1
|
Keener RM, Shi S, Dalapati T, Wang L, Reinoso-Vizcaino NM, Luftig MA, Miller SI, Wilson TJ, Ko DC. Human genetic variation reveals FCRL3 is a lymphocyte receptor for Yersinia pestis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626452. [PMID: 39677730 PMCID: PMC11643160 DOI: 10.1101/2024.12.05.626452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Yersinia pestis is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of Y. pestis infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing). We identified a nonsynonymous SNP, rs2282284, in Fc receptor like 3 (FCRL3) associated with bacterial invasion of host cells (p=9×10-8). FCRL3 belongs to the immunoglobulin superfamily and is primarily expressed in lymphocytes. rs2282284 is within a tyrosine-based signaling motif, causing an asparagine-to-serine mutation (N721S) in the most common FCRL3 isoform. Overexpression of FCRL3 facilitated attachment and invasion of non-opsonized Y. pestis. Additionally, FCRL3 colocalized with Y. pestis at sites of cellular attachment, suggesting FCRL3 is a receptor for Y. pestis. These properties were variably conserved across the FCRL family, revealing molecular requirements of attachment and invasion, including an Ig-like C2 domain and a SYK interaction motif. Direct binding was confirmed with purified FCRL5 extracellular domain. Following attachment, invasion of Y. pestis was dependent on SYK and decreased with the N721S mutation. Unexpectedly, this same variant is associated with risk of chronic hepatitis C virus infection in BioBank Japan. Thus, Y. pestis hijacks FCRL proteins, possibly taking advantage of an immune receptor to create a lymphocyte niche during infection.
Collapse
Affiliation(s)
- Rachel M. Keener
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sam Shi
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Trisha Dalapati
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | | | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Samuel I. Miller
- Departments of Genome Sciences, Medicine, and Microbiology, U of Washington, Seattle, WA, USA
| | | | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Lead Contact
| |
Collapse
|
2
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
Mechanisms for the Invasion and Dissemination of Salmonella. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:2655801. [PMID: 35722038 PMCID: PMC9203224 DOI: 10.1155/2022/2655801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Salmonella enterica is a gastroenteric Gram-negative bacterium that can infect both humans and animals and causes millions of illnesses per year around the world. Salmonella infections usually occur after the consumption of contaminated food or water. Infections with Salmonella species can cause diseases ranging from enterocolitis to typhoid fever. Salmonella has developed multiple strategies to invade and establish a systemic infection in the host. Different cell types, including epithelial cells, macrophages, dendritic cells, and M cells, are important in the infection process of Salmonella. Dissemination throughout the body and colonization of remote organs are hallmarks of Salmonella infection. There are several routes for the dissemination of Salmonella typhimurium. This review summarizes the current understanding of the infection mechanisms of Salmonella. Additionally, different routes of Salmonella infection will be discussed. In this review, the strategies used by Salmonella enterica to establish persistent infection will be discussed. Understanding both the bacterial and host factors leading to the successful colonization of Salmonella enterica may enable the rational design of effective therapeutic strategies.
Collapse
|
4
|
Li Q, Ye C, Zhao F, Li W, Zhu S, Lv Y, Park CG, Zhang Y, Jiang LY, Yang K, He Y, Cai H, Zhang S, Ding HH, Njiri OA, Tembo JM, Alkraiem AA, Li AY, Sun ZY, Li W, Yan MY, Kan B, Huo X, Klena JD, Skurnik M, Anisimov AP, Gao X, Han Y, Yang RF, Xiamu X, Wang Y, Chen H, Chai B, Sun Y, Yuan J, Chen T. PgtE Enzyme of Salmonella enterica Shares the Similar Biological Roles to Plasminogen Activator (Pla) in Interacting With DEC-205 (CD205), and Enhancing Host Dissemination and Infectivity by Yersinia pestis. Front Immunol 2022; 13:791799. [PMID: 35401532 PMCID: PMC8986990 DOI: 10.3389/fimmu.2022.791799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.
Collapse
Affiliation(s)
- Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chenglin Ye
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Zhao
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenjin Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Sizhe Zhu
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yin Lv
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chae Gyu Park
- Therapeutic Antibody Research Center, Genuv Inc., Seoul, South Korea
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Yingmiao Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ling-Yu Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Kun Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yingxia He
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Huahua Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Song Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hong-Hui Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Olivia Adhiambo Njiri
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - John Mambwe Tembo
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ayman Ahmad Alkraiem
- Tongji Hospital, Tongji Medical College, Huazhong University, Wuhan, China
- Department of Biology, College of Science, Taibah University, Medina, Saudi Arabia
| | - An-Yi Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Zi-Yong Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wei Li
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mei-Ying Yan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xixiang Huo
- Center for Infectious Diseases, Hubei Provincial Centers for Disease Control and Prevention (CDC), Wuhan, China
| | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Xiaofang Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Fu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiding Xiamu
- Division of Disease Control and Prevention for Endemic Diseases , Wenquan Center for Disease Control and Prevention, Wenquan, China
| | - Yuanzhi Wang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Hongxiang Chen
- Union Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yicheng Sun
- Ministry of Health (MOH) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Tie Chen,, ; Jingping Yuan,; Yicheng Sun,
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Tie Chen,, ; Jingping Yuan,; Yicheng Sun,
| | - Tie Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
- *Correspondence: Tie Chen,, ; Jingping Yuan,; Yicheng Sun,
| |
Collapse
|
5
|
Li J, Panetta F, O'Keeffe M, Leal Rojas IM, Radford KJ, Zhang JG, Fernandez-Ruiz D, Davey GM, Gully BS, Tullett KM, Rossjohn J, Berry R, Lee CN, Lahoud MH, Heath WR, Caminschi I. Elucidating the Motif for CpG Oligonucleotide Binding to the Dendritic Cell Receptor DEC-205 Leads to Improved Adjuvants for Liver-Resident Memory. THE JOURNAL OF IMMUNOLOGY 2021; 207:1836-1847. [PMID: 34479944 DOI: 10.4049/jimmunol.2001153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022]
Abstract
DEC-205 is a cell-surface receptor that transports bound ligands into the endocytic pathway for degradation or release within lysosomal endosomes. This receptor has been reported to bind a number of ligands, including keratin, and some classes of CpG oligodeoxynucleotides (ODN). In this study, we explore in detail the requirements for binding ODNs, revealing that DEC-205 efficiently binds single-stranded, phosphorothioated ODN of ≥14 bases, with preference for the DNA base thymidine, but with no requirement for a CpG motif. DEC-205 fails to bind double-stranded phosphodiester ODN, and thus does not bind the natural type of DNA found in mammals. The ODN binding preferences of DEC-205 result in strong binding of B class ODN, moderate binding to C class ODN, minimal binding to P class ODN, and no binding to A class ODN. Consistent with DEC-205 binding capacity, induction of serum IL-12p70 or activation of B cells by each class of ODN correlated with DEC-205 dependence in mice. Thus, the greater the DEC-205 binding capacity, the greater the dependence on DEC-205 for optimal responses. Finally, by covalently linking a B class ODN that efficiently binds DEC-205, to a P class ODN that shows poor binding, we improved DEC-205 binding and increased adjuvancy of the hybrid ODN. The hybrid ODN efficiently enhanced induction of effector CD8 T cells in a DEC-205-dependent manner. Furthermore, the hybrid ODN induced robust memory responses, and was particularly effective at promoting the development of liver tissue-resident memory T cells.
