1
|
Lybaek H, Robson M, de Leeuw N, Hehir-Kwa JY, Jeffries A, Haukanes BI, Berland S, de Bruijn D, Mundlos S, Spielmann M, Houge G. LRFN5 locus structure is associated with autism and influenced by the sex of the individual and locus conversions. Autism Res 2022; 15:421-433. [PMID: 35088940 PMCID: PMC9305582 DOI: 10.1002/aur.2677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
LRFN5 is a regulator of synaptic development and the only gene in a 5.4 Mb mammalian‐specific conserved topologically associating domain (TAD); the LRFN5 locus. An association between locus structural changes and developmental delay (DD) and/or autism was suggested by several cases in DECIPHER and own records. More significantly, we found that maternal inheritance of a specific LRFN5 locus haplotype segregated with an identical type of autism in distantly related males. This autism‐susceptibility haplotype had a specific TAD pattern. We also found a male/female quantitative difference in the amount histone‐3‐lysine‐9‐associated chromatin around the LRFN5 gene itself (p < 0.01), possibly related to the male‐restricted autism susceptibility. To better understand locus behavior, the prevalence of a 60 kb deletion polymorphism was investigated. Surprisingly, in three cohorts of individuals with DD (n = 8757), the number of deletion heterozygotes was 20%–26% lower than expected from Hardy–Weinberg equilibrium. This suggests allelic interaction, also because the conversions from heterozygosity to wild‐type or deletion homozygosity were of equal magnitudes. Remarkably, in a control group of medical students (n = 1416), such conversions were three times more common (p = 0.00001), suggesting a regulatory role of this allelic interaction. Taken together, LRFN5 regulation appears unusually complex, and LRFN5 dysregulation could be an epigenetic cause of autism.
Collapse
Affiliation(s)
- Helle Lybaek
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Michael Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | - Bjørn Ivar Haukanes
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Diederik de Bruijn
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Institute of Clinical Medicine K2, Faculty of Medicine, University of Bergen, Bergen, Norway.,Honorary Chair of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Wu S, Hassan FU, Luo Y, Fatima I, Ahmed I, Ihsan A, Safdar W, Liu Q, Rehman SU. Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors. BIOLOGY 2021; 10:1207. [PMID: 34827201 PMCID: PMC8615036 DOI: 10.3390/biology10111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution of FN-III proteins and FNDC5/irisin as a ligand targeting the gonadal receptors including androgen (AR), DDB1 and CUL4 associated factor 6 (DCAF6), estrogen-related receptor β (ERR-β), estrogen-related receptor γ (ERR-γ), Krüppel-like factor 15 (KLF15), and nuclear receptor subfamily 3 group C member 1 (NR3C1). Moreover, the putative role of irisin in folliculogenesis and spermatogenesis was also elucidated. We presented the molecular structure and function of 29 FN-III genes widely distributed in the buffalo genome. Phylogenetic analysis, motif, and conserved domain pattern demonstrated the evolutionary well-conserved nature of FN-III proteins with a variety of stable to unstable, hydrophobic to hydrophilic, and thermostable to thermo-unstable properties. The comparative structural configuration of FNDC5 revealed amino acid variations but still the FNDC5 structure of humans, buffalo, and cattle was quite similar to each other. For the first time, we predicted the binding scores and interface residues of FNDC5/irisin as a ligand for six representative receptors having a functional role in energy homeostasis, and a significant involvement in folliculogenesis and spermatogenesis in buffalo.
Collapse
Affiliation(s)
- Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad 38000, Pakistan;
| | - Ishtiaq Ahmed
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan;
| | - Warda Safdar
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| |
Collapse
|
3
|
Lie E, Yeo Y, Lee EJ, Shin W, Kim K, Han KA, Yang E, Choi TY, Bae M, Lee S, Um SM, Choi SY, Kim H, Ko J, Kim E. SALM4 negatively regulates NMDA receptor function and fear memory consolidation. Commun Biol 2021; 4:1138. [PMID: 34588597 PMCID: PMC8481232 DOI: 10.1038/s42003-021-02656-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).
Collapse
Affiliation(s)
- Eunkyung Lie
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.255168.d0000 0001 0671 5021Department of Chemistry, Dongguk University, Seoul, 04620 Korea
| | - Yeji Yeo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Eun-Jae Lee
- grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| | - Wangyong Shin
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyungdeok Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Kyung Ah Han
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Esther Yang
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Tae-Yong Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Mihyun Bae
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Suho Lee
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea
| | - Seung Min Um
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Se-Young Choi
- grid.31501.360000 0004 0470 5905Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 03080 Korea
| | - Hyun Kim
- grid.222754.40000 0001 0840 2678Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, 02841 Korea
| | - Jaewon Ko
- grid.417736.00000 0004 0438 6721Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988 Korea
| | - Eunjoon Kim
- grid.410720.00000 0004 1784 4496Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141 Korea ,grid.267370.70000 0004 0533 4667Department of Neurology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, 05505 Korea
| |
Collapse
|
4
|
Desch K, Langer JD, Schuman EM. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. Cell Rep 2021; 36:109583. [PMID: 34433048 PMCID: PMC8411114 DOI: 10.1016/j.celrep.2021.109583] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis. Global proteome and phosphoproteome dynamics following homeostatic synaptic scaling Approximately 3,300 activity-sensitive, synapse-associated phospho-events Persistent signaling of ~25% of initial phospho-events (min to 24 h) Persistent and reciprocal phosphoregulation links synaptic up- and down-scaling
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
5
|
McMillan KJ, Banks PJ, Hellel FLN, Carmichael RE, Clairfeuille T, Evans AJ, Heesom KJ, Lewis P, Collins BM, Bashir ZI, Henley JM, Wilkinson KA, Cullen PJ. Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. eLife 2021; 10:59432. [PMID: 34251337 PMCID: PMC8296521 DOI: 10.7554/elife.59432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.
Collapse
Affiliation(s)
| | - Paul J Banks
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | | | | | - Thomas Clairfeuille
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Ashley J Evans
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Kate J Heesom
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Philip Lewis
- Proteomics facility, School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of QueenslandQueenslandAustralia
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of BristolBristolUnited Kingdom
| | - Jeremy M Henley
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | | | - Peter J Cullen
- School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
6
|
Of Molecules and Mechanisms. J Neurosci 2019; 40:81-88. [PMID: 31630114 DOI: 10.1523/jneurosci.0743-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
Without question, molecular biology drives modern neuroscience. The past 50 years has been nothing short of revolutionary as key findings have moved the field from correlation toward causation. Most obvious are the discoveries and strategies that have been used to build tools for visualizing circuits, measuring activity, and regulating behavior. Less flashy, but arguably as important are the myriad investigations uncovering the actions of single molecules, macromolecular structures, and integrated machines that serve as the basis for constructing cellular and signaling pathways identified in wide-scale gene or RNA studies and for feeding data into informational networks used in systems biology. This review follows the pathways that were opened in neuroscience by major discoveries and set the stage for the next 50 years.
