1
|
Bursch KL, Goetz CJ, Smith BC. Current Trends in Sirtuin Activator and Inhibitor Development. Molecules 2024; 29:1185. [PMID: 38474697 DOI: 10.3390/molecules29051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Sirtuins are NAD+-dependent protein deacylases and key metabolic regulators, coupling the cellular energy state with selective lysine deacylation to regulate many downstream cellular processes. Humans encode seven sirtuin isoforms (Sirt1-7) with diverse subcellular localization and deacylase targets. Sirtuins are considered protective anti-aging proteins since increased sirtuin activity is canonically associated with lifespan extension and decreased activity with developing aging-related diseases. However, sirtuins can also assume detrimental cellular roles where increased activity contributes to pathophysiology. Modulation of sirtuin activity by activators and inhibitors thus holds substantial potential for defining the cellular roles of sirtuins in health and disease and developing therapeutics. Instead of being comprehensive, this review discusses the well-characterized sirtuin activators and inhibitors available to date, particularly those with demonstrated selectivity, potency, and cellular activity. This review also provides recommendations regarding the best-in-class sirtuin activators and inhibitors for practical research as sirtuin modulator discovery and refinement evolve.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Fang Y, Li X. Protein lysine four-carbon acylations in health and disease. J Cell Physiol 2024; 239:e30981. [PMID: 36815448 PMCID: PMC10704440 DOI: 10.1002/jcp.30981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Lysine acylation, a type of posttranslational protein modification sensitive to cellular metabolic states, influences the functions of target proteins involved in diverse cellular processes. Particularly, lysine butyrylation, crotonylation, β-hydroxybutyrylation, and 2-hydroxyisobutyrylation, four types of four-carbon acylations, are modulated by intracellular concentrations of their respective acyl-CoAs and sensitive to alterations of nutrient metabolism induced by cellular and/or environmental signals. In this review, we discussed the metabolic pathways producing these four-carbon acyl-CoAs, the regulation of lysine acylation and deacylation, and the functions of individual lysine acylation.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Genes Dis 2023; 10:2479-2490. [PMID: 37554202 PMCID: PMC10404885 DOI: 10.1016/j.gendis.2022.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases. Thus, an increasing number of studies focusing on acylation modifications are being undertaken. Butyrylation (Kbu) is a new acylation process found in animals and plants. Kbu has been recently linked to the onset and progression of several diseases, such as cancer, cardiovascular diseases, diabetes, and vascular dementia. Moreover, the mode of action of certain drugs used in the treatment of lymphoma and colon cancer is based on the regulation of butyrylation levels, suggesting that butyrylation may play a therapeutic role in these diseases. In addition, butyrylation is also commonly involved in rice gene expression and thus plays an important role in the growth, development, and metabolism of rice. The tools and analytical methods that could be utilized for the prediction and detection of lysine butyrylation have also been investigated. This study reviews the potential role of histone Kbu, as well as the mechanisms underlying this process. It also summarizes various enzymes and analytical methods associated with Kbu, with the goal of providing new insights into the role of Kbu in gene regulation and diseases.
Collapse
Affiliation(s)
- Qianqian Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hong Li
- Clinical Laboratory, Central Laboratory. The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xiaoxin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
4
|
Niu W, Guo J. Co-translational Installation of Posttranslational Modifications by Non-canonical Amino Acid Mutagenesis. Chembiochem 2023; 24:e202300039. [PMID: 36853967 PMCID: PMC10202221 DOI: 10.1002/cbic.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Protein posttranslational modifications (PTMs) play critical roles in regulating cellular activities. Here we provide a survey of genetic code expansion (GCE) methods that were applied in the co-translational installation and studies of PTMs through noncanonical amino acid (ncAA) mutagenesis. We begin by reviewing types of PTM that have been installed by GCE with a focus on modifications of tyrosine, serine, threonine, lysine, and arginine residues. We also discuss examples of applying these methods in biological studies. Finally, we end the piece with a short discussion on the challenges and the opportunities of the field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, N-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| |
Collapse
|
5
|
Sharma C, Donu D, Curry AM, Barton E, Cen Y. Multifunctional activity-based chemical probes for sirtuins. RSC Adv 2023; 13:11771-11781. [PMID: 37063743 PMCID: PMC10103746 DOI: 10.1039/d3ra02133e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
The sirtuin family of NAD+-dependent protein deacylases has gained significant attention during the last two decades, owing to their unique enzymatic activities as well as their critical roles in a broad array of cellular events. Innovative chemical probes are heavily pursued for the functional annotation and pharmacological perturbation of this group of "eraser" enzymes. We have developed several series of activity-based chemical probes (ABPs) to interrogate the functional state of active sirtuins in complex biological samples. They feature a simple Ala-Ala-Lys tripeptide backbone with a thioacyl "warhead", a photoaffinity group (benzophenone or diazirine), and a bioorthogonal group (terminal alkyne or azido) for conjugation to reporters. When applied in a comparative fashion, these probes reveal the changes of active sirtuin contents under different physiological conditions. Additionally, they can also be utilized in a competitive manner for inhibitor discovery. The Nobel-winning "click" conjugation to a fluorophore allows the visualization of the active enzymes, while the covalent adduct to a biotin leads to the affinity capture of the protein of interest. Furthermore, the "clickable" tag enables the easy access to proteolysis targeting chimeras (PROTACs) that effectively degrade human SIRT2 in HEK293 cells, albeit at micromolar concentrations. These small molecule probes offer unprecedented opportunities to investigate the biological functions and physiological relevance of the sirtuin family.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Alyson M Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Elizabeth Barton
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1-804-828-7405
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
6
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Travis CR, Francis DY, Williams DC, Waters ML. Evaluation of acyllysine isostere interactions with the aromatic pocket of the AF9 YEATS domain. Protein Sci 2023; 32:e4533. [PMID: 36482045 PMCID: PMC9793969 DOI: 10.1002/pro.4533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Amide-π interactions, in which an amide interacts with an aromatic group, are ubiquitous in biology, yet remain understudied relative to other noncovalent interactions. Recently, we demonstrated that an electrostatically tunable amide-π interaction is key to recognition of histone acyllysine by the AF9 YEATS domain, a reader protein which has emerged as a therapeutic target due to its dysregulation in cancer. Amide isosteres are commonly employed in drug discovery, often to prevent degradation by proteases, and have proven valuable in achieving selectivity when targeting epigenetic proteins. However, like amide-π interactions, interactions of amide isosteres with aromatic rings have not been thoroughly studied despite widespread use. Herein, we evaluate the recognition of a series of amide isosteres by the AF9 YEATS domain using genetic code expansion to evaluate the amide isostere-π interaction. We show that compared to the amide-π interaction with the native ligand, each isostere exhibits similar electrostatic tunability with an aromatic residue in the binding pocket, demonstrating that the isosteres maintain similar interactions with the aromatic residue. We identify a urea-containing ligand that binds with enhanced affinity for the AF9 YEATS domain, offering a promising starting point for inhibitor development. Furthermore, we demonstrate that carbamate and urea isosteres of crotonyllysine are resistant to enzymatic removal by SIRT1, a protein that cleaves acyl post-translational modifications, further indicating the potential of amide isosteres in YEATS domain inhibitor development. These results also provide experimental precedent for interactions of these common drug discovery moieties with aromatic rings that can inform computational methods.
