1
|
Cleary SR, Seflova J, Cho EE, Bisht K, Khandelia H, Espinoza-Fonseca LM, Robia SL. Phospholamban inhibits the cardiac calcium pump by interrupting an allosteric activation pathway. J Biol Chem 2024; 300:107267. [PMID: 38583863 PMCID: PMC11098958 DOI: 10.1016/j.jbc.2024.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.
Collapse
Affiliation(s)
- Sean R Cleary
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA
| | - Konark Bisht
- Department of Physics, Chemistry, and Pharmacy, PHYLIFE: Physical Life Science, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry, and Pharmacy, PHYLIFE: Physical Life Science, University of Southern Denmark, Odense, Denmark
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, USA.
| |
Collapse
|
2
|
Hock MT, Teitgen AE, McCabe KJ, Hirakis SP, Huber GA, Regnier M, Amaro RE, McCammon JA, McCulloch AD. Multiscale computational modeling of the effects of 2'-deoxy-ATP on cardiac muscle calcium handling. JOURNAL OF APPLIED PHYSICS 2023; 134:074905. [PMID: 37601331 PMCID: PMC10435275 DOI: 10.1063/5.0157935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
2'-Deoxy-ATP (dATP), a naturally occurring near analog of ATP, is a well-documented myosin activator that has been shown to increase contractile force, improve pump function, and enhance lusitropy in the heart. Calcium transients in cardiomyocytes with elevated levels of dATP show faster calcium decay compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this are unknown. Here, we design and utilize a multiscale computational modeling framework to test the hypothesis that dATP acts on the sarcoendoplasmic reticulum calcium-ATPase (SERCA) pump to accelerate calcium re-uptake into the sarcoplasmic reticulum during cardiac relaxation. Gaussian accelerated molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes ultimately lead to changes in calcium binding, which we assessed using Brownian dynamics simulations. We found that dATP increases calcium association rate constants to SERCA and that dATP binds to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation model of human cardiomyocyte excitation-contraction coupling, we found that these increased association rate constants contributed to the accelerated rates of calcium transient decay observed experimentally. This study provides clear mechanistic evidence of enhancements in cardiac SERCA2A pump function due to interactions with dATP.
Collapse
Affiliation(s)
- Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Resesarch Laboratory, Oslo 0164, Norway
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98109, USA
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
3
|
Multiple sub-state structures of SERCA2b reveal conformational overlap at transition steps during the catalytic cycle. Cell Rep 2022; 41:111760. [PMID: 36476867 DOI: 10.1016/j.celrep.2022.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/06/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps Ca2+ into the endoplasmic reticulum (ER). Herein, we present cryo-electron microscopy (EM) structures of three intermediates of SERCA2b: Ca2+-bound phosphorylated (E1P·2Ca2+) and Ca2+-unbound dephosphorylated (E2·Pi) intermediates and another between the E2P and E2·Pi states. Our cryo-EM analysis demonstrates that the E1P·2Ca2+ state exists in low abundance and preferentially transitions to an E2P-like structure by releasing Ca2+ and that the Ca2+ release gate subsequently undergoes stepwise closure during the dephosphorylation processes. Importantly, each intermediate adopts multiple sub-state structures including those like the next one in the catalytic series, indicating conformational overlap at transition steps, as further substantiated by atomistic molecular dynamic simulations of SERCA2b in a lipid bilayer. The present findings provide insight into how enzymes accelerate catalytic cycles.
Collapse
|
4
|
Espinoza-Fonseca LM. Structural Basis for the Function of the C-Terminal Proton Release Pathway in the Calcium Pump. Int J Mol Sci 2021; 22:ijms22073507. [PMID: 33805255 PMCID: PMC8037123 DOI: 10.3390/ijms22073507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Petrovich GD, Corradi GR, Pavan CH, Noli Truant S, Adamo HP. Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis. PLoS One 2021; 16:e0245679. [PMID: 33507968 PMCID: PMC7842927 DOI: 10.1371/journal.pone.0245679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
The yeast Spf1p protein is a primary transporter that belongs to group 5 of the large family of P-ATPases. Loss of Spf1p function produces ER stress with alterations of metal ion and sterol homeostasis and protein folding, glycosylation and membrane insertion. The amino acid sequence of Spf1p shows the characteristic P-ATPase domains A, N, and P and the transmembrane segments M1-M10. In addition, Spf1p exhibits unique structures at its N-terminus (N-T region), including two putative additional transmembrane domains, and a large insertion connecting the P domain with transmembrane segment M5 (D region). Here we used limited proteolysis to examine the structure of Spf1p. A short exposure of Spf1p to trypsin or proteinase K resulted in the cleavage at the N and C terminal regions of the protein and abrogated the formation of the catalytic phosphoenzyme and the ATPase activity. In contrast, limited proteolysis of Spf1p with chymotrypsin generated a large N-terminal fragment containing most of the M4-M5 cytosolic loop, and a minor fragment containing the C-terminal region. If lipids were present during chymotryptic proteolysis, phosphoenzyme formation and ATPase activity were preserved. ATP slowed Spf1p proteolysis without detectable changes of the generated fragments. The analysis of the proteolytic peptides by mass spectrometry and Edman degradation indicated that the preferential chymotryptic site was localized near the cytosolic end of M5. The susceptibility to proteolysis suggests an unexpected exposure of this region of Spf1p that may be an intrinsic feature of P5A-ATPases.
Collapse
Affiliation(s)
- Guido D. Petrovich
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo R. Corradi
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos H. Pavan
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia Noli Truant
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P. Adamo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
6
|
Tadini-Buoninsegni F. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases. Molecules 2020; 25:molecules25184167. [PMID: 32933017 PMCID: PMC7570688 DOI: 10.3390/molecules25184167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
P-type ATPases are a large family of membrane transporters that are found in all forms of life. These enzymes couple ATP hydrolysis to the transport of various ions or phospholipids across cellular membranes, thereby generating and maintaining crucial electrochemical potential gradients. P-type ATPases have been studied by a variety of methods that have provided a wealth of information about the structure, function, and regulation of this class of enzymes. Among the many techniques used to investigate P-type ATPases, the electrical method based on solid supported membranes (SSM) was employed to investigate the transport mechanism of various ion pumps. In particular, the SSM method allows the direct measurement of charge movements generated by the ATPase following adsorption of the membrane-bound enzyme on the SSM surface and chemical activation by a substrate concentration jump. This kind of measurement was useful to identify electrogenic partial reactions and localize ion translocation in the reaction cycle of the membrane transporter. In the present review, we discuss how the SSM method has contributed to investigate some key features of the transport mechanism of P-type ATPases, with a special focus on sarcoplasmic reticulum Ca2+-ATPase, mammalian Cu+-ATPases (ATP7A and ATP7B), and phospholipid flippase ATP8A2.
Collapse
|
7
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
8
|
Nakanishi H, Irie K, Segawa K, Hasegawa K, Fujiyoshi Y, Nagata S, Abe K. Crystal structure of a human plasma membrane phospholipid flippase. J Biol Chem 2020; 295:10180-10194. [PMID: 32493773 DOI: 10.1074/jbc.ra120.014144] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
ATP11C, a member of the P4-ATPase flippase, translocates phosphatidylserine from the outer to the inner plasma membrane leaflet, and maintains the asymmetric distribution of phosphatidylserine in the living cell. We present the crystal structures of a human plasma membrane flippase, ATP11C-CDC50A complex, in a stabilized E2P conformation. The structure revealed a deep longitudinal crevice along transmembrane helices continuing from the cell surface to the phospholipid occlusion site in the middle of the membrane. We observed that the extension of the crevice on the exoplasmic side is open, and the complex is therefore in an outward-open E2P state, similar to a recently reported cryo-EM structure of yeast flippase Drs2p-Cdc50p complex. We noted extra densities, most likely bound phosphatidylserines, in the crevice and in its extension to the extracellular side. One was close to the phosphatidylserine occlusion site as previously reported for the human ATP8A1-CDC50A complex, and the other in a cavity at the surface of the exoplasmic leaflet of the bilayer. Substitutions in either of the binding sites or along the path between them impaired specific ATPase and transport activities. These results provide evidence that the observed crevice is the conduit along that phosphatidylserine traverses from the outer leaflet to its occlusion site in the membrane and suggest that the exoplasmic cavity is important for phospholipid recognition. They also yield insights into how phosphatidylserine is incorporated from the outer leaflet of the plasma membrane into the transmembrane.
Collapse
Affiliation(s)
- Hanayo Nakanishi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Katsumori Segawa
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuya Hasegawa
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Japan
| | - Yoshinori Fujiyoshi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.,CeSPIA Inc, 2-1-1, Otemachi, Chiyoda, Tokyo, Japan
| | - Shigekazu Nagata
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan .,Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
9
|
Papp B, Launay S, Gélébart P, Arbabian A, Enyedi A, Brouland JP, Carosella ED, Adle-Biassette H. Endoplasmic Reticulum Calcium Pumps and Tumor Cell Differentiation. Int J Mol Sci 2020; 21:ijms21093351. [PMID: 32397400 PMCID: PMC7247589 DOI: 10.3390/ijms21093351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium homeostasis plays an essential role in cellular calcium signaling, intra-ER protein chaperoning and maturation, as well as in the interaction of the ER with other organelles. Calcium is accumulated in the ER by sarco/endoplasmic reticulum calcium ATPases (SERCA enzymes) that generate by active, ATP-dependent transport, a several thousand-fold calcium ion concentration gradient between the cytosol (low nanomolar) and the ER lumen (high micromolar). SERCA enzymes are coded by three genes that by alternative splicing give rise to several isoforms, which can display isoform-specific calcium transport characteristics. SERCA expression levels and isoenzyme composition vary according to cell type, and this constitutes a mechanism whereby ER calcium homeostasis is adapted to the signaling and metabolic needs of the cell, depending on its phenotype, its state of activation and differentiation. As reviewed here, in several normal epithelial cell types including bronchial, mammary, gastric, colonic and choroid plexus epithelium, as well as in mature cells of hematopoietic origin such as pumps are simultaneously expressed, whereas in corresponding tumors and leukemias SERCA3 expression is selectively down-regulated. SERCA3 expression is restored during the pharmacologically induced differentiation of various cancer and leukemia cell types. SERCA3 is a useful marker for the study of cell differentiation, and the loss of SERCA3 expression constitutes a previously unrecognized example of the remodeling of calcium homeostasis in tumors.
