1
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2024:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Sutradhar S, Rahaman R, Bhattacharya S, Paul S, Paine TK. Oxygenolytic cleavage of 1,2-diols with dioxygen by a mononuclear nonheme iron complex: Mimicking the reaction of myo-inositol oxygenase. J Inorg Biochem 2024; 257:112611. [PMID: 38788359 DOI: 10.1016/j.jinorgbio.2024.112611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
A mononuclear iron(II) complex, [(TpPh2)FeII(OTf)(CH3CN)] (1) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, OTf = triflate) has been isolated and its efficiency toward the aliphatic CC bond cleavage reaction of 1,2-diols with dioxygen has been investigated. Separate reactions between 1 and different 1,2-diolates form the corresponding iron(II)-diolate complexes in solution. While the iron(II) complex of the tetradentate TPA (tris(2-pyridylmethyl)amine) ligand is not efficient in affecting the CC cleavage of 1,2-diol with dioxygen, complex 1 displays catalytic activity to afford carboxylic acid and aldehyde. Isotope labeling studies with 18O2 reveal that one oxygen atom from dioxygen is incorporated into the carboxylic acid product. The oxygenative CC cleavage reactions occur on the 1,2-diols containing at least one α-H atom. The kinetic isotope effect value of 5.7 supports the abstraction of an α-H by an iron(III)-superoxo species to propagate the CC cleavage reactions. The oxidative cleavage of 1,2-diolates by the iron(II) complex mimics the reaction catalyzed by the nonheme diiron enzyme, myo-inositol oxygenase.
Collapse
Affiliation(s)
- Subhankar Sutradhar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Rubina Rahaman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India; Department of Chemistry, Krishnagar Government College, Krishnagar, West Bengal 741101, India
| | - Shrabanti Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
3
|
Contreras A, Jones MK, Eldon ED, Klig LS. Inositol in Disease and Development: Roles of Catabolism via myo-Inositol Oxygenase in Drosophila melanogaster. Int J Mol Sci 2023; 24:4185. [PMID: 36835596 PMCID: PMC9967586 DOI: 10.3390/ijms24044185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol depletion has been associated with diabetes and related complications. Increased inositol catabolism, via myo-inositol oxygenase (MIOX), has been implicated in decreased renal function. This study demonstrates that the fruit fly Drosophila melanogaster catabolizes myo-inositol via MIOX. The levels of mRNA encoding MIOX and MIOX specific activity are increased when fruit flies are grown on a diet with inositol as the sole sugar. Inositol as the sole dietary sugar can support D. melanogaster survival, indicating that there is sufficient catabolism for basic energy requirements, allowing for adaptation to various environments. The elimination of MIOX activity, via a piggyBac WH-element inserted into the MIOX gene, results in developmental defects including pupal lethality and pharate flies without proboscises. In contrast, RNAi strains with reduced levels of mRNA encoding MIOX and reduced MIOX specific activity develop to become phenotypically wild-type-appearing adult flies. myo-Inositol levels in larval tissues are highest in the strain with this most extreme loss of myo-inositol catabolism. Larval tissues from the RNAi strains have inositol levels higher than wild-type larval tissues but lower levels than the piggyBac WH-element insertion strain. myo-Inositol supplementation of the diet further increases the myo-inositol levels in the larval tissues of all the strains, without any noticeable effects on development. Obesity and blood (hemolymph) glucose, two hallmarks of diabetes, were reduced in the RNAi strains and further reduced in the piggyBac WH-element insertion strain. Collectively, these data suggest that moderately increased myo-inositol levels do not cause developmental defects and directly correspond to reduced larval obesity and blood (hemolymph) glucose.
Collapse
Affiliation(s)
- Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melissa K. Jones
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
- Genentech, South San Francisco, CA 94080, USA
| | - Elizabeth D. Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S. Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
4
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
5
|
Potential of engineering the myo-inositol oxidation pathway to increase stress resilience in plants. Mol Biol Rep 2022; 49:8025-8035. [PMID: 35294703 DOI: 10.1007/s11033-022-07333-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
Myo-inositol is one of the most abundant form of inositol. The myo-inositol (MI) serves as substrate to diverse biosynthesis pathways and hence it is conserved across life forms. The biosynthesis of MI is well studied in animals. Beyond biosynthesis pathway, implications of MI pathway and enzymes hold potential implications in plant physiology and crop improvement. Myo-inositol oxygenase (MIOX) enzyme catabolize MI into D-glucuronic acid (D-GlcUA). The MIOX enzyme family is well studied across few plants. More recently, the MI associated pathway's crosstalk with other important biosynthesis and stress responsive pathways in plants has drawn attention. The overall outcome from different plant species studied so far are very suggestive that MI derivatives and associated pathways could open new directions to explore stress responsive novel metabolic networks. There are evidences for upregulation of MI metabolic pathway genes, specially MIOX under different stress condition. We also found MIOX genes getting differentially expressed according to developmental and stress signals in Arabidopsis and wheat. In this review we try to highlight the missing links and put forward a tailored view over myo-inositol oxidation pathway and MIOX proteins.