Collapse
Affiliation(s)
- Christopher R. Travis
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Denver Y. Francis
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - David C. Williams
- Department of Pathology and Laboratory Medicine, CB 7525University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
9
|
Kalbas D, Meleshin M, Liebscher S, Zessin M, Melesina J, Schiene-Fischer C, Bülbül EF, Bordusa F, Sippl W, Schutkowski M. Small Changes Make the Difference for SIRT2: Two Different Binding Modes for 3-Arylmercapto-Acylated Lysine Derivatives. Biochemistry 2022; 61:1705-1722. [PMID: 35972884 DOI: 10.1021/acs.biochem.2c00211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.
Collapse
Affiliation(s)
- Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Matthes Zessin
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Jelena Melesina
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Emre Fatih Bülbül
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Wolfgang Sippl
- Department of Medical Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
10
|
Zessin M, Meleshin M, Praetorius L, Sippl W, Bařinka C, Schutkowski M. Uncovering Robust Delactoylase and Depyruvoylase Activities of HDAC Isoforms. ACS Chem Biol 2022; 17:1364-1375. [PMID: 35639992 DOI: 10.1021/acschembio.1c00863] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) and sirtuins (SIRT) represent two different classes of enzymes which are responsible for deacylation of modified lysine side chains. The repertoire of acyl residues on lysine side chains identified in vivo is rapidly growing, and very recently lysine lactoylation was described to be involved in metabolic reprogramming. Additionally, lysine pyruvoylation represents a marker for aging and liver cirrhosis. Here, we report a systematic analysis of acyl-specificity of human zinc-dependent HDAC and sirtuin isoforms. We identified HDAC3 as a robust delactoylase with several-thousand-fold higher activity as compared to SIRT2, which was claimed to be the major in vivo delactoylase. Additionally, we systematically searched for enzymes, capable of removing pyruvoyl residues from lysine side chains. Using model peptides, we uncovered high depyruvoylase activity for HDAC6 and HDAC8. Interestingly, such substrates have extremely low KM values for both HDAC isoforms, pointing to possible in vivo functions.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Lucas Praetorius
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, 06120, Germany
| |
Collapse
|
11
|
Miller GM, Flynn EM, Tom J, Song A, Cochran AG. Trifluoroacetyl Lysine as a Bromodomain Binding Mimic of Lysine Acetylation. ACS Chem Biol 2022; 17:1022-1029. [PMID: 35467836 DOI: 10.1021/acschembio.2c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic code expansion has proven invaluable to the elucidation of functions of defined protein modifications through the site-specific incorporation of noncanonical amino acids. The use of nonhydrolyzable derivatives of post-translational modifications can greatly increase site stoichiometry and half-life. Investigating acetyllysine reader domain (bromodomain) interactions with acetylated nonhistone proteins is challenging due to the limited tools available and dynamic nature of this post-translational modification. Here, we demonstrate that bromodomains bind acetyllysine peptides and those substituted with an acetyllysine derivative, trifluoroacetyllysine, with similar affinity and selectivity. Importantly, both trifluoroacetyllysine and acetyllysine can be site-specifically incorporated into proteins expressed in bacterial and mammalian cells, and the strong electron-withdrawing trifluoro substituent makes the latter resistant to deacetylation by sirtuins (SIRTs). The controlled expression of SIRT-resistant, site-specifically acetylated transcription factors expands the set of available tools for determining the function of acetylation, and it serves as a template for investigating bromodomain interactions with acetylated transcription factors.
Collapse
Affiliation(s)
- Gregory M. Miller
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco 94080, California, United States
| | - E. Megan Flynn
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco 94080, California, United States
| | - Jeffrey Tom
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco 94080, California, United States
| | - Aimin Song
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco 94080, California, United States
| | - Andrea G. Cochran
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco 94080, California, United States
| |
Collapse
|
12
|
Wang J, Cao Z, Wang F, Wang P, An J, Fu X, Liu T, Li Y, Li Y, Zhao Y, Lin H, He B. Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. Eur J Med Chem 2021; 225:113799. [PMID: 34500130 DOI: 10.1016/j.ejmech.2021.113799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) are important epigenetic regulators that have become important drug targets for treating cancer. Although five HDAC inhibitors have been approved for treating several cancers, there is still a huge demand on discovering new HDAC inhibitors to explore the therapeutic potentials for treating solid tumor cancers. Substrate mimics are a powerful rational design approach for the development of potent inhibitors. Here we describe the rational design, synthesis, biological evaluation, molecular docking and in vivo efficacy study of a class of HDAC inhibitors using Nε-acetyl lysine mimics that are derived from cysteine. As a result, compounds 7a, 9b and 13d demonstrated pan-HDAC inhibition and broad cytotoxicity against several cancer cell lines, comparable to the approved HDAC inhibitor SAHA. Furthermore, 13d significantly inhibited tumor growth in a A549 xenograft mice model without any obvious weight loss, supporting that the cysteine-derived acetyl lysine mimics are promising HDAC inhibitors with therapeutic potentials for treating cancer.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
13
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
14
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
15
|
Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacol Res 2021; 173:105834. [PMID: 34450321 DOI: 10.1016/j.phrs.2021.105834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Epigenetic modification is a fundamental biological process in living organisms, which has significant impact on health and behavior. Metabolism refers to a set of life-sustaining chemical reactions, including the uptake of nutrients, the subsequent conversion of nutrients into energy or building blocks for organism growth, and finally the clearance of redundant or toxic substances. It is well established that epigenetic modifications govern the metabolic profile of a cell by modulating the expression of metabolic enzymes. Strikingly, almost all the epigenetic modifications require substrates produced by cellular metabolism, and a large proportion of metabolic enzymes can transfer into nucleus to locally produce substrates for epigenetic modification, thereby providing an alternative link between metabolism, epigenetic modification and gene expression. Here, we summarize the recent literature pertinent to metabolic enzymes functioning as epigenetic modulators in the regulation of chromatin architecture and gene expression.