Collapse
Affiliation(s)
- Bela Papp
- Institut National de la Santé et de la Recherche Médicale, UMR U976, Institut Saint-Louis, 75010 Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, 75010 Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
- Correspondence: or
| | - Sophie Launay
- EA481, UFR Santé, Université de Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Pascal Gélébart
- Department of Clinical Science-Hematology Section, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway;
| | - Atousa Arbabian
- Laboratoire d’Innovation Vaccins, Institut Pasteur de Paris, 75015 Paris, France;
| | - Agnes Enyedi
- Second Department of Pathology, Semmelweis University, 1091 Budapest, Hungary;
| | - Jean-Philippe Brouland
- Institut Universitaire de Pathologie, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland;
| | - Edgardo D. Carosella
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, 75010 Paris, France;
| | - Homa Adle-Biassette
- AP-HP, Service d’Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, 75010 Paris, France;
- Université de Paris, NeuroDiderot, Inserm UMR 1141, 75019 Paris, France
| |
Collapse
|
10
|
Structural dynamics of P-type ATPase ion pumps. Biochem Soc Trans 2020; 47:1247-1257. [PMID: 31671180 DOI: 10.1042/bst20190124] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 02/04/2023]
Abstract
P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.
Collapse
|
11
|
Hossain KR, Li X, Zhang T, Paula S, Cornelius F, Clarke RJ. Polarity of the ATP binding site of the Na +,K +-ATPase, gastric H +,K +-ATPase and sarcoplasmic reticulum Ca 2+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183138. [PMID: 31790695 DOI: 10.1016/j.bbamem.2019.183138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022]
Abstract
A fluorescence ratiometric method utilizing the probe eosin Y is presented for estimating the ATP binding site polarity of P-type ATPases in different conformational states. The method has been calibrated by measurements in a series of alcohols and tested using complexation of eosin Y with methyl-β-cyclodextrin. The results obtained with the Na+,K+-, H+,K+- and sarcoplasmic reticulum Ca2+-ATPases indicate that the ATP binding site, to which eosin is known to bind, is significantly more polar in the case of the Na+,K+- and H+,K+-ATPases compared to the Ca2+-ATPase. This result was found to be consistent with docking calculations of eosin with the E2 conformational state of the Na+,K+-ATPase and the Ca2+-ATPase. Fluorescence experiments showed that eosin binds significantly more strongly to the E1 conformation of the Na+,K+-ATPase than the E2 conformation, but in the case of the Ca2+-ATPase both fluorescence experiments and docking calculations showed no significant difference in binding affinity between the two conformations. This result could be due to the fact that, in contrast to the Na+,K+- and H+,K+-ATPases, the E2-E1 transition of the Ca2+-ATPase does not involve the movement of a lysine-rich N-terminal tail which may affect the overall enzyme conformation. Consistent with this hypothesis, the eosin affinity of the E1 conformation of the Na+,K+-ATPase was significantly reduced after N-terminal truncation. It is suggested that changes in conformational entropy of the N-terminal tail of the Na+, K+- and the H+,K+-ATPases during the E2-E1 transition could affect the thermodynamic stability of the E1 conformation and hence its ATP binding affinity.
Collapse
Affiliation(s)
- K R Hossain
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - X Li
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - T Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - S Paula
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - F Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - R J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Espinoza-Fonseca LM. Probing the effects of nonannular lipid binding on the stability of the calcium pump SERCA. Sci Rep 2019; 9:3349. [PMID: 30833659 PMCID: PMC6399444 DOI: 10.1038/s41598-019-40004-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
The calcium pump SERCA is a transmembrane protein that is critical for calcium transport in cells. SERCA resides in an environment made up largely by the lipid bilayer, so lipids play a central role on its stability and function. Studies have provided insights into the effects of annular and bulk lipids on SERCA activation, but the role of a nonannular lipid site in the E2 intermediate state remains elusive. Here, we have performed microsecond molecular dynamics simulations to probe the effects of nonannular lipid binding on the stability and structural dynamics of the E2 state of SERCA. We found that the structural integrity and stability of the E2 state is independent of nonannular lipid binding, and that occupancy of a lipid molecule at this site does not modulate destabilization of the E2 state, a step required to initiate the transition toward the competent E1 state. We also found that binding of the nonannular lipid does not induce direct allosteric control of the intrinsic functional dynamics the E2 state. We conclude that nonannular lipid binding is not necessary for the stability of the E2 state, but we speculate that it becomes functionally significant during the E2-to-E1 transition of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Mechanism of the E2 to E1 transition in Ca 2+ pump revealed by crystal structures of gating residue mutants. Proc Natl Acad Sci U S A 2018; 115:12722-12727. [PMID: 30482857 DOI: 10.1073/pnas.1815472115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) pumps two Ca2+ per ATP hydrolyzed from the cytoplasm and two or three protons in the opposite direction. In the E2 state, after transferring Ca2+ into the lumen of sarcoplasmic reticulum, all of the acidic residues that coordinate Ca2+ are thought to be protonated, including the gating residue Glu309. Therefore a Glu309Gln substitution is not expected to significantly perturb the structure. Here we report crystal structures of the Glu309Gln and Glu309Ala mutants of SERCA1a under E2 conditions. The Glu309Gln mutant exhibits, unexpectedly, large structural rearrangements in both the cytoplasmic and transmembrane domains, apparently uncoupling them. However, the structure definitely represents E2 and, together with the help of quantum chemical calculations, allows us to postulate a mechanism for the E2 → E1 transition triggered by deprotonation of Glu309.
Collapse
|
14
|
Rui H, Das A, Nakamoto R, Roux B. Proton Countertransport and Coupled Gating in the Sarcoplasmic Reticulum Calcium Pump. J Mol Biol 2018; 430:5050-5065. [PMID: 30539761 DOI: 10.1016/j.jmb.2018.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/25/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
Abstract
The calcium pump of the sarcoplasmic reticulum (SERCA) is an ATP-driven active transporter of Ca2+ ions that functions via an "alternating-access" cycle mechanism. In each cycle, SERCA transports two Ca2+ ions toward the lumen of the sarcoplasmic reticulum and two to three protons to the cytoplasm. How the latter conformational transition is coupled to cytoplasmic release of protons remains poorly understood. The present computational study shows how the mechanism of proton countertransport is coupled to the alternating access gating process in SERCA. Molecular dynamics simulation trajectories are generated starting from a series of configurations taken along the E2 to E1 transition pathway determined by the string method with swarms-of-trajectories. Simulations of different protonation configurations at the binding sites reveal how deprotonation events affect the opening of the cytoplasmic gate. The results show that there is a strong coupling between the chronological order of deprotonation, the entry of water molecules into the TM region, and the opening of the cytoplasmic gate. Deprotonation of E309 and E771 is sequential with E309 being the first to lose the proton. The deprotonation promotes the opening of the cytoplasmic gate but leads to a productive gating transition only if it occurs after the transmembrane domain has reached an intermediate conformation. Deprotonation of E309 and E771 is unproductive when it occurs too early because it causes the re-opening of the luminal gate.
