1
|
Cianfarani N, Calcinoni A, Agostini A, Elias E, Bortolus M, Croce R, Carbonera D. Far-Red Absorbing LHCII Incorporating Chlorophyll d Preserves Photoprotective Carotenoid Triplet-Triplet Energy Transfer Pathways. J Phys Chem Lett 2025; 16:1720-1728. [PMID: 39928962 PMCID: PMC11849036 DOI: 10.1021/acs.jpclett.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Chlorophyll d (Chl d) can be successfully introduced in reconstituted LHCII with minimal interference with the energy equilibration processes within the complex, thereby facilitating the development of plant light-harvesting complexes (LHCs) with enhanced capabilities for light absorption in the far-red spectrum. In this study, we address whether Chl d introduction affects LHCII's ability to protect itself from photo-oxidation, a crucial point for successfully exploiting modified complexes to extend light harvesting in plants. Here we focus on incorporating Chl d into Lhcb1 (the monomeric unit of LHCII), specifically studying the Chl triplet quenching by carotenoids using time-resolved electron paramagnetic resonance (TR-EPR) and optically detected magnetic resonance (ODMR). We also characterize the A2 mutant of LHCII, in which the Chl 612 is removed, to assist in determining the triplet quenching sites on the Lhcb1 complex reconstituted with Chl d. We found that far-red absorbing LHCII incorporating Chl d maintains the efficiency of the photoprotective process.
Collapse
Affiliation(s)
- Niccolò Cianfarani
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Science, Vrije Universiteit Amsterdam and
LaserLaB Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Andrea Calcinoni
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alessandro Agostini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Eduard Elias
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Science, Vrije Universiteit Amsterdam and
LaserLaB Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Marco Bortolus
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberta Croce
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Science, Vrije Universiteit Amsterdam and
LaserLaB Amsterdam, De Boelelaan 1100, 1081 HZ Amsterdam, The Netherlands
| | - Donatella Carbonera
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Agostini A, Bína D, Barcytė D, Bortolus M, Eliáš M, Carbonera D, Litvín R. Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes. Commun Biol 2024; 7:1406. [PMID: 39472488 PMCID: PMC11522437 DOI: 10.1038/s42003-024-07101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Photosynthetic organisms harvest light for energy. Some eukaryotic algae have specialized in harvesting far-red light by tuning chlorophyll a absorption through a mechanism still to be elucidated. Here, we combined optically detected magnetic resonance and pulsed electron paramagnetic resonance measurements on red-adapted light-harvesting complexes, rVCP, isolated from the freshwater eustigmatophyte alga Trachydiscus minutus to identify the location of the pigments responsible for this remarkable adaptation. The pigments have been found to belong to an excitonic cluster of chlorophylls a at the core of the complex, close to the central carotenoids in L1/L2 sites. A pair of structural features of the Chl a403/a603 binding site, namely the histidine-to-asparagine substitution in the magnesium-ligation residue and the small size of the amino acid at the i-4 position, resulting in a [A/G]xxxN motif, are proposed to be the origin of this trait. Phylogenetic analysis of various eukaryotic red antennae identified several potential LHCs that could share this tuning mechanism. This knowledge of the red light acclimation mechanism in algae is a step towards rational design of algal strains in order to enhance light capture and efficiency in large-scale biotechnology applications.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - David Bína
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Radek Litvín
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
3
|
Sardar S, Caferri R, Camargo FVA, Capaldi S, Ghezzi A, Dall'Osto L, D'Andrea C, Cerullo G, Bassi R. Site-Directed Mutagenesis of the Chlorophyll-Binding Sites Modulates Excited-State Lifetime and Chlorophyll-Xanthophyll Energy Transfer in the Monomeric Light-Harvesting Complex CP29. J Phys Chem Lett 2024; 15:3149-3158. [PMID: 38478725 DOI: 10.1021/acs.jpclett.3c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/22/2024]
Abstract
We combine site-directed mutagenesis with picosecond time-resolved fluorescence and femtosecond transient absorption (TA) spectroscopies to identify excitation energy transfer (EET) processes between chlorophylls (Chls) and xanthophylls (Xant) in the minor antenna complex CP29 assembled inside nanodiscs, which result in quenching. When compared to WT CP29, a longer lifetime was observed in the A2 mutant, missing Chl a612, which closely interacts with Xant Lutein in site L1. Conversely, a shorter lifetime was obtained in the A5 mutant, in which the interaction between Chl a603 and Chl a609 is strengthened, shifting absorption to lower energy and enhancing Chl-Xant EET. Global analysis of TA data indicated that EET from Chl a Qy to a Car dark state S* is active in both the A2 and A5 mutants and that their rate constants are modulated by mutations. Our study provides experimental evidence that multiple Chl-Xant interactions are involved in the quenching activity of CP29.
Collapse
Affiliation(s)
- Samim Sardar
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
| | - Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Franco V A Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Stefano Capaldi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alberto Ghezzi
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
4
|
Pedraza-González L, Accomasso D, Cupellini L, Granucci G, Mennucci B. Ultrafast excited-state dynamics of Luteins in the major light-harvesting complex LHCII. Photochem Photobiol Sci 2024; 23:303-314. [PMID: 38151602 DOI: 10.1007/s43630-023-00518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
Carotenoid pigments are known to present a functional versatility when bound to light-harvesting complexes. This versatility originates from a strong correlation between a complex electronic structure and a flexible geometry that is easily tunable by the surrounding protein environment. Here, we investigated how the different L1 and L2 sites of the major trimeric light-harvesting complex (LHCII) of green plants tune the electronic structure of the two embedded luteins, and how this reflects on their ultrafast dynamics upon excitation. By combining molecular dynamics and quantum mechanics/molecular mechanics calculations, we found that the two luteins feature a different conformation around the second dihedral angle in the lumenal side. The s-cis preference of the lutein in site L2 allows for a more planar geometry of the π -conjugated backbone, which results in an increased degree of delocalization and a reduced excitation energy, explaining the experimentally observed red shift. Despite these remarkable differences, according to surface hopping simulations the two luteins present analogous ultrafast dynamics upon excitation: the bright S 2 state quickly decays (in ∼ 50 fs) to the dark intermediate S x , eventually ending up in the S 1 state. Furthermore, by employing two different theoretical approaches (i.e., Förster theory and an excitonic version of surface hopping), we investigated the experimentally debated energy transfer between the two luteins. With both approaches, no evident energy transfer was observed in the ultrafast timescale.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Davide Accomasso
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy.
| |
Collapse
|
5
|
Migliore A, Corni S, Agostini A, Carbonera D. Unraveling the electronic origin of a special feature in the triplet-minus-singlet spectra of carotenoids in natural photosystems. Phys Chem Chem Phys 2023; 25:28998-29016. [PMID: 37859550 DOI: 10.1039/d3cp03836j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2023]
Abstract
The influence of carotenoid triplet states on the Qy electronic transitions of chlorophylls has been observed in experiments on light-harvesting complexes over the past three decades, but the interpretation of the resulting spectral feature in the triplet minus singlet (T-S) absorption spectra of photosystems is still debated, as the physical-chemical explanation of this feature has been elusive. Here, we resolve this debate, by explaining the T-S spectra of pigment complexes over the Qy-band spectral region through a comparative study of chlorophyll-carotenoid model dyads and larger pigment complexes from the main light harvesting complex of higher plants (LHCII). This goal is achieved by combining state-of-the-art time-dependent density functional theory with analysis of the relationship between electronic properties and nuclear structure, and by comparison to the experiment. We find that the special signature in the T-S spectra of both model and natural photosystems is determined by singlet-like triplet excitations that can be described as effective singlet excitations on chlorophylls influenced by a stable electronic triplet on the carotenoid. The comparison with earlier experiments on different light-harvesting complexes confirms our theoretical interpretation of the T-S spectra in the Qy spectral region. Our results indicate an important role for the chlorophyll-carotenoid electronic coupling, which is also responsible for the fast triplet-triplet energy transfer, suggesting a fast trapping of the triplet into the relaxed carotenoid structure. The gained understanding of the interplay between the electronic and nuclear structures is potentially informative for future studies of the mechanism of photoprotection by carotenoids.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR Institute of Nanoscience, 41125 Modena, Italy
| | - Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
6
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Agostini A, Bína D, Carbonera D, Litvín R. Conservation of triplet-triplet energy transfer photoprotective pathways in fucoxanthin chlorophyll-binding proteins across algal lineages. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148935. [PMID: 36379269 DOI: 10.1016/j.bbabio.2022.148935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.
