1
|
Steensma AK, Kaste JAM, Heo J, Orr DJ, Sung CL, Shachar-Hill Y, Walker BJ. Modeling with uncertainty quantification reveals the essentials of a non-canonical algal carbon-concentrating mechanism. PLANT PHYSIOLOGY 2025; 197:kiae629. [PMID: 39656810 PMCID: PMC11836721 DOI: 10.1093/plphys/kiae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that C. merolae's cellular affinity for CO2 is stronger than the affinity of its rubisco for CO2. This finding provided additional evidence that C. merolae operates a CCM while lacking the structures and functions characteristic of CCMs in other organisms. To test how such a CCM could function, we created a mathematical compartmental model of a simple CCM, distinct from those we have seen previously described in detail. The results of our modeling supported the feasibility of this proposed minimal and non-canonical CCM in C. merolae. To facilitate the robust modeling of this process, we measured and incorporated physiological and enzymatic parameters into the model. Additionally, we trained a surrogate machine-learning model to emulate the mechanistic model and characterized the effects of model parameters on key outputs. This parameter exploration enabled us to identify model features that influenced whether the model met the experimentally derived criteria for functional carbon concentration and efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO2 membrane permeability. Our exploration thus suggested that a non-canonical CCM could exist in C. merolae and illuminated the essential features generally necessary for CCMs to function.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University—Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Junoh Heo
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas J Orr
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Chih-Li Sung
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University—Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Liu M, Khan S, Zwiazek JJ. Overexpression of Nicotiana tabacum PIP1;3 enhances root aeration and oxygen metabolism in canola (Brassica napus) plants exposed to root hypoxia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109122. [PMID: 39305559 DOI: 10.1016/j.plaphy.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024]
Abstract
High mortality and reduced growth due to root hypoxia are commonly observed in plants impacted by flooding or soil compaction. Since earlier research suggested that Nicotiana tabacum PIP1;3 may facilitate cell-to-cell oxygen transport, we overexpressed NtPIP1;3 in canola (Brassica napus) and studied the effects on growth, physiological parameters, root oxygen concentrations, and energy metabolism in plants subjected to waterlogging. Compared with wild-type plants (WT), the waterlogged plants overexpressing NtPIP1;3 (OE) maintained higher dry biomass, gas exchange, root hydraulic conductivity, root oxygen concentrations, leaf water potentials, root respiration rates, and root ATP concentrations. Metabolic profiling revealed that overexpressing plants responded to root hypoxia by altering the glycolysis, pyruvate metabolism, and TCA cycle in roots. Moreover, the differences in expression patterns of RAP2.12, RAP2.2, PCO1, and PCO2 in WT and OE canola plants exposed to root hypoxia point to increased oxygen supply to OE roots, which was confirmed by direct measurements of root O2 concentrations. Our results demonstrate that the overexpression of NtPIP1;3 affected plant responses to hypoxia by enhancing their aerobic metabolism and strengthened the notion that some of the plant aquaporins may facilitate oxygen transport.
Collapse
Affiliation(s)
- Mengmeng Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China; Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
3
|
Kaste JAM, Walker BJ, Shachar-Hill Y. Reaction-diffusion modeling provides insights into biophysical carbon-concentrating mechanisms in land plants. PLANT PHYSIOLOGY 2024; 196:1374-1390. [PMID: 38857179 PMCID: PMC11444298 DOI: 10.1093/plphys/kiae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/12/2024]
Abstract
Carbon-concentrating mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM (PCCM) of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We found that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than those used in previous modeling studies resulting in low light use efficiency. Adding a complete PCCM into the leaf cells of a C3 land plant was predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions were when substomatal CO2 levels are as low as those found in land plants that already use biochemical CCMs and when gas exchange is limited, such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and the evolution of pyrenoids multiple times.
Collapse
Affiliation(s)
- Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
5
|
Williamson G, Bizior A, Harris T, Pritchard L, Hoskisson P, Javelle A. Biological ammonium transporters from the Amt/Mep/Rh superfamily: mechanism, energetics, and technical limitations. Biosci Rep 2024; 44:BSR20211209. [PMID: 38131184 PMCID: PMC10794816 DOI: 10.1042/bsr20211209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, U.K
| |
Collapse
|
6
|
Harris J, Chipot C, Roux B. How is Membrane Permeation of Small Ionizable Molecules Affected by Protonation Kinetics? J Phys Chem B 2024; 128:795-811. [PMID: 38227958 DOI: 10.1021/acs.jpcb.3c06765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
According to the pH-partition hypothesis, the aqueous solution adjacent to a membrane is a mixture of the ionization states of the permeating molecule at fixed Henderson-Hasselbalch concentrations, such that each state passes through the membrane in parallel with its own specific permeability. An alternative view, based on the assumption that the rate of switching ionization states is instantaneous, represents the permeation of ionizable molecules via an effective Boltzmann-weighted average potential (BWAP). Such an assumption is used in constant-pH molecular dynamics simulations. The inhomogeneous solubility-diffusion framework can be used to compute the pH-dependent membrane permeability for each of these two limiting treatments. With biased WTM-eABF molecular dynamics simulations, we computed the potential of mean force and diffusivity of each ionization state of two weakly basic small molecules: nicotine, an addictive drug, and varenicline, a therapeutic for treating nicotine addiction. At pH = 7, the BWAP effective permeability is greater than that determined by pH-partitioning by a factor of 2.5 for nicotine and 5 for varenicline. To assess the importance of ionization kinetics, we present a Smoluchowski master equation that includes explicitly the protonation and deprotonation processes coupled with the diffusive motion across the membrane. At pH = 7, the increase in permeability due to the explicit ionization kinetics is negligible for both nicotine and varenicline. This finding is reaffirmed by combined Brownian dynamics and Markov state model simulations for estimating the permeability of nicotine while allowing changes in its ionization state. We conclude that for these molecules the pH-partition hypothesis correctly captures the physics of the permeation process. The small free energy barriers for the permeation of nicotine and varenicline in their deprotonated neutral forms play a crucial role in establishing the validity of the pH-partitioning mechanism. Essentially, BWAP fails because ionization kinetics are too slow on the time scale of membrane crossing to affect the permeation of small ionizable molecules such as nicotine and varenicline. For the singly protonated state of nicotine, the computational results agree well with experimental measurements (P1 = 1.29 × 10-7 cm/s), but the agreement for neutral (P0 = 6.12 cm/s) and doubly protonated nicotine (P2 = 3.70 × 10-13 cm/s) is slightly worse, likely due to factors associated with the aqueous boundary layer (neutral form) or leaks through paracellular pathways (doubly protonated form).