Collapse
Affiliation(s)
- Jessica Li
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Fatma Panetta
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meredith O'Keeffe
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ingrid M Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Gayle M Davey
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Benjamin S Gully
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Kirsteen M Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Richard Berry
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Chin-Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; and
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia; .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Xue Y, Li Q, Park CG, Klena JD, Anisimov AP, Sun Z, Wei X, Chen T. Proteus mirabilis Targets Atherosclerosis Plaques in Human Coronary Arteries via DC-SIGN (CD209). Front Immunol 2021; 11:579010. [PMID: 33488579 PMCID: PMC7820866 DOI: 10.3389/fimmu.2020.579010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial DNAs are constantly detected in atherosclerotic plaques (APs), suggesting that a combination of chronic infection and inflammation may have roles in AP formation. A series of studies suggested that certain Gram-negative bacteria were able to interact with dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin [DC-SIGN; cluster of differentiation (CD) 209] or langerin (CD207), thereby resulting in deposition of CD209s at infection sites. We wondered if Proteus mirabilis (a member of Proteobacteria family) could interact with APs through CD209/CD207. In this study, we first demonstrated that CD209/CD207 were also receptors for P. mirabilis that mediated adherence and phagocytosis by macrophages. P. mirabilis interacted with fresh and CD209s/CD207-expressing APs cut from human coronary arteries, rather than in healthy and smooth arteries. These interactions were inhibited by addition of a ligand-mimic oligosaccharide and the coverage of the ligand, as well as by anti-CD209 antibody. Finally, the hearts from an atherosclerotic mouse model contained higher numbers of P. mirabilis than that of control mice during infection-challenging. We therefore concluded that the P. mirabilis interacts with APs in human coronary arteries via CD209s/CD207. It may be possible to slow down the progress of atherosclerosis by blocking the interactions between CD209s/CD207 and certain atherosclerosis-involved bacteria with ligand-mimic oligosaccharides.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Bacterial Adhesion/drug effects
- CHO Cells
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Coronary Artery Disease/drug therapy
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/microbiology
- Coronary Artery Disease/pathology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/microbiology
- Coronary Vessels/pathology
- Cricetulus
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/metabolism
- Ligands
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/microbiology
- Male
- Mannose-Binding Lectins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Oligosaccharides/pharmacology
- Plaque, Atherosclerotic
- Proteus mirabilis/growth & development
- Proteus mirabilis/metabolism
- RAW 264.7 Cells
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 FOUR Project for Medical Science, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - John D. Klena
- Division of Global Health Protection, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, State Research Center for Applied Microbiology and Biotechnology, Especially Dangerous Infections Department, Obolensk, Russia
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Yersinia pestis Plasminogen Activator. Biomolecules 2020; 10:biom10111554. [PMID: 33202679 PMCID: PMC7696990 DOI: 10.3390/biom10111554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Yersinia pestis causes plague, a fatal flea-borne anthropozoonosis, which can progress to aerosol-transmitted pneumonia. Y. pestis overcomes the innate immunity of its host thanks to many pathogenicity factors, including plasminogen activator, Pla. This factor is a broad-spectrum outer membrane protease also acting as adhesin and invasin. Y. pestis uses Pla adhesion and proteolytic capacity to manipulate the fibrinolytic cascade and immune system to produce bacteremia necessary for pathogen transmission via fleabite or aerosols. Because of microevolution, Y. pestis invasiveness has increased significantly after a single amino-acid substitution (I259T) in Pla of one of the oldest Y. pestis phylogenetic groups. This mutation caused a better ability to activate plasminogen. In paradox with its fibrinolytic activity, Pla cleaves and inactivates the tissue factor pathway inhibitor (TFPI), a key inhibitor of the coagulation cascade. This function in the plague remains enigmatic. Pla (or pla) had been used as a specific marker of Y. pestis, but its solitary detection is no longer valid as this gene is present in other species of Enterobacteriaceae. Though recovering hosts generate anti-Pla antibodies, Pla is not a good subunit vaccine. However, its deletion increases the safety of attenuated Y. pestis strains, providing a means to generate a safe live plague vaccine.
Collapse
|
8
|
Abstract
After both sterile and infectious insults, damage is inflicted on tissues leading to accidental or programmed cell death. In addition, events of programmed cell death also take place under homeostatic conditions, such as in embryo development or in the turnover of hematopoietic cells. Mammalian tissues are seeded with myeloid immune cells, which harbor a plethora of receptors that allow the detection of cell death, modulating immune responses. The myeloid C-type lectin receptors (CLRs) are one of the most prominent families of receptors involved in tailoring immunity after sensing dead cells. In this chapter, we will cover a diversity of signals arising from different forms of cell death and how they are recognized by myeloid CLRs. We will also explore how myeloid cells develop their sentinel function, exploring how some of these CLRs identify cell death and the type of responses triggered thereof. In particular, we will focus on DNGR-1 (CLEC9A), Mincle (CLEC4E), CLL-1 (CLEC12A), LOX-1 (OLR1), CD301 (CLEC10A) and DEC-205 (LY75) as paradigmatic death-sensing CLRs expressed by myeloid cells. The molecular processes triggered after cell death recognition by myeloid CLRs contribute to the regulation of immune responses in pathologies associated with tissue damage, such as infection, autoimmunity and cancer. A better understanding of these processes may help to improve the current approaches for therapeutic intervention.