Collapse
Affiliation(s)
- Huan Rui
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Avisek Das
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 800886, 480 Ray C. Hunt Drive, Charlottesville, VA 22908, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Fernández-de Gortari E, Espinoza-Fonseca LM. Structural basis for relief of phospholamban-mediated inhibition of the sarcoplasmic reticulum Ca 2+-ATPase at saturating Ca 2+ conditions. J Biol Chem 2018; 293:12405-12414. [PMID: 29934304 DOI: 10.1074/jbc.ra118.003752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Indexed: 11/06/2022] Open
Abstract
Sarcoplasmic reticulum Ca2+-ATPase (SERCA) is critical for cardiac Ca2+ transport. Reversal of phospholamban (PLB)-mediated SERCA inhibition by saturating Ca2+ conditions operates as a physiological rheostat to reactivate SERCA function in the absence of PLB phosphorylation. Here, we performed extensive atomistic molecular dynamics simulations to probe the structural mechanism of this process. Simulation of the inhibitory complex at superphysiological Ca2+ concentrations ([Ca2+] = 10 mm) revealed that Ca2+ ions interact primarily with SERCA and the lipid headgroups, but not with PLB's cytosolic domain or the cytosolic side of the SERCA-PLB interface. At this [Ca2+], a single Ca2+ ion was translocated from the cytosol to the transmembrane transport sites. We used this Ca2+-bound complex as an initial structure to simulate the effects of saturating Ca2+ at physiological conditions ([Ca2+]total ≈ 400 μm). At these conditions, ∼30% of the Ca2+-bound complexes exhibited structural features consistent with an inhibited state. However, in ∼70% of the Ca2+-bound complexes, Ca2+ moved to transport site I, recruited Glu771 and Asp800, and disrupted key inhibitory contacts involving the conserved PLB residue Asn34 Structural analysis showed that Ca2+ induces only local changes in interresidue inhibitory interactions, but does not induce repositioning or changes in PLB structural dynamics. Upon relief of SERCA inhibition, Ca2+ binding produced a site I configuration sufficient for subsequent SERCA activation. We propose that at saturating [Ca2+] and in the absence of PLB phosphorylation, binding of a single Ca2+ ion in the transport sites rapidly shifts the equilibrium toward a noninhibited SERCA-PLB complex.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- From the Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - L Michel Espinoza-Fonseca
- From the Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
16
|
Smeazzetto S, Armanious GP, Moncelli MR, Bak JJ, Lemieux MJ, Young HS, Tadini-Buoninsegni F. Conformational memory in the association of the transmembrane protein phospholamban with the sarcoplasmic reticulum calcium pump SERCA. J Biol Chem 2017; 292:21330-21339. [PMID: 29081402 DOI: 10.1074/jbc.m117.794453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
The sarcoplasmic reticulum Ca2+-ATPase SERCA promotes muscle relaxation by pumping calcium ions from the cytoplasm into the sarcoplasmic reticulum. SERCA activity is regulated by a variety of small transmembrane peptides, most notably by phospholamban in cardiac muscle and sarcolipin in skeletal muscle. However, how phospholamban and sarcolipin regulate SERCA is not fully understood. In the present study, we evaluated the effects of phospholamban and sarcolipin on calcium translocation and ATP hydrolysis by SERCA under conditions that mimic environments in sarcoplasmic reticulum membranes. For pre-steady-state current measurements, proteoliposomes containing SERCA and phospholamban or sarcolipin were adsorbed to a solid-supported membrane and activated by substrate concentration jumps. We observed that phospholamban altered ATP-dependent calcium translocation by SERCA within the first transport cycle, whereas sarcolipin did not. Using pre-steady-state charge (calcium) translocation and steady-state ATPase activity under substrate conditions (various calcium and/or ATP concentrations) promoting particular conformational states of SERCA, we found that the effect of phospholamban on SERCA depends on substrate preincubation conditions. Our results also indicated that phospholamban can establish an inhibitory interaction with multiple SERCA conformational states with distinct effects on SERCA's kinetic properties. Moreover, we noted multiple modes of interaction between SERCA and phospholamban and observed that once a particular mode of association is engaged it persists throughout the SERCA transport cycle and multiple turnover events. These observations are consistent with conformational memory in the interaction between SERCA and phospholamban, thus providing insights into the physiological role of phospholamban and its regulatory effect on SERCA transport activity.
Collapse
Affiliation(s)
- Serena Smeazzetto
- From the Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy and
| | - Gareth P Armanious
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Maria Rosa Moncelli
- From the Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy and
| | - Jessi J Bak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
17
|
Espinoza-Fonseca LM. The Ca 2+-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum. MOLECULAR BIOSYSTEMS 2017; 13:633-637. [PMID: 28290590 DOI: 10.1039/c7mb00065k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ca2+ transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca2+ homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca2+ uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca2+ and other ions across the SR. During Ca2+ uptake by the SR Ca2+-ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca2+ transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca2+ release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca2+ transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Fernández-de Gortari E, Espinoza-Fonseca LM. Preexisting domain motions underlie protonation-dependent structural transitions of the P-type Ca 2+-ATPase. Phys Chem Chem Phys 2017; 19:10153-10162. [PMID: 28374038 PMCID: PMC5472844 DOI: 10.1039/c7cp00243b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have performed microsecond molecular dynamics (MD) simulations to determine the mechanism for protonation-dependent structural transitions of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), one of the most prominent members of the large P-type ATPase superfamily that transports ions across biological membranes. The release of two H+ from the transport sites activates SERCA by inducing a structural transition between low (E2) and high (E1) Ca2+-affinity states (E2-to-E1 transition), but the structural mechanism by which transport site deprotonation facilitates this transition is unknown. We performed microsecond all-atom MD simulations to determine the effects of transport site protonation on the structural dynamics of the E2 state in solution. We found that the protonated E2 state has structural characteristics that are similar to those observed in crystal structures of E2. Upon deprotonation, a single Na+ ion rapidly (<10 ns) binds to the transmembrane transport sites and induces a kink in M5, disrupts the M3-M5 interface, and increases the mobility of the M3/A-M3 linker. Principal component analysis showed that counter-rotation of the cytosolic N-A domains about the membrane normal axis, which is the primary motion driving the E2-to-E1 transition, is present in both protonated and deprotonated E2 states; however, protonation-dependent structural changes in the transmembrane domain control the hierarchical organization and amplitude of this motion. We propose that preexisting rigid-body domain motions underlie structural transitions of SERCA, where the functionally important directionality is preserved while transport site protonation controls the dominance and amplitude of motion to shift the equilibrium between the E1 and E2 states. We conclude that ligand-induced modulation of preexisting domain motions is likely a common theme in structural transitions of the P-type ATPase superfamily.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
19
|
Danko S, Yamasaki K, Daiho T, Suzuki H. Membrane Perturbation of ADP-insensitive Phosphoenzyme of Ca 2+-ATPase Modifies Gathering of Transmembrane Helix M2 with Cytoplasmic Domains and Luminal Gating. Sci Rep 2017; 7:41172. [PMID: 28117348 PMCID: PMC5259720 DOI: 10.1038/srep41172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022] Open
Abstract
Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase involves ATP-dependent phosphorylation of a catalytic aspartic acid residue. The key process, luminal Ca2+ release occurs upon phosphoenzyme isomerization, abbreviated as E1PCa2 (reactive to ADP regenerating ATP and with two occluded Ca2+ at transport sites) → E2P (insensitive to ADP and after Ca2+ release). The isomerization involves gathering of cytoplasmic actuator and phosphorylation domains with second transmembrane helix (M2), and is epitomized by protection of a Leu119-proteinase K (prtK) cleavage site on M2. Ca2+ binding to the luminal transport sites of E2P, producing E2PCa2 before Ca2+-release exposes the prtK-site. Here we explore E2P structure to further elucidate luminal gating mechanism and effect of membrane perturbation. We find that ground state E2P becomes cleavable at Leu119 in a non-solubilizing concentration of detergent C12E8 at pH 7.4, indicating a shift towards a more E2PCa2-like state. Cleavage is accelerated by Mg2+ binding to luminal transport sites and blocked by their protonation at pH 6.0. Results indicate that possible disruption of phospholipid-protein interactions strongly favors an E2P species with looser head domain interactions at M2 and responsive to specific ligand binding at the transport sites, likely an early flexible intermediate in the development towards ground state E2P.
Collapse
Affiliation(s)
- Stefania Danko
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Kazuo Yamasaki
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Takashi Daiho
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| | - Hiroshi Suzuki
- Asahikawa Medical University, Department of Biochemistry, Midorigaoka-Higashi, Asahikawa, 078-8510, Japan
| |
Collapse
|
20
|
Evans AM. Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in Vascular Smooth Muscles. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:1-47. [PMID: 28212795 DOI: 10.1016/bs.apha.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vasoactive agents may induce myocyte contraction, dilation, and the switch from a contractile to a migratory-proliferative phenotype(s), which requires changes in gene expression. These processes are directed, in part, by Ca2+ signals, but how different Ca2+ signals are generated to select each function is enigmatic. We have previously proposed that the strategic positioning of Ca2+ pumps and release channels at membrane-membrane junctions of the sarcoplasmic reticulum (SR) demarcates cytoplasmic nanodomains, within which site- and function-specific Ca2+ signals arise. This chapter will describe how nanojunctions of the SR may: (1) define cytoplasmic nanospaces about the plasma membrane, mitochondria, contractile myofilaments, lysosomes, and the nucleus; (2) provide for functional segregation by restricting passive diffusion and by coordinating active ion transfer within a given nanospace via resident Ca2+ pumps and release channels; (3) select for contraction, relaxation, and/or changes in gene expression; and (4) facilitate the switch in myocyte phenotype through junctional reorganization. This should serve to highlight the need for further exploration of cellular nanojunctions and the mechanisms by which they operate, that will undoubtedly open up new therapeutic horizons.