Collapse
|
7
|
Brouwer M, Farzana F, Koopmans F, Chen N, Brunner JW, Oldani S, Li KW, van Weering JR, Smit AB, Toonen RF, Verhage M. SALM1 controls synapse development by promoting F-actin/PIP2-dependent Neurexin clustering. EMBO J 2019; 38:e101289. [PMID: 31368584 PMCID: PMC6717895 DOI: 10.15252/embj.2018101289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Synapse development requires spatiotemporally regulated recruitment of synaptic proteins. In this study, we describe a novel presynaptic mechanism of cis‐regulated oligomerization of adhesion molecules that controls synaptogenesis. We identified synaptic adhesion‐like molecule 1 (SALM1) as a constituent of the proposed presynaptic Munc18/CASK/Mint1/Lin7b organizer complex. SALM1 preferentially localized to presynaptic compartments of excitatory hippocampal neurons. SALM1 depletion in excitatory hippocampal primary neurons impaired Neurexin1β‐ and Neuroligin1‐mediated excitatory synaptogenesis and reduced synaptic vesicle clustering, synaptic transmission, and synaptic vesicle release. SALM1 promoted Neurexin1β clustering in an F‐actin‐ and PIP2‐dependent manner. Two basic residues in SALM1's juxtamembrane polybasic domain are essential for this clustering. Together, these data show that SALM1 is a presynaptic organizer of synapse development by promoting F‐actin/PIP2‐dependent clustering of Neurexin.
Collapse
Affiliation(s)
- Marinka Brouwer
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Fatima Farzana
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ning Chen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Silvia Oldani
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Jan Rt van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam and VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Liu H. Synaptic organizers: synaptic adhesion-like molecules (SALMs). Curr Opin Struct Biol 2019; 54:59-67. [PMID: 30743183 DOI: 10.1016/j.sbi.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/24/2018] [Accepted: 01/06/2019] [Indexed: 12/18/2022]
Abstract
Synaptic adhesion-like molecules (SALMs), also known as leucine-rich repeat and fibronectin III domain-containing proteins (LRFNs), are a family of synaptic adhesion molecules that consist of five members. SALMs exhibit functions in regulating neurite outgrowth and branching, synapse formation, and synapse maturation. Recent clinical studies have shown an association of SALMs with diverse neurological disorders. In this review article, we summarize structural mechanisms of the interaction of SALMs with leukocyte common antigen (LAR) family receptor tyrosine phosphatases (LAR-RPTPs) for synaptic activity, based on recent advances in the structural biology of SALMs.
Collapse
Affiliation(s)
- Heli Liu
- State Key Laboratory of Natural and Biomimetic Drugs, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
9
|
Papal S, Monti CE, Tennison ME, Swaroop A. Molecular dissection of cone photoreceptor-enriched genes encoding transmembrane and secretory proteins. J Neurosci Res 2018; 97:16-28. [PMID: 30260491 DOI: 10.1002/jnr.24329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Cone photoreceptors mediate color perception and daylight vision through intricate synaptic circuitry. In most mammalian retina, cones are greatly outnumbered by rods and exhibit inter-dependence for functional maintenance and survival. Currently, we have limited understanding of cone-specific molecular components that mediate response to extrinsic signaling factors or are involved in communication with rods and other retinal cells. To fulfill this gap, we compared the recently-published transcriptomes of developing S-cone-like photoreceptors from the Nrl-/- mouse retina with those of rods and identified candidate genes responsible for cone cell functions and communication. We generated an in silico expression profile of 823 genes that encode candidate transmembrane and secretory proteins and are up-regulated in Nrl-/- cone photoreceptors compared to wild type cones. In situ hybridization analysis validated high expression of seven of the selected candidate genes in the Nrl-/- retina. To examine their relevance to cone function, we performed in vivo knockdown of Epha10 in the Nrl-/- retina and demonstrated aberrant morphology and mislocalization of the photoreceptor cell bodies. Thus, the receptor tyrosine kinase Ephrin type-A receptor 10 appears to influence cone morphogenesis. Our studies reveal novel cone-enriched genes involved in interaction of cones with other retinal cell types and provide a framework for examining molecular pathways associated with intercellular communication.
Collapse
Affiliation(s)
- Samantha Papal
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Christopher E Monti
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mackenzie E Tennison
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Gorlewicz A, Kaczmarek L. Pathophysiology of Trans-Synaptic Adhesion Molecules: Implications for Epilepsy. Front Cell Dev Biol 2018; 6:119. [PMID: 30298130 PMCID: PMC6160742 DOI: 10.3389/fcell.2018.00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Chemical synapses are specialized interfaces between neurons in the brain that transmit and modulate information, thereby integrating cells into multiplicity of interacting neural circuits. Cell adhesion molecules (CAMs) might form trans-synaptic complexes that are crucial for the appropriate identification of synaptic partners and further for the establishment, properties, and dynamics of synapses. When affected, trans-synaptic adhesion mechanisms play a role in synaptopathies in a variety of neuropsychiatric disorders including epilepsy. This review recapitulates current understanding of trans-synaptic interactions in pathophysiology of interneuronal connections. In particular, we discuss here the possible implications of trans-synaptic adhesion dysfunction for epilepsy.
Collapse
Affiliation(s)
- Adam Gorlewicz
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
11
|
Lrfn2-Mutant Mice Display Suppressed Synaptic Plasticity and Inhibitory Synapse Development and Abnormal Social Communication and Startle Response. J Neurosci 2018; 38:5872-5887. [PMID: 29798891 DOI: 10.1523/jneurosci.3321-17.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.
Collapse
|
12
|
Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity. Exp Mol Med 2018; 50:1-9. [PMID: 29628503 PMCID: PMC5938020 DOI: 10.1038/s12276-017-0023-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits. Further analysis of synaptic proteins will provide insights into the functioning of neural circuits and associated brain disorders. The brain houses numerous highly specialized neuron types, which transfer and process information via a complex network of synaptic connections. Every neuron develops its own distinctive synapses with specific functions, but exactly how this is achieved is not clear. Joris de Wit and Anna Schroeder at the VIB Center for Brain and Disease Research in Leuven, Belgium, reviewed recent research into the leucine-rich repeat-containing (LRR) proteins, which are thought to be major organizers of synaptic connectivity and key regulators of healthy neural circuit development. Further investigations into the functionality of LRR proteins in the brain will not only improve understanding of neural circuitry but also provide insights into synaptic impairments in brain disorders like schizophrenia.