Collapse
|
9
|
Njiri OA, Zhang X, Zhang Y, Wu B, Jiang L, Li Q, Liu W, Chen T. CD209 C-Type Lectins Promote Host Invasion, Dissemination, and Infection of Toxoplasma gondii. Front Immunol 2020; 11:656. [PMID: 32391004 PMCID: PMC7190871 DOI: 10.3389/fimmu.2020.00656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 01/24/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis and a major opportunistic parasite associated with AIDS, is able to invade host cells of animals and humans. Studies suggested that the ability of host invasion by the tachyzoite, the infectious form of T. gondii, is essential for the pathogenicity to promote its dissemination to other parts of animal hosts. However, the detailed molecular mechanisms for host invasion and dissemination of the parasites are not clear. On the other hand, viruses and bacteria are able to interact with and hijack DC-SIGN (CD209) C-type lectin on antigen presenting cells (APCs), such as dendritic cells and macrophages as the Trojan horses to promote host dissemination. In this study, we showed that invasion of T. gondii into host cells was enhanced by this parasite-CD209 interaction that were inhibited by ligand mimicking-oligosaccharides and the anti-CD209 antibody. Furthermore, covering the exposures of DC-SIGN by these oligosaccharides reduced parasite burden, host spreading and mortality associated with T. gondii infection. These results suggested that interaction of T. gondii to APCs expressing DC-SIGN might promote host dissemination and infection. Can the blockage of this interaction with Mannan and/or anti-CD209 antibody be developed as a prevention or treatment method for T. gondii infection?
Collapse
Affiliation(s)
- Olivia Adhiambo Njiri
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Biological Sciences, Faculty of Science, Engineering and Technology, Chuka University, Chuka, Kenya
| | - Xiaoyan Zhang
- Division of Parasitology, Department of Pathogen Biology, School of Basic Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bicong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenqi Liu
- Division of Parasitology, Department of Pathogen Biology, School of Basic Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang Y, Ying X, He Y, Jiang L, Zhang S, Bartra SS, Plano GV, Klena JD, Skurnik M, Chen H, Cai H, Chen T. Invasiveness of the Yersinia pestis ail protein contributes to host dissemination in pneumonic and oral plague. Microb Pathog 2020; 141:103993. [PMID: 31988008 DOI: 10.1016/j.micpath.2020.103993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 11/24/2022]
Abstract
Yersinia pestis, a Gram-negative bacterium, is the etiologic agent of plague. A hallmark of Y. pestis infection is the organism's ability to rapidly disseminate through an animal host. Y. pestis expresses the outer membrane protein, Ail (Attachment invasion locus), which is associated with host invasion and serum resistance. However, whether Ail plays a role in host dissemination remains unclear. In this study, C57BL/6J mice were challenged with a defined Y. pestis strain, KimD27, or an isogenic ail-deleted mutant derived from KimD27 via metacarpal paw pad inoculation, nasal drops, orogastric infection, or tail vein injection to mimic bubonic, pneumonic, oral, or septicemic plague, respectively. Our results showed that ail-deleted Y. pestis KimD27 lost the ability to invade host cells, leading to failed host dissemination in the pneumonic and oral plague models but not in the bubonic or septicemic plague models, which do not require invasiveness. Therefore, this study demonstrated that whether Ail plays a role in Y. pestis pathogenesis depends on the infection route.
Collapse
Affiliation(s)
- Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China; Translational Medicine Conter, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33101, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, Helsinki, Finland
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China.
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Byvalov AA, Konyshev IV. Yersinia pseudotuberculosis-derived adhesins. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-3-4-437-448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Around fifteen surface components referred to adhesins have been identified in Yersinia pseudotuberculosis combining primarily microbiological, molecular and genetic, as well as immunochemical and biophysical methods. Y. pseudotuberculosis-derived adhesins vary in structure and chemical composition but they are mainly presented by protein molecules. Some of them were shown to participate not only in adhesive but in other pathogen-related physiological functions in the host-parasite interplay. Adhesins can mediate bacterial adhesion to eukaryotic cell either directly or via the extracellular matrix components. These adhesion molecules are encoded by chromosomal DNA excepting YadA protein which gene is located in the calcium-dependence plasmid pYV common for pathogenic yersisniae. An optimum temperature for adhesin biosynthesis is located close to the body temperature of warm-blooded animals; however, at low temperature only invasin InvA, full-length smooth lipopolysaccharide and porin OmpF are produced in Y. pseudotuberculosis. Several adhesins (Psa, InvA) can be expressed at low pH (corresponds to intracellular content), thereby defining pathogenic yersiniae as facultative intracellular parasites. Three human Yersinia genus pathogens differ by ability to produce adhesins. Y. pseudotuberculosis adherence to host cells or extracellular matrix components is determined by a cumulative adhesion-based activity, which expression depends on chemical composition and physicochemical environmental conditions. It’s proposed that at the initial stage of infectious process adherence of Y. pseudotuberculosis to intestinal epithelium is mediated by InvA protein and “smooth” LPS form. These adhesins are produced in bacterial cells at low (lower than 30°С) temperature occurring in environment from which a pathogen invades into the host. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, possibly, liver and spleen. At later stages of pathogenesis, after penetrating through intestinal epithelium, bacterial cells produce other adhesins, which promote survival and dissemination primarily into the mesenteric lymph nodes and, perhaps, liver and spleen. Qualitative and quantitative spectrum of Y. pseudotuberculosis adhesins is determined by environmental parameters (intercellular space, intracellular content within the diverse eukaryotic cells).