Collapse
|
6
|
Song X, Liu J, Wang B. Emergence of Function from Nonheme Diiron Oxygenases: A Quantum Mechanical/Molecular Mechanical Study of Oxygen Activation and Organophosphonate Catabolism Mechanisms by PhnZ. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xitong Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
7
|
|
8
|
Liu J, Wu P, Yan S, Li Y, Cao Z, Wang B. Spin-Regulated Inner-Sphere Electron Transfer Enables Efficient O—O Bond Activation in Nonheme Diiron Monooxygenase MIOX. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Liu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Peng Wu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shengheng Yan
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zexing Cao
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
9
|
Marques WL, Anderson LA, Sandoval L, Hicks MA, Prather KLJ. Sequence-based bioprospecting of myo-inositol oxygenase (Miox) reveals new homologues that increase glucaric acid production in Saccharomyces cerevisiae. Enzyme Microb Technol 2020; 140:109623. [PMID: 32912683 DOI: 10.1016/j.enzmictec.2020.109623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
myo-Inositol oxygenase (Miox) is a rate-limiting enzyme for glucaric acid production via microbial fermentation. The enzyme converts myo-inositol to glucuronate, which is further converted to glucaric acid, a natural compound with industrial uses that range from detergents to pharmaceutical synthesis to polymeric materials. More than 2,000 Miox sequences are available in the Uniprot database but only thirteen are classified as reviewed in Swiss-Prot (August 2019). In this study, sequence similarity networks were used to identify new homologues to be expressed in Saccharomyces cerevisiae for glucaric acid production. The expression of four homologues did not lead to product formation. Some of these enzymes may have a defective "dynamic lid" - a structural feature important to close the reaction site - which might explain the lack of activity. Thirty-one selected Miox sequences did allow for product formation, of which twenty-five were characterized for the first time. Expression of Talaromyces marneffei Miox led to the accumulation of 1.76 ± 0.33 g glucaric acid/L from 20 g glucose/L and 10 g/L myo-inositol. Specific glucaric acid titer with TmMiox increased 44 % compared to the often-used Arabidopsis thaliana variant AtMiox4 (0.258 vs. 0.179 g glucaric acid/g biomass). AtMiox4 activity decreased from 12.47 to 0.40 nmol/min/mg protein when cells exited exponential phase during growth on glucose, highlighting the importance of future research on Miox stability in order to further improve microbial production of glucaric acid.
Collapse
Affiliation(s)
- Wesley Leoricy Marques
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa A Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis Sandoval
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael A Hicks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Morris ER, Caswell SJ, Kunzelmann S, Arnold LH, Purkiss AG, Kelly G, Taylor IA. Crystal structures of SAMHD1 inhibitor complexes reveal the mechanism of water-mediated dNTP hydrolysis. Nat Commun 2020; 11:3165. [PMID: 32576829 PMCID: PMC7311409 DOI: 10.1038/s41467-020-16983-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
SAMHD1 regulates cellular 2'-deoxynucleoside-5'-triphosphate (dNTP) homeostasis by catalysing the hydrolysis of dNTPs into 2'-deoxynucleosides and triphosphate. In CD4+ myeloid lineage and resting T-cells, SAMHD1 blocks HIV-1 and other viral infections by depletion of the dNTP pool to a level that cannot support replication. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome and hypermutated cancers. Furthermore, SAMHD1 sensitises cancer cells to nucleoside-analogue anti-cancer therapies and is linked with DNA repair and suppression of the interferon response to cytosolic nucleic acids. Nevertheless, despite its requirement in these processes, the fundamental mechanism of SAMHD1-catalysed dNTP hydrolysis remained unknown. Here, we present structural and enzymological data showing that SAMHD1 utilises an active site, bi-metallic iron-magnesium centre that positions a hydroxide nucleophile in-line with the Pα-O5' bond to catalyse phosphoester bond hydrolysis. This precise molecular mechanism for SAMHD1 catalysis, reveals how SAMHD1 down-regulates cellular dNTP and modulates the efficacy of nucleoside-based anti-cancer and anti-viral therapies.
Collapse
Affiliation(s)
- Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,AstraZeneca, 50F49, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Laurence H Arnold
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Pelago Bioscience, Banvaktsvägen 20, 171 48, Solna, Sweden
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
11
|
Gonzalez-Uarquin F, Rodehutscord M, Huber K. Myo-inositol: its metabolism and potential implications for poultry nutrition-a review. Poult Sci 2019; 99:893-905. [PMID: 32036985 PMCID: PMC7587644 DOI: 10.1016/j.psj.2019.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
Myo-inositol (MI) has gained relevance in physiology research during the last decade. As a constituent of animal cells, MI was proven to be crucial in several metabolic and regulatory processes. Myo-inositol is involved in lipid signaling, osmolarity, glucose, and insulin metabolism. In humans and rodents, dietary MI was assessed to be important for health so that MI supplementation appeared to be a valuable alternative for treatment of several diseases as well as for improvements in metabolic performance. In poultry, there is a lack of evidence not only related to specific species-linked metabolic processes but also about the effects of dietary MI on performance and health. This review intends to provide information about the meaning of dietary MI in animal metabolism as well as to discuss potential implications of dietary MI in poultry health and performance with the aim to identify open questions in poultry research.