Collapse
|
16
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
17
|
Naegeli H, Bresson J, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Ardizzone M, Devos Y, Federici S, Dumont AF, Gennaro A, Gómez Ruiz JÁ, Neri FM, Papadopoulou N, Paraskevopoulos K, Lanzoni A. Assessment of genetically modified oilseed rape 73496 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2012-109). EFSA J 2021; 19:e06610. [PMID: 34178155 PMCID: PMC8209597 DOI: 10.2903/j.efsa.2021.6610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oilseed rape 73496 was developed to confer tolerance to the herbicidal active substance glyphosate through the expression of the glyphosate acetyltransferase protein GAT4621. The molecular characterisation data and bioinformatic analyses identify no issues requiring food/feed safety assessment. None of the identified differences between oilseed rape 73496 and its conventional counterpart in the agronomic/phenotypic endpoints tested needs further assessment. Differences identified in seed composition of oilseed rape 73496 as compared to its conventional counterpart raise no safety and nutritional concerns in the context of the scope of this application. No safety concerns are identified regarding toxicity and allergenicity of the GAT4621 protein as expressed in oilseed rape 73496. No evidence is found that the genetic modification would change the overall allergenicity of oilseed rape 73496. Based on the outcome of the comparative and nutritional assessments, the consumption of oilseed rape 73496 does not represent any nutritional concern, in the context of the scope of this application. The implementation of a post-market monitoring plan is recommended to confirm the predicted consumption data and to verify that the conditions of use are those considered during the pre-market risk assessment. In the case of accidental release of viable oilseed rape 73496 seeds into the environment, oilseed rape 73496 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of oilseed rape 73496. The GMO Panel concludes that oilseed rape 73496, as described in this application, is as safe as its conventional counterpart and the non-genetically modified oilseed rape reference varieties tested with respect to potential effects on human and animal health and the environment.
Collapse
|
18
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
19
|
Troelsen KS, Bæk M, Nielsen AL, Madsen AS, Rajabi N, Olsen CA. Mitochondria-targeted inhibitors of the human SIRT3 lysine deacetylase. RSC Chem Biol 2021; 2:627-635. [PMID: 34458804 PMCID: PMC8341665 DOI: 10.1039/d0cb00216j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/24/2021] [Indexed: 11/21/2022] Open
Abstract
Sirtuin 3 (SIRT3) is the major protein lysine deacetylase in the mitochondria. This hydrolase regulates a wide range of metabolically involved enzymes and has been considered as a potential drug target in certain cancers. Investigation of pharmacological intervention has been challenging due to a lack of potent and selective inhibitors of SIRT3. Here, we developed a strategy for selective inhibition of SIRT3 in cells, over its structurally similar isozymes that localize primarily to the nucleus (SIRT1) and the cytosol (SIRT2). This was achieved by directing the inhibitors to the mitochondria through incorporation of mitochondria-targeting peptide sequences into the inhibitor structures. Our inhibitors exhibited excellent mitochondrial localization in HeLa cells as indicated by fluorophore-conjugated versions, and target engagement was demonstrated by a cellular thermal shift assay of SIRT3 using western blotting. The acetylation state of documented SIRT3 target MnSOD was shown to be increased in cells with little effect on known targets of SIRT1 and SIRT2, showing that our lead compound exhibits selectivity for SIRT3 in cells. We expect that the developed inhibitor will now enable a more detailed investigation of SIRT3 as a potential drug target and help shed further light on the diverse biology regulated by this enzyme.
Collapse
Affiliation(s)
- Kathrin S Troelsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|
20
|
Mak JYW, Wu KC, Gupta PK, Barbero S, McLaughlin MG, Lucke AJ, Tng J, Lim J, Loh Z, Sweet MJ, Reid RC, Liu L, Fairlie DP. HDAC7 Inhibition by Phenacetyl and Phenylbenzoyl Hydroxamates. J Med Chem 2021; 64:2186-2204. [PMID: 33570940 DOI: 10.1021/acs.jmedchem.0c01967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn2+ and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1. Phenylbenzoyl hydroxamates are 30-70-fold more potent HDAC7 inhibitors than phenacetyl hydroxamates, which is attributed to the benzoyl aromatic group interacting with Phe679 and Phe738. Phthalimide capping groups, including a saccharin analogue, decrease rotational freedom and provide hydrogen bond acceptor carbonyl/sulfonamide oxygens that increase inhibitor potency, liver microsome stability, solubility, and cell activity. Despite being the most potent HDAC7 inhibitors to date, they are not selective among class IIa enzymes. These strategies may help to produce tools for interrogating HDAC7 biology related to its catalytic site.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Praveer K Gupta
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sheila Barbero
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Maddison G McLaughlin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhixuan Loh
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, The University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
21
|
Nielsen AL, Rajabi N, Kudo N, Lundø K, Moreno-Yruela C, Bæk M, Fontenas M, Lucidi A, Madsen AS, Yoshida M, Olsen CA. Mechanism-based inhibitors of SIRT2: structure-activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chem Biol 2021; 2:612-626. [PMID: 34458803 PMCID: PMC8341974 DOI: 10.1039/d0cb00036a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. It affects diverse biological functions in the cell and has been considered a drug target in relation to both neurodegenerative diseases and cancer. Therefore, access to well-characterized and robust tool compounds is essential for the continued investigation of the complex functions of this enzyme. Here, we report a collection of chemical probes that are potent, selective, stable in serum, water-soluble, and inhibit SIRT2-mediated deacetylation and demyristoylation in cells. Compared to the current landscape of SIRT2 inhibitors, this is a unique ensemble of features built into a single compound. We expect the developed chemotypes to find broad application in the interrogation of SIRT2 functions in both healthy and diseased cells, and to provide a foundation for the development of future therapeutics. Sirtuin 2 (SIRT2) is a protein deacylase enzyme that removes acetyl groups and longer chain acyl groups from post-translationally modified lysine residues. Here, we developed small peptide-based inhibitors of its activity in living cells in culture.![]()
Collapse
Affiliation(s)
- Alexander L Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Norio Kudo
- RIKEN Center for Sustainable Resource Science (S13) Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Kathrine Lundø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen Blegdamsvej 3B DK-2200 Copenhagen Denmark
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Alessia Lucidi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science (S13) Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|