Collapse
Affiliation(s)
- Jonathan Harris
- Department of Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n◦7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France
- Theoretical and Computational Biophysics Group, Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry and Molecular Biology, Department of Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Department of Chemistry, The University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Kaste JA, Walker BJ, Shachar-Hill Y. Biophysical carbon concentrating mechanisms in land plants: insights from reaction-diffusion modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574220. [PMID: 38260381 PMCID: PMC10802268 DOI: 10.1101/2024.01.04.574220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Carbon Concentrating Mechanisms (CCMs) have evolved numerous times in photosynthetic organisms. They elevate the concentration of CO2 around the carbon-fixing enzyme rubisco, thereby increasing CO2 assimilatory flux and reducing photorespiration. Biophysical CCMs, like the pyrenoid-based CCM of Chlamydomonas reinhardtii or carboxysome systems of cyanobacteria, are common in aquatic photosynthetic microbes, but in land plants appear only among the hornworts. To predict the likely efficiency of biophysical CCMs in C3 plants, we used spatially resolved reaction-diffusion models to predict rubisco saturation and light use efficiency. We find that the energy efficiency of adding individual CCM components to a C3 land plant is highly dependent on the permeability of lipid membranes to CO2, with values in the range reported in the literature that are higher than used in previous modeling studies resulting in low light use efficiency. Adding a complete pyrenoid-based CCM into the leaf cells of a C3 land plant is predicted to boost net CO2 fixation, but at higher energetic costs than those incurred by photorespiratory losses without a CCM. Two notable exceptions are when substomatal CO2 levels are as low as those found in land plants that already employ biochemical CCMs and when gas exchange is limited such as with hornworts, making the use of a biophysical CCM necessary to achieve net positive CO2 fixation under atmospheric CO2 levels. This provides an explanation for the uniqueness of hornworts' CCM among land plants and evolution of pyrenoids multiple times.
Collapse
Affiliation(s)
- Joshua A.M. Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| | - Berkley J. Walker
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
- Department of Energy Plant Research Laboratory, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| |
Collapse
|
8
|
Bizior A, Williamson G, Harris T, Hoskisson PA, Javelle A. Prokaryotic ammonium transporters: what has three decades of research revealed? MICROBIOLOGY (READING, ENGLAND) 2023; 169:001360. [PMID: 37450375 PMCID: PMC10433425 DOI: 10.1099/mic.0.001360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
The exchange of ammonium across cellular membranes is a fundamental process in all domains of life. In plants, bacteria and fungi, ammonium represents a vital source of nitrogen, which is scavenged from the external environment. In contrast, in animal cells ammonium is a cytotoxic metabolic waste product and must be excreted to prevent cell death. Transport of ammonium is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. In addition to their function as transporters, Amt/Mep/Rh proteins play roles in a diverse array of biological processes and human physiopathology. Despite this clear physiological importance and medical relevance, the molecular mechanism of Amt/Mep/Rh proteins has remained elusive. Crystal structures of bacterial Amt/Rh proteins suggest electroneutral transport, whilst functional evidence supports an electrogenic mechanism. Here, focusing on bacterial members of the family, we summarize the structure of Amt/Rh proteins and what three decades of research tells us concerning the general mechanisms of ammonium translocation, in particular the possibility that the transport mechanism might differ in various members of the Amt/Mep/Rh superfamily.
Collapse
Affiliation(s)
- Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| |
Collapse
|
9
|
Chen J, Yue K, Shen L, Zheng C, Zhu Y, Han K, Kai L. Aquaporins and CO 2 diffusion across biological membrane. Front Physiol 2023; 14:1205290. [PMID: 37383148 PMCID: PMC10293838 DOI: 10.3389/fphys.2023.1205290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Despite the physiological significance of effective CO2 diffusion across biological membranes, the underlying mechanism behind this process is not yet resolved. Particularly debatable is the existence of CO2-permeable aquaporins. The lipophilic characteristic of CO2 should, according to Overton's rule, result in a rapid flux across lipid bilayers. However, experimental evidence of limited membrane permeability poses a challenge to this idea of free diffusion. In this review, we summarized recent progress with regard to CO2 diffusion, and discussed the physiological effects of altered aquaporin expression, the molecular mechanisms of CO2 transport via aquaporins, and the function of sterols and other membrane proteins in CO2 permeability. In addition, we highlight the existing limits in measuring CO2 permeability and end up with perspectives on resolving such argument either by determining the atomic resolution structure of CO2 permeable aquaporins or by developing new methods for measuring permeability.
Collapse
Affiliation(s)
- Junyu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Chuncui Zheng
- Hangzhou Institute of Test and Calibration for Quality and Technology Supervision, Hangzhou, China
| | - Yiyong Zhu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Kun Han
- Jiangsu Keybio Co., Ltd, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
10
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
OsαCA1 Affects Photosynthesis, Yield Potential, and Water Use Efficiency in Rice. Int J Mol Sci 2023; 24:ijms24065560. [PMID: 36982632 PMCID: PMC10056782 DOI: 10.3390/ijms24065560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Plant growth and crop yield are essentially determined by photosynthesis when considering carbon dioxide (CO2) availability. CO2 diffusion inside a leaf is one of the factors that dictate the CO2 concentrations in chloroplasts. Carbonic anhydrases (CAs) are zinc-containing enzymes that interconvert CO2 and bicarbonate ions (HCO3−), which, consequently, affect CO2 diffusion and thus play a fundamental role in all photosynthetic organisms. Recently, the great progress in the research in this field has immensely contributed to our understanding of the function of the β-type CAs; however, the analysis of α-type CAs in plants is still in its infancy. In this study, we identified and characterized the OsαCA1 gene in rice via the analysis of OsαCAs expression in flag leaves and the subcellular localization of its encoding protein. OsαCA1 encodes an α-type CA, whose protein is located in chloroplasts with a high abundance in photosynthetic tissues, including flag leaves, mature leaves, and panicles. OsαCA1 deficiency caused a significant reduction in assimilation rate, biomass accumulation, and grain yield. The growth and photosynthetic defects of the OsαCA1 mutant were attributable to the restricted CO2 supply at the chloroplast carboxylation sites, which could be partially rescued by the application of an elevated concentration of CO2 but not that of HCO3−. Furthermore, we have provided evidence that OsαCA1 positively regulates water use efficiency (WUE) in rice. In summary, our results reveal that the function of OsαCA1 is integral to rice photosynthesis and yield potential, underscoring the importance of α-type CAs in determining plant physiology and crop yield and providing genetic resources and new ideas for breeding high-yielding rice varieties.
Collapse
|
12
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Bocchinfuso A, Calvetti D, Somersalo E. Modeling surface pH measurements of oocytes. Biomed Phys Eng Express 2022; 8. [PMID: 35594846 DOI: 10.1088/2057-1976/ac71d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
The transport of gases across cell membranes plays a key role in many different cell functions, from cell respiration to pH control. Mathematical models play a central role in understanding the factors affecting gas transport through membranes, and are the tool needed for testing the novel hypothesis of the preferential crossing through specific gas channels. Since the surface pH of cell membrane is regulated by the transport of gases such as CO2and NH3, inferring the membrane properties can be done indirectly from pH measurements. Numerical simulations based on recent models of the surface pH support the hypothesis that the presence of a measurement device, a liquid-membrane pH sensitive electrode on the cell surface may disturb locally the pH, leading to a systematic bias in the measured values. To take this phenomenon into account, it is necessary to equip the model with a description of the micro-environment created by the pH electrode. In this work we propose a novel, computationally lightweight numerical algorithm to simulate the surface pH data. The effect of different parameters of the model on the output are investigated through a series of numerical experiments with a physical interpretation.