Collapse
|
13
|
Lie E, Li Y, Kim R, Kim E. SALM/Lrfn Family Synaptic Adhesion Molecules. Front Mol Neurosci 2018; 11:105. [PMID: 29674953 PMCID: PMC5895706 DOI: 10.3389/fnmol.2018.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in regulating neuronal and synapse development that have also been implicated in diverse brain dysfunctions, including autism spectrum disorders (ASDs). SALMs, also known as leucine-rich repeat (LRR) and fibronectin III domain-containing (LRFN) proteins, were originally identified as a group of novel adhesion-like molecules that contain LRRs in the extracellular region as well as a PDZ domain-binding tail that couples to PSD-95, an abundant excitatory postsynaptic scaffolding protein. While studies over the last decade have steadily explored the basic properties and synaptic and neuronal functions of SALMs, a number of recent studies have provided novel insights into molecular, structural, functional and clinical aspects of SALMs. Here we summarize these findings and discuss how SALMs act in concert with other synaptic proteins to regulate synapse development and function.
Collapse
Affiliation(s)
- Eunkyung Lie
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
14
|
Structural basis of trans-synaptic interactions between PTPδ and SALMs for inducing synapse formation. Nat Commun 2018; 9:269. [PMID: 29348429 PMCID: PMC5773591 DOI: 10.1038/s41467-017-02417-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/29/2017] [Indexed: 01/23/2023] Open
Abstract
Synapse formation is triggered by trans-synaptic interactions of cell adhesion molecules, termed synaptic organizers. Three members of type-II receptor protein tyrosine phosphatases (classified as type-IIa RPTPs; PTPδ, PTPσ and LAR) are known as presynaptic organizers. Synaptic adhesion-like molecules (SALMs) have recently emerged as a family of postsynaptic organizers. Although all five SALM isoforms can bind to the type-IIa RPTPs, only SALM3 and SALM5 reportedly have synaptogenic activities depending on their binding. Here, we report the crystal structures of apo-SALM5, and PTPδ–SALM2 and PTPδ–SALM5 complexes. The leucine-rich repeat (LRR) domains of SALMs interact with the second immunoglobulin-like (Ig) domain of PTPδ, whereas the Ig domains of SALMs interact with both the second and third Ig domains of PTPδ. Unexpectedly, the structures exhibit the LRR-mediated 2:2 complex. Our synaptogenic co-culture assay using site-directed SALM5 mutants demonstrates that presynaptic differentiation induced by PTPδ–SALM5 requires the dimeric property of SALM5. Synaptic organizers are cell adhesion molecules that facilitate synapse formation through trans-synaptic interactions. Here the authors give molecular insights into synaptic differentiation by determining the structures of the synaptic adhesion-like molecules SALM2 and SALM5 bound to the presynaptic organizer PTPδ.
Collapse
|
15
|
Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Nat Commun 2018; 9:268. [PMID: 29348579 PMCID: PMC5773555 DOI: 10.1038/s41467-017-02414-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022] Open
Abstract
SALM5, a synaptic adhesion molecule implicated in autism, induces presynaptic differentiation through binding to the LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that have been highlighted as presynaptic hubs for synapse formation. The mechanisms underlying SALM5/LAR-RPTP interaction remain unsolved. Here we report crystal structures of human SALM5 LRR-Ig alone and in complex with human PTPδ Ig1–3 (MeA−). Distinct from other LAR-RPTP ligands, SALM5 mainly exists as a dimer with LRR domains from two protomers packed in an antiparallel fashion. In the 2:2 heterotetrameric SALM5/PTPδ complex, a SALM5 dimer bridges two separate PTPδ molecules. Structure-guided mutations and heterologous synapse formation assays demonstrate that dimerization of SALM5 is prerequisite for its functionality in inducing synaptic differentiation. This study presents a structural template for the SALM family and reveals a mechanism for how a synaptic adhesion molecule directly induces cis-dimerization of LAR-RPTPs into higher-order signaling assembly. Synaptic adhesion molecules mediate synaptic differentiation and formation. Here the authors present the structures of the synaptic adhesion molecule SALM5 alone and in complex with the LAR family receptor protein tyrosine phosphatase (LAR-RPTP) PTPδ, which reveals how SALM5 dimerization facilitates higher-order signaling assembly of LAR-RPTPs.
Collapse
|
16
|
Morimura N, Yasuda H, Yamaguchi K, Katayama KI, Hatayama M, Tomioka NH, Odagawa M, Kamiya A, Iwayama Y, Maekawa M, Nakamura K, Matsuzaki H, Tsujii M, Yamada K, Yoshikawa T, Aruga J. Autism-like behaviours and enhanced memory formation and synaptic plasticity in Lrfn2/SALM1-deficient mice. Nat Commun 2017; 8:15800. [PMID: 28604739 PMCID: PMC5472790 DOI: 10.1038/ncomms15800] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
Lrfn2/SALM1 is a PSD-95-interacting synapse adhesion molecule, and human LRFN2 is associated with learning disabilities. However its role in higher brain function and underlying mechanisms remain unknown. Here, we show that Lrfn2 knockout mice exhibit autism-like behavioural abnormalities, including social withdrawal, decreased vocal communications, increased stereotyped activities and prepulse inhibition deficits, together with enhanced learning and memory. In the hippocampus, the levels of synaptic PSD-95 and GluA1 are decreased. The synapses are structurally and functionally immature with spindle shaped spines, smaller postsynaptic densities, reduced AMPA/NMDA ratio, and enhanced LTP. In vitro experiments reveal that synaptic surface expression of AMPAR depends on the direct interaction between Lrfn2 and PSD-95. Furthermore, we detect functionally defective LRFN2 missense mutations in autism and schizophrenia patients. Together, these findings indicate that Lrfn2/LRFN2 serve as core components of excitatory synapse maturation and maintenance, and their dysfunction causes immature/silent synapses with pathophysiological state.