Collapse
Affiliation(s)
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
12
|
Teng F, You R, Hu M, Liu W, Wang L, Tao Y. Production of d-glucuronic acid from myo-inositol using Escherichia coli whole-cell biocatalyst overexpressing a novel myo-inositol oxygenase from Thermothelomyces thermophile. Enzyme Microb Technol 2019; 127:70-74. [DOI: 10.1016/j.enzmictec.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 01/12/2023]
|
13
|
Li J, Jia Y, Lin A, Hanna M, Chelico L, Xiao W, Moore SA. Structure of Ddi2, a highly inducible detoxifying metalloenzyme from Saccharomyces cerevisiae. J Biol Chem 2019; 294:10674-10685. [PMID: 31152065 PMCID: PMC6615675 DOI: 10.1074/jbc.ra118.006394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
Cyanamide (H2N-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that Saccharomyces cerevisiae exposed to cyanamide resulted in strong induction of DDI2 gene expression. Ddi2 enzymatically hydrates cyanamide to urea and belongs to the family of HD-domain metalloenzymes (named after conserved active-site metal-binding His and Asp residues). Here, we report the X-ray structure of yeast Ddi2 to 2.6 Å resolution, revealing that Ddi2 is a dimeric zinc metalloenzyme. We also confirm that Ddi2 shares structural similarity with other known HD-domain proteins. HD residues His-55, His-88, and Asp-89 coordinate the active-site zinc, and the fourth zinc ligand is a water/hydroxide molecule. Other HD domain enzymes have a second aspartate metal ligand, but in Ddi2 this residue (Thr-157) does not interact with the zinc ion. Several Ddi2 active-site point mutations exhibited reduced catalytic activity. We kinetically and structurally characterized H137N and T157V mutants of Ddi2. A cyanamide soak of the Ddi2-T157V enzyme revealed cyanamide bound directly to the Zn2+ ion, having displaced the zinc-bound water molecule. The mode of cyanamide binding to Ddi2 resembles cyanamide binding to the active-site zinc of carbonic anhydrase, a known cyanamide hydratase. Finally, we observed that the sensitivity of ddi2Δ ddi3Δ to cyanamide was not rescued by plasmids harboring ddi2-H137N or ddi2-TI57V variants, demonstrating that yeast cells require a functioning cyanamide hydratase to overcome cyanamide-induced growth defects.
Collapse
Affiliation(s)
- Jia Li
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Yunhua Jia
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Aiyang Lin
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
- the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Michelle Hanna
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Linda Chelico
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| | - Wei Xiao
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
- the Beijing Key Laboratory of DNA Damage Responses, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Stanley A Moore
- From the Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada and
| |
Collapse
|
14
|
Basrai M, Schweinlin A, Menzel J, Mielke H, Weikert C, Dusemund B, Putze K, Watzl B, Lampen A, Bischoff SC. Energy Drinks Induce Acute Cardiovascular and Metabolic Changes Pointing to Potential Risks for Young Adults: A Randomized Controlled Trial. J Nutr 2019; 149:441-450. [PMID: 30805607 DOI: 10.1093/jn/nxy303] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Case reports suggest a link between energy drinks (EDs) and adverse events, including deaths. OBJECTIVES We examined cardiovascular and metabolic effects of EDs and mixtures providing relevant ingredients of EDs compared to a similarly composed control product (CP) without these components. METHODS This randomized, crossover trial comprised 38 adults (19 women, mean BMI 23 kg/m2, mean age 22 y). We examined effects of a single administration of a commercial ED, the CP, and the CP supplemented with major ED-ingredients at the same concentrations as in the ED. The study products were administered at 2 volumes, 750 or 1000 mL. RESULTS Both volumes of the study products were acceptably tolerated with no dose-dependent effects on blood pressure (BP, primary outcome), heart rate, heart rate corrected duration of QT-segment in electrocardiography (QTc interval), and glucose metabolism. After ED consumption, 11% of the participants reported symptoms, in contrast to 0-3% caused by other study products. After 1 h, administration of an ED caused an increase in systolic BP (116.9 ± 10.4 to 120.7 ± 10.7 mmHg, mean ± SD, P < 0.01) and a QTc prolongation (393.3 ± 20.6 to 400.8 ± 24.1 ms, P < 0.01). Also caffeine, but not taurine or glucuronolactone, caused an increase in BP, but no QTc prolongation. The BP effects were most pronounced after 1 h and returned to normal after a few hours. All study products caused a decrease in serum glucose and an increase in insulin concentrations after 1 h compared to baseline values, corresponding to an elevation in the HOMA-IR (ED + 4.0, other products + 1.0-2.8, all P < 0.001). CONCLUSION A single high-volume intake of ED caused adverse changes in BP, QTc, and insulin sensitivity in young, healthy individuals. These effects of EDs cannot be easily attributed to the single components caffeine, taurine, or glucuronolactone. This trial was registered at clinicaltrials.gov as NCT01421979.