Collapse
Affiliation(s)
- Alessandro Agostini
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Radek Litvín
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
8
|
Mattila H, Tyystjärvi E. Light-induced damage to photosystem II at a very low temperature (195 K) depends on singlet oxygen. PHYSIOLOGIA PLANTARUM 2022; 174:e13824. [PMID: 36377045 PMCID: PMC10099935 DOI: 10.1111/ppl.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Photosynthetic organisms, like evergreen plants, may encounter strong light at low temperatures. Light, despite being the energy source of photosynthesis, irreversibly damages photosystem II (PSII). We illuminated plant thylakoid membranes and intact cyanobacterial cells at -78.5°C and assayed PSII activity with oxygen evolution or chlorophyll fluorescence, after thawing the sample. Both UV radiation and visible light damaged PSII of pumpkin (Cucurbita maxima) thylakoids at -78.5°C, but visible-light-induced photoinhibition at -78.5°C, unlike at +20°C, proceeded only in the presence of oxygen. A strong magnetic field that would decrease triplet chlorophyll formation by recombination of the primary radical pair slowed down photoinhibition at -78.5°C, suggesting that singlet oxygen produced via recombination of the primary pair is a major contributor to photoinhibition at -78.5°C. However, a magnetic field did not affect singlet oxygen production at +25°C. Thylakoids of winter leaves of an evergreen plant, Bergenia, were less susceptible to photoinhibition both at -78.5°C and +20°C, contained high amounts of carotenoids and produced little singlet oxygen (measured at +20°C), compared to thylakoids of summer leaves. In contrast, high carotenoid amount and low singlet oxygen yield did not protect a Synechocystis mutant from photoinhibition at -78.5°C. Thylakoids isolated from Arabidopsis thaliana grown under high light, which reduces PSII antenna size, were more resistant than control plants against photoinhibition at -78.5°C but not at +20°C, although carotenoid amounts were similar. The results indicate that visible-light-induced photoinhibition at -78.5°C depends on singlet oxygen, whereas photoinhibition at +20°C is largely independent of oxygen.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
9
|
Faizan M, Tonny SH, Afzal S, Farooqui Z, Alam P, Ahmed SM, Yu F, Hayat S. β-Cyclocitral: Emerging Bioactive Compound in Plants. Molecules 2022; 27:molecules27206845. [PMID: 36296438 PMCID: PMC9608612 DOI: 10.3390/molecules27206845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
β-cyclocitral (βCC), a main apocarotenoid of β-carotene, increases plants’ resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, βCC marked as stress signals that accrue under adverse ecological conditions. βCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of βCC. We emphasize the βCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.
Collapse
Affiliation(s)
- Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Sadia Haque Tonny
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - S Maqbool Ahmed
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Fangyuan Yu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsul Hayat
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
10
|
Gao X, Zou R, Sun H, Liu J, Duan W, Hu Y, Yan Y. Genome-wide identification of wheat ABC1K gene family and functional dissection of TaABC1K3 and TaABC1K6 involved in drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:991171. [PMID: 36105699 PMCID: PMC9465391 DOI: 10.3389/fpls.2022.991171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Activity of BC1 complex kinase (ABC1K) serves as an atypical kinase family involved in plant stress resistance. This study identified 44 ABC1K genes in the wheat genome, which contained three clades (I-III). TaABC1K genes generally had similar structural features, but differences were present in motif and exon compositions from different clade members. More type II functional divergence sites were detected between clade I and clade III and no positive selection site were found in TaABC1K family. The three-dimensional structure prediction by Alphafold2 showed that TaABC1K proteins had more α-helixes with a relatively even distribution, and different clade members had differences in the content of secondary structures. The cis-acting element analysis showed that TaABC1K genes contained abundant cis-acting elements related to plant hormones and environmental stress response in the promoter region, and generally displayed a significantly upregulated expression under drought stress. In particular, both TaABC1K3 and TaABC1K6 genes from clade I was highly induced by drought stress, and their overexpression in yeast and Arabidopsis enhanced drought tolerance by suppressing active oxygen burst and reducing photosynthesis impairment. Meanwhile, TaABC1K3 and TaABC1K6 could, respectively, complement the function of Arabidopsis abc1k3 and abc1k6 mutants and reduce photosynthesis damage caused by drought stress.
Collapse
|
11
|
Kale RS, Seep JL, Sallans L, Frankel LK, Bricker TM. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. PHOTOSYNTHESIS RESEARCH 2022; 152:261-274. [PMID: 35179681 DOI: 10.1007/s11120-022-00902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 05/22/2023]
Abstract
Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic organisms. In photosynthetic organisms both Photosystem II (PS II) and Photosystem I (PS I), in addition to the cytochrome b6/f complex, are demonstrated sources of ROS. All of these membrane protein complexes exhibit oxidative damage when isolated from field-grown plant material. An additional possible source of ROS in PS I and PS II is the distal, chlorophyll-containing light-harvesting array LHC II, which is present in both photosystems. These serve as possible sources of 1O2 produced by the interaction of 3O2 with 3chl* produced by intersystem crossing. We have hypothesized that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in a subset of the spinach LHC II proteins (Lhcb1 and Lhcb2) that were associated with either PS II membranes (i.e. BBYs) or PS I-LHC I-LHC II membranes, both of which were isolated from field-grown spinach. We identified oxidatively modified residues by high-resolution tandem mass spectrometry. Interestingly, two different patterns of oxidative modification were evident for the Lhcb1 and Lhcb2 proteins from these different sources. In the LHC II associated with PS II membranes, oxidized residues were identified to be located on the stromal surface of Lhcb1 and, to a much lesser extent, Lhcb2. Relatively few oxidized residues were identified as buried in the hydrophobic core of these proteins. The LHC II associated with PS I-LHC I-LHC II membranes, however, exhibited fewer surface-oxidized residues but, rather a large number of oxidative modifications buried in the hydrophobic core regions of both Lhcb1 and Lhcb2, adjacent to the chlorophyll prosthetic groups. These results appear to indicate that ROS, specifically 1O2, can modify the Lhcb proteins associated with both photosystems and that the LHC II associated with PS II membranes represent a different population from the LHC II associated with PS I-LHC I-LHC II membranes.