Collapse
Affiliation(s)
- Naoko Morimura
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan.,Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroki Yasuda
- Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kazuhiko Yamaguchi
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Kei-Ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Minoru Hatayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan.,Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| | - Naoko H Tomioka
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Maya Odagawa
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Akiko Kamiya
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Masatsugu Tsujii
- Faculty of Contemporary Sociology, Chukyo University, Toyota, Aichi 470-0393, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI) Wako, Saitama 351-0198, Japan.,Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki 852-8523, Japan
| |
Collapse
|
17
|
A novel synaptic junction preparation for the identification and characterization of cleft proteins. PLoS One 2017; 12:e0174895. [PMID: 28362857 PMCID: PMC5376301 DOI: 10.1371/journal.pone.0174895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Identification of synaptic cleft components has been hampered by the lack of a suitable preparation enriched in synaptic junctions devoid of adjoining peripheral membranes. Prior strategies for the isolation of synaptic junctions, relying on detergents for the removal of peripheral membranes, resulted in substantial loss of membranes lining the cleft. Here, a novel, detergent-free method is described for the preparation of a synaptic junction (SJ) fraction, using phospholipase A2. Limited digestion of synaptic plasma membrane (SPM) fraction with phospholipase A2 followed by centrifugation over a sucrose cushion results in selective removal of membranes peripheral to the cleft while junctional membranes remain relatively intact as observed by electron microscopy. Enrichment in synaptic junctional structures and loss of membranes peripheral to the junctional area are further verified by demonstrating enrichment in PSD-95 and loss in mGluR5, respectively. The SJ fraction is enriched in neuroligins and neurexins, in agreement with immuno-electron microscopy data showing their selective localization to the junctional area. Among additional cell adhesion molecules tested, N-cadherin and specific isoforms of the SynCAM and SALM families also show marked enrichment in the SJ fraction, suggesting preferential localization at the synaptic cleft while others show little enrichment or decrease, suggesting that they are not restricted to or concentrated at the synaptic cleft. Treatment of the SJ fraction with glycosidases results in electrophoretic mobility shifts of all cell adhesion molecules tested, indicating glycosylation at the synaptic cleft. Biochemical and ultrastructural data presented indicate that the novel synaptic junction preparation can be used as a predictive tool for the identification and characterization of the components of the synaptic cleft.
Collapse
|
18
|
Roppongi RT, Karimi B, Siddiqui TJ. Role of LRRTMs in synapse development and plasticity. Neurosci Res 2016; 116:18-28. [PMID: 27810425 DOI: 10.1016/j.neures.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022]
Abstract
Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs) are a family of four synapse organizing proteins critical for the development and function of excitatory synapses. The genes encoding LRRTMs and their binding partners, neurexins and HSPGs, are strongly associated with multiple psychiatric disorders. Here, we review the literature covering their structural features, expression patterns in the developing and adult brains, evolutionary origins, and discovery as synaptogenic proteins. We also discuss their role in the development and plasticity of excitatory synapses as well as their disease associations.
Collapse
Affiliation(s)
- Reiko T Roppongi
- Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg R3Y 0Z3, MB, Canada
| | - Benyamin Karimi
- Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg R3Y 0Z3, MB, Canada
| | - Tabrez J Siddiqui
- Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg R3Y 0Z3, MB, Canada.
| |
Collapse
|
19
|
SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun 2016; 7:12328. [PMID: 27480238 PMCID: PMC4974644 DOI: 10.1038/ncomms12328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/23/2016] [Indexed: 12/01/2022] Open
Abstract
Synaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4−/−) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4−/− mice (Salm3−/−; Salm4−/−) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3–LAR adhesion. Synaptic adhesion molecules regulate synapse development and function by both cis and trans-interactions. Here, Lie et al. show that postsynaptic SALM4 regulates excitatory synapse numbers by cis inhibition of the SALM3-LAR transynaptic interaction.
Collapse
|
20
|
Kaniakova M, Lichnerova K, Skrenkova K, Vyklicky L, Horak M. Biochemical and electrophysiological characterization of N-glycans on NMDA receptor subunits. J Neurochem 2016; 138:546-56. [PMID: 27216994 DOI: 10.1111/jnc.13679] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/29/2016] [Accepted: 05/14/2016] [Indexed: 11/30/2022]
Abstract
In mammals, excitatory synapses contain two major types of ionotropic glutamate receptors: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors (NMDARs). Both receptor types are comprised of several subunits that are post-translationally modified by N-glycosylation. However, the precise N-glycans that are attached to these receptor types are largely unknown. Here, we used biochemistry to confirm that native NMDARs are extensively N-glycosylated; moreover, we found that the NMDAR GluN2B subunit differs from GluN1 subunits with respect to endoglycosidase H sensitivity. Next, we used a complete panel of lectins to determine the glycan composition of NMDARs in both cerebellar tissue and cultured cerebellar granule cells. Our experiments identified 23 lectins that pulled down both the GluN1 and GluN2B NMDAR subunits. We then performed an electrophysiological analysis using representative lectins and found that pre-incubating cerebellar granule cells with the AAL, WGA, or ConA alters the receptor's biophysical properties; this lectin-mediated effect was eliminated when the cells were deglycosylated with peptide-N-glycosidase F. Similar lectin-mediated effects were observed using HEK293 cells that express recombinant GluN1/GluN2B receptors. Finally, using mutant recombinant GluN subunits expressed in HEK293 cells, we found that 11 out of 12 predicted N-glycosylation sites in GluN1 and 7 out of 7 N-glycosylation sites in GluN2B are occupied by N-glycans. These data provide new insight into the role that N-glycosylation plays in regulating the function of NMDA receptors in the central nervous system. All animal experiments were performed in accordance with relevant institutional ethics guidelines and regulations with respect to protecting animal welfare. We examined the N-glycan composition of NMDA receptors (NMDARs) using deglycosylating enzymes, lectin-based biochemistry, and electrophysiology. Our results revealed that cerebellar NMDARs associate with 23 different lectins that have unique specificities for glycan structures. Furthermore, we found that 11 out of 12 predicted N-glycosylation sites in GluN1 and 7 out of 7 N-glycosylation sites in GluN2B are occupied by N-glycans. These data shed light on the glycan composition of NMDARs, revealing potential targets for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Martina Kaniakova
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 4, Czech Republic
| | - Katarina Lichnerova
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 4, Czech Republic
| | - Kristyna Skrenkova
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 4, Czech Republic.,Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 4, Czech Republic
| | - Martin Horak
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Prague 4, Czech Republic
| |
Collapse
|
21
|
Choi Y, Nam J, Whitcomb DJ, Song YS, Kim D, Jeon S, Um JW, Lee SG, Woo J, Kwon SK, Li Y, Mah W, Kim HM, Ko J, Cho K, Kim E. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci Rep 2016; 6:26676. [PMID: 27225731 PMCID: PMC4881023 DOI: 10.1038/srep26676] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LAR-RPTPs; LAR, PTPδ, and PTPσ). These interactions are strongly inhibited by the splice insert B in the Ig domain region of LAR-RPTPs, and mediate SALM5-dependent presynaptic differentiation in contacting axons. In addition, SALM5 regulates AMPA receptor-mediated synaptic transmission through mechanisms involving the interaction of postsynaptic SALM5 with presynaptic LAR-RPTPs. These results suggest that postsynaptic SALM5 promotes synapse development by trans-synaptically interacting with presynaptic LAR-RPTPs and is important for the regulation of excitatory synaptic strength.