Collapse
Affiliation(s)
- Maryam Basrai
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | - Anna Schweinlin
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| | - Juliane Menzel
- German Federal Institute for Risk Assessment, Department of Food Safety, Berlin, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment, Department of Exposure, Berlin, Germany
| | - Cornelia Weikert
- German Federal Institute for Risk Assessment, Department of Food Safety, Berlin, Germany
| | - Birgit Dusemund
- German Federal Institute for Risk Assessment, Department of Food Safety, Berlin, Germany
| | | | - Bernhard Watzl
- Max Rubner-Institut, Department of Physiology and Biochemistry of Nutrition, Karlsruhe, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Berlin, Germany
| | - Stephan C Bischoff
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany
| |
Collapse
|
15
|
Metabolites related to eGFR: Evaluation of candidate molecules for GFR estimation using untargeted metabolomics. Clin Chim Acta 2019; 489:242-248. [DOI: 10.1016/j.cca.2018.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
|
16
|
Sharma I, Tupe RS, Wallner AK, Kanwar YS. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Renal Physiol 2017; 314:F107-F121. [PMID: 28931523 DOI: 10.1152/ajprenal.00434.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury. The status of MIOX, RAGE, and relevant cellular signaling pathways activated following AGE:RAGE interaction was examined in tubular cells and kidneys of AGE-BSA-treated mice. A solid-phase assay revealed an enhanced binding of RAGE with AGE-BSA, AGE-laminin, and AGE-collagen IV. The cells treated with AGE-BSA had increased MIOX activity/expression and promoter activity. This was associated with activation of various signaling kinases of phosphatidylinositol 3-kinase (PI3K)-AKT pathway and increased expression of NF-κB, transforming growth factor (TGF)-β, and fibronectin, which was negated with the treatment of MIOX/RAGE- small interfering (si) RNA. Concomitant with MIOX upregulation, there was an increased generation of reactive oxygen species (ROS), which could be abrogated with MIOX/RAGE- siRNA treatment. The kidneys of mice treated with AGE-BSA had significantly high urinary A/C ratio, upregulation of MIOX, RAGE and NF-κB, along with influx of monocytes into the tubulointerstitium, increased the expression of MCP-1, IL-6, and fibronectin and increased the generation of ROS. Such perturbations were abrogated with the concomitant treatment of inhibitors MIOX or RAGE (d-glucarate and FPS-ZM1). These studies support a role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin. Collectively, these observations highlight the relevance of the biology of MIOX in the contribution toward tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University , Pune , India
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
17
|
González-Álvarez R, Pérez-Ibave DC, Garza-Rodríguez ML, Lugo-Trampe Á, Delgado-Enciso I, Tejero-Barrera ME, Martínez-De-Villarreal LE, Garza-Guajardo R, Sánchez-Chaparro MM, Ruiz-Ayma G, Barboza-Quintana O, Barrera-Saldaña HA, Rocha-Pizaña MDR, Rodríguez-Sánchez IP. Molecular cloning of the myo-inositol oxygenase gene from the kidney of baboons. Biomed Rep 2017; 7:301-305. [PMID: 29085625 DOI: 10.3892/br.2017.973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/08/2017] [Indexed: 11/05/2022] Open
Abstract
The enzyme myo-Inositol oxygenase (MIOX) is also termed ALDRL6. It is a kidney-specific member of the aldo-keto reductase family. MIOX catalyzes the first reaction involved in the myo-inositol metabolism signaling pathway and is fully expressed in mammalian tissues. MIOX catalyzes the oxidative cleavage of myo-Inositol and its epimer, D-chiro-Inositol to D-glucuronate. The dioxygen-dependent cleavage of the C6 and C1 bond in myo-Inositol is achieved by utilizing the Fe2+/Fe3+ binuclear iron center of MIOX. This enzyme has also been implicated in the complications of diabetes, including diabetic nephropathy. The MIOX gene was amplified with reverse transcription-polymerase chain reaction from baboon tissue samples, and the product was cloned and sequenced. MIOX expression in the baboon kidney is described in the present study. The percentages of nucleotide and amino acid similarities between baboons and humans were 95 and 96%, respectively. The MIOX protein of the baboon may be structurally identical to that of humans. Furthermore, the evolutionary changes, which have affected these sequences, have resulted from purifying forces.
Collapse
Affiliation(s)
| | - Diana Cristina Pérez-Ibave
- Servicio de Oncología, Universidad Autónoma de Nuevo León, Centro Universitario Contra el Cáncer, Hospital Universitario 'Dr José Eleuterio González', Monterrey, Nuevo León 64460, Mexico
| | - María Lourdes Garza-Rodríguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Ángel Lugo-Trampe
- Centro Mesoamericano de Estudios en Salud Pública y Desastres (CEMESAD, Nodo Tapachula), Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29076, Mexico
| | | | - María Elizabeth Tejero-Barrera
- Instituto Nacional de Medicina Genómica (INMEGEN), Laboratorio Nutrigenética y Nutrigenómica, Tlalpan, Arenal Tepepan 14610, Mexico
| | - Laura Elia Martínez-De-Villarreal
- Departamento de Genética y Defectos Congénitos, Universidad Autónoma de Nuevo León, Centro Universitario Contra el Cáncer, Hospital Universitario 'Dr José Eleuterio González', Monterrey, Nuevo León 64460, Mexico
| | - Raquel Garza-Guajardo
- Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Hospital Universitario 'Dr José Eleuterio González', Monterrey, Nuevo León 64460, Mexico
| | - María Marisela Sánchez-Chaparro
- Departamento de Genética y Defectos Congénitos, Universidad Autónoma de Nuevo León, Centro Universitario Contra el Cáncer, Hospital Universitario 'Dr José Eleuterio González', Monterrey, Nuevo León 64460, Mexico
| | - Gabriel Ruiz-Ayma
- Departamento de Ecología, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León 66425, Mexico
| | - Oralia Barboza-Quintana
- Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Hospital Universitario 'Dr José Eleuterio González', Monterrey, Nuevo León 64460, Mexico
| | - Hugo Alberto Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | | | - Irám Pablo Rodríguez-Sánchez
- Departamento de Genética y Defectos Congénitos, Universidad Autónoma de Nuevo León, Centro Universitario Contra el Cáncer, Hospital Universitario 'Dr José Eleuterio González', Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
18
|
An HD domain phosphohydrolase active site tailored for oxetanocin-A biosynthesis. Proc Natl Acad Sci U S A 2016; 113:13750-13755. [PMID: 27849620 DOI: 10.1073/pnas.1613610113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
HD domain phosphohydrolase enzymes are characterized by a conserved set of histidine and aspartate residues that coordinate an active site metallocenter. Despite the important roles these enzymes play in nucleotide metabolism and signal transduction, few have been both biochemically and structurally characterized. Here, we present X-ray crystal structures and biochemical characterization of the Bacillus megaterium HD domain phosphohydrolase OxsA, involved in the biosynthesis of the antitumor, antiviral, and antibacterial compound oxetanocin-A. These studies reveal a previously uncharacterized reaction for this family; OxsA catalyzes the conversion of a triphosphorylated compound into a nucleoside, releasing one molecule of inorganic phosphate at a time. Remarkably, this functionality is a result of the OxsA active site, which based on structural and kinetic analyses has been tailored to bind the small, four-membered ring of oxetanocin-A over larger substrates. Furthermore, our OxsA structures show an active site that switches from a dinuclear to a mononuclear metal center as phosphates are eliminated from substrate.