Collapse
Affiliation(s)
- A M Evans
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
21
|
Páez-Pérez ED, De La Cruz-Torres V, Sampedro JG. Nucleotide Binding in an Engineered Recombinant Ca 2+-ATPase N-Domain. Biochemistry 2016; 55:6751-6765. [PMID: 27951662 DOI: 10.1021/acs.biochem.6b00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recombinant Ca2+-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg2+) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg2+ > ATP-Mg2+. Interestingly, it was found that Ca2+ binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca2+ (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca2+-ATPase performs structural dynamics upon Ca2+ and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca2+ binding may be involved in Ca2+-ATPase activation under normal physiological conditions.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - Valentín De La Cruz-Torres
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| |
Collapse
|
22
|
Espinoza-Fonseca LM, Autry JM, Ramírez-Salinas GL, Thomas DD. Atomic-level mechanisms for phospholamban regulation of the calcium pump. Biophys J 2016; 108:1697-1708. [PMID: 25863061 DOI: 10.1016/j.bpj.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022] Open
Abstract
We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1-7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K(+) and 3 mM Mg(2+). Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K(+) ions bind transiently (≤5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K(+) in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1⋅H(+)771. This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca(2+)-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - G Lizbeth Ramírez-Salinas
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
23
|
Liu B, Ho HT, Brunello L, Unudurthi SD, Lou Q, Belevych AE, Qian L, Kim DH, Cho C, Janssen PML, Hund TJ, Knollmann BC, Kranias EG, Györke S. Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc Res 2015; 108:299-311. [PMID: 26410369 DOI: 10.1093/cvr/cvv222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 01/02/2023] Open
Abstract
AIMS Cardiac calsequestrin (CASQ2) and histidine-rich Ca-binding protein (HRC) are sarcoplasmic reticulum (SR) Ca-binding proteins that regulate SR Ca release in mammalian heart. Deletion of either CASQ2 or HRC results in relatively mild phenotypes characterized by preserved cardiac structure and function, although CASQ2 knockout (KO), or Cnull, shows increased arrhythmia burden under conditions of catecholaminergic stress. We hypothesized that given the apparent overlap of functions of CASQ2 and HRC, simultaneous ablation of both would deteriorate the cardiac phenotype compared with the single knockouts. METHODS AND RESULTS In contrast to this expectation, double knockout (DKO) mice lacking both CASQ2 and HRC exhibited normal cardiac ejection fraction and ultrastructure. Moreover, the predisposition to catecholamine-dependent arrhythmia that characterizes the Cnull phenotype was alleviated in the DKO mice. At the myocyte level, DKO mice displayed Ca transients of normal amplitude; additionally, the frequency of spontaneous Ca waves and sparks in the presence of isoproterenol were decreased markedly compared with Cnull. Furthermore, restitution of SR Ca release was slowed in DKO myocytes compared with Cnull cells. CONCLUSION Our results suggest that rather than being functionally redundant, CASQ2 and HRC modulate cardiac ryanodine receptor-mediated (RyR2) Ca release in an opposing manner. In particular, while CASQ2 stabilizes RyR2 rendering it refractory in the diastolic phase, HRC enhances RyR2 activity facilitating RyR2 recovery from refractoriness.
Collapse
Affiliation(s)
- Bin Liu
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Hsiang-Ting Ho
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Lucia Brunello
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Sathya D Unudurthi
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Qing Lou
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Lan Qian
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Chunghee Cho
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Thomas J Hund
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sándor Györke
- Department of Physiology and Cell Biology, College of Medicine, and Davis Heart and Lung Research Institute, The Ohio State University, 473 W. 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Ramírez-Salinas GL, Espinoza-Fonseca LM. Atomistic Characterization of the First Step of Calcium Pump Activation Associated with Proton Countertransport. Biochemistry 2015; 54:5235-41. [PMID: 26250140 DOI: 10.1021/acs.biochem.5b00672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calcium pump [sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA)] transports Ca(2+) from the cytosol to the SR lumen at the expense of ATP hydrolysis and proton countertransport, thus playing a central role in Ca(2+) homeostasis and muscle contractility. Proton countertransport via deprotonation of transport site residue Glu309 is a critical first step in SERCA activation because it accelerates the E2-E1 structural transition. Previous studies have suggested that flipping of Glu309 toward the cytosol constitutes the primary mechanism for Glu309 deprotonation, but no conclusive data to support this hypothesis have been published. Therefore, we performed three independent 1 μs molecular dynamics simulations of the E2 state protonated at transport site residues Glu309, Glu771, and Glu908. Structural analysis and pKa calculations showed that Glu309 deprotonation occurs by an inward-to-outward side-chain transition. We also found that Glu309 deprotonation and proton countertransport occur through transient (~113 ps) water wires connecting Glu309 with the cytosol. Although both mechanisms are operational, we found that transient water wire formation, and not Glu309 flipping, is the primary mechanism for Glu309 deprotonation and translocation of protons to the cytosol. The outward-to-inward transition of protonated Glu309 and the presence of water wires suggest that protons from the cytosol might be passively transported to the lumen via Glu309. However, structural analysis indicates that passive SR proton leakage into the lumen unlikely occurs through Glu309 in the E2 state. These findings provide a time-resolved visualization of the first step in the molecular mechanism of SERCA activation and proton transport across the SR.
Collapse
Affiliation(s)
- G Lizbeth Ramírez-Salinas
- Laboratorio de Modelado Molecular y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340, Mexico
| | - L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Bruhn DS, Kopec W, Khandelia H, Periasamy M. The N Terminus of Sarcolipin Plays an Important Role in Uncoupling Sarco-endoplasmic Reticulum Ca2+-ATPase (SERCA) ATP Hydrolysis from Ca2+ Transport. J Biol Chem 2015; 290:14057-67. [PMID: 25882845 DOI: 10.1074/jbc.m115.636738] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 01/13/2023] Open
Abstract
The sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) is responsible for intracellular Ca(2+) homeostasis. SERCA activity in muscle can be regulated by phospholamban (PLB), an affinity modulator, and sarcolipin (SLN), an uncoupler. Although PLB gets dislodged from Ca(2+)-bound SERCA, SLN continues to bind SERCA throughout its kinetic cycle and promotes uncoupling of Ca(2+) transport from ATP hydrolysis. To determine the structural regions of SLN that mediate uncoupling of SERCA, we employed mutagenesis and generated chimeras of PLB and SLN. In this study we demonstrate that deletion of SLN N-terminal residues (2)ERSTQ leads to loss of the uncoupling function even though the truncated peptide can target and constitutively bind SERCA. Furthermore, molecular dynamics simulations of SLN and SERCA interaction showed a rearrangement of SERCA residues that is altered when the SLN N terminus is deleted. Interestingly, transfer of the PLB cytosolic domain to the SLN transmembrane (TM) and luminal tail causes the chimeric protein to lose SLN-like function. Further introduction of the PLB TM region into this chimera resulted in conversion to full PLB-like function. We also found that swapping PLB N and C termini with those from SLN caused the resulting chimera to acquire SLN-like function. Swapping the C terminus alone was not sufficient for this conversion. These results suggest that domains can be switched between SLN and PLB without losing the ability to regulate SERCA activity; however, the resulting chimeras acquire functions different from the parent molecules. Importantly, our studies highlight that the N termini of SLN and PLB influence their respective unique functions.
Collapse
Affiliation(s)
- Sanjaya K Sahoo
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827
| | - Sana A Shaikh
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210
| | - Danesh H Sopariwala
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210
| | - Naresh C Bal
- From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210
| | - Dennis Skjøth Bruhn
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense M 5230, Denmark, and
| | - Wojciech Kopec
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense M 5230, Denmark, and
| | - Himanshu Khandelia
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, Odense M 5230, Denmark, and
| | - Muthu Periasamy
- the Sanford Burnham Medical Research Institute at Lake Nona, Orlando, Florida 32827 From the Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210,
| |
Collapse
|
26
|
Abstract
![]()
To
characterize the conformational dynamics of sarcoplasmic reticulum
(SR) calcium pump (SERCA) we performed molecular dynamics simulations
beginning with several different high-resolution structures. We quantified
differences in structural disorder and dynamics for an open conformation
of SERCA versus closed structures and observed that dynamic motions
of SERCA cytoplasmic domains decreased with decreasing domain–domain
separation distance. The results are useful for interpretation of
recent intramolecular Förster resonance energy transfer (FRET)
distance measurements obtained for SERCA fused to fluorescent protein
tags. Those previous physical measurements revealed several discrete
structural substates and suggested open conformations of SERCA are
more dynamic than compact conformations. The present simulations support
this hypothesis and provide additional details of SERCA molecular
mechanisms. Specifically, all-atoms simulations revealed large-scale
translational and rotational motions of the SERCA N-domain relative
to the A- and P-domains during the transition from an open to a closed
headpiece conformation over the course of a 400 ns trajectory. The
open-to-closed structural transition was accompanied by a disorder-to-order
transition mediated by an initial interaction of an N-domain loop
(Nβ5-β6, residues 426–436) with residues 133–139
of the A-domain. Mutation of three negatively charged N-domain loop
residues abolished the disorder-to-order transition and prevented
the initial domain–domain interaction and subsequent closure
of the cytoplasmic headpiece. Coarse-grained molecular dynamics simulations
were in harmony with all-atoms simulations and physical measurements
and revealed a close communication between fluorescent protein tags
and the domain to which they were fused. The data indicate that previous
intramolecular FRET distance measurements report SERCA structure changes
with high fidelity and suggest a structural mechanism that facilitates
the closure of the SERCA cytoplasmic headpiece.