Collapse
Affiliation(s)
- Ravindra S Kale
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jacob L Seep
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
12
|
Sardar S, Caferri R, Camargo FVA, Pamos Serrano J, Ghezzi A, Capaldi S, Dall’Osto L, Bassi R, D’Andrea C, Cerullo G. Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. J Chem Phys 2022; 156:205101. [DOI: 10.1063/5.0087898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
CP29, a chlorophyll a/ b-xanthophyll binding protein, bridges energy transfer between the major LHCII antenna complexes and photosystem II reaction centers. It hosts one of the two identified quenching sites, making it crucial for regulated photoprotection mechanisms. Until now, the photophysics of CP29 has been studied on the purified protein in detergent solutions since spectrally overlapping signals affect in vivo measurements. However, the protein in detergent assumes non-native conformations compared to its physiological state in the thylakoid membrane. Here, we report a detailed photophysical study on CP29 inserted in discoidal lipid bilayers, known as nanodiscs, which mimic the native membrane environment. Using picosecond time-resolved fluorescence and femtosecond transient absorption (TA), we observed shortening of the Chl fluorescence lifetime with a decrease of the carotenoid triplet formation yield for CP29 in nanodiscs as compared to the protein in detergent. Global analysis of TA data suggests a 1Chl* quenching mechanism dependent on excitation energy transfer to a carotenoid dark state, likely the proposed S*, which is believed to be formed due to a carotenoid conformational change affecting the S1 state. We suggest that the accessibility of the S* state in different local environments plays a key role in determining the quenching of Chl excited states. In vivo, non-photochemical quenching is activated by de-epoxidation of violaxanthin into zeaxanthin. CP29-zeaxanthin in nanodiscs further shortens the Chl lifetime, which underlines the critical role of zeaxanthin in modulating photoprotection activity.
Collapse
Affiliation(s)
- Samim Sardar
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Franco V. A. Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Javier Pamos Serrano
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Alberto Ghezzi
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Stefano Capaldi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D’Andrea
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
13
|
Zbyradowski M, Duda M, Wisniewska-Becker A, Heriyanto, Rajwa W, Fiedor J, Cvetkovic D, Pilch M, Fiedor L. Triplet-driven chemical reactivity of β-carotene and its biological implications. Nat Commun 2022; 13:2474. [PMID: 35513374 PMCID: PMC9072317 DOI: 10.1038/s41467-022-30095-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
The endoperoxides of β-carotene (βCar-EPOs) are regarded as main products of the chemical deactivation of 1O2 by β-carotene, one of the most important antioxidants, following a concerted singlet-singlet reaction. Here we challenge this view by showing that βCar-EPOs are formed in the absence of 1O2 in a non-concerted triplet-triplet reaction: 3O2 + 3β-carotene → βCar-EPOs, in which 3β-carotene manifests a strong biradical character. Thus, the reactivity of β-carotene towards oxygen is governed by its excited triplet state. βCar-EPOs, while being stable in the dark, are photochemically labile, and are a rare example of nonaromatic endoperoxides that release 1O2, again not in a concerted reaction. Their light-induced breakdown triggers an avalanche of free radicals, which accounts for the pro-oxidant activity of β-carotene and the puzzling swap from its anti- to pro-oxidant features. Furthermore, we show that βCar-EPOs, and carotenoids in general, weakly sensitize 1O2. These findings underlie the key role of the triplet state in determining the chemical and photophysical features of β-carotene. They shake up the prevailing models of carotenoid photophysics, the anti-oxidant functioning of β-carotene, and the role of 1O2 in chemical signaling in biological photosynthetic systems. βCar-EPOs and their degradation products are not markers of 1O2 and oxidative stress but of the overproduction of extremely hazardous chlorophyll triplets in photosystems. Hence, the chemical signaling of overexcitation of the photosynthetic apparatus is based on a 3chlorophyll-3β-carotene relay, rather than on extremely short-lived 1O2.
Collapse
Affiliation(s)
- Mateusz Zbyradowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Heriyanto
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.,Ma Chung Research Center for Photosynthetic Pigments, Ma Chung University, Villa Puncak Tidar N-01, Malang, 65151, Indonesia
| | - Weronika Rajwa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Joanna Fiedor
- Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Mickiewicza 30, 30-059, Cracow, Poland
| | - Dragan Cvetkovic
- Faculty of Technology, University of Niš, 16000, Leskovac, Serbia
| | - Mariusz Pilch
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.,Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland.
| |
Collapse
|
14
|
Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer. Int J Mol Sci 2022; 23:ijms23094812. [PMID: 35563202 PMCID: PMC9105099 DOI: 10.3390/ijms23094812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Carotenoids represent the first line of defence of photosystems against singlet oxygen (1O2) toxicity, because of their capacity to quench the chlorophyll triplet state (3Chl) through a physical mechanism based on the transfer of triplet excitation (triplet-triplet energy transfer, TTET). In previous works, we showed that the antenna LHCII is characterised by a robust photoprotective mechanism, able to adapt to the removal of individual chlorophylls while maintaining a remarkable capacity for 3Chl quenching. In this work, we investigated the effects on this quenching induced in LHCII by the replacement of the lutein bound at the L1 site with violaxanthin and zeaxanthin. We studied LHCII isolated from the Arabidopsis thaliana mutants lut2-in which lutein is replaced by violaxanthin-and lut2 npq2, in which all xanthophylls are replaced constitutively by zeaxanthin. We characterised the photophysics of these systems via optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR). We concluded that, in LHCII, lutein-binding sites have conserved characteristics, and ensure efficient TTET regardless of the identity of the carotenoid accommodated.
Collapse
|
15
|
Yamano N, Wang P, Dong FQ, Zhang JP. Lipid-Enhanced Photoprotection of LHCII in Membrane Nanodisc by Reducing Chlorophyll Triplet Production. J Phys Chem B 2022; 126:2669-2676. [PMID: 35377647 DOI: 10.1021/acs.jpcb.1c10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Carotenoid (Car) quenching chlorophyll triplet state (3Chl a*), an unwanted photosensitizer yielding harmful reactive oxygen species, is crucial for the survival of oxygenic photosynthetic organisms. For the major light-harvesting complex of photosystem II (LHCII) in isolated form, 3Chl a* is deactivated via sub-nanosecond Chl-to-Car triplet excitation energy transfer by lutein in the central domain of LHCII; however, the mechanistic difference from LHCII in vivo remains to be explored. To investigate the intrinsic Car-photoprotection properties of LHCII in a bio-mimicking circumstance, we reconstituted trimeric spinach LHCII into the discoidal membrane of nanosize made from l-α-phosphatidylcholine and examined the triplet excited dynamics. Time-resolved optical absorption combined with circular dichroism spectroscopies revealed that, with reference to LHCII in buffer, LHCII in the membrane nanodisc shows appreciable conformational variation in the neoxanthin and the Lut621 domains and in the Chl a-terminal cluster owing to the lipid-protein interactions, which, in turn, alters the triplet population of Lut620 and Lut621 and their partition. Importantly, the unquenched 3Chl a* population in the complex was reduced by 60%, indicating that LHCII in the membrane adopts a conformation that is optimized for the alleviation of photoinhibition.
Collapse
Affiliation(s)
- Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872 Beijing, China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872 Beijing, China
| | - Feng-Qin Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872 Beijing, China
| |
Collapse
|
16
|
van den Berg TE, Croce R. The Loroxanthin Cycle: A New Type of Xanthophyll Cycle in Green Algae (Chlorophyta). FRONTIERS IN PLANT SCIENCE 2022; 13:797294. [PMID: 35251077 PMCID: PMC8891138 DOI: 10.3389/fpls.2022.797294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/18/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Xanthophyll cycles (XC) have proven to be major contributors to photoacclimation for many organisms. This work describes a light-driven XC operating in the chlorophyte Chlamydomonas reinhardtii and involving the xanthophylls Lutein (L) and Loroxanthin (Lo). Pigments were quantified during a switch from high to low light (LL) and at different time points from cells grown in Day/Night cycle. Trimeric LHCII was purified from cells acclimated to high or LL and their pigment content and spectroscopic properties were characterized. The Lo/(L + Lo) ratio in the cells varies by a factor of 10 between cells grown in low or high light (HL) leading to a change in the Lo/(L + Lo) ratio in trimeric LHCII from .5 in low light to .07 in HL. Trimeric LhcbMs binding Loroxanthin have 5 ± 1% higher excitation energy (EE) transfer (EET) from carotenoid to Chlorophyll as well as higher thermo- and photostability than trimeric LhcbMs that only bind Lutein. The Loroxanthin cycle operates on long time scales (hours to days) and likely evolved as a shade adaptation. It has many similarities with the Lutein-epoxide - Lutein cycle (LLx) of plants.