Collapse
|
19
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
20
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Snyder RA, Butch SE, Reig AJ, DeGrado WF, Solomon EI. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins. J Am Chem Soc 2015; 137:9302-14. [PMID: 26090726 DOI: 10.1021/jacs.5b03524] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A→4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of the biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O2 is reduced to H2O2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. In 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads to the two-electron reduction of O2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.
Collapse
Affiliation(s)
- Rae Ana Snyder
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Susan E Butch
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Amanda J Reig
- ‡Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - William F DeGrado
- ⊥Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Edward I Solomon
- †Department of Chemistry, Stanford University, Stanford, California 94305, United States.,§Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
22
|
Vallet JL, McNeel AK, Miles JR, Freking BA. Placental accommodations for transport and metabolism during intra-uterine crowding in pigs. J Anim Sci Biotechnol 2014; 5:55. [PMID: 25937925 PMCID: PMC4416243 DOI: 10.1186/2049-1891-5-55] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/19/2014] [Indexed: 01/05/2023] Open
Abstract
Litter size and birth weights are limited by uterine capacity, defined as the ability of the uterus to maintain the appropriate development of some number of conceptuses. Uterine capacity is the result of the combined effects of uterine, placental and embryo/fetal function. The number of living conceptuses that the uterus is capable of supporting is greater during early gestation compared to later gestation. Plots of log fetal weight versus log placental weight also indicate that fetal weights are less sensitive to reduced placental weight (and therefore reduced intrauterine space) in early gestation compared to late gestation. However, even in late gestation, mechanisms still exist that maintain fetal growth when the size of the placenta is reduced. One such mechanism is likely to be improved development of the folded placental-epithelial/maternal-epithelial bilayer. Fold depth, and therefore the maternal fetal interactive surface, increases as gestation advances and is greater in placenta from small fetuses. On the fetal side of the placenta, the epithelial bilayer is embedded in stromal tissue. Glycosaminoglycans are major components of stroma, including hyaluronan and heparan sulfate. Hyaluronidases and heparanases are present within placental tissues, and likely play roles in modification of stromal components to facilitate fold development. Glycosaminoglycans are polymers of forms of glucose (glucosamine, glucuronic acid, iduronic acid) suggesting that glycosaminoglycan synthesis may compete with the glucose needs of the developing fetus. Pig conceptuses are fructogenic, such that a substantial portion of glucose transferred from mother to fetus is converted to fructose. Fructose is an intermediate product in the synthesis of glucosamine from glucose, and glucosamine is linked to regulation of trophoblast cell proliferation through regulation of mTOR. These findings suggest a link between glucose, fructose, glucosamine synthesis, GAG production, and placental morphogenesis, but the details of these interactions remain unclear. In addition, recent placental epithelial transcriptome analysis identified several glucose, amino acid, lipid, vitamin, mineral and hormone transporter mechanisms within the placenta. Further elucidation of mechanisms of placental morphogenesis and solute transport could provide clues to improving nutrient transport to the pig fetus, potentially increasing litter size and piglet birth weights.