Collapse
Affiliation(s)
- A Bocchinfuso
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - D Calvetti
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - E Somersalo
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
14
|
Gropp J, Jin Q, Halevy I. Controls on the isotopic composition of microbial methane. SCIENCE ADVANCES 2022; 8:eabm5713. [PMID: 35385305 PMCID: PMC8985922 DOI: 10.1126/sciadv.abm5713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Microbial methane production (methanogenesis) is responsible for more than half of the annual emissions of this major greenhouse gas to the atmosphere. Although the stable isotopic composition of methane is often used to characterize its sources and sinks, strictly empirical descriptions of the isotopic signature of methanogenesis currently limit these attempts. We developed a metabolic-isotopic model of methanogenesis by carbon dioxide reduction, which predicts carbon and hydrogen isotopic fractionations, and clumped isotopologue distributions, as functions of the cell's environment. We mechanistically explain multiple isotopic patterns in laboratory and natural settings and show that these patterns constrain the in situ energetics of methanogenesis. Combining our model with data from environments in which methanogenic activity is energy-limited, we provide predictions for the biomass-specific methanogenesis rates and the associated isotopic effects.
Collapse
Affiliation(s)
- Jonathan Gropp
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, OR, USA
| | - Itay Halevy
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Pohl P. Biophysical Reviews' "Meet the Councilor Series"-a profile of Peter Pohl. Biophys Rev 2021; 13:839-844. [PMID: 35035592 PMCID: PMC8724173 DOI: 10.1007/s12551-021-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/30/2022] Open
Abstract
It is my pleasure to write a few words to introduce myself to the readers of Biophysical Reviews as part of the "Meet the Councilor Series." Currently, I am serving the second period as IUPAB councilor after having been elected first in 2017. Initially, I studied Biophysics in Moscow (Russia) and later Medicine in Halle (Germany). My scientific carrier took me from the Medical School of the Martin Luther University of Halle-Wittenberg, via the Leibniz Institute for Molecular Pharmacology (Berlin) and the Institute for Biology at the Humboldt University (Berlin) to the Physics Department of the Johannes Kepler University in Linz (Austria). My key research interests lie in the molecular mechanisms of transport phenomena occurring at the lipid membrane, including (i) spontaneous and facilitated transport of water and other small molecules across membranes in reconstituted systems, (ii) proton migration along the membrane surface, (iii) protein translocation, and (iv) bilayer mechanics. Training of undergraduate, graduate, and postdoctoral researchers from diverse academic disciplines has been-and shall remain-a consistent part of my work.
Collapse
Affiliation(s)
- Peter Pohl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| |
Collapse
|
16
|
Huffine CA, Wheeler LC, Wing B, Cameron JC. Computational modeling and evolutionary implications of biochemical reactions in bacterial microcompartments. Curr Opin Microbiol 2021; 65:15-23. [PMID: 34717259 DOI: 10.1016/j.mib.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Bacterial microcompartments (BMCs) are protein-encapsulated compartments found across at least 23 bacterial phyla. BMCs contain a variety of metabolic processes that share the commonality of toxic or volatile intermediates, oxygen-sensitive enzymes and cofactors, or increased substrate concentration for magnified reaction rates. These compartmentalized reactions have been computationally modeled to explore the encapsulated dynamics, ask evolutionary-based questions, and develop a more systematic understanding required for the engineering of novel BMCs. Many crucial aspects of these systems remain unknown or unmeasured, such as substrate permeabilities across the protein shell, feasibility of pH gradients, and transport rates of associated substrates into the cell. This review explores existing BMC models, dominated in the literature by cyanobacterial carboxysomes, and highlights potentially important areas for exploration.
Collapse
Affiliation(s)
- Clair A Huffine
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA; Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Boswell Wing
- Department of Geological Sciences, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
17
|
Rudenko NN, Ivanov BN. Unsolved Problems of Carbonic Anhydrases Functioning in Photosynthetic Cells of Higher C3 Plants. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1243-1255. [PMID: 34903154 DOI: 10.1134/s0006297921100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
18
|
Fedorchuk TP, Kireeva IA, Opanasenko VK, Terentyev VV, Rudenko NN, Borisova-Mubarakshina MM, Ivanov BN. Alpha Carbonic Anhydrase 5 Mediates Stimulation of ATP Synthesis by Bicarbonate in Isolated Arabidopsis Thylakoids. FRONTIERS IN PLANT SCIENCE 2021; 12:662082. [PMID: 34512677 PMCID: PMC8427869 DOI: 10.3389/fpls.2021.662082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.
Collapse
Affiliation(s)
- Tatiana P. Fedorchuk
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Inga A. Kireeva
- Centre for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, ON, Canada
| | - Vera K. Opanasenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Vasily V. Terentyev
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Boris N. Ivanov
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| |
Collapse
|
19
|
Michenkova M, Taki S, Blosser MC, Hwang HJ, Kowatz T, Moss FJ, Occhipinti R, Qin X, Sen S, Shinn E, Wang D, Zeise BS, Zhao P, Malmstadt N, Vahedi-Faridi A, Tajkhorshid E, Boron WF. Carbon dioxide transport across membranes. Interface Focus 2021; 11:20200090. [PMID: 33633837 PMCID: PMC7898146 DOI: 10.1098/rsfs.2020.0090] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Carbon dioxide (CO2) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO2 impermeable led to the discovery of a gas molecule moving through a channel; namely, CO2 diffusion through aquaporin-1 (AQP1). Later work demonstrated CO2 diffusion through rhesus (Rh) proteins and NH3 diffusion through both AQPs and Rh proteins. The tetrameric AQPs exhibit differential selectivity for CO2 versus NH3 versus H2O, reflecting physico-chemical differences among the small molecules as well as among the hydrophilic monomeric pores and hydrophobic central pores of various AQPs. Preliminary work suggests that NH3 moves through the monomeric pores of AQP1, whereas CO2 moves through both monomeric and central pores. Initial work on AQP5 indicates that it is possible to create a metal-binding site on the central pore's extracellular face, thereby blocking CO2 movement. The trimeric Rh proteins have monomers with hydrophilic pores surrounding a hydrophobic central pore. Preliminary work on the bacterial Rh homologue AmtB suggests that gas can diffuse through the central pore and three sets of interfacial clefts between monomers. Finally, initial work indicates that CO2 diffuses through the electrogenic Na/HCO3 cotransporter NBCe1. At least in some cells, CO2-permeable proteins could provide important pathways for transmembrane CO2 movements. Such pathways could be amenable to cellular regulation and could become valuable drug targets.