Collapse
Affiliation(s)
- Yeonsoo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jungyong Nam
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Daniel J. Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, 463–707, Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Sangmin Jeon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ji Won Um
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
- Department of Physiology and BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Seong-Gyu Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jooyeon Woo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seok-Kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Yan Li
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jaewon Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kwangwook Cho
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
- Centre for Synaptic Plasticity, University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon 305-701, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| |
Collapse
|
22
|
Splicing-Dependent Trans-synaptic SALM3-LAR-RPTP Interactions Regulate Excitatory Synapse Development and Locomotion. Cell Rep 2015; 12:1618-30. [PMID: 26321637 PMCID: PMC4578660 DOI: 10.1016/j.celrep.2015.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/10/2015] [Accepted: 07/31/2015] [Indexed: 12/02/2022] Open
Abstract
Synaptic adhesion molecules regulate diverse aspects of synapse development and plasticity. SALM3 is a PSD-95-interacting synaptic adhesion molecule known to induce presynaptic differentiation in contacting axons, but little is known about its presynaptic receptors and in vivo functions. Here, we identify an interaction between SALM3 and LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that requires the mini-exon B splice insert in LAR-RPTPs. In addition, SALM3-dependent presynaptic differentiation requires all three types of LAR-RPTPs. SALM3 mutant (Salm3−/−) mice display markedly reduced excitatory synapse number but normal synaptic plasticity in the hippocampal CA1 region. Salm3−/− mice exhibit hypoactivity in both novel and familiar environments but perform normally in learning and memory tests administered. These results suggest that SALM3 regulates excitatory synapse development and locomotion behavior.
Collapse
|
23
|
High B, Cole AA, Chen X, Reese TS. Electron microscopic tomography reveals discrete transcleft elements at excitatory and inhibitory synapses. Front Synaptic Neurosci 2015; 7:9. [PMID: 26113817 PMCID: PMC4461817 DOI: 10.3389/fnsyn.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Electron microscopy has revealed an abundance of material in the clefts of synapses in the mammalian brain, and the biochemical and functional characteristics of proteins occupying synaptic clefts are well documented. However, the detailed spatial organization of the proteins in the synaptic clefts remains unclear. Electron microscope tomography provides a way to delineate and map the proteins spanning the synaptic cleft because freeze substitution preserves molecular details with sufficient contrast to visualize individual cleft proteins. Segmentation and rendering of electron dense material connected across the cleft reveals discrete structural elements that are readily classified into five types at excitatory synapses and four types at inhibitory synapses. Some transcleft elements resemble shapes and sizes of known proteins and could represent single dimers traversing the cleft. Some of the types of cleft elements at inhibitory synapses roughly matched the structure and proportional frequency of cleft elements at excitatory synapses, but the patterns of deployments in the cleft are quite different. Transcleft elements at excitatory synapses were often evenly dispersed in clefts of uniform (18 nm) width but some types show preference for the center or edges of the cleft. Transcleft elements at inhibitory synapses typically were confined to a peripheral region of the cleft where it narrowed to only 6 nm wide. Transcleft elements in both excitatory and inhibitory synapses typically avoid places where synaptic vesicles attach to the presynaptic membrane. These results illustrate that elements spanning synaptic clefts at excitatory and inhibitory synapses consist of distinct structures arranged by type in a specific but different manner at excitatory and inhibitory synapses.
Collapse
Affiliation(s)
- Brigit High
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Andy A Cole
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA ; Department of Cell and Molecular Biology, Northwestern University Chicago, IL, USA
| | - Xiaobing Chen
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
24
|
de Wit J, Ghosh A. Control of neural circuit formation by leucine-rich repeat proteins. Trends Neurosci 2014; 37:539-50. [PMID: 25131359 DOI: 10.1016/j.tins.2014.07.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023]
Abstract
The function of neural circuits depends on the precise connectivity between populations of neurons. Increasing evidence indicates that disruptions in excitatory or inhibitory synapse formation or function lead to excitation/inhibition (E/I) imbalances and contribute to neurodevelopmental and psychiatric disorders. Leucine-rich repeat (LRR)-containing surface proteins have emerged as key organizers of excitatory and inhibitory synapses. Distinct LRR proteins are expressed in different cell types and interact with key pre- and postsynaptic proteins. These protein interaction networks allow LRR proteins to coordinate pre- and postsynaptic elements during synapse formation and differentiation, pathway-specific synapse development, and synaptic plasticity. LRR proteins, therefore, play a critical role in organizing synaptic connections into functional neural circuits, and their dysfunction may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium; KU Leuven, Center for Human Genetics, 3000 Leuven, Belgium.
| | - Anirvan Ghosh
- Neuroscience Discovery, F. Hoffman-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
25
|
Yang X, Hou D, Jiang W, Zhang C. Intercellular protein-protein interactions at synapses. Protein Cell 2014; 5:420-44. [PMID: 24756565 PMCID: PMC4026422 DOI: 10.1007/s13238-014-0054-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/23/2014] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
| | - Dongmei Hou
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Wei Jiang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074 China
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| | - Chen Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China
| |
Collapse
|
26
|
Pepinsky RB, Arndt JW, Quan C, Gao Y, Quintero-Monzon O, Lee X, Mi S. Structure of the LINGO-1–Anti-LINGO-1 Li81 Antibody Complex Provides Insights into the Biology of LINGO-1 and the Mechanism of Action of the Antibody Therapy. J Pharmacol Exp Ther 2014; 350:110-23. [DOI: 10.1124/jpet.113.211771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Winther M, Walmod PS. Neural cell adhesion molecules belonging to the family of leucine-rich repeat proteins. ADVANCES IN NEUROBIOLOGY 2014; 8:315-95. [PMID: 25300143 DOI: 10.1007/978-1-4614-8090-7_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeats (LRRs) are motifs that form protein-ligand interaction domains. There are approximately 140 human genes encoding proteins with extracellular LRRs. These encode cell adhesion molecules (CAMs), proteoglycans, G-protein-coupled receptors, and other types of receptors. Here we give a brief description of 36 proteins with extracellular LRRs that all can be characterized as CAMs or putative CAMs expressed in the nervous system. The proteins are involved in multiple biological processes in the nervous system including the proliferation and survival of cells, neuritogenesis, axon guidance, fasciculation, myelination, and the formation and maintenance of synapses. Moreover, the proteins are functionally implicated in multiple diseases including cancer, hearing impairment, glaucoma, Alzheimer's disease, multiple sclerosis, Parkinson's disease, autism spectrum disorders, schizophrenia, and obsessive-compulsive disorders. Thus, LRR-containing CAMs constitute a large group of proteins of pivotal importance for the development, maintenance, and regeneration of the nervous system.