Collapse
Affiliation(s)
- Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago , Maywood, Illinois 60153, United States
| | | |
Collapse
|
27
|
Mahmmoud YA, Kopec W, Khandelia H. K+ congeners that do not compromise Na+ activation of the Na+,K+-ATPase: hydration of the ion binding cavity likely controls ion selectivity. J Biol Chem 2014; 290:3720-31. [PMID: 25533461 DOI: 10.1074/jbc.m114.577486] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Na(+),K(+)-ATPase is essential for ionic homeostasis in animal cells. The dephosphoenzyme contains Na(+) selective inward facing sites, whereas the phosphoenzyme contains K(+) selective outward facing sites. Under normal physiological conditions, K(+) inhibits cytoplasmic Na(+) activation of the enzyme. Acetamidinium (Acet(+)) and formamidinium (Form(+)) have been shown to permeate the pump through the outward facing sites. Here, we show that these cations, unlike K(+), are unable to enter the inward facing sites in the dephosphorylated enzyme. Consistently, the organic cations exhibited little to no antagonism to cytoplasmic Na(+) activation. Na(+),K(+)-ATPase structures revealed a previously undescribed rotamer transition of the hydroxymethyl side chain of the absolutely conserved Thr(772) of the α-subunit. The side chain contributes its hydroxyl to Na(+) in site I in the E1 form and rotates to contribute its methyl group toward K(+) in the E2 form. Molecular dynamics simulations to the E1·AlF4 (-)·ADP·3Na(+) structure indicated that 1) bound organic cations differentially distorted the ion binding sites, 2) the hydroxymethyl of Thr(772) rotates to stabilize bound Form(+) through water molecules, and 3) the rotamer transition is mediated by water traffic into the ion binding cavity. Accordingly, dehydration induced by osmotic stress enhanced the interaction of the congeners with the outward facing sites and profoundly modified the organization of membrane domains of the α-subunit. These results assign a catalytic role for water in pump function, and shed light on a backbone-independent but a conformation-dependent switch between H-bond and dispersion contact as part of the catalytic mechanism of the Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Yasser A Mahmmoud
- From the Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C and
| | - Wojciech Kopec
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Himanshu Khandelia
- the MEMPHYS, Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
28
|
Mahmmoud YA, Shattock M, Cornelius F, Pavlovic D. Inhibition of K+ transport through Na+, K+-ATPase by capsazepine: role of membrane span 10 of the α-subunit in the modulation of ion gating. PLoS One 2014; 9:e96909. [PMID: 24816799 PMCID: PMC4016139 DOI: 10.1371/journal.pone.0096909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4-.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yasser A. Mahmmoud
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
- * E-mail:
| | - Michael Shattock
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
29
|
Espinoza-Fonseca LM, Autry JM, Thomas DD. Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump. PLoS One 2014; 9:e95979. [PMID: 24760008 PMCID: PMC3997511 DOI: 10.1371/journal.pone.0095979] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022] Open
Abstract
We have performed microsecond molecular dynamics (MD) simulations to characterize the structural dynamics of cation-bound E1 intermediate states of the calcium pump (sarcoendoplasmic reticulum Ca²⁺-ATPase, SERCA) in atomic detail, including a lipid bilayer with aqueous solution on both sides. X-ray crystallography with 40 mM Mg²⁺ in the absence of Ca²⁺ has shown that SERCA adopts an E1 structure with transmembrane Ca²⁺-binding sites I and II exposed to the cytosol, stabilized by a single Mg²⁺ bound to a hybrid binding site I'. This Mg²⁺-bound E1 intermediate state, designated E1•Mg²⁺, is proposed to constitute a functional SERCA intermediate that catalyzes the transition from E2 to E1•2Ca²⁺ by facilitating H⁺/Ca²⁺ exchange. To test this hypothesis, we performed two independent MD simulations based on the E1•Mg²⁺ crystal structure, starting in the presence or absence of initially-bound Mg²⁺. Both simulations were performed for 1 µs in a solution containing 100 mM K⁺ and 5 mM Mg²⁺ in the absence of Ca²⁺, mimicking muscle cytosol during relaxation. In the presence of initially-bound Mg²⁺, SERCA site I' maintained Mg²⁺ binding during the entire MD trajectory, and the cytosolic headpiece maintained a semi-open structure. In the absence of initially-bound Mg²⁺, two K⁺ ions rapidly bound to sites I and I' and stayed loosely bound during most of the simulation, while the cytosolic headpiece shifted gradually to a more open structure. Thus MD simulations predict that both E1•Mg²⁺ and E•2K+ intermediate states of SERCA are populated in solution in the absence of Ca²⁺, with the more open 2K+-bound state being more abundant at physiological ion concentrations. We propose that the E1•2K⁺ state acts as a functional intermediate that facilitates the E2 to E1•2Ca²⁺ transition through two mechanisms: by pre-organizing transport sites for Ca²⁺ binding, and by partially opening the cytosolic headpiece prior to Ca²⁺ activation of nucleotide binding.
Collapse
Affiliation(s)
- L. Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Joseph M. Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
30
|
SERCA mutant E309Q binds two Ca(2+) ions but adopts a catalytically incompetent conformation. EMBO J 2013; 32:3231-43. [PMID: 24270570 DOI: 10.1038/emboj.2013.250] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/21/2013] [Indexed: 11/08/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) couples ATP hydrolysis to transport of Ca(2+). This directed energy transfer requires cross-talk between the two Ca(2+) sites and the phosphorylation site over 50 Å distance. We have addressed the mechano-structural basis for this intramolecular signal by analysing the structure and the functional properties of SERCA mutant E309Q. Glu(309) contributes to Ca(2+) coordination at site II, and a consensus has been that E309Q only binds Ca(2+) at site I. The crystal structure of E309Q in the presence of Ca(2+) and an ATP analogue, however, reveals two occupied Ca(2+) sites of a non-catalytic Ca2E1 state. Ca(2+) is bound with micromolar affinity by both Ca(2+) sites in E309Q, but without cooperativity. The Ca(2+)-bound mutant does phosphorylate from ATP, but at a very low maximal rate. Phosphorylation depends on the correct positioning of the A-domain, requiring a shift of transmembrane segment M1 into an 'up and kinked position'. This transition is impaired in the E309Q mutant, most likely due to a lack of charge neutralization and altered hydrogen binding capacities at Ca(2+) site II.
Collapse
|
31
|
Pallikkuth S, Blackwell D, Hu Z, Hou Z, Zieman D, Svensson B, Thomas D, Robia S. Phosphorylated phospholamban stabilizes a compact conformation of the cardiac calcium-ATPase. Biophys J 2013; 105:1812-21. [PMID: 24138857 PMCID: PMC3797577 DOI: 10.1016/j.bpj.2013.08.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/02/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
The sarcoendoplasmic reticulum calcium ATPase (SERCA) plays a key role in cardiac calcium handling and is considered a high-value target for the treatment of heart failure. SERCA undergoes conformational changes as it harnesses the chemical energy of ATP for active transport. X-ray crystallography has provided insight into SERCA structural substates, but it is not known how well these static snapshots describe in vivo conformational dynamics. The goals of this work were to quantify the direction and magnitude of SERCA motions as the pump performs work in live cardiac myocytes, and to identify structural determinants of SERCA regulation by phospholamban. We measured intramolecular fluorescence resonance energy transfer (FRET) between fluorescent proteins fused to SERCA cytoplasmic domains. We detected four discrete structural substates for SERCA expressed in cardiac muscle cells. The relative populations of these discrete states oscillated with electrical pacing. Low FRET states were most populated in low Ca (diastole), and were indicative of an open, disordered structure for SERCA in the E2 (Ca-free) enzymatic substate. High FRET states increased with Ca (systole), suggesting rigidly closed conformations for the E1 (Ca-bound) enzymatic substates. Notably, a special compact E1 state was observed after treatment with β-adrenergic agonist or with coexpression of phosphomimetic mutants of phospholamban. The data suggest that SERCA calcium binding induces the pump to undergo a transition from an open, dynamic conformation to a closed, ordered structure. Phosphorylated phospholamban stabilizes a unique conformation of SERCA that is characterized by a compact architecture.
Collapse
Affiliation(s)
- Sandeep Pallikkuth
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Daniel J. Blackwell
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Zhihong Hu
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Zhanjia Hou
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Dane T. Zieman
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Seth L. Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
32
|
Kekenes-Huskey PM, Metzger VT, Grant BJ, Andrew McCammon J. Calcium binding and allosteric signaling mechanisms for the sarcoplasmic reticulum Ca²+ ATPase. Protein Sci 2013; 21:1429-43. [PMID: 22821874 DOI: 10.1002/pro.2129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sarcoplasmic reticulum Ca²⁺ ATPase (SERCA) is a membrane-bound pump that utilizes ATP to drive calcium ions from the myocyte cytosol against the higher calcium concentration in the sarcoplasmic reticulum. Conformational transitions associated with Ca²⁺-binding are important to its catalytic function. We have identified collective motions that partition SERCA crystallographic structures into multiple catalytically-distinct states using principal component analysis. Using Brownian dynamics simulations, we demonstrate the important contribution of surface-exposed, polar residues in the diffusional encounter of Ca²⁺. Molecular dynamics simulations indicate the role of Glu309 gating in binding Ca²⁺, as well as subsequent changes in the dynamics of SERCA's cytosolic domains. Together these data provide structural and dynamical insights into a multistep process involving Ca²⁺ binding and catalytic transitions.
Collapse
Affiliation(s)
- Peter M Kekenes-Huskey
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | |
Collapse
|
33
|
Sahoo SK, Shaikh SA, Sopariwala DH, Bal NC, Periasamy M. Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem 2013; 288:6881-9. [PMID: 23341466 DOI: 10.1074/jbc.m112.436915] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sarco(endo)plasmic reticulum Ca(2+)ATPase (SERCA) pump activity is modulated by phospholamban (PLB) and sarcolipin (SLN) in cardiac and skeletal muscle. Recent data suggest that SLN could play a role in muscle thermogenesis by promoting uncoupling of the SERCA pump (Lee, A.G. (2002) Curr. Opin. Struct. Biol. 12, 547-554 and Bal, N. C., Maurya, S. K., Sopariwala, D. H., Sahoo, S. K., Gupta, S. C., Shaikh, S. A., Pant, M., Rowland, L. A., Bombardier, E., Goonasekera, S. A., Tupling, A. R., Molkentin, J. D., and Periasamy, M. (2012) Nat. Med. 18, 1575-1579), but the mechanistic details are unknown. To better define how binding of SLN to SERCA promotes uncoupling of SERCA, we compared SLN and SERCA1 interaction with that of PLB in detail. The homo-bifunctional cross-linker (1,6-bismaleimidohexane) was employed to detect dynamic protein interaction during the SERCA cycle. Our studies reveal that SLN differs significantly from PLB: 1) SLN primarily affects the Vmax of SERCA-mediated Ca(2+) uptake but not the pump affinity for Ca(2+); 2) SLN can bind to SERCA in the presence of high Ca(2+), but PLB can only interact to the ATP-bound Ca(2+)-free E2 state; and 3) unlike PLB, SLN interacts with SERCA throughout the kinetic cycle and promotes uncoupling of the SERCA pump. Using SERCA transmembrane mutants, we additionally show that PLB and SLN can bind to the same groove but interact with a different set of residues on SERCA. These data collectively suggest that SLN is functionally distinct from PLB; its ability to interact with SERCA in the presence of Ca(2+) causes uncoupling of the SERCA pump and increased heat production.