Collapse
Affiliation(s)
- Jeffrey L Vallet
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| | - Anthony K McNeel
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| | - Jeremy R Miles
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| | - Bradley A Freking
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, State Spur 18D, Clay Center, NE 68933 USA
| |
Collapse
|
23
|
Gaut JP, Crimmins DL, Ohlendorf MF, Lockwood CM, Griest TA, Brada NA, Hoshi M, Sato B, Hotchkiss RS, Jain S, Ladenson JH. Development of an immunoassay for the kidney-specific protein myo-inositol oxygenase, a potential biomarker of acute kidney injury. Clin Chem 2014; 60:747-57. [PMID: 24486646 DOI: 10.1373/clinchem.2013.212993] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) affects 45% of critically ill patients, resulting in increased morbidity and mortality. The diagnostic standard, plasma creatinine, is nonspecific and may not increase until days after injury. There is significant need for a renal-specific AKI biomarker detectable early enough that there would be a potential window for therapeutic intervention. In this study, we sought to identify a renal-specific biomarker of AKI. METHODS We analyzed gene expression data from normal mouse tissues to identify kidney-specific genes, one of which was Miox. We generated monoclonal antibodies to recombinant myo-inositol oxygenase (MIOX) and developed an immunoassay to quantify MIOX in plasma. The immunoassay was tested in animals and retrospectively in patients with and without AKI. RESULTS Kidney tissue specificity of MIOX was supported by Western blot. Immunohistochemistry localized MIOX to the proximal renal tubule. Serum MIOX, undetectable at baseline, increased 24 h following AKI in mice. Plasma MIOX was increased in critically ill patients with AKI [mean (SD) 12.4 (4.3) ng/mL, n = 42] compared with patients without AKI [0.5 (0.3) ng/mL, n = 17] and was highest in patients with oliguric AKI [20.2 (7.5) ng/mL, n = 23]. Plasma MIOX increased 54.3 (3.8) h before the increase in creatinine. CONCLUSIONS MIOX is a renal-specific, proximal tubule protein that is increased in serum of animals and plasma of critically ill patients with AKI. MIOX preceded the increases in creatinine concentration by approximately 2 days in human patients. Large-scale studies are warranted to further investigate MIOX as an AKI biomarker.
Collapse
Affiliation(s)
- Joseph P Gaut
- Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Organophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases. Proc Natl Acad Sci U S A 2013; 110:18874-9. [PMID: 24198335 DOI: 10.1073/pnas.1315927110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The founding members of the HD-domain protein superfamily are phosphohydrolases, and newly discovered members are generally annotated as such. However, myo-inositol oxygenase (MIOX) exemplifies a second, very different function that has evolved within the common scaffold of this superfamily. A recently discovered HD protein, PhnZ, catalyzes conversion of 2-amino-1-hydroxyethylphosphonate to glycine and phosphate, culminating a bacterial pathway for the utilization of environmentally abundant 2-aminoethylphosphonate. Using Mössbauer and EPR spectroscopies, X-ray crystallography, and activity measurements, we show here that, like MIOX, PhnZ employs a mixed-valent Fe(II)/Fe(III) cofactor for the O2-dependent oxidative cleavage of its substrate. Phylogenetic analysis suggests that many more HD proteins may catalyze yet-unknown oxygenation reactions using this hitherto exceptional Fe(II)/Fe(III) cofactor. The results demonstrate that the catalytic repertoire of the HD superfamily extends well beyond phosphohydrolysis and suggest that the mechanism used by MIOX and PhnZ may be a common strategy for oxidative C-X bond cleavage.
Collapse
|
25
|
Snyder RA, Bell CB, Diao Y, Krebs C, Bollinger JM, Solomon EI. Circular dichroism, magnetic circular dichroism, and variable temperature variable field magnetic circular dichroism studies of biferrous and mixed-valent myo-inositol oxygenase: insights into substrate activation of O2 reactivity. J Am Chem Soc 2013; 135:15851-63. [PMID: 24066857 DOI: 10.1021/ja406635k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
myo-Inositol oxygenase (MIOX) catalyzes the 4e(-) oxidation of myo-inositol (MI) to D-glucuronate using a substrate activated Fe(II)Fe(III) site. The biferrous and Fe(II)Fe(III) forms of MIOX were studied with circular dichroism (CD), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The MCD spectrum of biferrous MIOX shows two ligand field (LF) transitions near 10000 cm(-1), split by ~2000 cm(-1), characteristic of six coordinate (6C) Fe(II) sites, indicating that the modest reactivity of the biferrous form toward O2 can be attributed to the saturated coordination of both irons. Upon oxidation to the Fe(II)Fe(III) state, MIOX shows two LF transitions in the ~10000 cm(-1) region, again implying a coordinatively saturated Fe(II) site. Upon MI binding, these split in energy to 5200 and 11200 cm(-1), showing that MI binding causes the Fe(II) to become coordinatively unsaturated. VTVH MCD magnetization curves of unbound and MI-bound Fe(II)Fe(III) forms show that upon substrate binding, the isotherms become more nested, requiring that the exchange coupling and ferrous zero-field splitting (ZFS) both decrease in magnitude. These results imply that MI binds to the ferric site, weakening the Fe(III)-μ-OH bond and strengthening the Fe(II)-μ-OH bond. This perturbation results in the release of a coordinated water from the Fe(II) that enables its O2 activation.