Collapse
|
17
|
Caferri R, Guardini Z, Bassi R, Dall’Osto L. Assessing photoprotective functions of carotenoids in photosynthetic systems of plants and green algae. Methods Enzymol 2022; 674:53-84. [DOI: 10.1016/bs.mie.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
18
|
Yuan L, Zheng Y, Nie L, Zhang L, Wu Y, Zhu S, Hou J, Shan GL, Liu TK, Chen G, Tang X, Wang C. Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in wucai (Brassica campestris L.). BMC Genomics 2021; 22:687. [PMID: 34551703 PMCID: PMC8456696 DOI: 10.1186/s12864-021-07981-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. Results According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Conclusions Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07981-9.
Collapse
Affiliation(s)
- Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Yushan Zheng
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Libing Nie
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Liting Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Ying Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Shidong Zhu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guo Lei Shan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Tong Kun Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China. .,Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
19
|
Bhatt M, Pandey SS, Tiwari AK, Tiwari BS. Plastid-mediated singlet oxygen in regulated cell death. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:686-694. [PMID: 33768665 DOI: 10.1111/plb.13260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) generation within a cell is a natural process of specific subcellular components involved in redox reactions. Within a plant cell, chloroplasts are one of the major sources of ROS generation. Plastid-generated ROS molecules include singlet oxygen (1 O2 ), superoxide radical (O2 - ), hydroxyl radical (OH• ) and hydrogen peroxide (H2 O2 ), which are produced mainly during photochemical reactions of photosynthesis and chlorophyll biosynthetic process. Under normal growth and developmental, generated ROS molecules act as a secondary messenger controlling several metabolic reactions; however, perturbed environmental conditions lead to multi-fold amplification of cellular ROS that eventually kill the target cell. To maintain homeostasis between production and scavenging of ROS, the cell has instituted several enzymatic and non-enzymatic antioxidant machineries to maintain ROS at a physiological level. Among chloroplastic ROS molecules, excess generation of singlet oxygen (1 O2 ) is highly deleterious to the cell metabolic functions and survival. Interestingly, within cellular antioxidant machinery, enzymes involved in detoxification of 1 O2 are lacking. Recent studies suggest that under optimal concentrations, 1 O2 acts as a signalling molecule and drives the cell to either the acclimation pathway or regulated cell death (RCD). Stress-induced RCD is a survival mechanism for the whole plant, while the involvement of chloroplasts and chloroplast-localized molecules that execute RCD are not well understood. In this review, we advocate for participation of chloroplasts-generated 1 O2 in signalling and RCD in plants.
Collapse
Affiliation(s)
- M Bhatt
- Institute of Advanced Research, Gandhinagar, Gujrat, India
| | - S S Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., India
| | - A K Tiwari
- Institute of Advanced Research, Gandhinagar, Gujrat, India
| | - B S Tiwari
- Institute of Advanced Research, Gandhinagar, Gujrat, India
| |
Collapse
|
20
|
Elias E, Liguori N, Saga Y, Schäfers J, Croce R. Harvesting Far-Red Light with Plant Antenna Complexes Incorporating Chlorophyll d. Biomacromolecules 2021; 22:3313-3322. [PMID: 34269578 PMCID: PMC8356222 DOI: 10.1021/acs.biomac.1c00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Increasing the absorption cross section of plants by introducing far-red absorbing chlorophylls (Chls) has been proposed as a strategy to boost crop yields. To make this strategy effective, these Chls should bind to the photosynthetic complexes without altering their functional architecture. To investigate if plant-specific antenna complexes can provide the protein scaffold to accommodate these Chls, we have reconstituted the main light-harvesting complex (LHC) of plants LHCII in vitro and in silico, with Chl d. The results demonstrate that LHCII can bind Chl d in a number of binding sites, shifting the maximum absorption ∼25 nm toward the red with respect to the wild-type complex (LHCII with Chl a and b) while maintaining the native LHC architecture. Ultrafast spectroscopic measurements show that the complex is functional in light harvesting and excitation energy transfer. Overall, we here demonstrate that it is possible to obtain plant LHCs with enhanced far-red absorption and intact functional properties.
Collapse
Affiliation(s)
- Eduard Elias
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Yoshitaka Saga
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Department
of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka 577-8502, Osaka, Japan
| | - Judith Schäfers
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
21
|
Agostini A, Nicol L, Da Roit N, Bortolus M, Croce R, Carbonera D. Altering the exciton landscape by removal of specific chlorophylls in monomeric LHCII provides information on the sites of triplet formation and quenching by means of ODMR and EPR spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148481. [PMID: 34363791 DOI: 10.1016/j.bbabio.2021.148481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
The triplet states populated under illumination in the monomeric light-harvesting complex II (LHCII) were analyzed by EPR and Optically Detected Magnetic Resonance (ODMR) in order to fully characterize the perturbations introduced by site-directed mutations leading to the removal of key chlorophylls. We considered the A2 and A5 mutants, lacking Chls a612(a611) and Chl a603 respectively, since these Chls have been proposed as the sites of formation of triplet states which are subsequently quenched by the luteins. Chls a612 and Chl a603 belong to the two clusters determining the low energy exciton states in the complex. Their removal is expected to significantly alter the excitation energy transfer pathways. On the basis of the TR- and pulse EPR triplet spectra, the two symmetrically related pairs constituted by Chl a612/Lut620 and Chl a603/Lut621 were both possible candidate for triplet-triplet energy transfer (TTET). However, the ODMR results clearly show that only Lut620 is involved in triplet quenching. In the A5 mutant, the Chl a612/Lut620 pair retains this pivotal photoprotective role, while the A2 mutant was found to activate an alternative pathway involving the Chl a603/Lut621pair. These results shows that LHCII is characterized by a robust photoprotective mechanism, able to adapt to the removal of individual chromophores while maintaining a remarkable degree of Chl triplet quenching. Small amounts of unquenched Chl triplet states were also detected. The analysis of the results allowed us to assign the sites of "unquenched" chlorophyll triplets to Chl a610 and Chl a602.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Lauren Nicol
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Nicola Da Roit
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
22
|
Camargo FA, Perozeni F, Valbuena GDLC, Zuliani L, Sardar S, Cerullo G, D’Andrea C, Ballottari M. The Role of Acidic Residues in the C Terminal Tail of the LHCSR3 Protein of Chlamydomonas reinhardtii in Non-Photochemical Quenching. J Phys Chem Lett 2021; 12:6895-6900. [PMID: 34279961 PMCID: PMC8327309 DOI: 10.1021/acs.jpclett.1c01382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Light-harvesting complex stress-related (LHCSR) proteins in green algae are essential for photoprotection via a non-photochemical quenching (NPQ), playing the dual roles of pH sensing and dissipation of chlorophylls excited-state energy. pH sensing occurs via a protonation of acidic residues located mainly on its lumen-exposed C-terminus. Here, we combine in vivo and in vitro studies to ascertain the role in NPQ of these protonatable C-terminal residues in LHCSR3 from Chlamydomonas reinhardtii. In vivo studies show that four of the residues, D239, D240, E242, and D244, are not involved in NPQ. In vitro experiments on an LHCSR3 chimeric protein, obtained by a substitution of the C terminal with that of another LHC protein lacking acidic residues, show a reduction of NPQ compared to the wild type but preserve the quenching mechanism involving a charge transfer from carotenoids to chlorophylls. NPQ in LHCSR3 is thus a complex mechanism, composed of multiple contributions triggered by different acidic residues.