Collapse
|
12
|
Ye C, Li Q, Li X, Park CG, He Y, Zhang Y, Wu B, Xue Y, Yang K, Lv Y, Ying XL, Ding HH, Cai H, Alkraiem AA, Njiri O, Tembo J, Huang HP, Li AY, Gong J, Qin J, Cheng B, Wei X, Sun Z, Zhang SS, Zhang P, Zheng GX, Li W, Kan B, Yan M, Xiding X, Huo X, Zeng Y, Peng H, Fu Y, Klena JD, Skurnik M, Jiang LY, Chen T. Salmonella enterica Serovar Typhimurium Interacts with CD209 Receptors To Promote Host Dissemination and Infection. Infect Immun 2019; 87:e00100-19. [PMID: 31085704 PMCID: PMC6652768 DOI: 10.1128/iai.00100-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, a Gram-negative bacterium, can cause infectious diseases ranging from gastroenteritis to systemic dissemination and infection. However, the molecular mechanisms underlying this bacterial dissemination have yet to be elucidated. A study indicated that using the lipopolysaccharide (LPS) core as a ligand, S Typhimurium was able to bind human dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (hCD209a), an HIV receptor that promotes viral dissemination by hijacking antigen-presenting cells (APCs). In this study, we showed that S Typhimurium interacted with CD209s, leading to the invasion of APCs and potentially the dissemination to regional lymph nodes, spleen, and liver in mice. Shielding of the exposed LPS core through the expression of O-antigen reduces dissemination and infection. Thus, we propose that similar to HIV, S Typhimurium may also utilize APCs via interactions with CD209s as a way to disseminate to the lymph nodes, spleen, and liver to initiate host infection.
Collapse
Affiliation(s)
- Chenglin Ye
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qiao Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xinyi Li
- Department of Clinical Laboratory, Jingmen No. 1 People's Hospital, Jingmen, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yingxia He
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Yingmiao Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bicong Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ying Xue
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Kun Yang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yin Lv
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Ling Ying
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Hui Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Huahua Cai
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ayman Ahmad Alkraiem
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
- Department of Biology, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Olivia Njiri
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - John Tembo
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Ping Huang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - An-Yi Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jianping Gong
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Jichao Qin
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bing Cheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Ziyong Sun
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Shu-Sheng Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Pei Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Guo-Xing Zheng
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Wei Li
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Meiying Yan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Xiamu Xiding
- Division of Disease Control and Prevention for Endemic Diseases, Wenquan Center for Disease Control and Prevention, Xinjiang, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention (CDC), Wuhan, Hubei, China
| | - Yingchun Zeng
- Hubei Provincial Center for Disease Control and Prevention (CDC), Wuhan, Hubei, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yangxin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Ling-Yu Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Tie Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Modeling Pneumonic Plague in Human Precision-Cut Lung Slices Highlights a Role for the Plasminogen Activator Protease in Facilitating Type 3 Secretion. Infect Immun 2019; 87:IAI.00175-19. [PMID: 31085709 PMCID: PMC6652753 DOI: 10.1128/iai.00175-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Pneumonic plague is the deadliest form of disease caused by Yersinia pestis Key to the progression of infection is the activity of the plasminogen activator protease Pla. Deletion of Pla results in a decreased Y. pestis bacterial burden in the lung and failure to progress into the lethal proinflammatory phase of disease. While a number of putative functions have been attributed to Pla, its precise role in the pathogenesis of pneumonic plague is yet to be defined. Here, we show that Pla facilitates type 3 secretion into primary alveolar macrophages but not into the commonly used THP-1 cell line. We also establish human precision-cut lung slices as a platform for modeling early host/pathogen interactions during pneumonic plague and solidify the role of Pla in promoting optimal type 3 secretion using primary human tissue with relevant host cell heterogeneity. These results position Pla as a key player in the early host/pathogen interactions that define pneumonic plague and showcase the utility of human precision-cut lung slices as a platform to evaluate pulmonary infection by bacterial pathogens.
Collapse
|
14
|
Yang K, He Y, Park CG, Kang YS, Zhang P, Han Y, Cui Y, Bulgheresi S, Anisimov AP, Dentovskaya SV, Ying X, Jiang L, Ding H, Njiri OA, Zhang S, Zheng G, Xia L, Kan B, Wang X, Jing H, Yan M, Li W, Wang Y, Xiamu X, Chen G, Ma D, Bartra SS, Plano GV, Klena JD, Yang R, Skurnik M, Chen T. Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection. Front Immunol 2019; 10:96. [PMID: 30915064 PMCID: PMC6422942 DOI: 10.3389/fimmu.2019.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis, a Gram-negative bacterium and the etiologic agent of plague, has evolved from Yersinia pseudotuberculosis, a cause of a mild enteric disease. However, the molecular and biological mechanisms of how Y. pseudotuberculosis evolved to such a remarkably virulent pathogen, Y. pestis, are not clear. The ability to initiate a rapid bacterial dissemination is a characteristic hallmark of Y. pestis infection. A distinguishing characteristic between the two Yersinia species is that Y. pseudotuberculosis strains possess an O-antigen of lipopolysaccharide (LPS) while Y. pestis has lost the O-antigen during evolution and therefore exposes its core LPS. In this study, we showed that Y. pestis utilizes its core LPS to interact with SIGNR1 (CD209b), a C-type lectin receptor on antigen presenting cells (APCs), leading to bacterial dissemination to lymph nodes, spleen and liver, and the initiation of a systemic infection. We therefore propose that the loss of O-antigen represents a critical step in the evolution of Y. pseudotuberculosis into Y. pestis in terms of hijacking APCs, promoting bacterial dissemination and causing the plague.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Sun Kang
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Pei Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Andrey P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | | | - Xiaoling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honghui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Olivia Adhiambo Njiri
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biological Sciences, Faculty of Science, Technology and Engineering, Chuka University, Chuka, Kenya
| | - Shusheng Zhang
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lianxu Xia
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meiying Yan
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Li
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanzhi Wang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Xiding Xiamu
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - John D Klena
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, Helsinki University Central Hospital Laboratory Diagnostics, University of Helsinki, Helsinki, Finland
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
15
|
The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep 2019. [PMID: 30737418 DOI: 10.1038/s41598-018-38031-2]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for Proteobacteria/Firmicutes was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Collapse
|
16
|
Abstract
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for Proteobacteria/Firmicutes was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Collapse
|
17
|
Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, Lu H, Shan W, Wu Y, Li Y, Xu X, Weng D, Meng L, Hu J, Gao Q, Ma D, Chen G. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep 2019; 9:1691. [PMID: 30737418 PMCID: PMC6368644 DOI: 10.1038/s41598-018-38031-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian carcinoma is caused by multiple factors, but its etiology associated with microbes and infection is unknown. Using 16S rRNA high-throughput sequencing methods, the diversity and composition of the microbiota from ovarian cancer tissues (25 samples) and normal distal fallopian tube tissues (25 samples) were analyzed. High-throughput sequencing showed that the diversity and richness indexes were significantly decreased in ovarian cancer tissues compared to tissues from normal distal fallopian tubes. The ratio of the two phyla for Proteobacteria/Firmicutes was notably increased in ovarian cancer, which revealed that microbial composition change might be associated with the process of ovarian cancer development. In addition, transcriptome-sequencing (RNA-seq) analyses suggested that the transcriptional profiles were statistically different between ovarian carcinoma and normal distal fallopian tubes. Moreover, a set of genes including 84 different inflammation-associated or immune-associated genes, which had been named as the human antibacterial-response genes were also modulated expression. Therefore, we hypothesize that the microbial composition change, as a novel risk factor, may be involving the initiation and progression of ovarian cancer via influencing and regulating the local immune microenvironment of fallopian tubes except for regular pathways.