Collapse
|
28
|
Harris KM, Weinberg RJ. Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005587. [PMID: 22357909 DOI: 10.1101/cshperspect.a005587] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The morphology and molecular composition of synapses provide the structural basis for synaptic function. This article reviews the electron microscopy of excitatory synapses on dendritic spines, using data from rodent hippocampus, cerebral cortex, and cerebellar cortex. Excitatory synapses have a prominent postsynaptic density, in contrast with inhibitory synapses, which have less dense presynaptic or postsynaptic specializations and are usually found on the cell body or proximal dendritic shaft. Immunogold labeling shows that the presynaptic active zone provides a scaffold for key molecules involved in the release of neurotransmitter, whereas the postsynaptic density contains ligand-gated ionic channels, other receptors, and a complex network of signaling molecules. Delineating the structure and molecular organization of these axospinous synapses represents a crucial step toward understanding the mechanisms that underlie synaptic transmission and the dynamic modulation of neurotransmission associated with short- and long-term synaptic plasticity.
Collapse
Affiliation(s)
- Kristen M Harris
- Center for Learning and Memory, Neurobiology Section, University of Texas, Austin, 78712, USA.
| | | |
Collapse
|
29
|
Abstract
Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that include neurexins and neuroligins, Ig-domain proteins such as SynCAMs, receptor phosphotyrosine kinases and phosphatases, and several leucine-rich repeat proteins have been identified. These synaptic cell adhesion molecules use characteristic extracellular domains to perform complementary roles in organizing synaptic junctions that are only now being revealed. The importance of synaptic cell adhesion molecules for brain function is highlighted by recent findings implicating several such molecules, notably neurexins and neuroligins, in schizophrenia and autism.
Collapse
Affiliation(s)
- Markus Missler
- Department of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | | | | |
Collapse
|
30
|
Seabold GK, Wang PY, Petralia RS, Chang K, Zhou A, McDermott MI, Wang YX, Milgram SL, Wenthold RJ. Dileucine and PDZ-binding motifs mediate synaptic adhesion-like molecule 1 (SALM1) trafficking in hippocampal neurons. J Biol Chem 2012; 287:4470-84. [PMID: 22174418 PMCID: PMC3281672 DOI: 10.1074/jbc.m111.279661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/22/2011] [Indexed: 12/18/2022] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a family of cell adhesion molecules involved in neurite outgrowth and synapse formation. Of the five family members, only SALM1, -2, and -3 contain a cytoplasmic C-terminal PDZ-binding motif. We have found that SALM1 is unique among the SALMs because deletion of its PDZ-binding motif (SALM1ΔPDZ) blocks its surface expression in heterologous cells. When expressed in hippocampal neurons, SALM1ΔPDZ had decreased surface expression in dendrites and the cell soma but not in axons, suggesting that the PDZ-binding domain may influence cellular trafficking of SALMs to specific neuronal locations. Endoglycosidase H digestion assays indicated that SALM1ΔPDZ is retained in the endoplasmic reticulum (ER) in heterologous cells. However, when the entire C-terminal tail of SALM1 was deleted, SALM1 was detected on the cell surface. Using serial deletions, we identified a region of SALM1 that contains a putative dileucine ER retention motif, which is not present in the other SALMs. Mutation of this DXXXLL motif allowed SALM1 to leave the ER and enhanced its surface expression in heterologous cells and neurons. An increase in the number of protrusions at the dendrites and cell body was observed when this SALM1 mutant was expressed in hippocampal neurons. With electron microscopy, these protrusions appeared to be irregular, enlarged spines and filopodia. Thus, enrichment of SALM1 on the cell surface affects dendritic arborization, and intracellular motifs regulate its dendritic versus axonal localization.
Collapse
Affiliation(s)
- Gail K Seabold
- Laboratory of Neurochemistry, NIDCD/National Institutes of Health, 50 South Dr., Bldg. 50, Rm. 4144, Bethesda, MD20892-8027, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Proenca CC, Gao KP, Shmelkov SV, Rafii S, Lee FS. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci 2012; 34:143-53. [PMID: 21315458 DOI: 10.1016/j.tins.2011.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 02/06/2023]
Abstract
Slitrks are a family of structurally related transmembrane proteins belonging to the leucine-rich repeat (LRR) superfamily. Six family members exist (Slitrk1-6) and all are highly expressed in the central nervous system (CNS). Slitrks have been implicated in mediating basic neuronal processes, ranging from neurite outgrowth and dendritic elaboration to neuronal survival. Recent studies in humans and genetic mouse models have led to the identification of Slitrks as candidate genes that might be involved in the development of neuropsychiatric conditions, such as obsessive compulsive spectrum disorders and schizophrenia. Although these system-level approaches have suggested that Slitrks play prominent roles in CNS development, key questions remain regarding the molecular mechanisms through which they mediate neuronal signaling and connectivity.
Collapse
Affiliation(s)
- Catia C Proenca
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
32
|
Bukalo O, Dityatev A. Synaptic Cell Adhesion Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:97-128. [DOI: 10.1007/978-3-7091-0932-8_5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Kajander T, Kuja-Panula J, Rauvala H, Goldman A. Crystal Structure and Role of Glycans and Dimerization in Folding of Neuronal Leucine-Rich Repeat Protein AMIGO-1. J Mol Biol 2011; 413:1001-15. [DOI: 10.1016/j.jmb.2011.09.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
|
34
|
de Wit J, Hong W, Luo L, Ghosh A. Role of leucine-rich repeat proteins in the development and function of neural circuits. Annu Rev Cell Dev Biol 2011; 27:697-729. [PMID: 21740233 DOI: 10.1146/annurev-cellbio-092910-154111] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nervous system consists of an ensemble of billions of neurons interconnected in a highly specific pattern that allows proper propagation and integration of neural activities. The organization of these specific connections emerges from sequential developmental events including axon guidance, target selection, and synapse formation. These events critically rely on cell-cell recognition and communication mediated by cell-surface ligands and receptors. Recent studies have uncovered central roles for leucine-rich repeat (LRR) domain-containing proteins, not only in organizing neural connectivity from axon guidance to target selection to synapse formation, but also in various nervous system disorders. Their versatile LRR domains, in particular, serve as key sites for interactions with a wide diversity of binding partners. Here, we focus on a few exquisite examples of secreted or membrane-associated LRR proteins in Drosophila and mammals and review the mechanisms by which they regulate diverse aspects of nervous system development and function.