Collapse
Affiliation(s)
- Sanjaya K Sahoo
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
34
|
Mahmmoud YA, Gaster M. Uncoupling of sarcoplasmic reticulum Ca²⁺-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs. Br J Pharmacol 2012; 166:2060-9. [PMID: 22335600 DOI: 10.1111/j.1476-5381.2012.01899.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The sarcoplasmic reticulum Ca²⁺-ATPase (SERCA) plays a role in thermogenesis. The exogenous compound capsaicin increased SERCA-mediated ATP hydrolysis not coupled to Ca²⁺ transport. Here, we have sought to identify endogenous compounds that may function as SERCA uncoupling agents. EXPERIMENTAL APPROACH Using isolated SR vesicles from rabbits, we have screened for endogenous compounds that uncouple SERCA. We have also studied their ability to deplete cytoplasmic ATP from human skeletal muscle cells in culture. KEY RESULTS Studies on SR vesicles showed that the endogenous lipid metabolite N-arachidonoyl dopamine (NADA) was a potent stimulator of SERCA uncoupling. NADA stabilized an E₁-like pump conformation that had a lower dephosphorylation rate, low affinity for Ca²⁺ at the luminal sites and a specific proteinase K cleavage pattern involving protection of the C-terminal p83C fragment from further cleavage. Moreover, we found a significantly decreased cytoplasmic ATP levels following treatment of skeletal muscle cells with 100 nM NADA. This effect was dependent on the presence of glucose and abolished by pretreatment with the specific SERCA inhibitor thapsigargin, regardless of the presence of glucose. CONCLUSIONS AND IMPLICATIONS NADA is an endogenous molecule that may function as SERCA uncoupling agent in vivo. Members of the endocannabinoid family exert concerted actions on several Ca²⁺-handling proteins. Uncoupling of SERCA by exogenous compounds could be a novel post-mitochondrial strategy for reduction of cellular ATP levels. In addition, signalling networks leading to SERCA uncoupling can be explored to study the importance of this ion pump in pathophysiological conditions related to metabolism.
Collapse
Affiliation(s)
- Y A Mahmmoud
- Department of Biomedicine, University of Aarhus, Aarhus C, Denmark.
| | | |
Collapse
|
35
|
Autry JM, Rubin JE, Svensson B, Li J, Thomas DD. Nucleotide activation of the Ca-ATPase. J Biol Chem 2012; 287:39070-82. [PMID: 22977248 DOI: 10.1074/jbc.m112.404434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used fluorescence spectroscopy, molecular modeling, and limited proteolysis to examine structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA). The Ca-ATPase in sarcoplasmic reticulum vesicles from fast twitch muscle (SERCA1a isoform) was selectively labeled with fluorescein isothiocyanate (FITC), a probe that specifically reacts with Lys-515 in the nucleotide-binding site. Conformation-specific proteolysis demonstrated that FITC labeling does not induce closure of the cytoplasmic headpiece, thereby assigning FITC-SERCA as a nucleotide-free enzyme. We used enzyme reverse mode to synthesize FITC monophosphate (FMP) on SERCA, producing a phosphorylated pseudosubstrate tethered to the nucleotide-binding site of a Ca(2+)-free enzyme (E2 state to prevent FMP hydrolysis). Conformation-specific proteolysis demonstrated that FMP formation induces SERCA headpiece closure similar to ATP binding, presumably due to the high energy phosphoryl group on the fluorescent probe (ATP·E2 analog). Subnanosecond-resolved detection of fluorescence lifetime, anisotropy, and quenching was used to characterize FMP-SERCA (ATP·E2 state) versus FITC-SERCA in Ca(2+)-free, Ca(2+)-bound, and actively cycling phosphoenzyme states (E2, E1, and EP). Time-resolved spectroscopy revealed that FMP-SERCA exhibits increased probe dynamics but decreased probe accessibility compared with FITC-SERCA, indicating that ATP exhibits enhanced dynamics within a closed cytoplasmic headpiece. Molecular modeling was used to calculate the solvent-accessible surface area of FITC and FMP bound to SERCA crystal structures, revealing a positive correlation of solvent-accessible surface area with quenching but not anisotropy. Thus, headpiece closure is coupled to substrate binding but not active site dynamics. We propose that dynamics in the nucleotide-binding site of SERCA is important for Ca(2+) binding (distal allostery) and phosphoenzyme formation (direct activation).
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
36
|
Eriksson ESE, Eriksson LA. Identifying the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) as a potential target for hypericin--a theoretical study. Phys Chem Chem Phys 2012; 14:12637-46. [PMID: 22892582 DOI: 10.1039/c2cp42237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exact cellular target for the potent anti-cancer agent hypericin has not yet been determined; this thus encourages the application of computational chemistry tools to be employed in order to provide insights that can be employed in further drug development studies. In the present study computational docking and molecular dynamics simulations are applied to investigate possible interactions between hypericin and the Ca(2+) pump SERCA as proposed in the literature. Hypericin was found to bind strongly both in pockets within the transmembrane region and in the cytosolic region of the protein, although the two studied isoforms of SERCA differ slightly in their preferred binding sites. The calculated binding energies for hypericin in the four investigated sites were of the same magnitude as for thapsigargin (TG), the most potent SERCA inhibitor, or in the range between TG and di-tert-butylhydroquinone (BHQ), which is also known to possess inhibitory activity. The hydrophobic character of hypericin indicates that the molecule initially binds in the ER membrane from which it diffuses into the transmembrane region of the protein and to binding pockets therein. The transmembrane TG and BHQ binding pockets provide suitable locations for hypericin as they allow for favourable interactions with the lipid tails that surround these. High binding energies were noted for hypericin in these pockets and are expected to constitute highly possible binding sites due to their accessibility from the ER membrane. Hypericin most likely binds to both isoforms of SERCA and acts as an inhibitor or, under light irradiation, as a singlet oxygen generator that in turn degrades the protein or induces lipid peroxidation.
Collapse
Affiliation(s)
- Emma S E Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden.
| | | |
Collapse
|
37
|
Lewis D, Pilankatta R, Inesi G, Bartolommei G, Moncelli MR, Tadini-Buoninsegni F. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and Cu+ (ATP7A/B) ATPases. J Biol Chem 2012; 287:32717-27. [PMID: 22854969 DOI: 10.1074/jbc.m112.373472] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ca(2+) (sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA)) and Cu(+) (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca(2+), demonstrated by the addition of ATP and Ca(2+) to SERCA deprived of Ca(2+) (E2) as compared with ATP to Ca(2+)-activated enzyme (E1·2Ca(2+)). Activation by Ca(2+) is slower at low pH (2H(+)·E2 to E1·2Ca(2+)) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca(2+) translocation. A "H(+)-gated pathway," demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca(2+) release by H(+)/Ca(2+) exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu(+)/H(+) exchange. As opposed to SERCA after Ca(2+) chelation, ATP7A/B does not undergo reverse phosphorylation with P(i) after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.
Collapse
Affiliation(s)
- David Lewis
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | |
Collapse
|
38
|
Musgaard M, Thøgersen L, Schiøtt B. Protonation states of important acidic residues in the central Ca²⁺ ion binding sites of the Ca²⁺-ATPase: a molecular modeling study. Biochemistry 2011; 50:11109-20. [PMID: 22082179 DOI: 10.1021/bi201164b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P-type ATPases are responsible for the transport of cations across cell membranes. The sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA) transports two Ca²⁺ ions from the cytoplasm to the lumen of the sarco(endo)plasmic reticulum and countertransports two or three protons per catalytic cycle. Two binding sites for Ca²⁺ ions have been located via protein crystallography, including four acidic amino acid residues that are essential to the ion coordination. In this study, we present molecular dynamics (MD) simulations examining the protonation states of these amino acid residues in a Ca²⁺-free conformation of SERCA. Such knowledge will be important for an improved understanding of atomistic details of the transport mechanism of protons and Ca²⁺ ions. Eight combinations of the protonation of four central acidic residues, Glu309, Glu771, Asp800, and Glu908, are tested from 10 ns MD simulations with respect to protein stability and ability to maintain a structure similar to the crystal structure. The trajectories for the most prospective combinations of protonation states were elongated to 50 ns and subjected to more detailed analysis, including prediction of pK(a) values of the four acidic residues over the trajectories. From the simulations we find that the combination leaving only Asp800 as charged is most likely. The results are compared to available experimental data and explain the observed destabilization upon full deprotonation, resulting in the entry of cytoplasmic K⁺ ions into the Ca²⁺ binding sites during the simulation in which Ca²⁺ ions are absent. Furthermore, a hypothesis for the exchange of protons from the central binding cavity is proposed.