Collapse
Affiliation(s)
- Bo Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoyang Sun
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jia Huang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Xia
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ensong Guo
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Na Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hao Lu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wanying Shan
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yifan Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuan Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaoyan Xu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Danhui Weng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Li Meng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Junbo Hu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Gang Chen
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
18
|
He YX, Ye CL, Zhang P, Li Q, Park CG, Yang K, Jiang LY, Lv Y, Ying XL, Ding HH, Huang HP, Mambwe Tembo J, Li AY, Cheng B, Zhang SS, Zheng GX, Chen SY, Li W, Xia LX, Kan B, Wang X, Jing HQ, Yang RF, Peng H, Fu YX, Klena JD, Skurnik M, Chen T. Yersinia pseudotuberculosis Exploits CD209 Receptors for Promoting Host Dissemination and Infection. Infect Immun 2019; 87:e00654-18. [PMID: 30348825 PMCID: PMC6300620 DOI: 10.1128/iai.00654-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis-CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis-CD209 interactions by expression of O-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis-CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.
Collapse
Affiliation(s)
- Ying-Xia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Cheng-Lin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Pei Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Chae Gyu Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kun Yang
- Department of Pathogen Biology and Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ling-Yu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Xiao-Ling Ying
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Hui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Hong-Ping Huang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - John Mambwe Tembo
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
- Department of Paediatrics & Child Health, The University of Zambia-University College London Medical School at Zambia, Lusaka, Zambia
| | - An-Yi Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Bing Cheng
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| | - Shu-Sheng Zhang
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Guo-Xing Zheng
- Department of Biomedical Science, College of Medicine-Rockford, University of Illinois at Chicago, Rockford, Illinois, USA
| | - Shi-Yun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Lian-Xu Xia
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Biao Kan
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Xin Wang
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Huai-Qi Jing
- Department of Diarrheal Diseases, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Rui-Fu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Klena
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Abstract
As a pathogen of plague, Yersinia pestis caused three massive pandemics in history that killed hundreds of millions of people. Yersinia pestis is highly invasive, causing severe septicemia which, if untreated, is usually fatal to its host. To survive in the host and maintain a persistent infection, Yersinia pestis uses several stratagems to evade the innate and the adaptive immune responses. For example, infections with this organism are biphasic, involving an initial "noninflammatory" phase where bacterial replication occurs initially with little inflammation and following by extensive phagocyte influx, inflammatory cytokine production, and considerable tissue destruction, which is called "proinflammatory" phase. In contrast, the host also utilizes its immune system to eliminate the invading bacteria. Neutrophil and macrophage are the first defense against Yersinia pestis invading through phagocytosis and killing. Other innate immune cells also play different roles, such as dendritic cells which help to generate more T helper cells. After several days post infection, the adaptive immune response begins to provide organism-specific protection and has a long-lasting immunological memory. Thus, with the cooperation and collaboration of innate and acquired immunity, the bacterium may be eliminated from the host. The research of Yersinia pestis and host immune systems provides an important topic to understand pathogen-host interaction and consequently develop effective countermeasures.
Collapse
Affiliation(s)
- Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
20
|
Yersinia pestis YopK Inhibits Bacterial Adhesion to Host Cells by Binding to the Extracellular Matrix Adaptor Protein Matrilin-2. Infect Immun 2017; 85:IAI.01069-16. [PMID: 28533472 DOI: 10.1128/iai.01069-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 05/10/2017] [Indexed: 01/30/2023] Open
Abstract
Pathogenic yersiniae harbor a type III secretion system (T3SS) that injects Yersinia outer protein (Yop) into host cells. YopK has been shown to control Yop translocation and prevent inflammasome recognition of the T3SS by the innate immune system. Here, we demonstrate that YopK inhibits bacterial adherence to host cells by binding to the extracellular matrix adaptor protein matrilin-2 (MATN2). YopK binds to MATN2, and deleting amino acids 91 to 124 disrupts binding of YopK to MATN2. A yopK null mutant exhibits a hyperadhesive phenotype, which could be responsible for the established Yop hypertranslocation phenotype of yopK mutants. Expression of YopK, but not YopKΔ91-124, in a yopK mutant restored the wild-type phenotypes of adhesion and Yop translocation, suggesting that binding to MATN2 might be essential for YopK to inhibit bacterial adhesion and negatively regulate Yop translocation. A green fluorescent protein (GFP)-YopK fusion specifically binds to the endogenous MATN2 on the surface of HeLa cells, whereas GFP-YopKΔ91-124 cannot. Addition of purified YopK protein during infection decreased adhesion of Y. pestis to HeLa cells, while YopKΔ91-124 protein showed no effect. Taking these results together, we propose a model that the T3SS-secreted YopK hinders bacterial adhesion to HeLa cells by binding to MATN2, which is ubiquitously exposed on eukaryotic cells.
