1
|
Rivero-Hernández AL, Hervis YP, Valdés-Tresanco ME, Escalona-Rodríguez FA, Cancelliere R, Relova-Hernández E, Romero-Hernández G, Pérez-Rivera E, Torres-Palacios Y, Cartaya-Quintero P, Ros U, Porchetta A, Micheli L, Fernández LE, Laborde R, Álvarez C, Sagan S, Lanio ME, Pazos Santos IF. Decoupling immunomodulatory properties from lipid binding in the α-pore-forming toxin Sticholysin II. Int J Biol Macromol 2024; 280:136244. [PMID: 39368578 DOI: 10.1016/j.ijbiomac.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.
Collapse
Affiliation(s)
- Ada L Rivero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mario E Valdés-Tresanco
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Center for Molecular Simulations and Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | - Felipe A Escalona-Rodríguez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Glenda Romero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Eric Pérez-Rivera
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Yusniel Torres-Palacios
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Patricia Cartaya-Quintero
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Rady Laborde
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Carlos Álvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| | - Maria Eliana Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Isabel F Pazos Santos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| |
Collapse
|
2
|
Mori T, Niki T, Uchida Y, Mukai K, Kuchitsu Y, Kishimoto T, Sakai S, Makino A, Kobayashi T, Arai H, Yokota Y, Taguchi T, Suzuki KGN. A non-toxic equinatoxin-II reveals the dynamics and distribution of sphingomyelin in the cytosolic leaflet of the plasma membrane. Sci Rep 2024; 14:16872. [PMID: 39043900 PMCID: PMC11266560 DOI: 10.1038/s41598-024-67803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.
Collapse
Affiliation(s)
- Toshiki Mori
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Takahiro Niki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunari Yokota
- Department of EECE, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Kenichi G N Suzuki
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan.
| |
Collapse
|
3
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Pedrera L, Ros U, Fanani ML, Lanio ME, Epand RM, García-Sáez AJ, Álvarez C. The Important Role of Membrane Fluidity on the Lytic Mechanism of the α-Pore-Forming Toxin Sticholysin I. Toxins (Basel) 2023; 15:80. [PMID: 36668899 PMCID: PMC9865829 DOI: 10.3390/toxins15010080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Actinoporins have emerged as archetypal α-pore-forming toxins (PFTs) that promote the formation of pores in membranes upon oligomerization and insertion of an α-helix pore-forming domain in the bilayer. These proteins have been used as active components of immunotoxins, therefore, understanding their lytic mechanism is crucial for developing this and other applications. However, the mechanism of how the biophysical properties of the membrane modulate the properties of pores generated by actinoporins remains unclear. Here we studied the effect of membrane fluidity on the permeabilizing activity of sticholysin I (St I), a toxin that belongs to the actinoporins family of α-PFTs. To modulate membrane fluidity we used vesicles made of an equimolar mixture of phosphatidylcholine (PC) and egg sphingomyelin (eggSM), in which PC contained fatty acids of different acyl chain lengths and degrees of unsaturation. Our detailed single-vesicle analysis revealed that when membrane fluidity is high, most of the vesicles are partially permeabilized in a graded manner. In contrast, more rigid membranes can be either completely permeabilized or not, indicating an all-or-none mechanism. Altogether, our results reveal that St I pores can be heterogeneous in size and stability, and that these properties depend on the fluid state of the lipid bilayer. We propose that membrane fluidity at different regions of cellular membranes is a key factor to modulate the activity of the actinoporins, which has implications for the design of different therapeutic strategies based on their lytic action.
Collapse
Affiliation(s)
- Lohans Pedrera
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Maria Laura Fanani
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-CONICET, Córdoba X5000HUA, Argentina
| | - María E. Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ana J. García-Sáez
- Institute for Genetics and CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana CP 10400, Cuba
| |
Collapse
|
5
|
Hervis YP, Valle A, Canet L, Rodríguez A, Lanio ME, Alvarez C, Steinhoff HJ, Pazos IF. Cys mutants as tools to study the oligomerization of the pore-forming toxin sticholysin I. Toxicon 2023; 222:106994. [PMID: 36529153 DOI: 10.1016/j.toxicon.2022.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Sticholysin I (StI) is a water-soluble protein with the ability to bind membranes where it oligomerizes and forms pores leading to cell death. Understanding the assembly property of this protein may be valuable for designing potential biotechnological tools, such as stable or structurally defined nanopores. In order to get insights into the stabilization of StI oligomers by disulfide bonds, we designed and characterized single and double cysteine mutants at the oligomerization interface. The oligomer formation was induced in the presence of lipid membranes and visualized by SDS-PAGE. The contribution of the oligomeric structures to the membrane binding and pore-forming capacities of StI was assessed. Single and double cysteine introduction at the protein-protein oligomerization interface does not considerably affect the conformation and function of the monomeric protein. In the presence of membranes, a cysteine double mutation at positions 15 and 59 favored formation of different size oligomers stabilized by disulfide bonds. The results of this work highlight the relevance of these positions (15 and 59) to be considered for developing biosensors based on nanopores from StI.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | | | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Heinz J Steinhoff
- Department of Physics, University of Osnabrueck, Osnabrueck, 49069, Germany.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| |
Collapse
|
6
|
Palacios-Ortega J, Amigot-Sánchez R, García-Montoya C, Gorše A, Heras-Márquez D, García-Linares S, Martínez-del-Pozo Á, Slotte JP. Determination of the boundary lipids of sticholysins using tryptophan quenching. Sci Rep 2022; 12:17328. [PMID: 36243747 PMCID: PMC9569322 DOI: 10.1038/s41598-022-21750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Sticholysins are α-pore-forming toxins produced by the sea-anemone Stichodactyla helianthus. These toxins exert their activity by forming pores on sphingomyelin-containing membranes. Recognition of sphingomyelin by sticholysins is required to start the process of pore formation. Sphingomyelin recognition is coupled with membrane binding and followed by membrane penetration and oligomerization. Many features of these processes are known. However, the extent of contact with each of the different kinds of lipids present in the membrane has received little attention. To delve into this question, we have used a phosphatidylcholine analogue labeled at one of its acyl chains with a doxyl moiety, a known quencher of tryptophan emission. Here we present evidence for the contact of sticholysins with phosphatidylcholine lipids in the sticholysin oligomer, and for how each sticholysin isotoxin is affected differently by the inclusion of cholesterol in the membrane. Furthermore, using phosphatidylcholine analogs that were labeled at different positions of their structure (acyl chains and headgroup) in combination with a variety of sticholysin mutants, we also investigated the depth of the tryptophan residues of sticholysins in the bilayer. Our results indicate that the position of the tryptophan residues relative to the membrane normal is deeper when cholesterol is absent from the membrane.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland ,grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Rafael Amigot-Sánchez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Carmen García-Montoya
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Ana Gorše
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - J. Peter Slotte
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
7
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Sandoval K, McCormack GP. Actinoporin-like Proteins Are Widely Distributed in the Phylum Porifera. Mar Drugs 2022; 20:md20010074. [PMID: 35049929 PMCID: PMC8778704 DOI: 10.3390/md20010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Actinoporins are proteinaceous toxins known for their ability to bind to and create pores in cellular membranes. This quality has generated interest in their potential use as new tools, such as therapeutic immunotoxins. Isolated historically from sea anemones, genes encoding for similar actinoporin-like proteins have since been found in a small number of other animal phyla. Sequencing and de novo assembly of Irish Haliclona transcriptomes indicated that sponges also possess similar genes. An exhaustive analysis of publicly available sequencing data from other sponges showed that this is a potentially widespread feature of the Porifera. While many sponge proteins possess a sequence similarity of 27.70–59.06% to actinoporins, they show consistency in predicted structure. One gene copy from H. indistincta has significant sequence similarity to sea anemone actinoporins and possesses conserved residues associated with the fundamental roles of sphingomyelin recognition, membrane attachment, oligomerization, and pore formation, indicating that it may be an actinoporin. Phylogenetic analyses indicate frequent gene duplication, no distinct clade for sponge-derived proteins, and a stronger signal towards actinoporins than similar proteins from other phyla. Overall, this study provides evidence that a diverse array of Porifera represents a novel source of actinoporin-like proteins which may have biotechnological and pharmaceutical applications.