Collapse
Affiliation(s)
- Marie Michenkova
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sara Taki
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew C. Blosser
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Hyea J. Hwang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thomas Kowatz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Fraser. J. Moss
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xue Qin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Soumyo Sen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Eric Shinn
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Zeise
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pan Zhao
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
20
|
Blanco-Ameijeiras S, Stoll HM, Zhang H, Hopkinson BM. Influence of Temperature and CO 2 On Plasma-membrane Permeability to CO 2 and HCO 3- in the Marine Haptophytes Emiliania huxleyi and Calcidiscus leptoporus (Prymnesiophyceae). JOURNAL OF PHYCOLOGY 2020; 56:1283-1294. [PMID: 32418211 DOI: 10.1111/jpy.13017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Membrane permeabilities to CO2 and HCO3- constrain the function of CO2 concentrating mechanisms that algae use to supply inorganic carbon for photosynthesis. In diatoms and green algae, plasma membranes are moderately to highly permeable to CO2 but effectively impermeable to HCO3- . Here, CO2 and HCO3- membrane permeabilities were measured using an 18 O-exchange technique on two species of haptophyte algae, Emiliania huxleyi and Calcidiscus leptoporus, which showed that the plasma membranes of these species are also highly permeable to CO2 (0.006-0.02 cm · s-1 ) but minimally permeable to HCO3- . Increased temperature and CO2 generally increased CO2 membrane permeabilities in both species, possibly due to changes in lipid composition or CO2 channel proteins. Changes in CO2 membrane permeabilities showed no association with the density of calcium carbonate coccoliths surrounding the cell, which could potentially impede passage of compounds. Haptophyte plasma-membrane permeabilities to CO2 were somewhat lower than those of diatoms but generally higher than membrane permeabilities of green algae. One caveat of these measurements is that the model used to interpret 18 O-exchange data assumes that carbonic anhydrase, which catalyzes 18 O-exchange, is homogeneously distributed in the cell. The implications of this assumption were tested using a two-compartment model with an inhomogeneous distribution of carbonic anhydrase to simulate 18 O-exchange data and then inferring plasma-membrane CO2 permeabilities from the simulated data. This analysis showed that the inferred plasma-membrane CO2 permeabilities are minimal estimates but should be quite accurate under most conditions.
Collapse
Affiliation(s)
| | - Heather M Stoll
- Department of Earth Sciences, ETH Zurich, Sonnegstrasse 5, Zurich, 8092, Switzerland
| | - Hongrui Zhang
- Department of Earth Sciences, ETH Zurich, Sonnegstrasse 5, Zurich, 8092, Switzerland
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
21
|
The control of acidity in tumor cells: a biophysical model. Sci Rep 2020; 10:13613. [PMID: 32788634 PMCID: PMC7423962 DOI: 10.1038/s41598-020-70396-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023] Open
Abstract
Acidosis of the tumor microenvironment leads to cancer invasion, progression and resistance to therapies. We present a biophysical model that describes how tumor cells regulate intracellular and extracellular acidity while they grow in a microenvironment characterized by increasing acidity and hypoxia. The model takes into account the dynamic interplay between glucose and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_2$$\end{document}O2 consumption with lactate and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_2$$\end{document}CO2 production and connects these processes to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}^+$$\end{document}H+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HCO}_3^-$$\end{document}HCO3- fluxes inside and outside cells. We have validated the model with independent experimental data and used it to investigate how and to which extent tumor cells can survive in adverse micro-environments characterized by acidity and hypoxia. The simulations show a dominance of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}^+$$\end{document}H+ exchanges in well-oxygenated regions, and of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {HCO}_3^-$$\end{document}HCO3- exchanges in the inner hypoxic regions where tumor cells are known to acquire malignant phenotypes. The model also includes the activity of the enzyme Carbonic Anhydrase 9 (CA9), a known marker of tumor aggressiveness, and the simulations demonstrate that CA9 acts as a nonlinear \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {pH}_i$$\end{document}pHi equalizer at any \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {O}_2$$\end{document}O2 level in cells that grow in acidic extracellular environments.
Collapse
|
22
|
Liu S, Fukumoto T, Gena P, Feng P, Sun Q, Li Q, Matsumoto T, Kaneko T, Zhang H, Zhang Y, Zhong S, Zeng W, Katsuhara M, Kitagawa Y, Wang A, Calamita G, Ding X. Ectopic expression of a rice plasma membrane intrinsic protein (OsPIP1;3) promotes plant growth and water uptake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:779-796. [PMID: 31872463 DOI: 10.1111/tpj.14662] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought-resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single-nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP-OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)-like neighborhood, whereas co-expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His-OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped-flow light scattering. Intriguingly, by patch-clamp technique, we detected significant NO3- conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr ) and water-use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild-type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs.
Collapse
Affiliation(s)
- Siyu Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Tatsuya Fukumoto
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Peng Feng
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Tadashi Matsumoto
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Toshiyuki Kaneko
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hang Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Shihua Zhong
- Department of Biochemistry, the University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weizhong Zeng
- Department of Biophysics, the University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maki Katsuhara
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoshichika Kitagawa
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
23
|
Verschuren EHJ, Castenmiller C, Peters DJM, Arjona FJ, Bindels RJM, Hoenderop JGJ. Sensing of tubular flow and renal electrolyte transport. Nat Rev Nephrol 2020; 16:337-351. [DOI: 10.1038/s41581-020-0259-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
|
24
|
Balnis J, Korponay TC, Jaitovich A. AMP-Activated Protein Kinase (AMPK) at the Crossroads Between CO 2 Retention and Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease (COPD). Int J Mol Sci 2020; 21:E955. [PMID: 32023946 PMCID: PMC7037951 DOI: 10.3390/ijms21030955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Tanner C. Korponay
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY 12208, USA; (J.B.); (T.C.K.)
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
25
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
26
|
Alishahi M, Kamali R. A novel molecular dynamics study of CO 2 permeation through aquaporin-5. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:151. [PMID: 31773315 DOI: 10.1140/epje/i2019-11912-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Aquaporins (AQPs) are protein channels which facilitate rapid water permeation across cell membrane. The AQPs are very vital for biological organs, as their malfunction causes severe diseases in human body. A particular family of AQPs, that is AQP5, has a significant role in lung fluid transport due to submucosal glands structure. However, it has not been yet well understood whether these protein channels can conduct gas molecules. Here, Molecular Dynamics (MD) simulations are used to investigate the CO2 permeability and diffusion in AQP5 during a 40-nanosecond period. For the first time, equilibrium and Steered MD (SMD) are used to simulate self and force-induced diffusion of CO2 molecules across AQP5 and POPE lipid bilayer. According to PMFs profile associated to CO2 permeation, the hydrophobic central pore provides a more suitable pathway for gas molecules compared to other AQP5 channels. Although CO2 molecules can also permeate across AQP5 water channels, the rate of CO2 permeation through four channels of the AQP5 monomers is much lower than the central pore. The rate of CO2 permeation through four AQP5 water channels is even lower than CO2 diffusion through POPE lipid membrane. The results reported in this investigation demonstrate that MD simulations of human AQP5 provide valuable insights into the gas permeation mechanism for both the equilibrium self-diffusion, and quasi-equilibrium condition.