Collapse
Affiliation(s)
- Franco
V. A. Camargo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Federico Perozeni
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | - Luca Zuliani
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Samim Sardar
- Istituto
Italiano di Tecnologia, Center for Nano
Science and Technology, via Pascoli 70/3, 20133 Milano, Italy
| | - Giulio Cerullo
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Cosimo D’Andrea
- IFN-CNR,
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Istituto
Italiano di Tecnologia, Center for Nano
Science and Technology, via Pascoli 70/3, 20133 Milano, Italy
| | - Matteo Ballottari
- Dipartimento
di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
23
|
Mascoli V, Liguori N, Cupellini L, Elias E, Mennucci B, Croce R. Uncovering the interactions driving carotenoid binding in light-harvesting complexes. Chem Sci 2021; 12:5113-5122. [PMID: 34163750 PMCID: PMC8179543 DOI: 10.1039/d1sc00071c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2021] [Accepted: 02/14/2021] [Indexed: 11/25/2022] Open
Abstract
Carotenoids are essential constituents of plant light-harvesting complexes (LHCs), being involved in protein stability, light harvesting, and photoprotection. Unlike chlorophylls, whose binding to LHCs is known to require coordination of the central magnesium, carotenoid binding relies on weaker intermolecular interactions (such as hydrogen bonds and van der Waals forces), whose character is far more elusive. Here we addressed the key interactions responsible for carotenoid binding to LHCs by combining molecular dynamics simulations and polarizable quantum mechanics/molecular mechanics calculations on the major LHC, LHCII. We found that carotenoid binding is mainly stabilized by van der Waals interactions with the surrounding chlorophyll macrocycles rather than by hydrogen bonds to the protein, the latter being more labile than predicted from structural data. Furthermore, the interaction network in the binding pockets is relatively insensitive to the chemical structure of the embedded carotenoid. Our results are consistent with a number of experimental data and challenge the role played by specific interactions in the assembly of pigment-protein complexes.
Collapse
Affiliation(s)
- Vincenzo Mascoli
- Department of Physics and Astronomy, Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
| | - Lorenzo Cupellini
- Department of Chemistry, University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Eduard Elias
- Department of Physics and Astronomy, Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
| | - Benedetta Mennucci
- Department of Chemistry, University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Roberta Croce
- Department of Physics and Astronomy, Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam De Boelelaan 1081 1081 HV Amsterdam The Netherlands
| |
Collapse
|
24
|
Tu W, Wu L, Zhang C, Sun R, Wang L, Yang W, Yang C, Liu C. Neoxanthin affects the stability of the C 2 S 2 M 2 -type photosystem II supercomplexes and the kinetics of state transition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1724-1735. [PMID: 33085804 DOI: 10.1111/tpj.15033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Neoxanthin (Neo), which is only bound to the peripheral antenna proteins of photosystem (PS) II, is a conserved carotenoid in all green plants. It has been demonstrated that Neo plays an important role in photoprotection and its deficiency fails to impact LHCII stability in vitro and indoor plant growth in vivo. Whether Neo is involved in maintaining the PSII complex structure or adaptive mechanisms for the everchanging environment has not yet been elucidated. In this study, the role of Neo in maintaining the structure and function of the PSII-LHCII supercomplexes was studied using Neo deficient Arabidopsis mutants. Our results show that Neo deficiency had little effect on the electron transport capacity and the plant fitness, but the PSII-LHCII supercomplexes were significantly impacted by the lack of Neo. In the absence of Neo, the M-type LHCII trimer cannot effectively associate with the C2 S2 -type PSII-LHCII supercomplexes even in moderate light conditions. Interestingly, Neo deficiency also leads to decreased PSII protein phosphorylation but rapid transition from state 1 to state 2. We suggest that Neo might enforce the interactions between LHCII and the minor antennas and that the absence of Neo makes M-type LHCII disassociate from the PSII complex, leading to the disassembly of the PSII-LHCII C2 S2 M2 supercomplexes, which results in alterations in the phosphorylation patterns of the thylakoid photosynthetic proteins and the kinetics of state transition.
Collapse
Affiliation(s)
- Wenfeng Tu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lishuan Wu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ruixue Sun
- Qingdao Institute, Shanghai Institute of Technological Physics, Chinese Academy of Sciences, Qingdao, 264000, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhong Yang
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Liu
- Key Laboratory of Plant Resources/Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Telfer A. Performing photosynthesis without β-carotene. eLife 2020; 9:e63584. [PMID: 33138910 PMCID: PMC7609062 DOI: 10.7554/elife.63584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Research on mutant tobacco plants shows that a pigment called β-carotene is not necessary for photosynthesis.
Collapse
Affiliation(s)
- Alison Telfer
- Department of Life Sciences, Imperial CollegeLondonUnited Kingdom
| |
Collapse
|
26
|
Saccon F, Durchan M, Polívka T, Ruban AV. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochem Photobiol Sci 2020; 19:1308-1318. [PMID: 32815966 DOI: 10.1039/d0pp00174k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Xanthophylls in light harvesting complexes perform a number of functions ranging from structural support to light-harvesting and photoprotection. In the major light harvesting complex of photosystem II in plants (LHCII), the innermost xanthophyll binding pockets are occupied by lutein molecules. The conservation of these sites within the LHC protein family suggests their importance in LHCII functionality. In the present work, we induced the photoprotective switch in LHCII isolated from the Arabidopsis mutant npq1lut2, where the lutein molecules are exchanged with violaxanthin. Despite the differences in the energetics of the pigments and the impairment of chlorophyll fluorescence quenching in vivo, we show that isolated complexes containing violaxanthin are still able to induce the quenching switch to a similar extent to wild type LHCII monomers. Moreover, the same spectroscopic changes take place, which suggest the involvement of the terminal emitter site (L1) in energy dissipation in both complexes. These results indicate the robust nature of the L1 xanthophyll binding domain in LHCII, where protein structural cues are the major determinant of the function of the bound carotenoid.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road E1 4NS, London, UK.
| | - Milan Durchan
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| | - Tomáš Polívka
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| | - Alexander V Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road E1 4NS, London, UK.
| |
Collapse
|
27
|
Photoprotective Role of Neoxanthin in Plants and Algae. Molecules 2020; 25:molecules25204617. [PMID: 33050573 PMCID: PMC7587190 DOI: 10.3390/molecules25204617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/17/2022] Open
Abstract
Light is a paramount parameter driving photosynthesis. However, excessive irradiance leads to the formation of reactive oxygen species that cause cell damage and hamper the growth of photosynthetic organisms. Xanthophylls are key pigments involved in the photoprotective response of plants and algae to excessive light. Of particular relevance is the operation of xanthophyll cycles (XC) leading to the formation of de-epoxidized molecules with energy dissipating capacities. Neoxanthin, found in plants and algae in two different isomeric forms, is involved in the light stress response at different levels. This xanthophyll is not directly involved in XCs and the molecular mechanisms behind its photoprotective activity are yet to be fully resolved. This review comprehensively addresses the photoprotective role of 9′-cis-neoxanthin, the most abundant neoxanthin isomer, and one of the major xanthophyll components in plants’ photosystems. The light-dependent accumulation of all-trans-neoxanthin in photosynthetic cells was identified exclusively in algae of the order Bryopsidales (Chlorophyta), that lack a functional XC. A putative photoprotective model involving all-trans-neoxanthin is discussed.