Collapse
Affiliation(s)
- Rae Ana Snyder
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | |
Collapse
|
26
|
Wang X, Hirao H. ONIOM (DFT:MM) Study of the Catalytic Mechanism of myo-Inositol Monophosphatase: Essential Role of Water in Enzyme Catalysis in the Two-Metal Mechanism. J Phys Chem B 2013; 117:833-42. [DOI: 10.1021/jp312483n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoqing Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
637371
| | - Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore
637371
| |
Collapse
|
27
|
Li F, Chakrabarti M, Dong Y, Kauffmann K, Bominaar EL, Münck E, Que L. Structural, EPR, and Mössbauer characterization of (μ-alkoxo)(μ-carboxylato)diiron(II,III) model complexes for the active sites of mixed-valent diiron enzymes. Inorg Chem 2012; 51:2917-29. [PMID: 22360600 PMCID: PMC3298377 DOI: 10.1021/ic2021726] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To obtain structural and spectroscopic models for the diiron(II,III) centers in the active sites of diiron enzymes, the (μ-alkoxo)(μ-carboxylato)diiron(II,III) complexes [Fe(II)Fe(III)(N-Et-HPTB)(O(2)CPh)(NCCH(3))(2)](ClO(4))(3) (1) and [Fe(II)Fe(III)(N-Et-HPTB)(O(2)CPh)(Cl)(HOCH(3))](ClO(4))(2) (2) (N-Et-HPTB = N,N,N',N'-tetrakis(2-(1-ethyl-benzimidazolylmethyl))-2-hydroxy-1,3-diaminopropane) have been prepared and characterized by X-ray crystallography, UV-visible absorption, EPR, and Mössbauer spectroscopies. Fe1-Fe2 separations are 3.60 and 3.63 Å, and Fe1-O1-Fe2 bond angles are 128.0° and 129.4° for 1 and 2, respectively. Mössbauer and EPR studies of 1 show that the Fe(III) (S(A) = 5/2) and Fe(II) (S(B) = 2) sites are antiferromagnetically coupled to yield a ground state with S = 1/2 (g= 1.75, 1.88, 1.96); Mössbauer analysis of solid 1 yields J = 22.5 ± 2 cm(-1) for the exchange coupling constant (H = JS(A)·S(B) convention). In addition to the S = 1/2 ground-state spectrum of 1, the EPR signal for the S = 3/2 excited state of the spin ladder can also be observed, the first time such a signal has been detected for an antiferromagnetically coupled diiron(II,III) complex. The anisotropy of the (57)Fe magnetic hyperfine interactions at the Fe(III) site is larger than normally observed in mononuclear complexes and arises from admixing S > 1/2 excited states into the S = 1/2 ground state by zero-field splittings at the two Fe sites. Analysis of the "D/J" mixing has allowed us to extract the zero-field splitting parameters, local g values, and magnetic hyperfine structural parameters for the individual Fe sites. The methodology developed and followed in this analysis is presented in detail. The spin Hamiltonian parameters of 1 are related to the molecular structure with the help of DFT calculations. Contrary to what was assumed in previous studies, our analysis demonstrates that the deviations of the g values from the free electron value (g = 2) for the antiferromagnetically coupled diiron(II,III) core in complex 1 are predominantly determined by the anisotropy of the effective g values of the ferrous ion and only to a lesser extent by the admixture of excited states into ground-state ZFS terms (D/J mixing). The results for 1 are discussed in the context of the data available for diiron(II,III) clusters in proteins and synthetic diiron(II,III) complexes.
Collapse
Affiliation(s)
- Feifei Li
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | | | - Yanhong Dong
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| | - Karl Kauffmann
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
28
|
Abstract
Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894.
| |
Collapse
|
29
|
Hirao H. The Effects of Protein Environment and Dispersion on the Formation of Ferric-Superoxide Species in myo-Inositol Oxygenase (MIOX): A Combined ONIOM(DFT:MM) and Energy Decomposition Analysis. J Phys Chem B 2011; 115:11278-85. [DOI: 10.1021/jp2057173] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
30
|
Noureddini H, Dang J. An integrated approach to the degradation of phytates in the corn wet milling process. BIORESOURCE TECHNOLOGY 2010; 101:9106-9113. [PMID: 20678926 DOI: 10.1016/j.biortech.2010.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 05/29/2023]
Abstract
An integrated process was developed to hydrolyze the phytates in light steep water (LSW) and to simultaneously isolate inorganic phosphate (Pi) and myo-inositol products. The proposed integrated process will be helpful in resolving the environmental and nutritional concerns in the use of corn gluten feed (CGF) in the animal diets. This process comprised of partial and total hydrolysis of LSW and intermediate anion exchange separation technique. The phytates in LSW were initially degraded to negatively charged myo-inositol phosphates (InsP(2)-InsP(5)). The optimized experimental parameters for the partial hydrolysis of LSW were determined to be 2 h hydrolysis with 1FTU Aspergillus niger/g substrate at 35 degrees C. The negatively charged species of the partially hydrolyzed substrate were separated on a strong base anion exchange resin. The negatively charged species, retained by the resin, were eluded with 1M NaCl solution and were subjected to complete hydrolysis with the Escherichia coli, A. niger derived phytases and their respective combinations. The maximum amount of myo-inositol released from the anion exchange column was 3.73+/-0.03 mg/NaCl elution which was detected after 48 h reactions catalyzed by 100 FTU E. coli, 150 FTU E. coli, and 150 FTU the combination of A. niger and E. coli. The time course of Pi released showed a similar trend to that of myo-inositol and the released Pi reached a maximum amount of 3.30+/-0.05 mg/g NaCl elution after 48 h incubation at the enzyme loadings for which the maximum concentration of myo-inositol were reached.