Collapse
Affiliation(s)
- Marzieh Alishahi
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Reza Kamali
- Department of Mechanical Engineering, Shiraz University, Shiraz, Iran.
| |
Collapse
|
27
|
Jurić I, Hibberd JM, Blatt M, Burroughs NJ. Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump. PLoS Comput Biol 2019; 15:e1007373. [PMID: 31568503 PMCID: PMC6786660 DOI: 10.1371/journal.pcbi.1007373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/10/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022] Open
Abstract
Achieving global food security for the estimated 9 billion people by 2050 is a major scientific challenge. Crop productivity is fundamentally restricted by the rate of fixation of atmospheric carbon. The dedicated enzyme, RubisCO, has a low turnover and poor specificity for CO2. This limitation of C3 photosynthesis (the basic carbon-assimilation pathway present in all plants) is alleviated in some lineages by use of carbon-concentrating-mechanisms, such as the C4 cycle-a biochemical pump that concentrates CO2 near RubisCO increasing assimilation efficacy. Most crops use only C3 photosynthesis, so one promising research strategy to boost their productivity focuses on introducing a C4 cycle. The simplest proposal is to use the cycle to concentrate CO2 inside individual chloroplasts. The photosynthetic efficiency would then depend on the leakage of CO2 out of a chloroplast. We examine this proposal with a 3D spatial model of carbon and oxygen diffusion and C4 photosynthetic biochemistry inside a typical C3-plant mesophyll cell geometry. We find that the cost-efficiency of C4 photosynthesis depends on the gas permeability of the chloroplast envelope, the C4 pathway having higher quantum efficiency than C3 for permeabilities below 300 μm/s. However, at higher permeabilities the C4 pathway still provides a substantial boost to carbon assimilation with only a moderate decrease in efficiency. The gains would be capped by the ability of chloroplasts to harvest light, but even under realistic light regimes a 100% boost to carbon assimilation is possible. This could be achieved in conjunction with lower investment in chloroplasts if their cell surface coverage is also reduced. Incorporation of this C4 cycle into C3 crops could thus promote higher growth rates and better drought resistance in dry, high-sunlight climates.
Collapse
Affiliation(s)
- Ivan Jurić
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Julian M. Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Mike Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, United Kingdom
| | - Nigel J. Burroughs
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
28
|
Shrestha A, Song X, Barbour MM. The temperature response of mesophyll conductance, and its component conductances, varies between species and genotypes. PHOTOSYNTHESIS RESEARCH 2019; 141:65-82. [PMID: 30771063 DOI: 10.1007/s11120-019-00622-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/25/2019] [Indexed: 05/08/2023]
Abstract
The temperature response of mesophyll conductance to CO2 diffusion (gm) has been shown to vary considerably between species but remains poorly understood. Here, we tested the hypothesis that increases in chloroplast surface area with increasing temperature, due to the formation of chloroplast protrusions, caused observed positive responses of gm to temperature. We found no evidence of chloroplast protrusions. Using simultaneous measurements of carbon and oxygen isotope discrimination during photosynthesis to separate total gm (gm13) into cell wall and plasma membrane conductance (gm18) and chloroplast membrane conductance (gcm) components, we explored the temperature response in genotypes of soybean and barley, and sunflower plants grown at differing CO2 concentrations. Differences in the temperature sensitivity of gm18 were found between genotypes and between plants grown at differing CO2 concentration but did not relate to measured anatomical features such as chloroplast surface area or cell wall thickness. The closest fit of modelled gm13 to estimated values was found when cell wall thickness was allowed to decline at higher temperatures and transpiration rates, but it remains to be tested if this decline is realistic. The temperature response of gcm (calculated from the difference between 1/gm13 and 1/gm18) varied between barley genotypes, and was best fitted by an optimal response in sunflower. Taken together, these results indicate that gm is a highly complex trait with unpredictable sensitivity to temperature that varies between species, between genotypes within a single species, with growth environment, between replicate leaves, and even with age for an individual leaf.
Collapse
Affiliation(s)
- Arjina Shrestha
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
| | - Xin Song
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia
- School of Life Sciences and Oceanography, Shenzhen University, 3688 Nanhai Ave, Shenzhen, Guangdong, 518060, China
| | - Margaret M Barbour
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW, 2570, Australia.
| |
Collapse
|
29
|
Amhamed A, Atilhan M, Berdiyorov G. Permeabilities of CO 2, H 2S and CH 4 through Choline-Based Ionic Liquids: Atomistic-Scale Simulations. Molecules 2019; 24:molecules24102014. [PMID: 31137761 PMCID: PMC6572545 DOI: 10.3390/molecules24102014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
Molecular dynamics simulations are used to study the transport of CO2, H2S and CH4 molecules across environmentally friendly choline-benzoate and choline-lactate ionic liquids (ILs). The permeability coefficients of the considered molecules are calculated using the free energy and diffusion rate profiles. Both systems show the largest resistance to CH4, whereas more than 5 orders of magnitude larger permeability coefficients are obtained for the other two gas molecules. The CO2/CH4 and H2S/CH4 selectivity was estimated to be more than 104 and 105, respectively. These results indicate the great potential of the considered ILs for greenhouse gas control.
Collapse
Affiliation(s)
- Abdukarem Amhamed
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar.
| | - Mert Atilhan
- Department of Chemical Engineering, Texas A&M University at Qatar, Doha 23874, Qatar.
- Gas and Fuels Research Center, Texas A&M University, College Station, TX 77843, USA.
| | - Golibjon Berdiyorov
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 34110, Qatar.
| |
Collapse
|
30
|
Simonet Roda M, Ziegler A, Griesshaber E, Yin X, Rupp U, Greiner M, Henkel D, Häussermann V, Eisenhauer A, Laudien J, Schmahl WW. Terebratulide brachiopod shell biomineralization by mantle epithelial cells. J Struct Biol 2019; 207:136-157. [PMID: 31071428 DOI: 10.1016/j.jsb.2019.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 11/16/2022]
Abstract
To understand mineral transport pathways for shell secretion and to assess differences in cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-substituted samples from the commissure, central shell portions and from puncta. Imaging results are complemented with morphometric evaluations of volume fractions of membrane-bound organelles. At the commissure the OME consists of several layers of cells. These cells form oblique extensions that, in cross-section, are round below the primary layer and flat underneath fibres. At the commissure the OME is multi-cell layered, in central shell regions it is single-cell layered. When actively secreting shell carbonate extrapallial space is lacking, because OME cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum and Golgi apparatus there is no difference. FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and developing fibres. In addition, there is no indication for an amorphous precursor within fibres when these are in active secretion mode. Accordingly, our results do not support transport of minerals by vesicles from cells to sites of mineralization, rather by transfer of carbonate ions via transport mechanisms associated with OME cell membranes.
Collapse
Affiliation(s)
- M Simonet Roda
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany.
| | - A Ziegler
- Central Facility for Electron Microscopy, University of Ulm, 89069 Ulm, Germany
| | - E Griesshaber
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| | - X Yin
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| | - U Rupp
- Central Facility for Electron Microscopy, University of Ulm, 89069 Ulm, Germany
| | - M Greiner
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| | - D Henkel
- Marine Biogeochemistry/Marine Systems, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
| | - V Häussermann
- Pontificia Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del Mar, Avda. Brasil, 2950 Valparaíso, Chile; Huinay Scientific Field Station, Puerto Montt, Chile
| | - A Eisenhauer
- Marine Biogeochemistry/Marine Systems, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany
| | - J Laudien
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27568 Bremerhaven, Germany
| | - W W Schmahl
- Department of Earth and Environmental Sciences, LMU, 80333 München, Germany
| |
Collapse
|
31
|
Tse CH, Comer J, Sang Chu SK, Wang Y, Chipot C. Affordable Membrane Permeability Calculations: Permeation of Short-Chain Alcohols through Pure-Lipid Bilayers and a Mammalian Cell Membrane. J Chem Theory Comput 2019; 15:2913-2924. [DOI: 10.1021/acs.jctc.9b00022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chi Hang Tse
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jeffrey Comer
- Institute of Computational Comparative Medicine and Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Simon Kit Sang Chu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana−Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Ignatova L, Rudenko N, Zhurikova E, Borisova-Mubarakshina M, Ivanov B. Carbonic Anhydrases in Photosynthesizing Cells of C3 Higher Plants. Metabolites 2019; 9:E73. [PMID: 30995746 PMCID: PMC6523093 DOI: 10.3390/metabo9040073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
The review presents data on the location, nature, properties, number, and expression of carbonic anhydrase genes in the photosynthesizing cells of C3 plants. The available data about the presence of carbonic anhydrases in plasma membrane, cytoplasm, mitochondria, chloroplast stroma and thylakoids are scrutinized. Special attention was paid to the presence of carbonic anhydrase activities in the different parts of thylakoids, and on collation of sources of these activities with enzymes encoded by the established genes of carbonic anhydrases. The data are presented to show that the consistent incorporation of carbonic anhydrases belonging to different families of these enzymes forms a coherent system of CO2 molecules transport from air to chloroplasts in photosynthesizing cells, where they are included in organic molecules in the carboxylation reaction. It is discussed that the manifestation of the activity of a certain carbonic anhydrase depends on environmental conditions and the stage of ontogenesis.