22
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
23
|
Rajabi N, Nielsen AL, Olsen CA. Dethioacylation by Sirtuins 1-3: Considerations for Drug Design Using Mechanism-Based Sirtuin Inhibition. ACS Med Chem Lett 2020; 11:1886-1892. [PMID: 33062169 DOI: 10.1021/acsmedchemlett.9b00580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
The sirtuin enzymes are potential drug targets for intervention in a series of diseases. Efforts to inhibit enzymes of this class with thioamide- and thiourea-containing, substrate-mimicking entities have produced a number of high-affinity binders. However, less attention has been dedicated to the investigation of the stability of these inhibitors under various conditions. Here, we provide evidence of an unprecedented degree of cleavage of short-chain ε-N-thioacyllysine modifications meant to target these sirtuins and further provide insights into the serum stability of compounds containing both thioamides and thioureas. Our study questions the utility short-chain thioamide-based inhibitors of sirtuins for drug development and points to monoalkylated thiourea-based chemotypes as being more stable in human serum.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Alexander L. Nielsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Haws SA, Leech CM, Denu JM. Metabolism and the Epigenome: A Dynamic Relationship. Trends Biochem Sci 2020; 45:731-747. [DOI: 10.1016/j.tibs.2020.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
|
25
|
Goetz CJ, Sprague DJ, Smith BC. Development of activity-based probes for the protein deacylase Sirt1. Bioorg Chem 2020; 104:104232. [PMID: 32911193 DOI: 10.1016/j.bioorg.2020.104232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023]
Abstract
Sirtuins are NAD+-dependent protein deacylases that remove acyl modifications from acyl-lysine residues, resulting in essential cellular signaling. Recognized for their role in lifespan extension, humans encode seven sirtuin isoforms (Sirt1-7), and loss of sirtuin deacylase activity is implicated in many aging-related diseases. Despite being intriguing therapeutic targets, cellular studies of sirtuins are hampered by the lack of chemical probes to measure sirtuin activity independent of sirtuin protein levels. Here, we use a modular, peptide-based approach to develop activity-based probes (ABPs) that directly measure Sirt1 activity in vitro and in cell lysates. ABPs were synthesized containing four elements: (1) thioacetyl-lysine for mechanism-based affinity towards only active sirtuins, (2) either histone H3 lysine-14 (H3K14) or p53 sequences for Sirt1 specificity, (3) a diazirine for covalent labeling upon UV irradiation, and (4) an alkyne for bioorthogonal conjugation to a fluorophore for gel-based detection of active Sirt1. Compared to the H3K14 ABP, the p53 ABP showed increased sensitivity and selective labeling of active Sirt1. Acyl-lysine peptide competition, pharmacological inhibition, and inhibitory post-translational modification of Sirt1 resulted in the loss of p53 ABP labeling both in vitro and in HEK293T cell lysates, consistent with the ABP measuring decreased Sirt1 activity. Furthermore, the p53 ABP measured subcellular Sirt1 activity in MCF7 breast cancer cells. The development of a Sirt1-selective ABP that detects Sirt1 activity with an order of magnitude increased sensitivity compared to previous approaches demonstrates the utility of a modular, peptide-based approach for selective-targeting of the sirtuin protein family and provides a framework for further development of sirtuin-selective chemical probes.
Collapse
Affiliation(s)
- Christopher J Goetz
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel J Sprague
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Trefely S, Lovell CD, Snyder NW, Wellen KE. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab 2020; 38:100941. [PMID: 32199817 PMCID: PMC7300382 DOI: 10.1016/j.molmet.2020.01.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Many metabolites serve as important signalling molecules to adjust cellular activities and functions based on nutrient availability. Links between acetyl-CoA metabolism, histone lysine acetylation, and gene expression have been documented and studied over the past decade. In recent years, several additional acyl modifications to histone lysine residues have been identified, which depend on acyl-coenzyme A thioesters (acyl-CoAs) as acyl donors. Acyl-CoAs are intermediates of multiple distinct metabolic pathways, and substantial evidence has emerged that histone acylation is metabolically sensitive. Nevertheless, the metabolic sources of acyl-CoAs used for chromatin modification in most cases remain poorly understood. Elucidating how these diverse chemical modifications are coupled to and regulated by cellular metabolism is important in deciphering their functional significance. SCOPE OF REVIEW In this article, we review the metabolic pathways that produce acyl-CoAs, as well as emerging evidence for functional roles of diverse acyl-CoAs in chromatin regulation. Because acetyl-CoA has been extensively reviewed elsewhere, we will focus on four other acyl-CoA metabolites integral to major metabolic pathways that are also known to modify histones: succinyl-CoA, propionyl-CoA, crotonoyl-CoA, and butyryl-CoA. We also briefly mention several other acyl-CoA species, which present opportunities for further research; malonyl-CoA, glutaryl-CoA, 3-hydroxybutyryl-CoA, 2-hydroxyisobutyryl-CoA, and lactyl-CoA. Each acyl-CoA species has distinct roles in metabolism, indicating the potential to report shifts in the metabolic status of the cell. For each metabolite, we consider the metabolic pathways in which it participates and the nutrient sources from which it is derived, the compartmentalisation of its metabolism, and the factors reported to influence its abundance and potential nuclear availability. We also highlight reported biological functions of these metabolically-linked acylation marks. Finally, we aim to illuminate key questions in acyl-CoA metabolism as they relate to the control of chromatin modification. MAJOR CONCLUSIONS A majority of acyl-CoA species are annotated to mitochondrial metabolic processes. Since acyl-CoAs are not known to be directly transported across mitochondrial membranes, they must be synthesized outside of mitochondria and potentially within the nucleus to participate in chromatin regulation. Thus, subcellular metabolic compartmentalisation likely plays a key role in the regulation of histone acylation. Metabolite tracing in combination with targeting of relevant enzymes and transporters will help to map the metabolic pathways that connect acyl-CoA metabolism to chromatin modification. The specific function of each acyl-CoA may be determined in part by biochemical properties that affect its propensity for enzymatic versus non-enzymatic protein modification, as well as the various enzymes that can add, remove and bind each modification. Further, competitive and inhibitory effects of different acyl-CoA species on these enzymes make determining the relative abundance of acyl-CoA species in specific contexts important to understand the regulation of chromatin acylation. An improved and more nuanced understanding of metabolic regulation of chromatin and its roles in physiological and disease-related processes will emerge as these questions are answered.