Collapse
Affiliation(s)
- Maria Musgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
39
|
Atomic-level characterization of the activation mechanism of SERCA by calcium. PLoS One 2011; 6:e26936. [PMID: 22046418 PMCID: PMC3203174 DOI: 10.1371/journal.pone.0026936] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/06/2011] [Indexed: 11/23/2022] Open
Abstract
We have performed molecular dynamics (MD) simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca2+-ATPase (SERCA) is activated by Ca2+. Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1) conformation stabilized by Ca2+, undergoes a large-scale open-to-closed (E1 to E2) transition that is induced by ATP binding. However, spectroscopic measurements in solution suggest that these structural states (E1 and E2) are not tightly coupled to biochemical states (defined by bound ligands); the closed E2 state predominates even in the absence of ATP, in both the presence and absence of Ca2+. How is this loose coupling consistent with the high efficiency of energy transduction in the Ca2+-ATPase? To provide insight into this question, we performed long (500 ns) all-atom MD simulations starting from the open crystal structure, including a lipid bilayer and water. In both the presence and absence of Ca2+, we observed a large-scale open-to-closed conformational transition within 400 ns, supporting the weak coupling between structural and biochemical states. However, upon closer inspection, it is clear that Ca2+ is necessary and sufficient for SERCA to reach the precise geometrical arrangement necessary for activation of ATP hydrolysis. Contrary to suggestions from crystal structures, but in agreement with solution spectroscopy, the presence of ATP is not required for this activating transition. Principal component analysis showed that Ca2+ reshapes the free energy landscape of SERCA to create a path between the open conformation and the activated closed conformation. Thus the malleability of the free energy landscape is essential for SERCA efficiency, ensuring that ATP hydrolysis is tightly coupled to Ca2+ transport. These results demonstrate the importance of real-time dynamics in the formation of catalytically competent conformations of SERCA, with broad implications for understanding enzymatic catalysis in atomic detail.
Collapse
|
40
|
Raeymaekers L, Vandecaetsbeek I, Wuytack F, Vangheluwe P. Modeling Ca2+ dynamics of mouse cardiac cells points to a critical role of SERCA's affinity for Ca2+. Biophys J 2011; 100:1216-25. [PMID: 21354394 DOI: 10.1016/j.bpj.2011.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
The SERCA2a isoform of the sarco/endoplasmic reticulum Ca(2+) pumps is specifically expressed in the heart, whereas SERCA2b is the ubiquitously expressed variant. It has been shown previously that replacement of SERCA2a by SERCA2b in mice (SERCA2(b/b) mice) results in only a moderate functional impairment, whereas SERCA activity is decreased by a 40% lower SERCA protein expression and by increased inhibition by phospholamban. To find out whether the documented kinetic differences in SERCA2b relative to SERCA2a (i.e., a twofold higher apparent Ca(2+) affinity, but twofold lower maximal turnover rate) can explain these compensatory changes, we simulated Ca(2+) dynamics in mouse ventricular myocytes. The model shows that the relative Ca(2+) transport capacity of SERCA2a and SERCA2b depends on the SERCA concentration. The simulations point to a dominant effect of SERCA2b's higher Ca(2+) affinity over its lower maximal turnover rate. The results suggest that increased systolic and decreased diastolic Ca(2+) levels in unstimulated conditions could contribute to the downregulation of SERCA in SERCA2(b/b) mice. In stress conditions, Ca(2+) handling is less efficient by SERCA2b than by SERCA2a, which might contribute to the observed hypertrophy in SERCA2(b/b) mice. Altogether, SERCA2a might be a better compromise between performance in basal conditions and performance during β-adrenergic stress.
Collapse
Affiliation(s)
- Luc Raeymaekers
- Laboratory of Cellular Transport Systems, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg, Leuven, Belgium.
| | | | | | | |
Collapse
|
41
|
Akin BL, Chen Z, Jones LR. Superinhibitory phospholamban mutants compete with Ca2+ for binding to SERCA2a by stabilizing a unique nucleotide-dependent conformational state. J Biol Chem 2010; 285:28540-52. [PMID: 20622261 DOI: 10.1074/jbc.m110.151779] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three cross-linkable phospholamban (PLB) mutants of increasing inhibitory strength (N30C-PLB < N27A,N30C,L37A-PLB (PLB3) < N27A,N30C,L37A,V49G-PLB (PLB4)) were used to determine whether PLB decreases the Ca(2+) affinity of SERCA2a by competing for Ca(2+) binding. The functional effects of N30C-PLB, PLB3, and PLB4 on Ca(2+)-ATPase activity and E1 approximately P formation were correlated with their binding interactions with SERCA2a measured by chemical cross-linking. Successively higher Ca(2+) concentrations were required to both activate the enzyme co-expressed with N30C-PLB, PLB3, and PLB4 and to dissociate N30C-PLB, PLB3, and PLB4 from SERCA2a, suggesting competition between PLB and Ca(2+) for binding to SERCA2a. This was confirmed with the Ca(2+) pump mutant, D351A, which is catalytically inactive but retains strong Ca(2+) binding. Increasingly higher Ca(2+) concentrations were also required to dissociate N30C-PLB, PLB3, and PLB4 from D351A, demonstrating directly that PLB antagonizes Ca(2+) binding. Finally, the specific conformation of E2 (Ca(2+)-free state of SERCA2a) that binds PLB was investigated using the Ca(2+)-pump inhibitors thapsigargin and vanadate. Cross-linking assays conducted in the absence of Ca(2+) showed that PLB bound preferentially to E2 with bound nucleotide, forming a remarkably stable complex that is highly resistant to both thapsigargin and vanadate. In the presence of ATP, N30C-PLB had an affinity for SERCA2a approaching that of vanadate (micromolar), whereas PLB3 and PLB4 had much higher affinities, severalfold greater than even thapsigargin (nanomolar or higher). We conclude that PLB decreases Ca(2+) binding to SERCA2a by stabilizing a unique E2.ATP state that is unable to bind thapsigargin or vanadate.
Collapse
Affiliation(s)
- Brandy L Akin
- Krannert Institute of Cardiology and the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
42
|
Jambou R, Martinelli A, Pinto J, Gribaldo S, Legrand E, Niang M, Kim N, Pharath L, Volnay B, Ekala MT, Bouchier C, Fandeur T, Berzosa P, Benito A, Ferreira ID, Ferreira C, Vieira PP, Alecrim MDG, Mercereau-Puijalon O, Cravo P. Geographic structuring of the Plasmodium falciparum sarco(endo)plasmic reticulum Ca2+ ATPase (PfSERCA) gene diversity. PLoS One 2010; 5:e9424. [PMID: 20195531 PMCID: PMC2828472 DOI: 10.1371/journal.pone.0009424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/22/2010] [Indexed: 01/09/2023] Open
Abstract
Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte.
Collapse
Affiliation(s)
- Ronan Jambou
- Institut Pasteur de Dakar, BP 220, Dakar, Senegal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Clark JH, Kinnear NP, Kalujnaia S, Cramb G, Fleischer S, Jeyakumar LH, Wuytack F, Evans AM. Identification of functionally segregated sarcoplasmic reticulum calcium stores in pulmonary arterial smooth muscle. J Biol Chem 2010; 285:13542-9. [PMID: 20177054 PMCID: PMC2859515 DOI: 10.1074/jbc.m110.101485] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In pulmonary arterial smooth muscle, Ca(2+) release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) may induce constriction and dilation in a manner that is not mutually exclusive. We show here that the targeting of different sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA) and RyR subtypes to discrete SR regions explains this paradox. Western blots identified protein bands for SERCA2a and SERCA2b, whereas immunofluorescence labeling of isolated pulmonary arterial smooth muscle cells revealed striking differences in the spatial distribution of SERCA2a and SERCA2b and RyR1, RyR2, and RyR3, respectively. Almost all SERCA2a and RyR3 labeling was restricted to a region within 1.5 microm of the nucleus. In marked contrast, SERCA2b labeling was primarily found within 1.5 microm of the plasma membrane, where labeling for RyR1 was maximal. The majority of labeling for RyR2 lay in between these two regions of the cell. Application of the vasoconstrictor endothelin-1 induced global Ca(2+) waves in pulmonary arterial smooth muscle cells, which were markedly attenuated upon depletion of SR Ca(2+) stores by preincubation of cells with the SERCA inhibitor thapsigargin but remained unaffected after preincubation of cells with a second SERCA antagonist, cyclopiazonic acid. We conclude that functionally segregated SR Ca(2+) stores exist within pulmonary arterial smooth muscle cells. One sits proximal to the plasma membrane, receives Ca(2+) via SERCA2b, and likely releases Ca(2+) via RyR1 to mediate vasodilation. The other is located centrally, receives Ca(2+) via SERCA2a, and likely releases Ca(2+) via RyR3 and RyR2 to initiate vasoconstriction.
Collapse
Affiliation(s)
- Jill H Clark
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Møller JV, Olesen C, Winther AML, Nissen P. What can be learned about the function of a single protein from its various X-ray structures: the example of the sarcoplasmic calcium pump. Methods Mol Biol 2010; 654:119-40. [PMID: 20665264 DOI: 10.1007/978-1-60761-762-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Improvements in the handling of membrane proteins for crystallization, combined with better synchrotron sources for X-ray diffraction analysis, are leading to clarification of the structural details of an ever increasing number of membrane transporters and receptors. Here we describe how this development has resulted in the elucidation at atomic resolution of a large number of structures of the sarcoplasmic Ca(2+)-ATPase (SERCA1a) present in skeletal muscle. The structures corresponding to the various intermediary states have been obtained after stabilization with structural analogues of ATP and of metal fluorides as mimicks of inorganic phosphate. From these results it is possible, in accordance with previous biochemical and molecular biology data, to give a detailed structural description of both ATP hydrolysis and Ca(2+) transport through the membrane, to serve as the starting point for a fuller understanding of the pump mechanism and, in future studies, on the regulatory role of this ubiquitous intracellular Ca(2+)-ATPase in cellular Ca(2+) metabolism in normal and pathological conditions.