Collapse
Affiliation(s)
- Lyudmila Ignatova
- Institute of Basic Biological Problems, Federal Research Center ⁻ Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Natalia Rudenko
- Institute of Basic Biological Problems, Federal Research Center ⁻ Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Elena Zhurikova
- Institute of Basic Biological Problems, Federal Research Center ⁻ Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Maria Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center ⁻ Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Boris Ivanov
- Institute of Basic Biological Problems, Federal Research Center ⁻ Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
33
|
Abstract
Spontaneous solute and solvent permeation through membranes is of vital importance to human life, be it gas exchange in red blood cells, metabolite excretion, drug/toxin uptake, or water homeostasis. Knowledge of the underlying molecular mechanisms is the sine qua non of every functional assignment to membrane transporters. The basis of our current solubility diffusion model was laid by Meyer and Overton. It correlates the solubility of a substance in an organic phase with its membrane permeability. Since then, a wide range of studies challenging this rule have appeared. Commonly, the discrepancies have their origin in ill-used measurement approaches, as we demonstrate on the example of membrane CO2 transport. On the basis of the insight that scanning electrochemical microscopy offered into solute concentration distributions in immediate membrane vicinity of planar membranes, we analyzed the interplay between chemical reactions and diffusion for solvent transport, weak acid permeation, and enzymatic reactions adjacent to membranes. We conclude that buffer reactions must also be considered in spectroscopic investigations of weak acid transport in vesicular suspensions. The evaluation of energetic contributions to membrane translocation of charged species demonstrates the compatibility of the resulting membrane current with the solubility diffusion model. A local partition coefficient that depends on membrane penetration depth governs spontaneous membrane translocation of both charged and uncharged molecules. It is determined not only by the solubility in an organic phase but also by other factors like cholesterol concentration and intrinsic electric membrane potentials.
Collapse
Affiliation(s)
- Christof Hannesschlaeger
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Andreas Horner
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Peter Pohl
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| |
Collapse
|
34
|
Akaishi T, Onishi E, Abe M, Toyama H, Ishizawa K, Kumagai M, Kubo R, Nakashima I, Aoki M, Yamauchi M, Ishii T. The human central nervous system discharges carbon dioxide and lactic acid into the cerebrospinal fluid. Fluids Barriers CNS 2019; 16:8. [PMID: 30922337 PMCID: PMC6440017 DOI: 10.1186/s12987-019-0128-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The central nervous system was previously thought to draw oxygen and nutrition from the arteries and discharge carbon dioxide and other metabolic wastes into the venous system. At present, the functional role of cerebrospinal fluid in brain metabolism is not fully known. METHODS In this prospective observational study, we performed gas analysis on venous blood and cerebrospinal fluid simultaneously acquired from 16 consecutive preoperative patients without any known neurological disorders. RESULTS The carbon dioxide partial pressure (pCO2) (p < 0.0001) and lactic acid level (p < 0.001) in the cerebrospinal fluid were significantly higher than those in the peripheral venous blood, suggesting that a considerable proportion of metabolic carbon dioxide and lactic acid is discharged from the central nervous system into the cerebrospinal fluid. The oxygen partial pressure (pO2) was much higher in the cerebrospinal fluid than in the venous blood, corroborating the conventional theory of cerebrospinal fluid circulatory dynamics. The pCO2 of the cerebrospinal fluid showed a strong negative correlation with age (R = - 0.65, p = 0.0065), but the other studied variables did not show significant correlation with age. CONCLUSION Carbon dioxide and lactic acid are discharged into the circulating cerebrospinal fluid, as well as into the venules. The level of carbon dioxide in the cerebrospinal fluid significantly decreased with age.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan. .,Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Eiko Onishi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Toyama
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kota Ishizawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Michio Kumagai
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryosuke Kubo
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Seiryo-machi 1-1, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
35
|
Voinova M, Repin N, Sokol E, Tkachuk B, Gorelik L. Physical Processes in Polymeric Filters Used for Dialysis. Polymers (Basel) 2019; 11:E389. [PMID: 30960373 PMCID: PMC6473866 DOI: 10.3390/polym11030389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 01/03/2023] Open
Abstract
The key physical processes in polymeric filters used for the blood purification include transport across the capillary wall and the interaction of blood cells with the polymer membrane surface. Theoretical modeling of membrane transport is an important tool which provides researchers with a quantification of the complex phenomena involved in dialysis. In the paper, we present a dense review of the most successful theoretical approaches to the description of transport across the polymeric membrane wall as well as the cell⁻polymer surface interaction, and refer to the corresponding experimental methods while studying these phenomena in dialyzing filters.
Collapse
Affiliation(s)
- Marina Voinova
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
- Department of Industrial and Biomedical Electronics, Kharkiv Polytechnical Institute, National Technical University, 61002 Kharkov, Ukraine.
| | - Nikolay Repin
- Department of Cryomorphology, Institute for Problems of Cryobiology and Cryomedicine, 61015 Kharkov, Ukraine.
| | - Evgen Sokol
- Department of Industrial and Biomedical Electronics, Kharkiv Polytechnical Institute, National Technical University, 61002 Kharkov, Ukraine.
| | - Bogdan Tkachuk
- Department of Hemodialysis, Municipal Noncommercial Enterprise of Kharkiv Regional Council "Regional Medical Clinical Center of Urology and Nephrology n.a. V.I. Shapoval", 61037 Kharkov, Ukraine.
| | - Leonid Gorelik
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| |
Collapse
|
36
|
The Effect of Buffers on Weak Acid Uptake by Vesicles. Biomolecules 2019; 9:biom9020063. [PMID: 30781892 PMCID: PMC6406578 DOI: 10.3390/biom9020063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
The assessment of weak acid membrane permeability (Pm) frequently involves large unilamellar vesicles. It relies on measurements of the intravesicular pH drop, ΔpHin, in response to a sudden augmentation of external acid concentration. However, ΔpHin may be primarily governed by non-instantaneous protonation and deprotonation reactions of (i) the acid itself, (ii) the buffer molecules, and (iii) the fluorescent pH reporter dye. Moreover, buffer concentration and acid gradient also serve as determinants of ΔpHin, as we show here. The uniexponential time constant (τ) of ΔpHin(t) is an invalid measure of Pm as Arrhenius plots of Pm and τ reveal different activation energies for acid influx. We calculate Pm by fitting a mathematical model to experimental stopped-flow traces. The model takes into account not only the time course of total internal buffer capacity but also (i) water self-dissociation, (ii) volume changes due to acid induced osmotic water flow, and (iii) the spontaneous membrane proton leak. It allows extracting a Pm of 30.8 ± 3.5 μm/s for formic acid for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles.