Collapse
|
21
|
Two Isoforms of Yersinia pestis Plasminogen Activator Pla: Intraspecies Distribution, Intrinsic Disorder Propensity, and Contribution to Virulence. PLoS One 2016; 11:e0168089. [PMID: 27936190 PMCID: PMC5148098 DOI: 10.1371/journal.pone.0168089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
It has been shown previously that several endemic Y. pestis isolates with limited virulence contained the I259 isoform of the outer membrane protease Pla, while the epidemic highly virulent strains possessed only the T259 Pla isoform. Our sequence analysis of the pla gene from 118 Y. pestis subsp. microtus strains revealed that the I259 isoform was present exclusively in the endemic strains providing a convictive evidence of more ancestral origin of this isoform. Analysis of the effects of the I259T polymorphism on the intrinsic disorder propensity of Pla revealed that the I259T mutation slightly increases the intrinsic disorder propensity of the C-terminal tail of Pla and makes this protein slightly more prone for disorder-based protein-protein interactions, suggesting that the T259 Pla could be functionally more active than the I259 Pla. This assumption was proven experimentally by assessing the coagulase and fibrinolytic activities of the two Pla isoforms in human plasma, as well as in a direct fluorometric assay with the Pla peptide substrate. The virulence testing of Pla-negative or expressing the I259 and T259 Pla isoforms Y. pestis subsp. microtus and subsp. pestis strains did not reveal any significant difference in LD50 values and dose-dependent survival assays between them by using a subcutaneous route of challenge of mice and guinea pigs or intradermal challenge of mice. However, a significant decrease in time-to-death was observed in animals infected with the epidemic T259 Pla-producing strains as compared to the parent Pla-negative variants. Survival curves of the endemic I259 Pla+ strains fit between them, but significant difference in mean time to death post infection between the Pla−strains and their I259 Pla+ variants could be seen only in the isogenic set of subsp. pestis strains. These findings suggest an essential role for the outer membrane protease Pla evolution in Y. pestis bubonic infection exacerbation that is necessary for intensification of epidemic process from endemic natural focality with sporadic cases in men to rapidly expanding epizootics followed by human epidemic outbreaks, local epidemics or even pandemics.
Collapse
|
22
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
23
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
24
|
Abstract
In this chapter, a comprehensive overview of the known ligands for the C-type lectins (CTLs) is provided. Emphasis has been placed on the chemical structure of the glycans that bind to the different CTLs and the amount of structural variation (or overlap) that each CTL can tolerate. In this way, both the synthetic carbohydrate chemist and the immunologist can more readily gain insight into the existing structure-activity space for the CTL ligands and, ideally, see areas of synergy that will help identify and refine the ligands for these receptors.
Collapse
Affiliation(s)
- Sho Yamasaki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Abstract
For many years innate immunity was regarded as a relatively nonspecific set of mechanisms serving as a first line of defence to contain infections while the more refined adaptive immune response was developing. The discovery of pattern recognition receptors (PRRs) revolutionised the prevailing view of innate immunity, revealing its intimate connection with adaptive immunity and generation of effector and memory T- and B-cell responses. Among the PRRs, families of Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), along with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)-like receptors (ALRs), have been characterised. NLR sensors have been a particular focus of attention, and some NLRs have emerged as key orchestrators of the inflammatory response through the formation of large multiprotein complexes termed inflammasomes. However, several other functions not related to inflammasomes have also been described for NLRs. This chapter introduces the different families of PRRs, their signalling pathways, cross-regulation and their roles in immunosurveillance. The structure and function of NLRs is also discussed with particular focus on the non-inflammasome NLRs.
Collapse
|
26
|
Yang R, Cui Y, Bi Y. Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:377-391. [PMID: 27722871 DOI: 10.1007/978-94-024-0890-4_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Yersinia pestis is a typical zoonotic bacterial pathogen. The following reasons make this pathogen a model for studying zoonotic pathogens: (1) Its unique lifestyle makes Y. pestis an ideal model for studying host-vector-environment-pathogen interactions; (2) population diversity characters in Y. pestis render it a model species for studying monomorphic bacterial evolution; (3) the pathogenic features of bacteria provide us with good opportunities to study human immune responses; (4) typical animal and vector models of Y. pestis infection create opportunities for experimental studies on pathogenesis and evolution; and (5) repeated pandemics and local outbreaks provide us with clues about the infectious disease outbreaks that have occurred in human history.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yujing Bi
- Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| |
Collapse
|
27
|
Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis. Infect Immun 2015; 84:365-74. [PMID: 26553463 DOI: 10.1128/iai.01168-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023] Open
Abstract
Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague.
Collapse
|
28
|
Guinet F, Avé P, Filali S, Huon C, Savin C, Huerre M, Fiette L, Carniel E. Dissociation of Tissue Destruction and Bacterial Expansion during Bubonic Plague. PLoS Pathog 2015; 11:e1005222. [PMID: 26484539 PMCID: PMC4615631 DOI: 10.1371/journal.ppat.1005222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/22/2015] [Indexed: 01/14/2023] Open
Abstract
Activation and/or recruitment of the host plasmin, a fibrinolytic enzyme also active on extracellular matrix components, is a common invasive strategy of bacterial pathogens. Yersinia pestis, the bubonic plague agent, expresses the multifunctional surface protease Pla, which activates plasmin and inactivates fibrinolysis inhibitors. Pla is encoded by the pPla plasmid. Following intradermal inoculation, Y. pestis has the capacity to multiply in and cause destruction of the lymph node (LN) draining the entry site. The closely related, pPla-negative, Y. pseudotuberculosis species lacks this capacity. We hypothesized that tissue damage and bacterial multiplication occurring in the LN during bubonic plague were linked and both driven by pPla. Using a set of pPla-positive and pPla-negative Y. pestis and Y. pseudotuberculosis strains in a mouse model of intradermal injection, we found that pPla is not required for bacterial translocation to the LN. We also observed that a pPla-cured Y. pestis caused the same extensive histological lesions as the wild type strain. Furthermore, the Y. pseudotuberculosis histological pattern, characterized by infectious foci limited by inflammatory cell infiltrates with normal tissue density and follicular organization, was unchanged after introduction of pPla. However, the presence of pPla enabled Y. pseudotuberculosis to increase its bacterial load up to that of Y. pestis. Similarly, lack of pPla strongly reduced Y. pestis titers in LNs of infected mice. This pPla-mediated enhancing effect on bacterial load was directly dependent on the proteolytic activity of Pla. Immunohistochemistry of Pla-negative Y. pestis-infected LNs revealed extensive bacterial lysis, unlike the numerous, apparently intact, microorganisms seen in wild type Y. pestis-infected preparations. Therefore, our study demonstrates that tissue destruction and bacterial survival/multiplication are dissociated in the bubo and that the primary action of Pla is to protect bacteria from destruction rather than to alter the tissue environment to favor Y. pestis propagation in the host. The hallmark of bubonic plague, a disease that ravaged Medieval Europe and is still prevalent in several countries, is the bubo, a highly inflammatory and painful lymph node, which is characterized by high concentrations of bacteria within a severely damaged organ. Yersinia pestis, the causative agent, expresses a surface protease, Pla, critical to the development of bubonic plague. This multitarget protease has the potential to activate the fibrinolytic pathway and to promote destruction of extracellular protein networks within tissues. Hence, it was expected that Pla was responsible for the tissue destructions of the bubo, and consequently, for bacterial propagation and virulence. However, we found, using various engineered Yersinia strains in a mouse model of bubonic plague, that Pla proteolytic activity was dispensable for lymph node alteration, but was required to achieve high bacterial loads in the organ. Further analysis showed that Pla is essential for preventing the bacteria from being destroyed in the host. Therefore, the role of Pla as a virulence factor is to protect Y. pestis survival and integrity in the host, rather than to assist its spread through tissue destruction.
