activation [Nadif Kasri, Torok, Galione, Garnham, Callewaert, Missiaen, Parys and De Smedt (2006) J. Biol. Chem. 281, 8332-8338]. In the present study, we confirm that a CaM-binding peptide derived from MLCK (myosin light chain kinase) inhibits IP3-evoked Ca2+ release via all three IP3R subtypes. However,inhibition by MLCK peptide is not mimicked by other CaM antagonists that effectively block regulation of IP3R by CaM. Inhibition by MLCK peptide is rapid, fully reversible and occurs under conditions where there is no CaM associated with IP3R. MLCK peptide stimulates IP3 binding to IP3R1 and to its bacterially expressed N-terminal, but not after removal of the suppressor domain (residues 1-224).We suggest that MLCK peptide mimics a sequence within the suppressor domain that is similar to a1-8-14 CaM-binding motif. The peptide may thereby unzip an interdomain interaction that is essential for IP3R activation. We conclude that CaM is not essential for IP3R activation, and that MLCK peptide is a selective antagonist of the IP3R that binds directly to the N-terminal to uncouple IP3 binding from channel gating. The results of the present study highlight the importance of the suppressor domain in IP3R activation and suggest that MLCK peptide may provide a route to novel non-competitive antagonists of IP3R.
Collapse
|
45
|
Betzenhauser MJ, Wagner LE, Iwai M, Michikawa T, Mikoshiba K, Yule DI. ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem 2008; 283:21579-87. [PMID: 18505727 DOI: 10.1074/jbc.m801680200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP enhances Ca(2+) release from inositol (1,4,5)-trisphosphate receptors (InsP(3)R). However, the three isoforms of InsP(3)R are reported to respond to ATP with differing sensitivities. Ca(2+) release through InsP(3)R1 is positively regulated at lower ATP concentrations than InsP(3)R3, and InsP(3)R2 has been reported to be insensitive to ATP modulation. We have reexamined these differences by studying the effects of ATP on InsP(3)R2 and InsP(3)R3 expressed in isolation on a null background in DT40 InsP(3)R knockout cells. We report that the Ca(2+)-releasing activity as well as the single channel open probability of InsP(3)R2 was enhanced by ATP, but only at submaximal InsP(3) levels. Further, InsP(3)R2 was more sensitive to ATP modulation than InsP(3)R3 under similar experimental conditions. Mutations in the ATPB sites of InsP(3)R2 and InsP(3)R3 were generated, and the functional consequences of these mutations were tested. Surprisingly, mutation of the ATPB site in InsP(3)R3 had no effect on ATP modulation, suggesting an additional locus for the effects of ATP on this isoform. In contrast, ablation of the ATPB site of InsP(3)R2 eliminated the enhancing effects of ATP. Furthermore, this mutation had profound effects on the patterns of intracellular calcium signals, providing evidence for the physiological significance of ATP binding to InsP(3)R2.
Collapse
Affiliation(s)
- Matthew J Betzenhauser
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14625, USA
| | | | | | | | | | | |
Collapse
|