Collapse
|
37
|
Arias-Hidalgo M, Al-Samir S, Gros G, Endeward V. Cholesterol is the main regulator of the carbon dioxide permeability of biological membranes. Am J Physiol Cell Physiol 2018; 315:C137-C140. [PMID: 29874108 DOI: 10.1152/ajpcell.00139.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present here a compilation of membrane CO2 permeabilities (Pco2) for various cell types from the literature. Pco2 values vary over more than two orders of magnitude. Relating Pco2 to the cholesterol content of the membranes shows that, with the exception of red blood cells, it is essentially membrane cholesterol that determines the value of Pco2. Thus, the observed strong modulation of Pco2 in the majority of membranes is caused by cholesterol rather than gas channels.
Collapse
Affiliation(s)
- Mariela Arias-Hidalgo
- Institut für Molekular und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Samer Al-Samir
- Institut für Molekular und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Gerolf Gros
- Institut für Molekular und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule Hannover, Hannover , Germany
| | - Volker Endeward
- Institut für Molekular und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule Hannover, Hannover , Germany
| |
Collapse
|
38
|
Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci 2018; 19:E1352. [PMID: 29751549 PMCID: PMC5983714 DOI: 10.3390/ijms19051352] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/09/2023] Open
Abstract
Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs, HCO₃− may further contribute to carbon concentration mechanisms (CCM). This is especially relevant in the CO₂-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of terrestrial plants can also benefit from CCM as evidenced by the evolution of C₄ and Crassulacean Acid Metabolism (CAM). The presence of HCO₃− in all organisms leads to more questions regarding the mechanisms of uptake and membrane transport in these different biological systems. This review aims to provide an overview of the transport and metabolic processes related to HCO₃− in microalgae, macroalgae, seagrasses, and terrestrial plants. HCO₃− transport in cyanobacteria and human cells is much better documented and is included for comparison. We further comment on the metabolic roles of HCO₃− in plants by focusing on the diversity and functions of carbonic anhydrases and PEP carboxylases as well as on the signaling role of CO₂/HCO₃− in stomatal guard cells. Plant responses to excess soil HCO₃− is briefly addressed. In conclusion, there are still considerable gaps in our knowledge of HCO₃− uptake and transport in plants that hamper the development of breeding strategies for both more efficient CCM and better HCO₃− tolerance in crop plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - José Antonio Fernández
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Lourdes Rubio
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Laura Pérez
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Joana Terés
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
39
|
Aspatwar A, Haapanen S, Parkkila S. An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii. Metabolites 2018. [PMID: 29534024 PMCID: PMC5876011 DOI: 10.3390/metabo8010022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. CAs catalyze the basic reaction of the reversible hydration of CO2 to HCO3− and H+ in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families. Of these 15 CAs, three belong to the α-CA gene family; nine belong to the β-CA gene family; and three belong to the γ-CA gene family. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in the metabolic and biochemical roles they perform in this unicellular alga. In the present review, we update the information on the molecular biology of all 15 CAs and their metabolic and biochemical roles in Chlamydomonas reinhardtii. We also present a hypothetical model showing the known functions of CAs and predicting the functions of CAs for which precise metabolic roles are yet to be discovered.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Susanna Haapanen
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
| | - Seppo Parkkila
- Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland.
- Fimlab, Ltd., and Tampere University Hospital, FI-33520 Tampere, Finland.
| |
Collapse
|
40
|
Rudenko NN, Fedorchuk TP, Vetoshkina DV, Zhurikova EM, Ignatova LK, Ivanov BN. Influence of knockout of At4g20990 gene encoding α-CA4 on photosystem II light-harvesting antenna in plants grown under different light intensities and day lengths. PROTOPLASMA 2018; 255:69-78. [PMID: 28643084 DOI: 10.1007/s00709-017-1133-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/05/2017] [Indexed: 05/24/2023]
Abstract
Effect of knockout of the At4g20990 gene encoding α-carbonic anhydrase 4 (α-CA4) in Arabidopsis thaliana in plants grown in low light (LL, 80 μmol photons m-2 s-1) or in high light (HL, 400 μmol photons m-2 s-1) under long (LD, 16 h) or short (SD, 8 h) day length was studied. In α-CA4 knockout plants, under all studied conditions, the non-photochemical quenching was lower; the decrease was more pronounced under HL. This pointed to α-CA4 implication in the processes leading to energy dissipation in PSII antenna. In this context the content of major antenna proteins Lhcb1 and Lhcb2 was lower in α-CA4 knockouts than in wild-type (WT) plants under all growth conditions. The expression level of lhcb2 gene was also lower in mutants grown under LD, LL and HL in comparison to WT. At the same time, this level was higher in mutants grown under SD, LL and it was the same under SD, HL. Overall, the data showed that the knockout of the At4g20990 gene affected both the contents of proteins of PSII light-harvesting complex and the expression level of genes encoding these proteins, with peculiarities dependent on day length. These data together with the fact of a decrease of non-photochemical quenching of leaf chlorophyll a fluorescence in α-CA4-mut as compared with that in WT plants implied that α-CA4 participates in acclimation of photosynthetic apparatus to light intensity, possibly playing important role in the photoprotection. The role of this CA can be especially important in plants growing under high illumination conditions.
Collapse
Affiliation(s)
- Natalia N Rudenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| | - Tatyana P Fedorchuk
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Elena M Zhurikova
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Lyudmila K Ignatova
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
41
|
CO₂ Permeability of Biological Membranes and Role of CO₂ Channels. MEMBRANES 2017; 7:membranes7040061. [PMID: 29064458 PMCID: PMC5746820 DOI: 10.3390/membranes7040061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023]
Abstract
We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO₂ permeabilities in various tissues; (b) the physiological significance of the value of the CO₂ permeability;
Collapse
|
42
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
43
|
Zhao M, Tan HT, Scharwies J, Levin K, Evans JR, Tyerman SD. Association between water and carbon dioxide transport in leaf plasma membranes: assessing the role of aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:789-801. [PMID: 27620674 DOI: 10.1111/pce.12830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 05/24/2023]
Abstract
The role of some aquaporins as CO2 permeable channels has been controversial. Low CO2 permeability of plant membranes has been criticized because of unstirred layers and other limitations. Here we measured both water and CO2 permeability (Pos , PCO2 ) using stopped flow on plasma membrane vesicles (pmv) isolated from Pisum sativum (pea) and Arabidopsis thaliana leaves. We excluded the chemical limitation of carbonic anhydrase (CA) in the vesicle acidification technique for PCO2 using different temperatures and CA concentrations. Unstirred layers were excluded based on small vesicle size and the positive correlation between vesicle diameter and PCO2 . We observed high aquaporin activity (Pos 0.06 to 0.22 cm s-1 ) for pea pmv based on all the criteria for their function using inhibitors and temperature dependence. Inhibitors of Pos did not alter PCO2 . PCO2 ranged from 0.001 to 0.012 cm s-1 (mean 0.0079 + 0.0007 cm s-1 ) with activation energy of 30.2 kJ mol-1 . Intrinsic variation between pmv batches from normally grown or stressed plants revealed a weak (R2 = 0.27) positive linear correlation between Pos and PCO2 . Despite the low PCO2 , aquaporins may facilitate CO2 transport across plasma membranes, but probably via a different pathway than for water.