Collapse
Affiliation(s)
- Joris de Wit
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
35
|
Nam J, Mah W, Kim E. The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules. Semin Cell Dev Biol 2011; 22:492-8. [PMID: 21736948 DOI: 10.1016/j.semcdb.2011.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/18/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Synaptic adhesion molecules play important roles in various stages of neuronal development, including neurite outgrowth and synapse formation. The SALM (synaptic adhesion-like molecule) family of adhesion molecules, also known as Lrfn, belongs to the superfamily of leucine-rich repeat (LRR)-containing adhesion molecules. Proteins of the SALM family, which includes five known members (SALMs 1-5), have been implicated in the regulation of neurite outgrowth and branching, and synapse formation and maturation. Despite sharing a similar domain structure, individual SALM family proteins appear to have distinct functions. SALMs 1-3 contain a C-terminal PDZ-binding motif, which interacts with PSD-95, an abundant postsynaptic scaffolding protein, whereas SALM4 and SALM5 lack PDZ binding. SALM1 directly interacts with NMDA receptors but not with AMPA receptors, whereas SALM2 associates with both NMDA and AMPA receptors. SALMs 1-3 form homo- and heteromeric complexes with each other in a cis manner, whereas SALM4 and SALM5 do not, but instead participate in homophilic, trans-cellular adhesion. SALM3 and SALM5, but not other SALMs, possess synaptogenic activity, inducing presynaptic differentiation in contacting axons. All SALMs promote neurite outgrowth, while SALM4 uniquely increases the number of primary processes extending from the cell body. In addition to these functional diversities, the fifth member of the SALM family, SALM5/Lrfn5, has recently been implicated in severe progressive autism and familial schizophrenia, pointing to the clinical importance of SALMs.
Collapse
Affiliation(s)
- Jungyong Nam
- National Creative Research Initiative Center for Synaptogenesis, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | | |
Collapse
|
36
|
Konakahara S, Saitou M, Hori S, Nakane T, Murai K, Itoh R, Shinsaka A, Kohroki J, Kawakami T, Kajikawa M, Masuho Y. A neuronal transmembrane protein LRFN4 induces monocyte/macrophage migration via actin cytoskeleton reorganization. FEBS Lett 2011; 585:2377-84. [PMID: 21704618 DOI: 10.1016/j.febslet.2011.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/18/2011] [Accepted: 06/10/2011] [Indexed: 01/13/2023]
Abstract
Leucine-rich repeat and fibronectin type III domain-containing (LRFN) family proteins are thought to be neuronal-specific proteins that play essential roles in neurite outgrowth and synapse formation. Here, we focused on expression and function of LRFN4, the fourth member of the LRFN family, in non-neural tissues. We found that LRFN4 was expressed in a wide variety of cancer and leukemia cell lines. We also found that expression of LRFN4 in the monocytic cell line THP-1 and in primary monocytes was upregulated following macrophage differentiation. Furthermore, we demonstrated that LRFN4 signaling regulated both the transendothelial migration of THP-1 cells and the elongation of THP-1 cells via actin cytoskeleton reorganization. Our data indicate that LRFN4 signaling plays an important role in the migration of monocytes/macrophages.
Collapse
Affiliation(s)
- Shu Konakahara
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Swanwick CC, Shapiro ME, Vicini S, Wenthold RJ. Flotillin-1 mediates neurite branching induced by synaptic adhesion-like molecule 4 in hippocampal neurons. Mol Cell Neurosci 2010; 45:213-25. [DOI: 10.1016/j.mcn.2010.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 11/25/2022] Open
|
38
|
Abstract
Synaptic junctions are generated by adhesion proteins that bridge the synaptic cleft to firmly anchor pre- and postsynaptic membranes. Several cell adhesion molecule (CAM) families localize to synapses, but it is not yet completely understood how each synaptic CAM family contributes to synapse formation and/or structure, and whether or how smaller groups of CAMs serve as minimal, functionally cooperative adhesive units upon which structure is based. Synapse structure and function evolve over the course of development, and in mature animals, synapses are composed of a greater number of proteins, surrounded by a stabilizing extracellular matrix, and often contacted by astrocytic processes. Thus, in mature networks undergoing plasticity, persistent changes in synapse strength, morphology, or number must be accompanied by selective and regulated remodeling of the neuropil. Recent work indicates that regulated, extracellular proteolysis may be essential for this, and rather than simply acting permissively to enable synapse plasticity, is more likely playing a proactive role in driving coordinated synaptic structural and functional modifications that underlie persistent changes in network activity.
Collapse
Affiliation(s)
- Deanna L Benson
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
39
|
Giagtzoglou N, Ly CV, Bellen HJ. Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives. Cold Spring Harb Perspect Biol 2010; 1:a003079. [PMID: 20066100 DOI: 10.1101/cshperspect.a003079] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer's disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
40
|
Siddiqui TJ, Craig AM. Synaptic organizing complexes. Curr Opin Neurobiol 2010; 21:132-43. [PMID: 20832286 DOI: 10.1016/j.conb.2010.08.016] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/09/2010] [Accepted: 08/14/2010] [Indexed: 01/01/2023]
Abstract
A number of synaptogenic factors induce presynaptic or postsynaptic differentiation when presented to axons or dendrites. Many such factors participate in bidirectional trans-synaptic adhesion complexes. Axonal neurexins interacting in an isoform-specific code with multiple dendritic partners (neuroligins, LRRTMs, or Cbln-GluRδ), and axonal protein tyrosine phosphatase receptors interacting with dendritic NGL-3, nucleate local networks of high-affinity protein-protein interactions leading to aligned presynaptic and postsynaptic differentiation. Additional secreted target-derived factors such as fibroblast growth factors and glial-derived factors such as thrombospondin bind specific axonal or dendritic receptors stimulating signal transduction mechanisms to promote selective aspects of synapse development. Together with classical adhesion molecules and controlled by transcriptional cascades, these synaptogenic adhesion complexes and secreted factors organize the molecular composition and thus functional properties of central synapses.