Collapse
Affiliation(s)
- Françoise Guinet
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
- * E-mail: (FG); (EC)
| | - Patrick Avé
- Unité d’Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Sofia Filali
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | - Christèle Huon
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | - Cyril Savin
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
| | - Michel Huerre
- Unité de Recherche et d’Expertise d’Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Laurence Fiette
- Unité d’Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | - Elisabeth Carniel
- Unité de Recherche Yersinia, Institut Pasteur, Paris, France
- * E-mail: (FG); (EC)
| |
Collapse
|
29
|
Yang K, Park CG, Cheong C, Bulgheresi S, Zhang S, Zhang P, He Y, Jiang L, Huang H, Ding H, Wu Y, Wang S, Zhang L, Li A, Xia L, Bartra SS, Plano GV, Skurnik M, Klena JD, Chen T. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination. Immunol Cell Biol 2015; 93:815-24. [PMID: 25829141 PMCID: PMC4612776 DOI: 10.1038/icb.2015.46] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection.
Collapse
Affiliation(s)
- Kun Yang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chae G Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Cheolho Cheong
- Institut de Recherches Cliniques de Montréal (IRCM)MontrealQuebecCanada
| | - Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of ViennaViennaAustria
| | - Shusheng Zhang
- Department of Biomedical Science, University of Illinois at ChicagoRockfordILUSA
| | - Pei Zhang
- Department of Biomedical Science, University of Illinois at ChicagoRockfordILUSA
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hongping Huang
- The Center for Experimental Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Honghui Ding
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Anyi Li
- The Animal Experimental Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Lianxu Xia
- Department of Zoonotic Diseases, National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and PreventionBeijingChina
| | - Sara S Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiFLUSA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of MedicineMiamiFLUSA
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Research Programs Unit, Immunobiology, University of Helsinki, and Helsinki University HospitalHelsinkiFinland
| | - John D Klena
- The School of Basic Medical Sciences, Peking UniversityBeijingChina
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
30
|
Zimbler DL, Schroeder JA, Eddy JL, Lathem WW. Early emergence of Yersinia pestis as a severe respiratory pathogen. Nat Commun 2015; 6:7487. [PMID: 26123398 PMCID: PMC4491175 DOI: 10.1038/ncomms8487] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
Yersinia pestis causes the fatal respiratory disease pneumonic plague. Y. pestis recently evolved from the gastrointestinal pathogen Y. pseudotuberculosis; however, it is not known at what point Y. pestis gained the ability to induce a fulminant pneumonia. Here we show that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. As Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimizes protease activity. While this modification is unnecessary to cause pneumonic plague, the substitution is instead needed to efficiently induce the invasive infection associated with bubonic plague. These findings indicate that Y. pestis was capable of causing pneumonic plague before it evolved to optimally cause invasive infections in mammals.
Collapse
Affiliation(s)
- Daniel L Zimbler
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jay A Schroeder
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Justin L Eddy
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Wyndham W Lathem
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
31
|
Korhonen TK. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica. J Thromb Haemost 2015; 13 Suppl 1:S115-20. [PMID: 26149012 DOI: 10.1111/jth.12932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity.
Collapse
Affiliation(s)
- T K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Evseeva VV, Platonov ME, Kopylov PK, Dentovskaya SV, Anisimov AP. PLASMINOGEN ACTIVATOR OF YERSINIA PESTIS. ACTA ACUST UNITED AC 2015. [DOI: 10.15789/2220-7619-2015-1-27-36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Jarocki VM, Tacchi JL, Djordjevic SP. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015; 15:1075-88. [PMID: 25492846 PMCID: PMC7167786 DOI: 10.1002/pmic.201400386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
Abstract
Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non‐proteolytic functions that play important roles in host epithelia adhesion, tissue invasion and in modulating immune responses. These additional “moonlighting” functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non‐proteolytic functions, including streptococcal pyrogenic exotoxin B, PepO and C5a peptidases, mycoplasmal aminopeptidases, mycobacterial chaperones and viral papain‐like proteases. We explore how these non‐proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non‐covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes.
Collapse
Affiliation(s)
- Veronica M. Jarocki
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Jessica L. Tacchi
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Steven P. Djordjevic
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
- Proteomics Core FacilityUniversity of TechnologySydneyNSWAustralia
| |
Collapse
|
34
|
St John AL, Ang WXG, Huang MN, Kunder CA, Chan EW, Gunn MD, Abraham SN. S1P-Dependent trafficking of intracellular yersinia pestis through lymph nodes establishes Buboes and systemic infection. Immunity 2014; 41:440-450. [PMID: 25238098 DOI: 10.1016/j.immuni.2014.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022]
Abstract
Pathologically swollen lymph nodes (LNs), or buboes, characterize Yersinia pestis infection, yet how they form and function is unknown. We report that colonization of the draining LN (dLN) occurred due to trafficking of infected dendritic cells and monocytes in temporally distinct waves in response to redundant chemotactic signals, including through CCR7, CCR2, and sphingosine-1-phospate (S1P) receptors. Retention of multiple subsets of phagocytes within peripheral LNs using the S1P receptor agonist FTY720 or S1P1-specific agonist SEW2871 increased survival, reduced colonization of downstream LNs, and limited progression to transmission-associated septicemic or pneumonic disease states. Conditional deletion of S1P1 in mononuclear phagocytes abolished node-to-node trafficking of infected cells. Thus, Y. pestis-orchestrated LN remodeling promoted its dissemination via host cells through the lymphatic system but can be blocked by prevention of leukocyte egress from DLNs. These findings define a novel trafficking route of mononuclear phagocytes and identify S1P as a therapeutic target during infection.