Collapse
Affiliation(s)
- Manchun Zhao
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Hwei-Ting Tan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Johannes Scharwies
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Kara Levin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 0200, Australia
| | - Stephen D Tyerman
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
44
|
Tolleter D, Chochois V, Poiré R, Price GD, Badger MR. Measuring CO2 and HCO3- permeabilities of isolated chloroplasts using a MIMS-18O approach. JOURNAL OF EXPERIMENTAL BOTANY 2017. [PMID: 28637277 PMCID: PMC5853524 DOI: 10.1093/jxb/erx188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To support photosynthetic CO2 fixation by Rubisco, the chloroplast must be fed with inorganic carbon in the form of CO2 or bicarbonate. However, the mechanisms allowing the rapid passage of this gas and this charged molecule through the bounding membranes of the chloroplast envelope are not yet completely elucidated. We describe here a method allowing us to measure the permeability of these two molecules through the chloroplast envelope using a membrane inlet mass spectrometer and 18O-labelled inorganic carbon. We established that the internal stromal carbonic anhydrase activity is not limiting for this technique, and precisely measured the chloroplast surface area and permeability values for CO2 and bicarbonate. This was performed on chloroplasts from several plant species, with values ranging from 2.3 × 10-4 m s-1 to 8 × 10-4 m s-1 permeability for CO2 and 1 × 10-8 m s-1 for bicarbonate. We were able to apply our method to chloroplasts from an Arabidopsis aquaporin mutant, and this showed that CO2 permeability was reduced 50% in the mutant compared with the wild-type reference.
Collapse
Affiliation(s)
- Dimitri Tolleter
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- Correspondence:
| | - Vincent Chochois
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Richard Poiré
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Murray R Badger
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
45
|
Rodriguez-Grande B, Konsman JP. Gas Diffusion in the CNS. J Neurosci Res 2017; 96:207-218. [PMID: 28504343 DOI: 10.1002/jnr.24077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/23/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
Gases have been long known to have essential physiological functions in the CNS such as respiration or regulation of vascular tone. Since gases have been classically considered to freely diffuse, research in gas biology has so far focused on mechanisms of gas synthesis and gas reactivity, rather than gas diffusion and transport. However, the discovery of gas pores during the last two decades and the characterization of diverse diffusion patterns through different membranes has raised the possibility that modulation of gas diffusion is also a physiologically relevant parameter. Here we review the means of gas movement into and within the brain through "free" diffusion and gas pores, notably aquaporins, discussing the role that gas diffusion may play in the modulation of gas function. We highlight how diffusion is relevant to neuronal signaling, volume transmission, and cerebrovascular control in the case of NO, one of the most extensively studied gases. We point out how facilitated transport can be especially relevant for gases with low permeability in lipid membranes like NH3 and discuss the possible implications of NH3 -permeable channels in physiology and hyperammonemic encephalopathy. We identify novel research questions about how modulation of gas diffusion could intervene in CNS pathologies. This emerging area of research can provide novel and interesting insights in the field of gas biology.
Collapse
|
46
|
Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 2017; 617:9-25. [DOI: 10.1016/j.abb.2016.09.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/08/2023]
|
47
|
Ngo JP, Ow CP, Gardiner BS, Kar S, Pearson JT, Smith DW, Evans RG. Diffusive shunting of gases and other molecules in the renal vasculature: physiological and evolutionary significance. Am J Physiol Regul Integr Comp Physiol 2016; 311:R797-R810. [DOI: 10.1152/ajpregu.00246.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Abstract
Countercurrent systems have evolved in a variety of biological systems that allow transfer of heat, gases, and solutes. For example, in the renal medulla, the countercurrent arrangement of vascular and tubular elements facilitates the trapping of urea and other solutes in the inner medulla, which in turn enables the formation of concentrated urine. Arteries and veins in the cortex are also arranged in a countercurrent fashion, as are descending and ascending vasa recta in the medulla. For countercurrent diffusion to occur, barriers to diffusion must be small. This appears to be characteristic of larger vessels in the renal cortex. There must also be gradients in the concentration of molecules between afferent and efferent vessels, with the transport of molecules possible in either direction. Such gradients exist for oxygen in both the cortex and medulla, but there is little evidence that large gradients exist for other molecules such as carbon dioxide, nitric oxide, superoxide, hydrogen sulfide, and ammonia. There is some experimental evidence for arterial-to-venous (AV) oxygen shunting. Mathematical models also provide evidence for oxygen shunting in both the cortex and medulla. However, the quantitative significance of AV oxygen shunting remains a matter of controversy. Thus, whereas the countercurrent arrangement of vasa recta in the medulla appears to have evolved as a consequence of the evolution of Henle’s loop, the evolutionary significance of the intimate countercurrent arrangement of blood vessels in the renal cortex remains an enigma.
Collapse
Affiliation(s)
- Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| | - Connie P.C. Ow
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia
| | - Saptarshi Kar
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - James T. Pearson
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
- Monash Biomedical Imaging Facility, Monash University, Melbourne, Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - David W. Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia; and
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology and
| |
Collapse
|
48
|
Semenikhin A, Vodka M, Polishchuk O. Cofactor and structural role of СО2 in chloroplasts. UKRAINIAN BOTANICAL JOURNAL 2016. [DOI: 10.15407/ukrbotj73.03.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Zhernenkov M, Bolmatov D, Soloviov D, Zhernenkov K, Toperverg BP, Cunsolo A, Bosak A, Cai YQ. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. Nat Commun 2016; 7:11575. [PMID: 27175859 PMCID: PMC4865866 DOI: 10.1038/ncomms11575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/10/2016] [Indexed: 12/21/2022] Open
Abstract
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. The molecular transport through bio-membranes of cells heavily relies on the dynamics of lipids, but the related mechanism remains unknown. Here, Zhernenkov et al. observe the propagating transverse phonon mode with a finite band gap and suggest its connection to short-lived local lipid clustering.
Collapse
Affiliation(s)
- Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dima Bolmatov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dmitry Soloviov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Kirill Zhernenkov
- Institut Nanosciences et Cryogénie, Commissariat à l'Energie Atomique, Grenoble 38054, France
| | - Boris P Toperverg
- Petersburg Nuclear Physics Institute, Gatchina 188300, Russia.,Institut Laue Langevin, 6, rue Jules Horowitz, Grenoble 38042, France
| | - Alessandro Cunsolo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Alexey Bosak
- European Synchrotron Radiation Facility, Grenoble 38000, France
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
50
|
Retta M, Ho QT, Yin X, Verboven P, Berghuijs HNC, Struik PC, Nicolaï BM. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:37-51. [PMID: 26993234 DOI: 10.1016/j.plantsci.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/31/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.
Collapse
Affiliation(s)
- Moges Retta
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Quang Tri Ho
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Pieter Verboven
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Herman N C Berghuijs
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Bart M Nicolaï
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| |
Collapse
|