Collapse
Affiliation(s)
- Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Metabolic Disease Research, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Claudia D Lovell
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Bæk M, Martín‐Gago P, Laursen JS, Madsen JLH, Chakladar S, Olsen CA. Photo Cross-Linking Probes Containing ϵ-N-Thioacyllysine and ϵ-N-Acyl-(δ-aza)lysine Residues. Chemistry 2020; 26:3862-3869. [PMID: 31922630 PMCID: PMC7154546 DOI: 10.1002/chem.201905338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications (PTMs) are important in the regulation of protein function, trafficking, localization, and marking for degradation. This work describes the development of peptide activity/affinity-based probes for the discovery of proteins that recognize novel acyl-based PTMs on lysine residues in the proteome. The probes contain surrogates of ϵ-N-acyllysine by introduction of either hydrazide or thioamide functionalities to circumvent hydrolysis of the modification during the experiments. In addition to the modified PTMs, the developed chemotypes were analyzed with respect to the effect of peptide sequence. The photo cross-linking conditions and subsequent functionalization of the covalent adducts were systematically optimized by applying fluorophore labeling and gel electrophoresis (in-gel fluorescence measurements). Finally, selected probes, containing the ϵ-N-glutaryllysine and ϵ-N-myristoyllysine analogues, were successfully applied for the enrichment of native, endogenous proteins from cell lysate, recapitulating the expected interactions of SIRT5 and SIRT2, respectively. Interestingly, the latter mentioned was able to pull down two different splice variants of SIRT2, which has not been achieved with a covalent probe before. Based on this elaborate proof-of-concept study, we expect that the technology will have broad future applications for pairing of novel PTMs with the proteins that target them in the cell.
Collapse
Affiliation(s)
- Michael Bæk
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Pablo Martín‐Gago
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jonas S. Laursen
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Julie L. H. Madsen
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Saswati Chakladar
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals &, Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
28
|
Xu X, Cao X, Yang J, Chen L, Liu B, Liu T, Jin Q. Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Front Microbiol 2019; 10:2613. [PMID: 31798556 PMCID: PMC6861857 DOI: 10.3389/fmicb.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
Posttranslational modifications (PTMs) exist in a wide variety of organisms and play key roles in regulating various essential biological processes. Lysine propionylation is a newly discovered PTM that has rarely been identified in fungi. Trichophyton rubrum (T. rubrum) is one of the most common fungal pathogens in the world and has been studied as an important model organism of anthropic pathogenic filamentous fungi. In this study, we performed a proteome-wide propionylation analysis in the conidial and mycelial stages of T. rubrum. A total of 157 propionylated sites on 115 proteins were identified, and the high confidence of propionylation identification was validated by parallel reaction monitoring (PRM) assay. The results show that the propionylated proteins were mostly involved in various metabolic pathways. Histones and 15 pathogenicity-related proteins were also targets for propionylation modification, suggesting their roles in epigenetic regulation and pathogenicity. A comparison of the conidial and mycelial stages revealed that most propionylated proteins and sites were growth-stage specific and independent of protein abundance. Based on the function classifications, the propionylated proteins had a similar distribution in both stages; however, some differences were also identified. Furthermore, our results show that the concentration of propionyl-CoA had a significant influence on the propionylation level. In addition to the acetylation, succinylation and propionylation identified in T. rubrum, 26 other PTMs were also found to exist in this fungus. Overall, our study provides the first global propionylation profile of a pathogenic fungus. These results would be a foundation for further research on the regulation mechanism of propionylation in T. rubrum, which will enhance our understanding of the physiological features of T. rubrum and provide some clues for the exploration of improved therapies to treat this medically important fungus.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
30
|
Wang F, Wang C, Wang J, Zou Y, Chen X, Liu T, Li Y, Zhao Y, Li Y, He B. N ɛ -acetyl lysine derivatives with zinc binding groups as novel HDAC inhibitors. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190338. [PMID: 31312496 PMCID: PMC6599804 DOI: 10.1098/rsos.190338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 06/10/2023]
Abstract
HDAC inhibitors have been developed very rapidly in clinical trials and even in approvals for treating several cancers. However, there are few reported HDAC inhibitors designed from N ɛ -acetyl lysine. In the current study, we raised a novel design, which concerns N ɛ -acetyl lysine derivatives containing amide acetyl groups with the hybridization of ZBG groups as novel HDAC inhibitors.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Chun Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Yefang Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Xiaoxue Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Basic Medicine, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, People's Republic of China
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, People's Republic of China
| |
Collapse
|
31
|
The mimics of N ε -acyl-lysine derived from cysteine as sirtuin inhibitors. Bioorg Med Chem Lett 2018; 28:2375-2378. [DOI: 10.1016/j.bmcl.2018.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 01/16/2023]
|
32
|
Olesen SV, Rajabi N, Svensson B, Olsen CA, Madsen AS. An NAD +-Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium Lactobacillus acidophilus NCFM. Biochemistry 2018; 57:3903-3915. [PMID: 29863862 DOI: 10.1021/acs.biochem.8b00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sirtuins, a group of NAD+-dependent deacylases, have emerged as the key connection between NAD+ metabolism and aging. This class of enzymes hydrolyzes a range of ε- N-acyllysine PTMs, and determining the repertoire of catalyzed deacylation reactions is of high importance to fully elucidate the roles of a given sirtuin. Here we have identified and produced two potential sirtuins from the probiotic bacterium Lactobacillus acidophilus NCFM. Screening more than 80 different substrates, covering 26 acyl groups on five peptide scaffolds, demonstrated that one of the investigated proteins, Sir2La, is a bona fide NAD+-dependent sirtuin, catalyzing hydrolysis of acetyl-, propionyl-, and butyryllysine. Further substantiating the identity of Sir2La as a sirtuin, known sirtuin inhibitors, nicotinamide and suramin, as well as a thioacetyllysine compound inhibit the deacylase activity in a concentration-dependent manner. On the basis of steady-state kinetics, Sir2La showed a slight preference for propionyllysine (Kpro) over acetyllysine (Kac). For nonfluorogenic peptide substrates, the preference is driven by a remarkably low KM (280 nM vs 700 nM, for Kpro and Kac, respectively), whereas kcat was similar (21 × 10-3 s-1). Moreover, while NAD+ is a prerequisite for Sir2La-mediated deacylation, Sir2La has a very high KM for NAD+ compared to the expected levels of the dinucleotide in L. acidophilus. Sir2La is the first sirtuin from Lactobacillales and of the Gram-positive bacterial subclass of sirtuins to be functionally characterized. The ability to hydrolyze propionyl- and butyryllysine emphasizes the relevance of further exploring the role of other short-chain acyl moieties as PTMs.