Collapse
|
28
|
Agostini A, Büchel C, Di Valentin M, Carbonera D. A distinctive pathway for triplet-triplet energy transfer photoprotection in fucoxanthin chlorophyll-binding proteins from Cyclotella meneghiniana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148310. [PMID: 32991847 DOI: 10.1016/j.bbabio.2020.148310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
Fucoxanthin chlorophyll-binding proteins (FCPs) are the major light-harvesting complexes of diatoms. In this work, FCPs isolated from Cyclotella meneghiniana have been studied by means of optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR), with the aim to characterize the photoprotective mechanism based on triplet-triplet energy transfer (TTET). The spectroscopic properties of the chromophores carrying the triplet state have been interpreted on the basis of a delved analysis of the recently solved crystallographic structures of FCP. The results point toward a photoprotective role for two fucoxanthin molecules exposed to the exterior of the FCP monomers. This shows that FCP has adopted a structural strategy different from that of related light-harvesting complexes from plants and other microalgae, in which the photoprotective role is carried out by two highly conserved carotenoids in the interior of the complex.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
29
|
Saccon F, Durchan M, Bína D, Duffy CD, Ruban AV, Polívka T. A Protein Environment-Modulated Energy Dissipation Channel in LHCII Antenna Complex. iScience 2020; 23:101430. [PMID: 32818906 PMCID: PMC7452274 DOI: 10.1016/j.isci.2020.101430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
The major light-harvesting complex of photosystem II (LHCII) is the main contributor to sunlight energy harvesting in plants. The flexible design of LHCII underlies a photoprotective mechanism whereby this complex switches to a dissipative state in response to high light stress, allowing the rapid dissipation of excess excitation energy (non-photochemical quenching, NPQ). In this work, we locked single LHCII trimers in a quenched conformation after immobilization of the complexes in polyacrylamide gels to impede protein interactions. A comparison of their pigment excited-state dynamics with quenched LHCII aggregates in buffer revealed the presence of a new spectral band at 515 nm arising after chlorophyll excitation. This is suggested to be the signature of a carotenoid excited state, linked to the quenching of chlorophyll singlet excited states. Our data highlight the marked sensitivity of pigment excited-state dynamics in LHCII to structural changes induced by the environment.
Collapse
Affiliation(s)
- Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Milan Durchan
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - David Bína
- University of South Bohemia, Institute of Chemistry, Faculty of Science, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Christopher D.P. Duffy
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Alexander V. Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, E1 4NS London, UK
| | - Tomáš Polívka
- University of South Bohemia, Institute of Physics, Faculty of Science, České Budějovice, Czech Republic
| |
Collapse
|
30
|
Artes Vivancos JM, van Stokkum IHM, Saccon F, Hontani Y, Kloz M, Ruban A, van Grondelle R, Kennis JTM. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:17346-17355. [PMID: 32878439 PMCID: PMC7564077 DOI: 10.1021/jacs.0c04619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Abstract
![]()
Photosynthesis
in plants starts with the capture of photons by
light-harvesting complexes (LHCs). Structural biology and spectroscopy
approaches have led to a map of the architecture and energy transfer
pathways between LHC pigments. Still, controversies remain regarding
the role of specific carotenoids in light-harvesting and photoprotection,
obligating the need for high-resolution techniques capable of identifying
excited-state signatures and molecular identities of the various pigments
in photosynthetic systems. Here we demonstrate the successful application
of femtosecond stimulated Raman spectroscopy (FSRS) to a multichromophoric
biological complex, trimers of LHCII. We demonstrate the application
of global and target analysis (GTA) to FSRS data and utilize it to
quantify excitation migration in LHCII trimers. This powerful combination
of techniques allows us to obtain valuable insights into structural,
electronic, and dynamic information from the carotenoids of LHCII
trimers. We report spectral and dynamical information on ground- and
excited-state vibrational modes of the different pigments, resolving
the vibrational relaxation of the carotenoids and the pathways of
energy transfer to chlorophylls. The lifetimes and spectral characteristics
obtained for the S1 state confirm that lutein 2 has a distorted conformation
in LHCII and that the lutein 2 S1 state does not transfer to chlorophylls,
while lutein 1 is the only carotenoid whose S1 state plays a significant
energy-harvesting role. No appreciable energy transfer takes place
from lutein 1 to lutein 2, contradicting recent proposals regarding
the functions of the various carotenoids (Son et al. Chem.2019, 5 (3), 575–584). Also, our results demonstrate that FSRS can be used in combination
with GTA to simultaneously study the electronic and vibrational landscapes
in LHCs and pave the way for in-depth studies of photoprotective conformations
in photosynthetic systems.
Collapse
Affiliation(s)
- Juan M Artes Vivancos
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.,Department of Chemistry, Kennedy College of Science, University of Massachusetts-Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Francesco Saccon
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Yusaku Hontani
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Alexander Ruban
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road/E1 4NS London, U.K
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
31
|
Lingvay M, Akhtar P, Sebők-Nagy K, Páli T, Lambrev PH. Photobleaching of Chlorophyll in Light-Harvesting Complex II Increases in Lipid Environment. FRONTIERS IN PLANT SCIENCE 2020; 11:849. [PMID: 32670321 PMCID: PMC7327537 DOI: 10.3389/fpls.2020.00849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 05/18/2023]
Abstract
Excess light causes damage to the photosynthetic apparatus of plants and algae primarily via reactive oxygen species. Singlet oxygen can be formed by interaction of chlorophyll (Chl) triplet states, especially in the Photosystem II reaction center, with oxygen. Whether Chls in the light-harvesting antenna complexes play direct role in oxidative photodamage is less clear. In this work, light-induced photobleaching of Chls in the major trimeric light-harvesting complex II (LHCII) is investigated in different molecular environments - protein aggregates, embedded in detergent micelles or in reconstituted membranes (proteoliposomes). The effects of intense light treatment were analyzed by absorption and circular dichroism spectroscopy, steady-state and time-resolved fluorescence and EPR spectroscopy. The rate and quantum yield of photobleaching was estimated from the light-induced Chl absorption changes. Photobleaching occurred mainly in Chl a and was accompanied by strong fluorescence quenching of the remaining unbleached Chls. The rate of photobleaching increased by 140% when LHCII was embedded in lipid membranes, compared to detergent-solubilized LHCII. Removing oxygen from the medium or adding antioxidants largely suppressed the bleaching, confirming its oxidative mechanism. Singlet oxygen formation was monitored by EPR spectroscopy using spin traps and spin labels to detect singlet oxygen directly and indirectly, respectively. The quantum yield of Chl a photobleaching in membranes and detergent was found to be 3.4 × 10-5 and 1.4 × 10-5, respectively. These values compare well with the yields of ROS production estimated from spin-trap EPR spectroscopy (around 4 × 10-5 and 2 × 10-5). A kinetic model is proposed, quantifying the generation of Chl and carotenoid triplet states and singlet oxygen. The high quantum yield of photobleaching, especially in the lipid membrane, suggest that direct photodamage of the antenna occurs with rates relevant to photoinhibition in vivo. The results represent further evidence that the molecular environment of LHCII has profound impact on its functional characteristics, including, among others, the susceptibility to photodamage.