Collapse
|
9
|
Ker DS, Sha HX, Jonet MA, Hwang JS, Ng CL. Structural and functional analysis of Hydra Actinoporin-Like Toxin 1 (HALT-1). Sci Rep 2021; 11:20649. [PMID: 34667248 PMCID: PMC8526580 DOI: 10.1038/s41598-021-99879-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Actinoporins are a family of α-pore-forming toxins (α-PFTs) that have been identified in sea anemones. Recently, a freshwater Hydra Actinoporin-Like Toxin (HALT) gene family was found in Hydra magnipapillata. Unlike sea anemone actinoporins that use sphingomyelin as their main recognition target, the HALTs proteins may recognise alternative lipid molecules as their target. To unveil the structural insights into lipid preference of HALTs protein as compared to sea anemone actinoporins, we have determined the first crystal structure of actinoporin-like toxin, HALT-1 at 1.43 Å resolution with an acetylated lysine residue K76. Despite the overall structure of HALT-1 sharing a high structural similarity to sea anemone actinoporins, the atomic resolution structure revealed several unique structural features of HALT-1 that may influence the lipid preference and oligomerisation interface. The HALT-1 contains a RAG motif in place of the highly conserved RGD motif found in sea anemone actinoporins. The RAG motif contributed to a sharper β9-β10 turn, which may sway its oligomerisation interface in comparison to sea anemone actinoporins. In the lipid-binding region, the HALT-1 contains a shorter α2 helix and a longer α2-β9 loop due to deletion and subsequently an insertion of five amino acid residues in comparison to the sea anemone actinoporins. Structure comparison and molecular docking analysis further revealed that the HALT-1 lipid-binding site may favour sphingolipids with sulfate or phosphate head group more than the sphingomyelin. The structure of HALT-1 reported here provides a new insight for a better understanding of the evolution and lipid recognition mechanism of actinoporin.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.,York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Hong Xi Sha
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
10
|
Cosentino K, Hermann E, von Kügelgen N, Unsay JD, Ros U, García-Sáez AJ. Force Mapping Study of Actinoporin Effect in Membranes Presenting Phase Domains. Toxins (Basel) 2021; 13:toxins13090669. [PMID: 34564674 PMCID: PMC8473010 DOI: 10.3390/toxins13090669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Equinatoxin II (EqtII) and Fragaceatoxin C (FraC) are pore-forming toxins (PFTs) from the actinoporin family that have enhanced membrane affinity in the presence of sphingomyelin (SM) and phase coexistence in the membrane. However, little is known about the effect of these proteins on the nanoscopic properties of membrane domains. Here, we used combined confocal microscopy and force mapping by atomic force microscopy to study the effect of EqtII and FraC on the organization of phase-separated phosphatidylcholine/SM/cholesterol membranes. To this aim, we developed a fast, high-throughput processing tool to correlate structural and nano-mechanical information from force mapping. We found that both proteins changed the lipid domain shape. Strikingly, they induced a reduction in the domain area and circularity, suggesting a decrease in the line tension due to a lipid phase height mismatch, which correlated with proteins binding to the domain interfaces. Moreover, force mapping suggested that the proteins affected the mechanical properties at the edge, but not in the bulk, of the domains. This effect could not be revealed by ensemble force spectroscopy measurements supporting the suitability of force mapping to study local membrane topographical and mechanical alterations by membranotropic proteins.
Collapse
|
11
|
Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021; 13:toxins13080567. [PMID: 34437438 PMCID: PMC8402351 DOI: 10.3390/toxins13080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs’ intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.
Collapse
Affiliation(s)
- Carlos Alvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Correspondence:
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Sheila Cabezas
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Javier Alvarado-Mesén
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40101, Costa Rica
| | - Rady Laborde
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Fabiola Pazos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-strasse 26, 50931 Cologne, Germany
| | - Ana María Hernández
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana CP 11600, Cuba;
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| |
Collapse
|
12
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Heras-Márquez D, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Structural foundations of sticholysin functionality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140696. [PMID: 34246789 DOI: 10.1016/j.bbapap.2021.140696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a β-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Esperanza Rivera-de-Torre
- Department of Biochemistry and Biotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| |
Collapse
|
13
|
Crystal structure of RahU, an aegerolysin protein from the human pathogen Pseudomonas aeruginosa, and its interaction with membrane ceramide phosphorylethanolamine. Sci Rep 2021; 11:6572. [PMID: 33753805 PMCID: PMC7985367 DOI: 10.1038/s41598-021-85956-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species. The knowledge on bacterial aegerolysin-lipid interactions is scarce. We show that Pseudomonas aeruginosa aegerolysin RahU interacts with CPE, but not with sphingomyelin-enriched artificial membranes, and that RahU interacts with the insect cell line producing CPE. We report crystal structures of RahU alone and in complex with tris(hydroxymethyl)aminomethane (Tris), which, like the phosphorylethanolamine head group of CPE, contains a primary amine. The RahU structures reveal that the two loops proximal to the amino terminus form a cavity that accommodates Tris, and that the flexibility of these two loops is important for this interaction. We show that Tris interferes with CPE-enriched membranes for binding to RahU, implying on the importance of the ligand cavity between the loops and its proximity in RahU membrane interaction. We further support this by studying the interaction of single amino acid substitution mutants of RahU with the CPE-enriched membranes. Our results thus represent a starting point for a better understanding of the role of P. aeruginosa RahU, and possibly other bacterial aegerolysins, in bacterial interactions with other organisms.
Collapse
|
14
|
Tomishige N, Murate M, Didier P, Richert L, Mély Y, Kobayashi T. The use of pore-forming toxins to image lipids and lipid domains. Methods Enzymol 2021; 649:503-542. [PMID: 33712198 DOI: 10.1016/bs.mie.2021.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Very few proteins are reported to bind specific lipids. Because of the high selectivity and strong binding to specific lipids, lipid-targeting pore forming toxins (PFTs) have been employed to study the distribution of lipids in cell- and model-membranes. Non-toxic and monomeric PFT-derivatives are especially useful to study living cells. In this chapter we highlight sphingomyelin (SM)-binding PFT, lysenin (Lys), its derivatives, and newly identified SM/cholesterol binding protein, nakanori. We describe the preparation of non-toxic mutant of Lys (NT-Lys) and its application in optical and super resolution microscopy. We also discuss the observation of nanometer scale lipid domains labeled with nakanori and maltose-binding protein (MBP)-Lys in electron microscopy.