Collapse
Affiliation(s)
- Sita V Olesen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
33
|
Schneider-Poetsch T, Yoshida M. Along the Central Dogma-Controlling Gene Expression with Small Molecules. Annu Rev Biochem 2018; 87:391-420. [PMID: 29727582 DOI: 10.1146/annurev-biochem-060614-033923] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The central dogma of molecular biology, that DNA is transcribed into RNA and RNA translated into protein, was coined in the early days of modern biology. Back in the 1950s and 1960s, bacterial genetics first opened the way toward understanding life as the genetically encoded interaction of macromolecules. As molecular biology progressed and our knowledge of gene control deepened, it became increasingly clear that expression relied on many more levels of regulation. In the process of dissecting mechanisms of gene expression, specific small-molecule inhibitors played an important role and became valuable tools of investigation. Small molecules offer significant advantages over genetic tools, as they allow inhibiting a process at any desired time point, whereas mutating or altering the gene of an important regulator would likely result in a dead organism. With the advent of modern sequencing technology, it has become possible to monitor global cellular effects of small-molecule treatment and thereby overcome the limitations of classical biochemistry, which usually looks at a biological system in isolation. This review focuses on several molecules, especially natural products, that have played an important role in dissecting gene expression and have opened up new fields of investigation as well as clinical venues for disease treatment.
Collapse
Affiliation(s)
- Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan;
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan; .,Department of Biotechnology, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
34
|
Goto Y, Suga H. ArtificialIn VitroBiosynthesis Systems for the Development of Pseudo-Natural Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- JST-PRESTO, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- JST-CREST, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Tanabe K, Liu J, Kato D, Kurumizaka H, Yamatsugu K, Kanai M, Kawashima SA. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes. Sci Rep 2018; 8:2656. [PMID: 29422688 PMCID: PMC5805777 DOI: 10.1038/s41598-018-21060-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Chromatin structure and gene expression are dynamically regulated by posttranslational modifications of histones. Recent advance in mass spectrometry has identified novel types of lysine acylations, such as butyrylation and malonylation, whose functions and regulations are likely different from those of acetylation. Sirtuins, nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, catalyze various deacylations. However, it is poorly understood how distinct sirtuins regulate the histone acylation states of nucleosomes that have many lysine residues. Here, we provide mass spectrometry-based quantitative information about the acyl group- and site-selectivity of all human sirtuins on acylated nucleosomes. The acyl group- and site-selectivity of each sirtuin is unique to its subtype. Sirt5 exclusively removes negatively-charged acyl groups, while Sirt1/2/3/6/7 preferentially remove hydrophobic acyl groups; Sirt1 and Sirt3 selectively remove acetyl group more than butyryl group, whereas Sirt2 and Sirt6 showed the opposite selectivity. Investigating site-selectivity for active sirtuins revealed acylated lysines on H4 tails to be poor substrates and acylated H3K18 to be a good substrate. Furthermore, we found Sirt7 to be a robust deacylase of H3K36/37, and its activity reliant on nucleosome-binding at its C-terminal basic region. All together, our quantitative dataset provides a useful resource in understanding chromatin regulations by histone acylations.
Collapse
Affiliation(s)
- Kana Tanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jiaan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daiki Kato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
36
|
Toro TB, Edenfield SA, Hylton BJ, Watt TJ. Chelatable trace zinc causes low, irreproducible KDAC8 activity. Anal Biochem 2018; 540-541:9-14. [PMID: 29100752 PMCID: PMC5712482 DOI: 10.1016/j.ab.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022]
Abstract
Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data.
Collapse
Affiliation(s)
- Tasha B Toro
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Samantha A Edenfield
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Brandon J Hylton
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| | - Terry J Watt
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA 70125-1098, USA.
| |
Collapse
|
37
|
Rajabi N, Galleano I, Madsen AS, Olsen CA. Targeting Sirtuins: Substrate Specificity and Inhibitor Design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:25-69. [PMID: 29413177 DOI: 10.1016/bs.pmbts.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine residues across the proteome are modified by posttranslational modifications (PTMs) that significantly enhance the structural and functional diversity of proteins. For lysine, the most abundant PTM is ɛ-N-acetyllysine (Kac), which plays numerous roles in regulation of important cellular functions, such as gene expression (epigenetic effects) and metabolism. A family of enzymes, namely histone deacetylases (HDACs), removes these PTMs. A subset of these enzymes, the sirtuins (SIRTs), represent class III HDAC and, unlike the rest of the family, these hydrolases are NAD+-dependent. Although initially described as deacetylases, alternative deacylase functions for sirtuins have been reported, which expands the potential cellular roles of this class of enzymes. Currently, sirtuins are investigated as therapeutic targets for the treatment of diseases that span from cancers to neurodegenerative disorders. In the present book chapter, we review and discuss the current literature on novel ɛ-N-acyllysine PTMs, targeted by sirtuins, as well as mechanism-based sirtuin inhibitors inspired by their substrates.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Iacopo Galleano
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
38
|
Castañeda CA, Wolfson NA, Leng KR, Kuo YM, Andrews AJ, Fierke CA. HDAC8 substrate selectivity is determined by long- and short-range interactions leading to enhanced reactivity for full-length histone substrates compared with peptides. J Biol Chem 2017; 292:21568-21577. [PMID: 29109148 PMCID: PMC5766737 DOI: 10.1074/jbc.m117.811026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze deacetylation of acetyl-lysine residues within proteins. To date, HDAC substrate specificity and selectivity have been largely estimated using peptide substrates. However, it is unclear whether peptide substrates accurately reflect the substrate selectivity of HDAC8 toward full-length proteins. Here, we compare HDAC8 substrate selectivity in the context of peptides, full-length proteins, and protein-nucleic acid complexes. We demonstrate that HDAC8 catalyzes deacetylation of tetrameric histone (H3/H4) substrates with catalytic efficiencies that are 40-300-fold higher than those for corresponding peptide substrates. Thus, we conclude that additional contacts with protein substrates enhance catalytic efficiency. However, the catalytic efficiency decreases for larger multiprotein complexes. These differences in HDAC8 substrate selectivity for peptides and full-length proteins suggest that HDAC8 substrate preference is based on a combination of short- and long-range interactions. In summary, this work presents detailed kinetics for HDAC8-catalyzed deacetylation of singly-acetylated, full-length protein substrates, revealing that HDAC8 substrate selectivity is determined by multiple factors. These insights provide a foundation for understanding recognition of full-length proteins by HDACs.