Collapse
Affiliation(s)
- Jesper Vuust Møller
- Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
45
|
Mazzitelli LR, Rinaldi DE, Corradi GR, Adamo HP. The plasma membrane Ca2+ pump catalyzes the hydrolysis of ATP at low rate in the absence of Ca2+. Arch Biochem Biophys 2009; 495:62-6. [PMID: 20035709 DOI: 10.1016/j.abb.2009.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/30/2022]
Abstract
The plasma membrane Ca2+ ATPase catalyzed the hydrolysis of ATP in the presence of millimolar concentrations of EGTA and no added Ca2+ at a rate near 1.5% of that attained at saturating concentrations of Ca2+. Like the Ca-dependent ATPase, the Ca-independent activity was lower when the enzyme was autoinhibited, and increased when the enzyme was activated by acidic lipids or partial proteolysis. The ATP concentration dependence of the Ca2+-independent ATPase was consistent with ATP binding to the low affinity modulatory site. In this condition a small amount of hydroxylamine-sensitive phosphoenzyme was formed and rapidly decayed when chased with cold ATP. We propose that the Ca2+-independent ATP hydrolysis reflects the well known phosphatase activity which is maximal in the absence of Ca2+ and is catalyzed by E(2)-like forms of the enzyme. In agreement with this idea pNPP, a classic phosphatase substrate was a very effective inhibitor of the ATP hydrolysis.
Collapse
Affiliation(s)
- Luciana R Mazzitelli
- IQUIFIB-Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
46
|
König M, Lin M, Nelson TE, Groban L. Sevoflurane modulation of Ca2+ regulation in skeletal muscle sarcoplasmic reticulum vesicles from young and mature rabbits. Paediatr Anaesth 2009; 19:1166-74. [PMID: 19863735 DOI: 10.1111/j.1460-9592.2009.03159.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Developmental differences in splice variants of the two key sarcoplasmic reticulum (SR) calcium regulatory proteins, ryanodine (RyR1), and sarcoendoplasmic reticulum calcium pump (SERCA1) have been linked to various neuromuscular disorders, but not malignant hyperthermia (MH). However, it is unclear whether an age-related difference in volatile anesthetic-mediated SR calcium function exists that could add to our current understanding of the clinical presentation of MH syndrome and provide insight into molecular mechanisms for general anesthesia that may have other physiologic and/or pathophysiologic significance. Therefore, the effects of sevoflurane on intracellular calcium regulation in isolated SR membrane vesicles from the skeletal muscle of healthy young rabbits were compared to their adult counterpart using an established in vitro model with the assumption that exposure to sevoflurane would elicit a weaker response in the young SR. METHODS Through dual wavelength spectroscopy of Ca(2+): Arsenazo III difference absorbance, the effects of sevoflurane on SR Ca(2+) uptake rate and release in heavy and light fraction SR membrane vesicles isolated from the white muscle of anesthetized, postweaned (age = 6 weeks, n = 5) and adult (age = 6 months, n = 5) male New Zealand rabbits were examined. RESULTS The adult group showed a 50% increase in Ca(2+) uptake rate from control at both subclinical and clinically relevant anesthetic concentrations, whereas in the SR from the younger animals, Ca(2+) uptake rate was not altered by any concentration of sevoflurane. The sensitivity of both the low and high affinity Ca(2+)-binding sites on RyR1 was increased by sevoflurane to the same extent in the SR vesicles from the young and mature adult rabbits. Interestingly, a greater potency of sevoflurane for the high affinity-binding site was identified, and this was independent of age. CONCLUSIONS These findings suggest that the sensitivity of the SR to sevoflurane-mediated Ca(2+) uptake may be increased with maturity, while an analogous developmental effect on RyR1 is less probable. Nonetheless, this study shows for the first time that a potent inhalational agent such as sevoflurane can influence the high affinity SR calcium-binding site by lowering the extraluminal concentration of calcium necessary to trigger calcium release. While this may not be of consequence when inhaled anesthetics are administered to normal children or adults, it may have life-threatening consequences in carriers of RyR1 mutations.
Collapse
Affiliation(s)
- Matthias König
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1009, USA
| | | | | | | |
Collapse
|
47
|
Liu Y, Pilankatta R, Lewis D, Inesi G, Tadini-Buoninsegni F, Bartolommei G, Moncelli MR. High-yield heterologous expression of wild type and mutant Ca(2+) ATPase: Characterization of Ca(2+) binding sites by charge transfer. J Mol Biol 2009; 391:858-71. [PMID: 19559032 PMCID: PMC2928698 DOI: 10.1016/j.jmb.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/04/2009] [Accepted: 06/17/2009] [Indexed: 11/16/2022]
Abstract
High-yield heterologous SERCA1 (Ca(2+) ATPase) expression was obtained in COS-1 cells infected with recombinant adenovirus vector (rAdSERCA). Higher transcription and expression were obtained in the presence of a His(6) tag at the amino terminus, as compared with a His(6) tag at the carboxyl SERCA terminus, or no tag. The expressed protein was targeted extensively to intracellular membranes. Optimal yield of functional Ca(2+) ATPase corresponded to 10% of total protein, with phosphoenzyme levels, catalytic turnover and Ca(2+) transport identical with those of native SERCA1. This recombinant membrane-bound (detergent-free) enzyme was used for characterization of Ca(2+) binding at the two specific transmembrane sites (ATP-free) by measurements of net charge transfer upon Ca(2+) binding to the protein, yielding cooperative isotherms (K(1)=5.9+/-0.5x10(5) M(-1) and K(2)=5.7+/-0.3x10(6) M(-1)). Non-cooperative binding of only one Ca(2+), and loss of ATPase activation, were observed following E309 mutation at site II. On the other hand, as a consequence of the site II mutation, the affinity of site I for Ca(2+) was increased (K=4.4+/-0.2x10(6) M(-1)). This change was due to a pK(a) shift of site I acidic residues, and to contributions of oxygen functions from empty site II to Ca(2+) binding at site I. No charge movement was observed following E771Q mutation at site I, indicating no Ca(2+) binding to either site. Therefore, calcium occupancy of site I is required to trigger cooperative binding to site II and catalytic activation. In the presence of millimolar Mg(2+), the charge movement upon addition of Ca(2+) to WT ATPase was reduced by 50%, while it was reduced by 90% when Ca(2+) was added to the E309Q/A mutants, demonstrating that competitive Mg(2+) binding can occur at site I but not at site II.
Collapse
Affiliation(s)
- Yueyong Liu
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Rajendra Pilankatta
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - David Lewis
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | | | | | - Maria Rosa Moncelli
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
48
|
Danko S, Daiho T, Yamasaki K, Liu X, Suzuki H. Formation of the stable structural analog of ADP-sensitive phosphoenzyme of Ca2+-ATPase with occluded Ca2+ by beryllium fluoride: structural changes during phosphorylation and isomerization. J Biol Chem 2009; 284:22722-35. [PMID: 19561071 DOI: 10.1074/jbc.m109.029702] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As a stable analog for ADP-sensitive phosphorylated intermediate of sarcoplasmic reticulum Ca(2+)-ATPase E1PCa(2).Mg, a complex of E1Ca(2).BeF(x), was successfully developed by addition of beryllium fluoride and Mg(2+) to the Ca(2+)-bound state, E1Ca(2). In E1Ca(2).BeF(x), most probably E1Ca(2).BeF(3)(-), two Ca(2+) are occluded at high affinity transport sites, its formation required Mg(2+) binding at the catalytic site, and ADP decomposed it to E1Ca(2), as in E1PCa(2).Mg. Organization of cytoplasmic domains in E1Ca(2).BeF(x) was revealed to be intermediate between those in E1Ca(2).AlF(4)(-) ADP (transition state of E1PCa(2) formation) and E2.BeF(3)(-).(ADP-insensitive phosphorylated intermediate E2P.Mg). Trinitrophenyl-AMP (TNP-AMP) formed a very fluorescent (superfluorescent) complex with E1Ca(2).BeF(x) in contrast to no superfluorescence of TNP-AMP bound to E1Ca(2).AlF(x). E1Ca(2).BeF(x) with bound TNP-AMP slowly decayed to E1Ca(2), being distinct from the superfluorescent complex of TNP-AMP with E2.BeF(3)(-), which was stable. Tryptophan fluorescence revealed that the transmembrane structure of E1Ca(2).BeF(x) mimics E1PCa(2).Mg, and between those of E1Ca(2).AlF(4)(-).ADP and E2.BeF(3)(-). E1Ca(2).BeF(x) at low 50-100 microm Ca(2+) was converted slowly to E2.BeF(3)(-) releasing Ca(2+), mimicking E1PCa(2).Mg --> E2P.Mg + 2Ca(2+). Ca(2+) replacement of Mg(2+) at the catalytic site at approximately millimolar high Ca(2+) decomposed E1Ca(2).BeF(x) to E1Ca(2). Notably, E1Ca(2).BeF(x) was perfectly stabilized for at least 12 days by 0.7 mm lumenal Ca(2+) with 15 mm Mg(2+). Also, stable E1Ca(2).BeF(x) was produced from E2.BeF(3)(-) at 0.7 mm lumenal Ca(2+) by binding two Ca(2+) to lumenally oriented low affinity transport sites, as mimicking the reverse conversion E2P. Mg + 2Ca(2+) --> E1PCa(2).Mg.
Collapse
Affiliation(s)
- Stefania Danko
- Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | |
Collapse
|
49
|
How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:941-6. [DOI: 10.1016/j.bbamcr.2008.10.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/16/2008] [Indexed: 11/17/2022]
|
50
|
Corvazier E, Bredoux R, Kovács T, Enouf J. Expression of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 3 proteins in two major conformational states in native human cell membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:587-99. [DOI: 10.1016/j.bbamem.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 11/29/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|