Collapse
Affiliation(s)
| | | | - Pascal Didier
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | | - Yves Mély
- UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
15
|
Lipid interactions of an actinoporin pore-forming oligomer. Biophys J 2021; 120:1357-1366. [PMID: 33617834 DOI: 10.1016/j.bpj.2021.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/16/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The actinoporins are cytolytic toxins produced by sea anemones. Upon encountering a membrane, preferably containing sphingomyelin, they oligomerize and insert their N-terminal helix into the membrane, forming a pore. Whether sphingomyelin is specifically recognized by the protein or simply induces phase coexistence in the membrane has been debated. Here, we perform multi-microsecond molecular dynamics simulations of an octamer of fragaceatoxin C, a member of the actinoporin family, in lipid bilayers containing either pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or a 1:1 mixture of DOPC and palmitoyl sphingomyelin (PSM). The complex is highly stable in both environments, with only slight fraying of the inserted helices near their N-termini. Analyzing the structural parameters of the mixed membrane in the course of the simulation, we see signs of a phase transition for PSM in the inner leaflet of the bilayer. In both leaflets, cross-interactions between lipids of different type decrease over time. Surprisingly, the aromatic loop thought to be responsible for sphingomyelin recognition interacts more with DOPC than PSM by the end of the simulation. These results support the notion that the key membrane property that actinoporins recognize is lipid phase coexistence.
Collapse
|
16
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
17
|
Kobayashi T, Tomishige N, Inaba T, Makino A, Murata M, Yamaji-Hasegawa A, Murate M. Impact of Intrinsic and Extrinsic Factors on Cellular Sphingomyelin Imaging with Specific Reporter Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211042456. [PMID: 37366372 PMCID: PMC10259817 DOI: 10.1177/25152564211042456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. Although SM is enriched in the outer leaflet of the cell plasma membrane, lipids are also observed in the inner leaflet of the plasma membrane and intracellular organelles such as endolysosomes, the Golgi apparatus and nuclei. SM is postulated to form clusters with glycosphingolipids (GSLs), cholesterol (Chol), and other SM molecules through hydrophobic interactions and hydrogen bonding. Thus, different clusters composed of SM, SM/Chol, SM/GSL and SM/GSL/Chol with different stoichiometries may exist in biomembranes. In addition, SM monomers may be located in the glycerophospholipid-rich areas of membranes. Recently developed SM-binding proteins (SBPs) distinguish these different SM assemblies. Here, we summarize the effects of intrinsic factors regulating the lipid-binding specificity of SBPs and extrinsic factors, such as the lipid phase and lipid density, on SM recognition by SBPs. The combination of different SBPs revealed the heterogeneity of SM domains in biomembranes.
Collapse
Affiliation(s)
- Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| | | | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Michio Murata
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka, Osaka, Japan
- ERATO, Lipid Active Structure Project,
Japan Science and Technology Agency, Graduate School of Science, Osaka University,
Osaka, Japan
| | | | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| |
Collapse
|
18
|
Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus. Int J Mol Sci 2020; 21:ijms21238915. [PMID: 33255441 PMCID: PMC7727798 DOI: 10.3390/ijms21238915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey-predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.
Collapse
|
19
|
Mondal AK, Verma P, Lata K, Singh M, Chatterjee S, Chattopadhyay K. Sequence Diversity in the Pore-Forming Motifs of the Membrane-Damaging Protein Toxins. J Membr Biol 2020; 253:469-478. [PMID: 32955633 DOI: 10.1007/s00232-020-00141-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Pore-forming proteins/toxins (PFPs/PFTs) are the distinct class of membrane-damaging proteins. They act by forming oligomeric pores in the plasma membranes. PFTs and PFPs from diverse organisms share a common mechanism of action, in which the designated pore-forming motifs of the membrane-bound protein molecules insert into the membrane lipid bilayer to create the water-filled pores. One common characteristic of these pore-forming motifs is that they are amphipathic in nature. In general, the hydrophobic sidechains of the pore-forming motifs face toward the hydrophobic core of the membranes, while the hydrophilic residues create the lining of the water-filled pore lumen. Interestingly, pore-forming motifs of the distinct subclass of PFPs/PFTs share very little sequence similarity with each other. Therefore, the common guiding principle that governs the sequence-to-structure paradigm in the mechanism of action of these PFPs/PFTs still remains an enigma. In this article, we discuss this notion using the examples of diverse groups of membrane-damaging PFPs/PFTs.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Pratima Verma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kusum Lata
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
20
|
Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183311. [DOI: 10.1016/j.bbamem.2020.183311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/12/2020] [Accepted: 04/13/2020] [Indexed: 02/01/2023]
|
21
|
Rivera-de-Torre E, Palacios-Ortega J, Garb JE, Slotte JP, Gavilanes JG, Martínez-Del-Pozo Á. Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Arch Biochem Biophys 2020; 689:108435. [PMID: 32485153 DOI: 10.1016/j.abb.2020.108435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
Abstract
Actinoporins are a family of pore-forming toxins produced by sea anemones as part of their venomous cocktail. These proteins remain soluble and stably folded in aqueous solution, but when interacting with sphingomyelin-containing lipid membranes, they become integral oligomeric membrane structures that form a pore permeable to cations, which leads to cell death by osmotic shock. Actinoporins appear as multigenic families within the genome of sea anemones: several genes encoding very similar actinoporins are detected within the same species. The Caribbean Sea anemone Stichodactyla helianthus produces three actinoporins (sticholysins I, II and III; StnI, StnII and StnIII) that differ in their toxic potency. For example, StnII is about four-fold more effective than StnI against sheep erythrocytes in causing hemolysis, and both show synergy. However, StnIII, recently discovered in the S. helianthus transcriptome, has not been characterized so far. Here we describe StnIII's spectroscopic and functional properties and show its potential to interact with the other Stns. StnIII seems to maintain the well-preserved fold of all actinoporins, characterized by a high content of β-sheet, but it is significantly less thermostable. Its functional characterization shows that the critical concentration needed to form active pores is higher than for either StnI or StnII, suggesting differences in behavior when oligomerizing on membrane surfaces. Our results show that StnIII is an interesting and unexpected piece in the puzzle of how this Caribbean Sea anemone species modulates its venomous activity.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jessica E Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
22
|
Ramírez-Carreto S, Miranda-Zaragoza B, Rodríguez-Almazán C. Actinoporins: From the Structure and Function to the Generation of Biotechnological and Therapeutic Tools. Biomolecules 2020; 10:E539. [PMID: 32252469 PMCID: PMC7226409 DOI: 10.3390/biom10040539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Actinoporins (APs) are a family of pore-forming toxins (PFTs) from sea anemones. These biomolecules exhibit the ability to exist as soluble monomers within an aqueous medium or as constitutively open oligomers in biological membranes. Through their conformational plasticity, actinoporins are considered good candidate molecules to be included for the rational design of molecular tools, such as immunotoxins directed against tumor cells and stochastic biosensors based on nanopores to analyze unique DNA or protein molecules. Additionally, the ability of these proteins to bind to sphingomyelin (SM) facilitates their use for the design of molecular probes to identify SM in the cells. The immunomodulatory activity of actinoporins in liposomal formulations for vaccine development has also been evaluated. In this review, we describe the potential of actinoporins for use in the development of molecular tools that could be used for possible medical and biotechnological applications.