Collapse
Affiliation(s)
| | | | - Katherine R Leng
- Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| | - Yin-Ming Kuo
- the Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | - Carol A Fierke
- From the Program in Chemical Biology and
- the Departments of Biological Chemistry and
- Chemistry, University of Michigan, Ann Arbor, Michigan 48109 and
| |
Collapse
|
39
|
Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, Hirschey MD, Steegborn C, Madsen AS, Olsen CA. Mechanism-Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure-Activity Relationship, Biostructural, and Kinetic Insight. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Marina Auth
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Kathrin R. Troelsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Martin Pannek
- Universität Bayreuth; Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Dhaval P. Bhatt
- Duke University Medical Center; Sarah W. Stedman Nutrition and Metabolism Center; 4321 Medical Park Drive Durham NC 27704 USA
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Matthew D. Hirschey
- Duke University Medical Center; Sarah W. Stedman Nutrition and Metabolism Center; 4321 Medical Park Drive Durham NC 27704 USA
| | - Clemens Steegborn
- Universität Bayreuth; Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle; Universitätsstrasse 30 95447 Bayreuth Germany
| | - Andreas S. Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
40
|
Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, Hirschey MD, Steegborn C, Madsen AS, Olsen CA. Mechanism-Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure-Activity Relationship, Biostructural, and Kinetic Insight. Angew Chem Int Ed Engl 2017; 56:14836-14841. [PMID: 29044784 PMCID: PMC5814306 DOI: 10.1002/anie.201709050] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/18/2022]
Abstract
The sirtuin enzymes are important regulatory deacylases in a variety of biochemical contexts and may therefore be potential therapeutic targets through either activation or inhibition by small molecules. Here, we describe the discovery of the most potent inhibitor of sirtuin 5 (SIRT5) reported to date. We provide rationalization of the mode of binding by solving co-crystal structures of selected inhibitors in complex with both human and zebrafish SIRT5, which provide insight for future optimization of inhibitors with more "drug-like" properties. Importantly, enzyme kinetic evaluation revealed a slow, tight-binding mechanism of inhibition, which is unprecedented for SIRT5. This is important information when applying inhibitors to probe mechanisms in biology.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Marina Auth
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kathrin R Troelsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Martin Pannek
- Universität Bayreuth, Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Dhaval P Bhatt
- Duke University Medical Center, Sarah W. Stedman Nutrition and Metabolism Center, 4321 Medical Park Drive, Durham, NC, 27704, USA
| | - Martin Fontenas
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Matthew D Hirschey
- Duke University Medical Center, Sarah W. Stedman Nutrition and Metabolism Center, 4321 Medical Park Drive, Durham, NC, 27704, USA
| | - Clemens Steegborn
- Universität Bayreuth, Lehrstuhl Biochemie und Forschungszentrum für Biomakromoleküle, Universitätsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas S Madsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| |
Collapse
|
41
|
Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res 2017; 27:898-915. [PMID: 28497810 DOI: 10.1038/cr.2017.68] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies on enzymes and reader proteins for histone crotonylation support a function of histone crotonylation in transcription. However, the enzyme(s) responsible for histone decrotonylation (HDCR) remains poorly defined. Moreover, it remains to be determined if histone crotonylation is physiologically significant and functionally distinct from or redundant to histone acetylation. Here we present evidence that class I histone deacetylases (HDACs) rather than sirtuin family deacetylases (SIRTs) are the major histone decrotonylases, and that histone crotonylation is as dynamic as histone acetylation in mammalian cells. Notably, we have generated novel HDAC1 and HDAC3 mutants with impaired HDAC but intact HDCR activity. Using these mutants we demonstrate that selective HDCR in mammalian cells correlates with a broad transcriptional repression and diminished promoter association of crotonylation but not acetylation reader proteins. Furthermore, we show that histone crotonylation is enriched in and required for self-renewal of mouse embryonic stem cells.
Collapse
|
42
|
Jiang Y, Liu J, Chen D, Yan L, Zheng W. Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic Potential. Trends Pharmacol Sci 2017; 38:459-472. [PMID: 28389129 DOI: 10.1016/j.tips.2017.01.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
The β-NAD+-dependent Nε-acyl-lysine deacylation reaction catalyzed by sirtuin family members has been increasingly demonstrated to be important in regulating multiple crucial cellular processes and has also been proposed to be a therapeutic target for multiple human diseases. Accordingly, its inhibitors have been actively pursued over the past few years. In addition, we have also seen the pharmacological assessment of sirtuin inhibitory compounds, although to a lesser extent. In this review, we first discuss how sirtuin inhibitors were discovered with the use of various approaches. We then follow with a discussion of pharmacological studies using sirtuin inhibitors. Our aim here is to set a stage for developing future superior sirtuin inhibitors and for an expanded effort in exploiting inhibitors to explore and/or validate the therapeutic potential stemming from the inhibition of the sirtuin-catalyzed deacylation reaction.
Collapse
Affiliation(s)
- Yanhong Jiang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Jiajia Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Di Chen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Lingling Yan
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
43
|
Wang Y, Fung YME, Zhang W, He B, Chung MWH, Jin J, Hu J, Lin H, Hao Q. Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Cell Chem Biol 2017; 24:339-345. [PMID: 28286128 DOI: 10.1016/j.chembiol.2017.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 01/13/2023]
Abstract
Sirtuins are NAD-dependent deacylases. Previous studies have established two important enzymatic intermediates in sirtuin-catalyzed deacylation, an alkylamidate intermediate I, which is then converted to a bicyclic intermediate II. However, how intermediate II is converted to products is unknown. Based on potent SIRT2-specific inhibitors we developed, here we report crystal structures of SIRT2 in complexes with a thiomyristoyl lysine peptide-based inhibitor and carba-NAD or NAD. Interestingly, by soaking crystals with NAD, we capture a distinct covalent catalytic intermediate (III) that is different from the previously established intermediates I and II. In this intermediate, the covalent bond between the S and the myristoyl carbonyl carbon is broken, and we believe this intermediate III to be the decomposition product of II en route to form the end products. MALDI-TOF data further support the intermediate III formation. This is the first time such an intermediate has been captured by X-ray crystallography and provides more mechanistic insights into sirtuin-catalyzed reactions.
Collapse
Affiliation(s)
- Yi Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yi Man Eva Fung
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Weizhe Zhang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin He
- College of Pharmacy, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education, Guizhou Medical University, Guizhou 550004, China
| | | | - Jing Jin
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Jing Hu
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA.
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Sundriyal S, Moniot S, Mahmud Z, Yao S, Di Fruscia P, Reynolds CR, Dexter DT, Sternberg MJE, Lam EWF, Steegborn C, Fuchter MJ. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. J Med Chem 2017; 60:1928-1945. [PMID: 28135086 PMCID: PMC6014686 DOI: 10.1021/acs.jmedchem.6b01690] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/06/2023]
Abstract
Sirtuins (SIRTs) are NAD-dependent deacylases, known to be involved in a variety of pathophysiological processes and thus remain promising therapeutic targets for further validation. Previously, we reported a novel thienopyrimidinone SIRT2 inhibitor with good potency and excellent selectivity for SIRT2. Herein, we report an extensive SAR study of this chemical series and identify the key pharmacophoric elements and physiochemical properties that underpin the excellent activity observed. New analogues have been identified with submicromolar SIRT2 inhibtory activity and good to excellent SIRT2 subtype-selectivity. Importantly, we report a cocrystal structure of one of our compounds (29c) bound to SIRT2. This reveals our series to induce the formation of a previously reported selectivity pocket but to bind in an inverted fashion to what might be intuitively expected. We believe these findings will contribute significantly to an understanding of the mechanism of action of SIRT2 inhibitors and to the identification of refined, second generation inhibitors.