Collapse
Affiliation(s)
- Tabrez J Siddiqui
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada V6T 2B5
| | | |
Collapse
|
41
|
Selected SALM (synaptic adhesion-like molecule) family proteins regulate synapse formation. J Neurosci 2010; 30:5559-68. [PMID: 20410109 DOI: 10.1523/jneurosci.4839-09.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synaptic cell adhesion molecules regulate various steps of synapse formation. Despite the great diversity of neuronal synapses, relatively few adhesion molecules with synaptogenic activity have been identified. Synaptic adhesion-like molecules (SALMs) are members of a family of cell adhesion molecules known to regulate neurite outgrowth and synapse maturation; however, the role of SALMs in synapse formation remains unknown. We found that expression of the SALM family proteins SALM3 and SALM5 in nonneural and neural cells induces both excitatory and inhibitory presynaptic differentiation in contacting axons. SALM3 and SALM5 proteins are enriched in synaptic fractions, and form strong (SALM3) or weak (SALM5) complexes with postsynaptic density-95 (PSD-95), an abundant postsynaptic scaffolding protein at excitatory synapses. Aggregation of SALM3, but not SALM5, on dendritic surfaces induces clustering of PSD-95. Knockdown of SALM5 reduces the number and function of excitatory and inhibitory synapses. These results suggest that selected SALM family proteins regulate synapse formation, and that SALM3 and SALM5 may promote synapse formation through distinct mechanisms.
Collapse
|
42
|
Chang K, Seabold GK, Wang CY, Wenthold RJ. Reticulon 3 is an interacting partner of the SALM family of adhesion molecules. J Neurosci Res 2010; 88:266-74. [PMID: 19681166 DOI: 10.1002/jnr.22209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synaptic adhesion-like molecules (SALMs) are a recently discovered family of adhesion molecules that is widely distributed in the central nervous system and has been implicated in neurite outgrowth and synapse formation. To identify proteins that interact with extracellular domains of SALMs, we carried out yeast two-hybrid screening using the extracellular domain of SALM1 as bait. A clone encoding full-length reticulon 3A1 was isolated. This interaction was shown to occur through the LRR domain, which is found on all SALMs. To determine whether this relationship also occurs in brain, we performed immunoprecipitation using antibodies to SALMs 1-4. A 19-kDa band, identified as reticulon 3C, bound to all four SALMs, whereas a 90-kDa band, which did not comigrate with any known reticulon 3 variant, bound to SALMs 2 and 3. These results show that reticulon 3 may play a role in the trafficking of the SALM family of adhesion molecules.
Collapse
Affiliation(s)
- Kai Chang
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892-8027, USA
| | | | | | | |
Collapse
|
43
|
Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ. Organization of NMDA receptors at extrasynaptic locations. Neuroscience 2010; 167:68-87. [PMID: 20096331 DOI: 10.1016/j.neuroscience.2010.01.022] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/14/2009] [Accepted: 01/13/2010] [Indexed: 12/14/2022]
Abstract
NMDA receptors are found in neurons both at synapses and in extrasynaptic locations. Extrasynaptic locations are poorly characterized. Here we used preembedding immunoperoxidase and postembedding immunogold electron microscopy and fluorescence light microscopy to characterize extrasynaptic NMDA receptor locations in dissociated hippocampal neurons in vitro and in the adult and postnatal hippocampus in vivo. We found that extrasynaptic NMDA receptors on neurons in vivo and in vitro were usually concentrated at points of contact with adjacent processes, which were mainly axons, axon terminals, or glia. Many of these contacts were shown to contain adhesion factors such as cadherin and catenin. We also found associations of extrasynaptic NMDA receptors with the membrane associated guanylate kinase (MAGUKs), postsynaptic density (PSD)-95 and SAP102. Developmental differences were also observed. At postnatal day 2 in vivo, extrasynaptic NMDA receptors could often be found at sites with distinct densities whereas dense material was seen only rarely at sites of extrasynaptic NMDA receptors in the adult hippocampus in vivo. This difference probably indicates that many sites of extrasynaptic NMDA receptors in early postnatal ages represent synapse formation or possibly sites for synapse elimination. At all ages, as suggested in both in vivo and in vitro studies, extrasynaptic NMDA receptors on dendrites or the sides of spines may form complexes with other proteins, in many cases, at stable associations with adjacent cell processes. These associations may facilitate unique functions for extrasynaptic NMDA receptors.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Biederer T, Stagi M. Signaling by synaptogenic molecules. Curr Opin Neurobiol 2009; 18:261-9. [PMID: 18725297 DOI: 10.1016/j.conb.2008.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 07/28/2008] [Indexed: 01/24/2023]
Abstract
Multiple signaling pathways initiate and specify the formation of synapses in the central nervous system. General principles that organize nascent synapses have emerged from the studies in multiple model organisms. These include the synapse-organizing roles of dedicated synaptic adhesion molecules, synaptic signaling following receptor-ligand interactions, and the regulation of synapse formation by secreted molecules. Intracellularly, a range of effectors subsequently regulates signaling steps and cytoskeletal changes. Together, a blueprint of synapse formation is emerging into which these distinct signaling steps will need to be integrated temporally and spatially.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
45
|
Wang PY, Seabold GK, Wenthold RJ. Synaptic adhesion-like molecules (SALMs) promote neurite outgrowth. Mol Cell Neurosci 2008; 39:83-94. [PMID: 18585462 DOI: 10.1016/j.mcn.2008.05.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/12/2008] [Accepted: 05/26/2008] [Indexed: 11/15/2022] Open
Abstract
SALMs are a family of five adhesion molecules whose expression is largely restricted to the CNS. Initial reports showed that SALM1 functions in neurite outgrowth while SALM2 is involved in synapse formation. To investigate the function of SALMs in detail, we asked if all five are involved in neurite outgrowth. Expression of epitope-tagged proteins in cultured hippocampal neurons showed that SALMs are distributed throughout neurons, including axons, dendrites, and growth cones. Over-expression of each SALM resulted in enhanced neurite outgrowth, but with different phenotypes. Neurite outgrowth could be reduced by applying antibodies targeting the extracellular leucine rich regions of SALMs and with RNAi. Through over-expression of deletion constructs, we found that the C-terminal PDZ binding domains of SALMs 1-3 are required for most aspects of neurite outgrowth. In addition, by using a chimera of SALMs 2 and 4, we found that the N-terminus is also involved in neurite outgrowth.
Collapse
Affiliation(s)
- Philip Y Wang
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|