Collapse
Affiliation(s)
| | | | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (S.R.-C.); (B.M.-Z.)
| |
Collapse
|
23
|
Jakubec M, Totland C, Rise F, Chamgordani EJ, Paulsen B, Maes L, Matheeussen A, Gundersen LL, Halskau Ø. Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems. Mar Drugs 2020; 18:md18020125. [PMID: 32092956 PMCID: PMC7073740 DOI: 10.3390/md18020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound 1) and three agelasine analogs (compound 2–4) as well as malonganenone J (compound 5), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine. The data indicated that all the tested compounds increased stored curvature elastic stress, and therefore, tend to deform the bilayer which occurs without a reduction in the packing stress of the hexagonal phase. Furthermore, lower concentrations (1%) appear to have a more pronounced effect than higher ones (5–10%). For compounds 4 and 5, this effect is also reflected in phospholipid headgroup mobility assessed using 31P chemical shift anisotropy (CSA) values of the lamellar phases. Among the compounds tested, compound 4 stands out with respect to its effects on the membrane model systems, which matches its efficacy against a broad spectrum of pathogens. Future work that aims to increase the pharmacological usefulness of these compounds could benefit from taking into account the compound effects on the fluid lamellar phase at low concentrations.
Collapse
Affiliation(s)
- Martin Jakubec
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, NO-5006 Bergen, Norway;
| | - Christian Totland
- Department of Environmental Chemistry, Norwegian Geotechnical Institute, Sognsveien 72, 0855 Oslo, Norway;
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
| | - Elahe Jafari Chamgordani
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
| | - Britt Paulsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
| | - Louis Maes
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, B-2610 Antwerp, Belgium; (L.M.); (A.M.)
| | - An Matheeussen
- University of Antwerp, Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Universiteitsplein 1, B-2610 Antwerp, Belgium; (L.M.); (A.M.)
| | - Lise-Lotte Gundersen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway; (F.R.); (E.J.C.); (B.P.)
- Correspondence: (L.-L.G.); (Ø.H.)
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, NO-5006 Bergen, Norway;
- Correspondence: (L.-L.G.); (Ø.H.)
| |
Collapse
|
24
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Mesa-Galloso H, Valiente PA, Valdés-Tresanco ME, Epand RF, Lanio ME, Epand RM, Alvarez C, Tieleman DP, Ros U. Membrane Remodeling by the Lytic Fragment of SticholysinII: Implications for the Toroidal Pore Model. Biophys J 2019; 117:1563-1576. [PMID: 31587828 DOI: 10.1016/j.bpj.2019.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/15/2023] Open
Abstract
Sticholysins are pore-forming toxins of biomedical interest and represent a prototype of proteins acting through the formation of protein-lipid or toroidal pores. Peptides spanning the N-terminus of sticholysins can mimic their permeabilizing activity and, together with the full-length toxins, have been used as a tool to understand the mechanism of pore formation in membranes. However, the lytic mechanism of these peptides and the lipid shape modulating their activity are not completely clear. In this article, we combine molecular dynamics simulations and experimental biophysical tools to dissect different aspects of the pore-forming mechanism of StII1-30, a peptide derived from the N-terminus of sticholysin II (StII). With this combined approach, membrane curvature induction and flip-flop movement of the lipids were identified as two important membrane remodeling steps mediated by StII1-30. Pore formation by this peptide was enhanced by the presence of the negatively curved lipid phosphatidylethanolamine in membranes. This lipid emerged not only as a facilitator of membrane interactions but also as a structural element of the StII1-30 pore that is recruited to the ring upon its assembly. Collectively, these, to our knowledge, new findings support a toroidal model for the architecture of the pore formed by StII1-30 and provide new molecular insight into the role of phosphatidylethanolamine as a membrane component that can easily integrate into the ring of toroidal pores, thus probably aiding in their stabilization. This study contributes to a better understanding of the molecular mechanism underlying the permeabilizing activity of StII1-30 and peptides or proteins acting via a toroidal pore mechanism and offers an informative framework for the optimization of the biomedical application of this and similar molecules.
Collapse
Affiliation(s)
- Haydee Mesa-Galloso
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada; Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Mario E Valdés-Tresanco
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada; Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, Health Science Center, McMaster University, Hamilton, Ontario, Canada
| | - Maria E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Science Center, McMaster University, Hamilton, Ontario, Canada
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada.
| | - Uris Ros
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Yap WY, Tan KJSX, Hwang JS. Expansion of Hydra actinoporin-like toxin (HALT) gene family: Expression divergence and functional convergence evolved through gene duplication. Toxicon 2019; 170:10-20. [PMID: 31513812 DOI: 10.1016/j.toxicon.2019.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Hydra actinoporin-like toxin 1 (HALT-1) was previously shown to cause cytolysis and haemolysis in a number of human cells and has similar functional properties to the actinoporins equinatoxin and sticholysin. In addition to HALT-1, five other HALTs (HALTs 2, 3, 4, 6 and 7) were also isolated from Hydra magnipapillata and expressed as recombinant proteins in this study. We demonstrated that recombinant HALTs have cytolytic activity on HeLa cells but each exhibited a different range of toxicity. All six recombinant HALTs bound to sulfatide, while rHALT-1 and rHALT-3 bound to two additional sphingolipids, lysophosphatidic acid and sphingosine-1-phosphate as indicated by the protein-lipid overlay assay. When either tryptophan133 or tyrosine129 of HALT-1 was mutated, the mutant protein lost binding to sulfatide, lysophosphatidic acid and sphingosine-1-phosphate. As further verification of HALTs' binding to sulfatide, we performed ELISA for each HALT. To determine the cell-type specific gene expression of seven HALTs in Hydra, we searched for individual HALT expression in the single-cell RNA-seq data set of Single Cell Portal. The results showed that HALT-1, 4 and 7 were expressed in differentiating stenoteles. HALT-1 and HALT-6 were expressed in the female germline during oogenesis. HALT-2 was strongly expressed in the gland and mucous cells in the endoderm. Information on HALT-3 and HALT-5 could not be found in the single-cell data set. Our findings show that subfunctionalisation of gene expression following duplication enabled HALTs to become specialized in various cell types of the interstitial cell lineage.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Katrina Joan Shu Xian Tan
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
27
|
Mutter NL, Volarić J, Szymanski W, Feringa BL, Maglia G. Reversible Photocontrolled Nanopore Assembly. J Am Chem Soc 2019; 141:14356-14363. [PMID: 31469268 PMCID: PMC6743218 DOI: 10.1021/jacs.9b06998] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Self-assembly
is a fundamental feature of biological systems, and
control of such processes offers fascinating opportunities to regulate
function. Fragaceatoxin C (FraC) is a toxin that upon binding to the
surface of sphingomyelin-rich cells undergoes a structural metamorphosis,
leading to the assembly of nanopores at the cell membrane and causing
cell death. In this study we attached photoswitchable azobenzene pendants
to various locations near the sphingomyelin binding pocket of FraC
with the aim of remote controlling the nanopore assembly using light.
We found several constructs in which the affinity of the toxin for
biological membranes could be activated or deactivated by irradiation,
thus enabling reversible photocontrol of pore formation. Notably,
one construct was completely inactive in the thermally adapted state;
it however induced full lysis of cultured cancer cells upon light
irradiation. Selective irradiation also allowed isolation of individual
nanopores in artificial lipid membranes. Photocontrolled FraC might
find applications in photopharmacology for cancer therapeutics and
has potential to be used for the fabrication of nanopore arrays in
nanopore sensing devices, where the reconstitution, with high spatiotemporal
precision, of single nanopores must be controlled.