Collapse
Affiliation(s)
- Sandeep Sundriyal
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | - Sébastien Moniot
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Zimam Mahmud
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Shang Yao
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Paolo Di Fruscia
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.
| | | | - David T. Dexter
- Centre for Neuroinflammation & Neurodegeneration,
Division of Brain Sciences, Imperial College
London, London W12 0NN, U.K.
| | | | - Eric W.-F. Lam
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, U.K.
| | - Clemens Steegborn
- Department of Biochemistry, University
of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | | |
Collapse
|
45
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2016; 18:90-101. [PMID: 27924077 DOI: 10.1038/nrm.2016.140] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and β-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.
Collapse
|
47
|
Kaczmarska Z, Ortega E, Goudarzi A, Huang H, Kim S, Márquez JA, Zhao Y, Khochbin S, Panne D. Structure of p300 in complex with acyl-CoA variants. Nat Chem Biol 2016; 13:21-29. [PMID: 27820805 DOI: 10.1038/nchembio.2217] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022]
Abstract
Histone acetylation plays an important role in transcriptional activation. Histones are also modified by chemically diverse acylations that are frequently deposited by p300, a transcriptional coactivator that uses a number of different acyl-CoA cofactors. Here we report that while p300 is a robust acetylase, its activity gets weaker with increasing acyl-CoA chain length. Crystal structures of p300 in complex with propionyl-, crotonyl-, or butyryl-CoA show that the aliphatic portions of these cofactors are bound in the lysine substrate-binding tunnel in a conformation that is incompatible with substrate transfer. Lysine substrate binding is predicted to remodel the acyl-CoA ligands into a conformation compatible with acyl-chain transfer. This remodeling requires that the aliphatic portion of acyl-CoA be accommodated in a hydrophobic pocket in the enzymes active site. The size of the pocket and its aliphatic nature exclude long-chain and charged acyl-CoA variants, presumably explaining the cofactor preference for p300.
Collapse
Affiliation(s)
| | - Esther Ortega
- European Molecular Biology Laboratory, Grenoble, France
| | - Afsaneh Goudarzi
- Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Sunjoo Kim
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | | | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois, USA
| | - Saadi Khochbin
- Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, France
| | - Daniel Panne
- European Molecular Biology Laboratory, Grenoble, France
| |
Collapse
|
48
|
Kalous KS, Wynia-Smith SL, Olp MD, Smith BC. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation. J Biol Chem 2016; 291:25398-25410. [PMID: 27756843 PMCID: PMC5207242 DOI: 10.1074/jbc.m116.754655] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
The sirtuin family of proteins catalyze the NAD+-dependent deacylation of acyl-lysine residues. Humans encode seven sirtuins (Sirt1-7), and recent studies have suggested that post-translational modification of Sirt1 by cysteine S-nitrosation correlates with increased acetylation of Sirt1 deacetylase substrates. However, the mechanism of Sirt1 inhibition by S-nitrosation was unknown. Here, we show that Sirt1 is transnitrosated and inhibited by the physiologically relevant nitrosothiol S-nitrosoglutathione. Steady-state kinetic analyses and binding assays were consistent with Sirt1 S-nitrosation inhibiting binding of both the NAD+ and acetyl-lysine substrates. Sirt1 S-nitrosation correlated with Zn2+ release from the conserved sirtuin Zn2+-tetrathiolate and a loss of α-helical structure without overall thermal destabilization of the enzyme. Molecular dynamics simulations suggested that Zn2+ loss due to Sirt1 S-nitrosation results in repositioning of the tetrathiolate subdomain away from the rest of the catalytic domain, thereby disrupting the NAD+ and acetyl-lysine-binding sites. Sirt1 S-nitrosation was reversed upon exposure to the thiol-based reducing agents, including physiologically relevant concentrations of the cellular reducing agent glutathione. Reversal of S-nitrosation resulted in full restoration of Sirt1 activity only in the presence of Zn2+, consistent with S-nitrosation of the Zn2+-tetrathiolate as the primary source of Sirt1 inhibition upon S-nitrosoglutathione treatment.
Collapse
Affiliation(s)
- Kelsey S Kalous
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sarah L Wynia-Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael D Olp
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
49
|
Jin J, He B, Zhang X, Lin H, Wang Y. SIRT2 Reverses 4-Oxononanoyl Lysine Modification on Histones. J Am Chem Soc 2016; 138:12304-7. [PMID: 27610633 PMCID: PMC5305808 DOI: 10.1021/jacs.6b04977] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Post-translational modifications (PTMs) regulate numerous proteins and are important for many biological processes. Lysine 4-oxononanoylation (4-ONylation) is a newly discovered histone PTM that prevents nucleosome assembly under oxidative stress. Whether there are cellular enzymes that remove 4-ONyl from histones remains unknown, which hampers the further investigation of the cellular function of this PTM. Here, we report that mammalian SIRT2 can remove 4-ONyl from histones and other proteins in live cells. A crystal structure of SIRT2 in complex with a 4-ONyl peptide reveals a lone pair-π interaction between Phe119 and the ketone oxygen of the 4-ONyl group. This is the first time that a mechanism to reverse 4-ONyl lysine modification is reported and will help to understand the role of SIRT2 in oxidative stress responses and the function of 4-ONylation.
Collapse
Affiliation(s)
- Jing Jin
- School of Biomedical Science, University of Hong Kong, Hong Kong, China
| | - Bin He
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, National Engineering Research Center of Miao’s Medicines, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Yi Wang
- School of Biomedical Science, University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Sekirnik Née Measures AR, Hewings DS, Theodoulou NH, Jursins L, Lewendon KR, Jennings LE, Rooney TPC, Heightman TD, Conway SJ. Isoxazole-Derived Amino Acids are Bromodomain-Binding Acetyl-Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3. Angew Chem Int Ed Engl 2016; 55:8353-7. [PMID: 27264992 PMCID: PMC5089653 DOI: 10.1002/anie.201602908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/08/2016] [Indexed: 02/06/2023]
Abstract
A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3.
Collapse
Affiliation(s)
| | - David S Hewings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Natalie H Theodoulou
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Lukass Jursins
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katie R Lewendon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Laura E Jennings
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Timothy P C Rooney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Tom D Heightman
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|