Collapse
Affiliation(s)
- H Noureddini
- Department of Chemical and Biomolecular Engineering, 207H Othmer Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0643, USA.
| | | |
Collapse
|
31
|
Hirao H, Morokuma K. Ferric Superoxide and Ferric Hydroxide Are Used in the Catalytic Mechanism of Hydroxyethylphosphonate Dioxygenase: A Density Functional Theory Investigation. J Am Chem Soc 2010; 132:17901-9. [DOI: 10.1021/ja108174d] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hajime Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan, and Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan, and Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
32
|
Hirao H, Morokuma K. Insights into the (superoxo)Fe(III)Fe(III) intermediate and reaction mechanism of myo-inositol oxygenase: DFT and ONIOM(DFT:MM) study. J Am Chem Soc 2010; 131:17206-14. [PMID: 19929019 DOI: 10.1021/ja905296w] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The (superoxo)Fe(III)Fe(III) reactive species and the catalytic reaction mechanism of a diiron enzyme, myo-inositol oxygenase (MIOX), were theoretically investigated by means of density functional theory (DFT) and ONIOM quantum mechanical/molecular mechanical (QM/MM) approaches. The ground state of the (superoxo)Fe(III)Fe(III) intermediate was shown to have a side-on coordination geometry and an S = 1/2 spin state, wherein the two iron sites are antiferromagnetically coupled while the superoxide site and the nearest iron are ferromagnetically coupled. A full reaction pathway leading to a D-glucuronate product from myo-inositol was proposed based on ONIOM computational results. Two major roles of the enzyme surrounding during the catalytic reaction were identified. One is to facilitate the initial H-abstraction step, and the other is to restrict the movement of the substrate via H-bonding interactions in order to avoid unwanted side reactions. In our proposed mechanism, O-O bond cleavage has the highest barrier, thus constituting the rate-limiting step of the reaction. The unique role of the bridging hydroxide ligand as a catalytic base was also identified.
Collapse
Affiliation(s)
- Hajime Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | | |
Collapse
|
33
|
Yu S, Jensen V, Seeliger J, Feldmann I, Weber S, Schleicher E, Häussler S, Blankenfeldt W. Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 2009; 48:10298-307. [PMID: 19788310 DOI: 10.1021/bi900123j] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria, the transcription of virulence genes is usually controlled by a cell density-dependent process known as "quorum sensing" (QS). QS relies on small diffusible signaling molecules that cross the bacterial cell wall and activate target transcription factors after a threshold concentration has been reached. Besides two hierarchical QS circuits based on N-acylhomoserine lactones, the human opportunistic pathogen Pseudomonas aeruginosa integrates a signaling system that depends on 2-heptyl-3-hydroxy-4-quinolone, termed "Pseudomonas quinolone signal" (PQS). PQS is produced from genes encoded in the pqs operon, which in addition to the biosynthetic enzymes PqsA-D contains a fifth gene, pqsE, that is not required for production of PQS but whose disruption leads to loss of signal transduction in several but not all pqs operon-dependent processes. PqsE was hence termed "PQS response protein", but its exact mechanism of action is unknown. We have determined the crystal structure of recombinant PqsE and show that it possesses a metallo-beta-lactamase fold with an Fe(II)Fe(III) center in the active site. A copurified ligand was assigned as benzoate and may indicate that PqsE exerts its regulatory effect by converting a chorismate-derived molecule. Further, PqsE was found to slowly hydrolyze phosphodiesters including single- and double-stranded DNA as well as mRNA and also the thioester S-(4-nitrobenzoyl)mercaptoethane. Higher activity was observed after incubation with Co(2+) and, to lesser entent, Mn(2+), suggesting that the Fe(II)Fe(III) center of recombinant PqsE may be an artifact of heterologous expression. A crystal complex of the E182A mutant with bis-pNPP was obtained and suggests a catalytic mechanism for hydrolysis.
Collapse
Affiliation(s)
- Shen Yu
- Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bollinger JM, Diao Y, Matthews ML, Xing G, Krebs C. myo-Inositol oxygenase: a radical new pathway for O(2) and C-H activation at a nonheme diiron cluster. Dalton Trans 2009:905-14. [PMID: 19173070 PMCID: PMC2788986 DOI: 10.1039/b811885j] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzyme myo-inositol oxygenase (MIOX) catalyzes conversion of myo-inositol (cyclohexan-1,2,3,5/4,6-hexa-ol or MI) to d-glucuronate (DG), initiating the only known pathway in humans for catabolism of the carbon skeleton of cell-signaling inositol (poly)phosphates and phosphoinositides. Recent kinetic, spectroscopic and crystallographic studies have shown that the enzyme activates its substrates, MI and O(2), at a carboxylate-bridged nonheme diiron(ii/iii) cluster, making it the first of many known nonheme diiron oxygenases to employ the mixed-valent form of its cofactor. Evidence suggests that: (1) the Fe(iii) site coordinates MI via its C1 and C6 hydroxyl groups; (2) the Fe(ii) site reversibly coordinates O(2) to produce a superoxo-diiron(iii/iii) intermediate; and (3) the pendant oxygen atom of the superoxide ligand abstracts hydrogen from C1 to initiate the unique C-C-bond-cleaving, four-electron oxidation reaction. This review recounts the studies leading to the recognition of the novel cofactor requirement and catalytic mechanism of MIOX and forecasts how remaining gaps in our understanding might be filled by additional experiments.
Collapse
Affiliation(s)
- J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yinghui Diao
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Megan L. Matthews
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gang Xing
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|