Collapse
Affiliation(s)
| | | | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology , University of Groningen , Hanzeplein 1 , 9713 GZ , Groningen , The Netherlands
| | | | | |
Collapse
|
28
|
Hervis YP, Valle A, Dunkel S, Klare JP, Canet L, Lanio ME, Alvarez C, Pazos IF, Steinhoff HJ. Architecture of the pore forming toxin sticholysin I in membranes. J Struct Biol 2019; 208:30-42. [PMID: 31330179 DOI: 10.1016/j.jsb.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
Sticholysin I (StI) is a toxin produced by the sea anemone Stichodactyla helianthus and belonging to the actinoporins family. Upon binding to sphingomyelin-containing membranes StI forms oligomeric pores, thereby leading to cell death. According to recent controversial experimental evidences, the pore architecture of actinoporins is a debated topic. Here, we investigated the StI topology in membranes by site-directed spin labeling and electron paramagnetic resonance spectroscopy. The results reveal that StI in membrane exhibits an oligomeric architecture with heterogeneous stoichiometry of predominantly eight or nine protomers, according to the available structural models. The StI topology resembles the conic pore structure reported for the actinoporin fragaceatoxin C. Our data show that StI coexists in two membrane-associated conformations, with the N-terminal segment either attached to the protein core or inserted in the membrane forming the pore. This finding suggests a 'pre-pore' to 'pore' transition determined by a conformational change that detaches the N-terminal segment.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Sabrina Dunkel
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| | - Johann P Klare
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, University of Havana, Calle 25 #455 e/I y J, Vedado, Plaza de la Revolución, ZIP 10400, Havana, Cuba.
| | - Heinz-J Steinhoff
- Department of Physics, University of Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany.
| |
Collapse
|
29
|
Pore-Forming Proteins from Cnidarians and Arachnids as Potential Biotechnological Tools. Toxins (Basel) 2019; 11:toxins11060370. [PMID: 31242582 PMCID: PMC6628452 DOI: 10.3390/toxins11060370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Animal venoms are complex mixtures of highly specialized toxic molecules. Cnidarians and arachnids produce pore-forming proteins (PFPs) directed against the plasma membrane of their target cells. Among PFPs from cnidarians, actinoporins stand out for their small size and molecular simplicity. While native actinoporins require only sphingomyelin for membrane binding, engineered chimeras containing a recognition antibody-derived domain fused to an actinoporin isoform can nonetheless serve as highly specific immunotoxins. Examples of such constructs targeted against malignant cells have been already reported. However, PFPs from arachnid venoms are less well-studied from a structural and functional point of view. Spiders from the Latrodectus genus are professional insect hunters that, as part of their toxic arsenal, produce large PFPs known as latrotoxins. Interestingly, some latrotoxins have been identified as potent and highly-specific insecticides. Given the proteinaceous nature of these toxins, their promising future use as efficient bioinsecticides is discussed throughout this Perspective. Protein engineering and large-scale recombinant production are critical steps for the use of these PFPs as tools to control agriculturally important insect pests. In summary, both families of PFPs, from Cnidaria and Arachnida, appear to be molecules with promising biotechnological applications.
Collapse
|
30
|
Madio B, King GF, Undheim EAB. Sea Anemone Toxins: A Structural Overview. Mar Drugs 2019; 17:E325. [PMID: 31159357 PMCID: PMC6627431 DOI: 10.3390/md17060325] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 02/06/2023] Open
Abstract
Sea anemones produce venoms of exceptional molecular diversity, with at least 17 different molecular scaffolds reported to date. These venom components have traditionally been classified according to pharmacological activity and amino acid sequence. However, this classification system suffers from vulnerabilities due to functional convergence and functional promiscuity. Furthermore, for most known sea anemone toxins, the exact receptors they target are either unknown, or at best incomplete. In this review, we first provide an overview of the sea anemone venom system and then focus on the venom components. We have organised the venom components by distinguishing firstly between proteins and non-proteinaceous compounds, secondly between enzymes and other proteins without enzymatic activity, then according to the structural scaffold, and finally according to molecular target.
Collapse
Affiliation(s)
- Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Centre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
31
|
Pang Y, Gou M, Yang K, Lu J, Han Y, Teng H, Li C, Wang H, Liu C, Zhang K, Yang Y, Li Q. Crystal structure of a cytocidal protein from lamprey and its mechanism of action in the selective killing of cancer cells. Cell Commun Signal 2019; 17:54. [PMID: 31133022 PMCID: PMC6537362 DOI: 10.1186/s12964-019-0358-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background In previous research, we found that lamprey immune protein (LIP) possessed cytocidal activity against tumor cells, but the mechanism of the selective recognition and killing of tumor cells by LIP was not identified. Methods Superresolution microscopy, crystallographic structural analysis, glycan chip assay, SPR experiments, FACS assays, computational studies and mass spectrometric analysis firmly establish the mode of action of LIP, which involves dual selective recognition and efficient binding. Results We determined the overall crystallographic structure of LIP at a resolution of 2.25 Å. LIP exhibits an elongated structure with dimensions of 105 Å × 30 Å × 30 Å containing an N-terminal lectin module and a C-terminal aerolysin module. Moreover, the Phe209-Gly232 region is predicted to insert into the lipid bilayer to form a transmembrane β-barrel, in which the hydrophobic residues face the lipid bilayer, and the polar residues constitute the hydrophilic lumen of the pore. We found that LIP is able to kill various human cancer cells with minimal effects on normal cells. Notably, by coupling biochemical and computational studies, we propose a hypothetical mechanism that involves dual selective recognition and efficient binding dependent on both N-linked glycans on GPI-anchored proteins (GPI-APs) and sphingomyelin (SM) in lipid rafts. Furthermore, specific binding of the lectin module with biantennary bisialylated nonfucosylated N-glycan or sialyl Lewis X-containing glycan structures on GPI-APs triggers substantial conformational changes in the aerolysin module, which interacts with SM, ultimately resulting in the formation of a membrane-bound oligomer in lipid rafts. Conclusions LIP holds great potential for the application of a marine protein towards targeted cancer therapy and early diagnosis in humans. Electronic supplementary material The online version of this article (10.1186/s12964-019-0358-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Kai Yang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Hongming Teng
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Changzhi Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Haina Wang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kejia Zhang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China.,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China.