Collapse
Affiliation(s)
- Mónika Lingvay
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Parveen Akhtar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Petar H. Lambrev
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
32
|
Khan T, Dominguez-Martin MA, Šímová I, Fuciman M, Kerfeld CA, Polívka T. Excited-State Properties of Canthaxanthin in Cyanobacterial Carotenoid-Binding Proteins HCP2 and HCP3. J Phys Chem B 2020; 124:4896-4905. [DOI: 10.1021/acs.jpcb.0c03137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tuhin Khan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Maria Agustina Dominguez-Martin
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ivana Šímová
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
33
|
Widomska J, SanGiovanni JP, Subczynski WK. Why is Zeaxanthin the Most Concentrated Xanthophyll in the Central Fovea? Nutrients 2020; 12:nu12051333. [PMID: 32392888 PMCID: PMC7284714 DOI: 10.3390/nu12051333] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Diet-based xanthophylls (zeaxanthin and lutein) are conditionally essential polar carotenoids preferentially accreted in high concentrations (1 mM) to the central retina, where they have the capacity to impart unique physiologically significant biophysical biochemical properties implicated in cell function, rescue, and survival. Macular xanthophylls interact with membrane-bound proteins and lipids to absorb/attenuate light energy, modulate oxidative stress and redox balance, and influence signal transduction cascades implicated in the pathophysiology of age-related macular degeneration. There is exclusive transport, sequestration, and appreciable bioamplification of macular xanthophylls from the circulating carotenoid pool to the retina and within the retina to regions required for high-resolution sensory processing. The distribution of diet-based macular xanthophylls and the lutein metabolite meso-zeaxanthin varies considerably by retinal eccentricity. Zeaxanthin concentrations are 2.5-fold higher than lutein in the cone-dense central fovea. This is an ~20-fold increase in the molar ratio relative to eccentric retinal regions with biochemically detectable macular xanthophylls. In this review, we discuss how the differences in the specific properties of lutein and zeaxanthin could help explain the preferential accumulation of zeaxanthin in the most vulnerable region of the macula.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
- Correspondence: (J.W.); (J.P.S.); Tel.: 48-81448-6333 (J.W.)
| | - John Paul SanGiovanni
- Department of Nutritional Sciences, The University of Arizona, 1657 East Helen Street, Tucson, AZ 85721, USA
- Correspondence: (J.W.); (J.P.S.); Tel.: 48-81448-6333 (J.W.)
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| |
Collapse
|
34
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
35
|
van Amerongen H, Chmeliov J. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148119. [DOI: 10.1016/j.bbabio.2019.148119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/10/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022]
|
36
|
Excitation dynamics and relaxation in the major antenna of a marine green alga Bryopsis corticulans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148186. [PMID: 32171793 DOI: 10.1016/j.bbabio.2020.148186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/20/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
The light-harvesting complexes II (LHCIIs) of spinach and Bryopsis corticulans as a green alga are similar in structure, but differ in carotenoid (Car) and chlorophyll (Chl) compositions. Carbonyl Cars siphonein (Spn) and siphonaxanthin (Spx) bind to B. corticulans LHCII likely in the sites as a pair of lutein (Lut) molecules bind to spinach LHCII in the central domain. To understand the light-harvesting and photoprotective properties of the algal LHCII, we compared its excitation dynamics and relaxation to those of spinach LHCII been well documented. It was found that B. corticulans LHCII exhibited a substantially longer chlorophyll (Chl) fluorescence lifetime (4.9 ns vs 4.1 ns) and a 60% increase of the fluorescence quantum yield. Photoexcitation populated 3Car* equally between Spn and Spx in B. corticulans LHCII, whereas predominantly at Lut620 in spinach LHCII. These results prove the functional differences of the LHCIIs with different Car pairs and Chl a/b ratios: B. corticulans LHCII shows the enhanced blue-green light absorption, the alleviated quenching of 1Chl*, and the dual sites of quenching 3Chl*, which may facilitate its light-harvesting and photoprotection functions. Moreover, for both types of LHCIIs, the triplet excitation profiles revealed the involvement of extra 3Car* formation mechanisms besides the conventional Chl-to-Car triplet transfer, which are discussed in relation to the ultrafast processes of 1Chl* quenching. Our experimental findings will be helpful in deepening the understanding of the light harvesting and photoprotection functions of B. corticulans living in the intertidal zone with dramatically changing light condition.
Collapse
|
37
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
38
|
Samuolienė G, Viršilė A, Miliauskienė J, Haimi PJ, Laužikė K, Brazaitytė A, Duchovskis P. The Physiological Response of Lettuce to Red and Blue Light Dynamics Over Different Photoperiods. FRONTIERS IN PLANT SCIENCE 2020; 11:610174. [PMID: 33643330 PMCID: PMC7907654 DOI: 10.3389/fpls.2020.610174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
This study aimed to evaluate the effect of dynamic red and blue light parameters on the physiological responses and key metabolites in lettuce and also the subsequent impact of varying light spectra on nutritive value. We explored the metabolic changes in carotenes, xanthophylls, soluble sugars, organic acids, and antioxidants; the response of photosynthetic indices [photosynthetic (Pr) and transpiration (Tr) rates]; and the intracellular to ambient CO2 concentration ratios (C i /C a ) in lettuce (Lactuca sativa L. "Lobjoits Green Cos"). They were cultivated under constant (con) or parabolic (dyn) blue (B, 452 nm) and/or red (R, 662 nm) light-emitting diode (LED) photosynthetic photon flux densities (PPFDs) at 12, 16, and 20 h photoperiods, maintaining consistent daily light integrals (DLIs) for each light component in all treatments, at 2.3 and 9.2 mol m-2 per day for blue and red light, respectively. The obtained results and principal component analysis (PCA) confirmed a significant impact of the light spectrum, photoperiod, and parabolic profiles of PPFD on the physiological response of lettuce. The 16 h photoperiod resulted in significantly higher content of xanthophylls (neoxanthin, violaxanthin, lutein, and zeaxanthin) in lettuce leaves under both constant and parabolic blue light treatments (BconRdyn 16 h and BdynRdyn 16 h, respectively). Lower PPFD levels under a 20 h photoperiod (BdynRdyn 20 h) as well as higher PPFD levels under a 12 h photoperiod (BdynRdyn 12 h) had a pronounced impact on leaf gas exchange indices (Pr, Tr, C i /C a ), xanthophylls, soluble sugar contents, and antioxidant properties of lettuce leaves. The parabolic PPFD lighting profile over a 16 h photoperiod (BdynRdyn 16 h) led to a significant decrease in C i /C a , which resulted in decreased Pr and Tr, compared with constant blue or red light treatments with the same photoperiod (BconRdyn and BdynRcon 16 h). Additionally, constant blue lighting produced higher α + β-carotene and anthocyanin (ARI) content and increased carotenoid to chlorophyll ratio (CRI) but decreased biomass accumulation and antioxidant activity.
Collapse
|
39
|
|
40
|
Gacek DA, Holleboom CP, Liao PN, Negretti M, Croce R, Walla PJ. Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29. PHOTOSYNTHESIS RESEARCH 2020; 143:19-30. [PMID: 31659623 DOI: 10.1007/s11120-019-00676-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid-chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, [Formula: see text], which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, [Formula: see text], and a considerable increase in [Formula: see text]. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased [Formula: see text]. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing [Formula: see text]. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on [Formula: see text] and [Formula: see text] than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased [Formula: see text] when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
Collapse
Affiliation(s)
- Daniel A Gacek
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Christoph-Peter Holleboom
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Pen-Nan Liao
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany
| | - Marco Negretti
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Peter Jomo Walla
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106, Brunswick, Germany.