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China. .,Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
32
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophys J 2019; 116:2253-2265. [PMID: 31146924 DOI: 10.1016/j.bpj.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/05/2019] [Accepted: 05/10/2019] [Indexed: 02/06/2023] Open
Abstract
Actinoporins are a group of soluble toxic proteins that bind to membranes containing sphingomyelin (SM) and oligomerize to form pores. Sticholysin II (StnII) is a member of the actinoporin family produced by Stichodactyla helianthus. Cholesterol (Chol) is known to enhance the activity of StnII. However, the molecular mechanisms behind this activation have remained obscure, although the activation is not Chol specific but rather sterol specific. To further explore how bilayer lipids affect or are affected by StnII, we have used a multiprobe approach (fluorescent analogs of both Chol and SM) in combination with a series of StnII tryptophan (Trp) mutants to study StnII/bilayer interactions. First, we compared StnII bilayer permeabilization in the presence of Chol or oleoyl-ceramide (OCer). The comparison was done because both Chol and OCer have a 1-hydroxyl, which helps to orient the molecule in the bilayer (although OCer has additional polar functional groups). Both Chol and OCer also have increased affinity for SM, which StnII may recognize. However, our results show that only Chol was able to activate StnII-induced bilayer permeabilization; OCer failed to activate it. To further examine possible Chol/StnII interactions, we measured Förster resonance energy transfer between Trp in StnII and cholestatrienol, a fluorescent analog of Chol. We could show higher Förster resonance energy transfer efficiency between cholestatrienol and Trps in position 100 and 114 of StnII when compared to three other Trp positions further away from the bilayer binding region of StnII. Taken together, our results suggest that StnII was able to attract Chol to its vicinity, maybe by showing affinity for Chol. SM interactions are known to be important for StnII binding to bilayers, and Chol is known to facilitate subsequent permeabilization of the bilayers by StnII. Our results help to better understand the role of these important membrane lipids for the bilayer properties of StnII.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
33
|
Verstraeten SL, Deleu M, Janikowska-Sagan M, Claereboudt EJS, Lins L, Tyteca D, Mingeot-Leclercq MP. The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol. Sci Rep 2019; 9:7285. [PMID: 31086211 PMCID: PMC6513819 DOI: 10.1038/s41598-019-43674-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/12/2019] [Indexed: 01/12/2023] Open
Abstract
The membrane activity of some saponins, such as digitonin or alpha-hederin, is usually attributed to their interaction with membrane cholesterol (Chol). This contrasts with our recent publication showing that Chol, contrary to sphingomyelin (SM), can delay the cytotoxicity of the saponin ginsenoside Rh2, challenging the usual view that most saponins mediate their membrane effects through interaction with Chol. The aim of the present study was to elucidate the respective importance of Chol and SM as compared to phosphatidylcholine (PC) species in the membrane-related effects of Rh2. On simple lipid monolayers, Rh2 interacted more favorably with eggSM and DOPC than with Chol and eggPC. Using Large Unilamellar Vesicles (LUVs) of binary or ternary lipid compositions, we showed that Rh2 increased vesicle size, decreased membrane fluidity and induced membrane permeability with the following preference: eggSM:eggPC > eggSM:eggPC:Chol > eggPC:Chol. On Giant Unilamellar Vesicles (GUVs), we evidenced that Rh2 generated positive curvatures in eggSM-containing GUVs and small buds followed by intra-luminal vesicles in eggSM-free GUVs. Altogether, our data indicate that eggSM promotes and accelerates membrane-related effects induced by Rh2 whereas Chol slows down and depresses these effects. This study reconsiders the theory that Chol is the only responsible for the activity of saponins.
Collapse
|
34
|
Šakanovič A, Hodnik V, Anderluh G. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes. Methods Mol Biol 2019; 2003:53-70. [PMID: 31218613 DOI: 10.1007/978-1-4939-9512-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipids or lipid membranes. In most of the approaches a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here we provide an overview of SPR in protein-lipid and protein-membrane interactions, different approaches described in the literature and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
Affiliation(s)
- Aleksandra Šakanovič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
35
|
Guerra AJ, Zhang O, Bahr CME, Huynh MH, DelProposto J, Brown WC, Wawrzak Z, Koropatkin NM, Carruthers VB. Structural basis of Toxoplasma gondii perforin-like protein 1 membrane interaction and activity during egress. PLoS Pathog 2018; 14:e1007476. [PMID: 30513119 PMCID: PMC6294395 DOI: 10.1371/journal.ppat.1007476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/14/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Intracellular pathogens must egress from the host cell to continue their infectious cycle. Apicomplexans are a phylum of intracellular protozoans that have evolved members of the membrane attack complex and perforin (MACPF) family of pore forming proteins to disrupt cellular membranes for traversing cells during tissue migration or egress from a replicative vacuole following intracellular reproduction. Previous work showed that the apicomplexan Toxoplasma gondii secretes a perforin-like protein (TgPLP1) that contains a C-terminal Domain (CTD) which is necessary for efficient parasite egress. However, the structural basis for CTD membrane binding and egress competency remained unknown. Here, we present evidence that TgPLP1 CTD prefers binding lipids that are abundant in the inner leaflet of the lipid bilayer. Additionally, solving the high-resolution crystal structure of the TgPLP1 APCβ domain within the CTD reveals an unusual double-layered β-prism fold that resembles only one other protein of known structure. Three direct repeat sequences comprise subdomains, with each constituting a wall of the β-prism fold. One subdomain features a protruding hydrophobic loop with an exposed tryptophan at its tip. Spectrophotometric measurements of intrinsic tryptophan fluorescence are consistent with insertion of the hydrophobic loop into a target membrane. Using CRISPR/Cas9 gene editing we show that parasite strains bearing mutations in the hydrophobic loop, including alanine substitution of the tip tryptophan, are equally deficient in egress as a strain lacking TgPLP1 altogether. Taken together our findings suggest a crucial role for the hydrophobic loop in anchoring TgPLP1 to the membrane to support its cytolytic activity and egress function. The intracellular parasite Toxoplasma gondii infects many hosts including humans. Infected people with a weak immune system can suffer severe disease when the parasite replicates uncontrolled via repeated cycles of cell invasion, intracellular growth, and exit, resulting in cell death. Previous studies showed that T. gondii encodes a pore-forming protein, TgPLP1, which contains an unusual domain that is crucial for efficient exit from both the parasite containing vacuole and the host cell. However, how TgPLP1 recognizes and binds to the appropriate membrane is unclear. Here we use a combination of biochemistry, structural biology, and parasitology to identify a preference of TgPLP1 for specific lipids and show that a loop within the structure of the membrane-binding domain inserts into the target membrane and is necessary for exit from the parasite containing vacuole. Our study sheds light into the determinants of membrane binding in TgPLP1 and may inform the overall mechanism of pore formation in similar systems.
Collapse
Affiliation(s)
- Alfredo J. Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| | - Ou Zhang
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Constance M. E. Bahr
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - James DelProposto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - William C. Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center–LS-CAT, Northwestern University, Argonne, IL, United States of America
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
36
|
Hullin-Matsuda F, Murate M, Kobayashi T. Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chem Phys Lipids 2018; 216:132-141. [DOI: 10.1016/j.chemphyslip.2018.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 01/05/2023]
|
37
|
Yap WY, Hwang JS. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules 2018; 23:E2537. [PMID: 30287801 PMCID: PMC6222686 DOI: 10.3390/molecules23102537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
38
|
Scott H, Huang W, Bann JG, Taylor DJ. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Protein Sci 2018; 27:1544-1556. [PMID: 30129169 PMCID: PMC6194281 DOI: 10.1002/pro.3454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
The beta pore-forming proteins (β-PFPs) are a large class of polypeptides that are produced by all Kingdoms of life to contribute to their species' own survival. Pore assembly is a sophisticated multi-step process that includes receptor/membrane recognition and oligomerization events, and is ensued by large-scale structural rearrangements, which facilitate maturation of a prepore into a functional membrane spanning pore. A full understanding of pore formation, assembly, and maturation has traditionally been hindered by a lack of structural data; particularly for assemblies representing differing conformations of functional pores. However, recent advancements in cryo-electron microscopy (cryo-EM) techniques have provided the opportunity to delineate the structures of such flexible complexes, and in different states, to near-atomic resolution. In this review, we place a particular emphasis on the use of cryo-EM to uncover the mechanistic details including architecture, activation, and maturation for some of the prominent members of this family.
Collapse
Affiliation(s)
- Harry Scott
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - Wei Huang
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - James G. Bann
- Department of ChemistryWichita State UniversityWichitaKansas67260
| | - Derek J. Taylor
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
- Department of BiochemistryCase Western Reserve UniversityClevelandOhio44106
| |
Collapse
|
39
|
Cholesterol promotes Cytolysin A activity by stabilizing the intermediates during pore formation. Proc Natl Acad Sci U S A 2018; 115:E7323-E7330. [PMID: 30012608 DOI: 10.1073/pnas.1721228115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pore-forming toxins (PFTs) form nanoscale pores across target membranes causing cell death. Cytolysin A (ClyA) from Escherichia coli is a prototypical α-helical toxin that contributes to cytolytic phenotype of several pathogenic strains. It is produced as a monomer and, upon membrane exposure, undergoes conformational changes and finally oligomerizes to form a dodecameric pore, thereby causing ion imbalance and finally cell death. However, our current understanding of this assembly process is limited to studies in detergents, which do not capture the physicochemical properties of biological membranes. Here, using single-molecule imaging and molecular dynamics simulations, we study the ClyA assembly pathway on phospholipid bilayers. We report that cholesterol stimulates pore formation, not by enhancing initial ClyA binding to the membrane but by selectively stabilizing a protomer-like conformation. This was mediated by specific interactions by cholesterol-interacting residues in the N-terminal helix. Additionally, cholesterol stabilized the oligomeric structure using bridging interactions in the protomer-protomer interfaces, thereby resulting in enhanced ClyA oligomerization. This dual stabilization of distinct intermediates by cholesterol suggests a possible molecular mechanism by which ClyA achieves selective membrane rupture of eukaryotic cell membranes. Topological similarity to eukaryotic membrane proteins suggests evolution of a bacterial α-toxin to adopt eukaryotic motifs for its activation. Broad mechanistic correspondence between pore-forming toxins hints at a wider prevalence of similar protein membrane insertion mechanisms.
Collapse
|
40
|
Leychenko E, Isaeva M, Tkacheva E, Zelepuga E, Kvetkina A, Guzev K, Monastyrnaya M, Kozlovskaya E. Multigene Family of Pore-Forming Toxins from Sea Anemone Heteractis crispa. Mar Drugs 2018; 16:E183. [PMID: 29794988 PMCID: PMC6025637 DOI: 10.3390/md16060183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
Sea anemones produce pore-forming toxins, actinoporins, which are interesting as tools for cytoplasmic membranes study, as well as being potential therapeutic agents for cancer therapy. This investigation is devoted to structural and functional study of the Heteractis crispa actinoporins diversity. Here, we described a multigene family consisting of 47 representatives expressed in the sea anemone tentacles as prepropeptide-coding transcripts. The phylogenetic analysis revealed that actinoporin clustering is consistent with the division of sea anemones into superfamilies and families. The transcriptomes of both H. crispa and Heteractis magnifica appear to contain a large repertoire of similar genes representing a rapid expansion of the actinoporin family due to gene duplication and sequence divergence. The presence of the most abundant specific group of actinoporins in H. crispa is the major difference between these species. The functional analysis of six recombinant actinoporins revealed that H. crispa actinoporin grouping was consistent with the different hemolytic activity of their representatives. According to molecular modeling data, we assume that the direction of the N-terminal dipole moment tightly reflects the actinoporins' ability to possess hemolytic activity.
Collapse
Affiliation(s)
- Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
- School of Natural Sciences, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690091, Russia.
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
- School of Natural Sciences, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690091, Russia.
| | - Ekaterina Tkacheva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Aleksandra Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Konstantin Guzev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Margarita Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| |
Collapse
|
41
|
Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation. Sci Rep 2018; 8:6614. [PMID: 29700324 PMCID: PMC5920107 DOI: 10.1038/s41598-018-24688-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.
Collapse
|
42
|
Tanaka K, Caaveiro JMM, Morante K, Tsumoto K. Haemolytic actinoporins interact with carbohydrates using their lipid-binding module. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630155 DOI: 10.1098/rstb.2016.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pore-forming toxins (PFTs) are proteins endowed with metamorphic properties that enable them to stably fold in water solutions as well as in cellular membranes. PFTs produce lytic pores on the plasma membranes of target cells conducive to lesions, playing key roles in the defensive and offensive molecular systems of living organisms. Actinoporins are a family of potent haemolytic toxins produced by sea anemones vigorously studied as a paradigm of α-helical PFTs, in the context of lipid-protein interactions, and in connection with nanopore technologies. We have recently reported that fragaceatoxin C (FraC), an actinoporin, engages biological membranes with a large adhesive motif allowing the simultaneous attachment of up to four lipid molecules prior to pore formation. Since actinoporins also interact with carbohydrates, we sought to understand the molecular and energetic basis of glycan recognition by FraC. By employing structural and biophysical methodologies, we show that FraC engages glycans with low affinity using its lipid-binding module. Contrary to other PFTs requiring separate domains for glycan and lipid recognition, the small single-domain actinoporins economize resources by achieving dual recognition with a single binding module. This mechanism could enhance the recruitment of actinoporins to the surface of target tissues in their marine environment.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Koji Tanaka
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M M Caaveiro
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koldo Morante
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan .,Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
43
|
Fahie MA, Liang L, Avelino AR, Pham B, Limpikirati P, Vachet RW, Chen M. Disruption of the open conductance in the β-tongue mutants of Cytolysin A. Sci Rep 2018; 8:3796. [PMID: 29491391 PMCID: PMC5830503 DOI: 10.1038/s41598-018-22009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Cytolysin A (ClyA) is a water-soluble alpha pore-forming toxin that assembles to form an oligomeric pore on host cell membranes. The ClyA monomer possesses an α-helical bundle with a β-sheet subdomain (the β-tongue) previously believed to be critical for pore assembly and/or insertion. Oligomerization of ClyA pores transforms the β-tongue into a helix-turn-helix that embeds into the lipid bilayer. Here, we show that mutations of the β-tongue did not prevent oligomerization or transmembrane insertion. Instead, β-tongue substitution mutants yielded pores with decreased conductance while a deletion mutation resulted in pores that rapidly closed following membrane association. Our results suggest that the β-tongue may play an essential structural role in stabilizing the open conformation of the transmembrane domain.