| |
Collapse
|
41
|
Mascoli V, Liguori N, Xu P, Roy LM, van Stokkum IH, Croce R. Capturing the Quenching Mechanism of Light-Harvesting Complexes of Plants by Zooming in on the Ensemble. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
|
42
|
Saccon F, Durchan M, Kaňa R, Prášil O, Ruban AV, Polívka T. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. J Phys Chem B 2019; 123:9312-9320. [DOI: 10.1021/acs.jpcb.9b06293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Milan Durchan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
43
|
Roberts DP, Mattoo AK. Sustainable Crop Production Systems and Human Nutrition. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
|
44
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|
45
|
Farooq MA, Niazi AK, Akhtar J, Farooq M, Souri Z, Karimi N, Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:353-369. [PMID: 31207496 DOI: 10.1016/j.plaphy.2019.04.039] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) - the byproducts of aerobic metabolism - influence numerous aspects of the plant life cycle and environmental response mechanisms. In plants, ROS act like a double-edged sword; they play multiple beneficial roles at low concentrations, whereas at high concentrations ROS and related redox-active compounds cause cellular damage through oxidative stress. To examine the dual role of ROS as harmful oxidants and/or crucial cellular signals, this review elaborates that (i) how plants sense and respond to ROS in various subcellular organelles and (ii) the dynamics of subsequent ROS-induced signaling processes. The recent understanding of crosstalk between various cellular compartments in mediating their redox state spatially and temporally is discussed. Emphasis on the beneficial effects of ROS in maintaining cellular energy homeostasis, regulating diverse cellular functions, and activating acclimation responses in plants exposed to abiotic and biotic stresses are described. The comprehensive view of cellular ROS dynamics covering the breadth and versatility of ROS will contribute to understanding the complexity of apparently contradictory ROS roles in plant physiological responses in less than optimum environments.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Adnan Khan Niazi
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Oman
| | - Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
46
|
Eichhorn Bilodeau S, Wu BS, Rufyikiri AS, MacPherson S, Lefsrud M. An Update on Plant Photobiology and Implications for Cannabis Production. FRONTIERS IN PLANT SCIENCE 2019; 10:296. [PMID: 31001288 PMCID: PMC6455078 DOI: 10.3389/fpls.2019.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/05/2018] [Accepted: 02/25/2019] [Indexed: 05/18/2023]
Abstract
This review presents recent developments in plant photobiology and lighting systems for horticultural crops, as well as potential applications for cannabis (Cannabis sativa and C. indica) plant production. The legal and commercial production of the cannabis plant is a relatively new, rapidly growing, and highly profitable industry in Europe and North America. However, more knowledge transfer from plant studies and horticultural communities to commercial cannabis plant growers is needed. Plant photosynthesis and photomorphogenesis are influenced by light wavelength, intensity, and photoperiod via plant photoreceptors that sense light and control plant growth. Further, light properties play a critical role in plant vegetative growth and reproductive (flowering) developmental stages, as well as in biomass, secondary metabolite synthesis, and accumulation. Advantages and disadvantages of widespread greenhouse lighting systems that use high pressure sodium lamps or light emitting diode (LED) lighting are known. Some artificial plant lighting practices will require improvements for cannabis production. By manipulating LED light spectra and stimulating specific plant photoreceptors, it may be possible to minimize operation costs while maximizing cannabis biomass and cannabinoid yield, including tetrahydrocannabinol (or Δ9-tetrahydrocannabinol) and cannabidiol for medicinal and recreational purposes. The basics of plant photobiology (photosynthesis and photomorphogenesis) and electrical lighting systems are discussed, with an emphasis on how the light spectrum and lighting strategies could influence cannabis production and secondary compound accumulation.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses. Chem Res Toxicol 2019; 32:370-396. [PMID: 30781949 DOI: 10.1021/acs.chemrestox.9b00028] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) regulate plant growth and development. ROS are kept at low levels in cells to prevent oxidative damage, allowing them to be effective signaling molecules upon increased synthesis. In plants and animals, NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins provide localized ROS bursts to regulate growth, developmental processes, and stress responses. This review details ROS production via RBOH enzymes in the context of plant development and stress responses and defines the locations and tissues in which members of this family function in the model plant Arabidopsis thaliana. To ensure that these ROS signals do not reach damaging levels, plants use an array of antioxidant strategies. In addition to antioxidant machineries similar to those found in animals, plants also have a variety of specialized metabolites that scavenge ROS. These plant specialized metabolites exhibit immense structural diversity and have highly localized accumulation. This makes them important players in plant developmental processes and stress responses that use ROS-dependent signaling mechanisms. This review summarizes the unique properties of plant specialized metabolites, including carotenoids, ascorbate, tocochromanols (vitamin E), and flavonoids, in modulating ROS homeostasis. Flavonols, a subclass of flavonoids with potent antioxidant activity, are induced during stress and development, suggesting that they have a role in maintaining ROS homeostasis. Recent results using genetic approaches have shown how flavonols regulate development and stress responses through their action as antioxidants.
Collapse
|
48
|
Ota C, Sugihara K, Kinoshita Y, Kashiyama Y, Nagasawa Y, Tamiaki H. Ultrafast excited state dynamics of nonfluorescent cyclopheophorbide-aenol, a catabolite of chlorophyll-adetoxified in algae-feeding aquatic microbes. Photochem Photobiol Sci 2019; 18:64-70. [DOI: 10.1039/c8pp00173a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Transient absorption spectroscopy revealed that a catabolite of chlorophyll-a, cPPB-aE, undergoes ultrafast nonradiative decay through an intermediate state.
Collapse
Affiliation(s)
- Chikashi Ota
- College of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Keita Sugihara
- College of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| | - Yuichiro Kashiyama
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
- Graduate School of Engineering
| | | | - Hitoshi Tamiaki
- Graduate School of Life Sciences
- Ritsumeikan University
- Kusatsu
- Japan
| |
Collapse
|
49
|
Staleva-Musto H, West R, Trathnigg M, Bína D, Litvín R, Polívka T. Carotenoid–chlorophyll energy transfer in the fucoxanthin–chlorophyll complex binding a fucoxanthin acyloxy derivative. Faraday Discuss 2019; 216:460-475. [DOI: 10.1039/c8fd00193f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
A fucoxanthin derivative has negligible charge-transfer character of the S1/ICT state resulting in slowing down of the carotenoid–chlorophyll energy transfer.
Collapse
Affiliation(s)
| | - Robert West
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
| | - Marco Trathnigg
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
| | - David Bína
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| | - Radek Litvín
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| | - Tomáš Polívka
- Faculty of Science
- University of South Bohemia
- 370 05 České Budějovice
- Czech Republic
- Institute of Plant Molecular Biology
| |
Collapse
|
50
|
Vinklárek IS, Bornemann TLV, Lokstein H, Hofmann E, Alster J, Pšenčík J. Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. J Phys Chem B 2018; 122:8834-8845. [PMID: 30179014 DOI: 10.1021/acs.jpcb.8b06751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Chlorophyll (Chl) triplet states generated in photosynthetic light-harvesting complexes (LHCs) can be quenched by carotenoids to prevent the formation of reactive singlet oxygen. Although this quenching occurs with an efficiency close to 100% at physiological temperatures, the Chl triplets are often observed at low temperatures. This might be due to the intrinsic temperature dependence of the Dexter mechanism of excitation energy transfer, which governs triplet quenching, or by temperature-induced conformational changes. Here, we report about the temperature dependence of Chl triplet quenching in two LHCs. We show that both the effects contribute significantly. In LHC II of higher plants, the core Chls are quenched with a high efficiency independent of temperature. A different subpopulation of Chls, which increases with lowering temperature, is not quenched at all. This is probably caused by the conformational changes which detach these Chls from the energy-transfer chain. In a membrane-intrinsic LHC of dinoflagellates, similarly two subpopulations of Chls were observed. In addition, another part of Chl triplets is quenched by carotenoids with a rate which decreases with temperature. This allowed us to study the temperature dependence of Dexter energy transfer. Finally, a part of Chls was quenched by triplet-triplet annihilation, a phenomenon which was not observed for LHCs before.
Collapse
Affiliation(s)
- Ivo S Vinklárek
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| | - Till L V Bornemann
- Protein Crystallography, Faculty of Biology and Biotechnology , Ruhr-University Bochum , D-44780 Bochum , Germany
| | - Heiko Lokstein
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology , Ruhr-University Bochum , D-44780 Bochum , Germany
| | - Jan Alster
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| | - Jakub Pšenčík
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University , Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic
| |
Collapse
|