Collapse
Affiliation(s)
- Monifa A Fahie
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lucas Liang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alzira R Avelino
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Richard W Vachet
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA. .,Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
44
|
Lenarčič T, Albert I, Böhm H, Hodnik V, Pirc K, Zavec AB, Podobnik M, Pahovnik D, Žagar E, Pruitt R, Greimel P, Yamaji-Hasegawa A, Kobayashi T, Zienkiewicz A, Gömann J, Mortimer JC, Fang L, Mamode-Cassim A, Deleu M, Lins L, Oecking C, Feussner I, Mongrand S, Anderluh G, Nürnberger T. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 2018; 358:1431-1434. [PMID: 29242345 DOI: 10.1126/science.aan6874] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023]
Abstract
Necrosis and ethylene-inducing peptide 1-like (NLP) proteins constitute a superfamily of proteins produced by plant pathogenic bacteria, fungi, and oomycetes. Many NLPs are cytotoxins that facilitate microbial infection of eudicot, but not of monocot plants. Here, we report glycosylinositol phosphorylceramide (GIPC) sphingolipids as NLP toxin receptors. Plant mutants with altered GIPC composition were more resistant to NLP toxins. Binding studies and x-ray crystallography showed that NLPs form complexes with terminal monomeric hexose moieties of GIPCs that result in conformational changes within the toxin. Insensitivity to NLP cytolysins of monocot plants may be explained by the length of the GIPC head group and the architecture of the NLP sugar-binding site. We unveil early steps in NLP cytolysin action that determine plant clade-specific toxin selectivity.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Isabell Albert
- Centre of Plant Molecular Biology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hannah Böhm
- Centre of Plant Molecular Biology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Vesna Hodnik
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Katja Pirc
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Apolonija B Zavec
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Rory Pruitt
- Centre of Plant Molecular Biology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, Wako Saitama 351-0198, Japan.,Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN Institute, Wako, Saitama 351-0198, Japan
| | - Akiko Yamaji-Hasegawa
- Lipid Biology Laboratory, RIKEN, Wako Saitama 351-0198, Japan.,Molecular Membrane Neuroscience, Brain Science Institute, RIKEN Institute, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako Saitama 351-0198, Japan.,UMR 7213 CNRS, University of Strasbourg, 67401 Illkirch, France
| | - Agnieszka Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Germany.,Göttingen Center for Molecular Biosciences, University of Göttingen, Germany
| | - Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Germany.,Göttingen Center for Molecular Biosciences, University of Göttingen, Germany
| | - Jenny C Mortimer
- Joint Bioenergy Institute, Emeryville, CA 94608, USA.,Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lin Fang
- Joint Bioenergy Institute, Emeryville, CA 94608, USA.,Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adiilah Mamode-Cassim
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS-Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave-d'Ornon Cedex, France
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, University of Liège, Gembloux, Belgium
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, University of Liège, Gembloux, Belgium
| | - Claudia Oecking
- Centre of Plant Molecular Biology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Germany.,Göttingen Center for Molecular Biosciences, University of Göttingen, Germany
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS-Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave-d'Ornon Cedex, France
| | - Gregor Anderluh
- Department for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Thorsten Nürnberger
- Centre of Plant Molecular Biology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Sarangi NK, Basu JK. Pathways for creation and annihilation of nanoscale biomembrane domains reveal alpha and beta-toxin nanopore formation processes. Phys Chem Chem Phys 2018; 20:29116-29130. [DOI: 10.1039/c8cp05729j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Raft-like functional domains with putative sizes of 20–200 nm and which are evolving dynamically are believed to be the most crucial regions in cellular membranes which determine cell signaling and various functions of cells.
Collapse
Affiliation(s)
| | - Jaydeep Kumar Basu
- Department of Physics
- Indian Institute of Science
- Bangalore – 560 012
- India
| |
Collapse
|
46
|
Pore-forming toxins in Cnidaria. Semin Cell Dev Biol 2017; 72:133-141. [DOI: 10.1016/j.semcdb.2017.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
|
47
|
Rivera-de-Torre E, Palacios-Ortega J, García-Linares S, Gavilanes JG, Martínez-Del-Pozo Á. One single salt bridge explains the different cytolytic activities shown by actinoporins sticholysin I and II from the venom of Stichodactyla helianthus. Arch Biochem Biophys 2017; 636:79-89. [PMID: 29138096 DOI: 10.1016/j.abb.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/06/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
Sticholysins I and II (StnI and StnII), α-pore forming toxins from the sea anemone Stichodactyla helianthus, are water-soluble toxic proteins which upon interaction with lipid membranes of specific composition bind to the bilayer, extend and insert their N-terminal α-helix, and become oligomeric integral membrane structures. The result is a pore that leads to cell death by osmotic shock. StnI and StnII show 93% of sequence identity, but also different membrane pore-forming activities. The hydrophobicity profile along the first 18 residues revealed differences which were canceled by substituting StnI amino acids 2 and 9. Accordingly, the StnID9A mutant, and the corresponding StnIE2AD9A variant, showed enhanced hemolytic activity. They also revealed a key role for an exposed salt bridge between Asp9 and Lys68. This interaction is not possible in StnII but appears conserved in the other two well-characterized actinoporins, equinatoxin II and fragaceatoxin C. The StnII mutant A8D showed that this single replacement was enough to transform StnII into a version with impaired pore-forming activity. Overall, the results show the key importance of this salt bridge linking the N-terminal stretch to the β-sandwich core. A conclusion of general application for the understanding of salt bridges role in protein design, folding and stability.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain.
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
48
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Gavilanes JG, Martínez-Del-Pozo Á, Slotte JP. Differential Effect of Bilayer Thickness on Sticholysin Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11018-11027. [PMID: 28933861 DOI: 10.1021/acs.langmuir.7b01765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we examined the influence of bilayer thickness on the activity of the actinoporin toxins sticholysin I and II (StnI and StnII) at 25 °C. Bilayer thickness was varied using dimonounsaturated phosphatidylcholine (PC) analogues (with 14:1, 16:1, 18:1, 20:1, and 22:1 acyl chains). In addition, N-14:0-sphingomyelin (SM) was always included because StnI and StnII are SM specific. Cholesterol was also incorporated as indicated. In cholesterol-free large unilamellar vesicles (LUVs) the PC:SM molar ratio was 4:1, and when cholesterol was included, the complete molar ratio was 4:1:0.5 (PC:SM:cholesterol, respectively). Stn toxins promote bilayer leakage through pores formed by oligomerized toxin monomers. Initial calcein leakage was moderately dependent on bilayer PC acyl chain length (and thus bilayer thickness), with higher rates observed with di-16:1 and di-18:1 PC bilayers. In the presence of cholesterol, the maximum rates of calcein leakage were observed in di-14:1 and di-16:1 PC bilayers. Using isothermal titration calorimetry to study the Stn-LUV interaction, we observed that the bilayer affinity constant (Ka) peaked with LUVs containing di-18:1 PC, and was lower in shorter and longer PC acyl chain bilayers. The presence of cholesterol increased the binding affinity approximately 30-fold at the optimal bilayer thickness (di-18:1-PC). We conclude that bilayer thickness affects both functional and conformational aspects of Stn membrane binding and pore formation. Moreover, the length of the actinoporins' N-terminal α-helix, which penetrates the membrane to form a functional pore, appears to be optimal for the membrane thickness represented by di-18:1 PC.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid 28040, Spain
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , 20500 Turku, Finland
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid 28040, Spain
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , 20500 Turku, Finland
| | | | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid 28040, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid 28040, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , 20500 Turku, Finland
| |
Collapse
|
49
|
Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev 2017; 9:529-544. [PMID: 28853034 DOI: 10.1007/s12551-017-0316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022] Open
Abstract
Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.
Collapse
|
50
|
Soto C, del Valle A, Valiente PA, Ros U, Lanio ME, Hernández AM, Alvarez C. Differential binding and activity of the pore-forming toxin sticholysin II in model membranes containing diverse ceramide-derived lipids. Biochimie 2017; 138:20-31. [DOI: 10.1016/j.biochi.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023]
|