Collapse
Affiliation(s)
- Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | - W X Gladys Ang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Min-Nung Huang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christian A Kunder
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth W Chan
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Davis KM, Isberg RR. Plague's partners in crime. Immunity 2014; 41:347-349. [PMID: 25238090 DOI: 10.1016/j.immuni.2014.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hallmark of bubonic plague is the presence of grotesquely swollen lymph nodes, called buboes. This frenzied inflammatory response to Yersinia pestis is poorly understood. In this issue of Immunity, St. John et al. (2014) explore the mechanism by which Y. pestis spreads and thus leads to this striking lymphadenopathy.
Collapse
Affiliation(s)
- Kimberly M Davis
- Howard Hughes Medical Institute, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
36
|
Werner JL, Steele C. Innate receptors and cellular defense against pulmonary infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3842-50. [PMID: 25281754 PMCID: PMC4185409 DOI: 10.4049/jimmunol.1400978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant "ESKAPE pathogens" (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.
Collapse
Affiliation(s)
- Jessica L Werner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
37
|
Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. BIOLOGY 2014; 3:178-204. [PMID: 24833341 PMCID: PMC4009768 DOI: 10.3390/biology3010178] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions.
Collapse
Affiliation(s)
- Veera Kainulainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Timo K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
38
|
Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol 2014; 16:185-94. [PMID: 24330199 PMCID: PMC4016756 DOI: 10.1111/cmi.12249] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
Abstract
Signalling C‐type lectin receptors (CLRs) are crucial in shaping the immune response to fungal pathogens, but comparably little is known about the role of these receptors in bacterial, viral and parasitic infections. CLRs have many diverse functions depending on the signalling motifs in their cytoplasmic domains, and can induce endocytic, phagocytic, antimicrobial, pro‐inflammatory or anti‐inflammatory responses which are either protective or not during an infection. Understanding the role of CLRs in shaping anti‐microbial immunity offers great potential for the future development of therapeutics for disease intervention. In this review we will focus on the recognition of bacterial, viral and parasitic pathogens by CLRs, and how these receptors influence the outcome of infection. We will also provide a brief update on the role of CLRs in antifungal immunity.
Collapse
Affiliation(s)
- J Claire Hoving
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | | | | |
Collapse
|
39
|
Ke Y, Chen Z, Yang R. Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front Cell Infect Microbiol 2013; 3:106. [PMID: 24400226 PMCID: PMC3871965 DOI: 10.3389/fcimb.2013.00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 12/28/2022] Open
Abstract
During infection, Yersinia, a facultative intracellular bacterial species, exhibits the ability to first invade host cells and then counteract phagocytosis by the host cells. During these two distinct stages, invasion or antiphagocytic factors assist bacteria in manipulating host cells to accomplish each of these functions; however, the mechanism through which Yersinia regulates these functions during each step remains unclear. Here, we discuss those factors that seem to function reversely and give some hypothesis about how bacteria switch between the two distinct status.
Collapse
Affiliation(s)
- Yuehua Ke
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China ; Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences Beijing, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
40
|
Glycans from avian influenza virus are recognized by chicken dendritic cells and are targets for the humoral immune response in chicken. Mol Immunol 2013; 56:452-62. [DOI: 10.1016/j.molimm.2013.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 11/22/2022]
|
41
|
Uittenbogaard AM, Myers-Morales T, Gorman AA, Welsh E, Wulff C, Hinnebusch BJ, Korhonen TK, Straley SC. Temperature-dependence of yadBC phenotypes in Yersinia pestis. MICROBIOLOGY-SGM 2013; 160:396-405. [PMID: 24222617 DOI: 10.1099/mic.0.073205-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
YadB and YadC are putative trimeric autotransporters present only in the plague bacterium Yersinia pestis and its evolutionary predecessor, Yersinia pseudotuberculosis. Previously, yadBC was found to promote invasion of epithelioid cells by Y. pestis grown at 37 °C. In this study, we found that yadBC also promotes uptake of 37 °C-grown Y. pestis by mouse monocyte/macrophage cells. We tested whether yadBC might be required for lethality of the systemic stage of plague in which the bacteria would be pre-adapted to mammalian body temperature before colonizing internal organs and found no requirement for early colonization or growth over 3 days. We tested the hypothesis that YadB and YadC function on ambient temperature-grown Y. pestis in the flea vector or soon after infection of the dermis in bubonic plague. We found that yadBC did not promote uptake by monocyte/macrophage cells if the bacteria were grown at 28 °C, nor was there a role of yadBC in colonization of fleas by Y. pestis grown at 21 °C. However, the presence of yadBC did promote recoverability of the bacteria from infected skin for 28 °C-grown Y. pestis. Furthermore, the gene for the proinflammatory chemokine CXCL1 was upregulated in expression if the infecting Y. pestis lacked yadBC but not if yadBC was present. Also, yadBC was not required for recoverability if the bacteria were grown at 37 °C. These findings imply that thermally induced virulence properties dominate over effects of yadBC during plague but that yadBC has a unique function early after transmission of Y. pestis to skin.
Collapse
Affiliation(s)
- Annette M Uittenbogaard
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Tanya Myers-Morales
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Amanda A Gorman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Erin Welsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Christine Wulff
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - B Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Timo K Korhonen
- Division of General Microbiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Susan C Straley
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
42
|
Abstract
The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host’s innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response. Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host’s innate immune cells to bacteria early after intradermal infection. We found that neutrophils, innate immune cells that engulf and destroy microbes, are rapidly recruited to the injection site, irrespective of strain virulence, indicating that Y. pestis is unable to subvert neutrophil recruitment to the site of infection. However, we saw a decreased activation of neutrophils that were associated with Y. pestis strains harboring the pCD1 plasmid, which is essential for virulence. These findings indicate a role for pCD1-encoded factors in suppressing the activation/stimulation of these cells in vivo.
Collapse
|
43
|
|
44
|
Abstract
Synthetic CpG oligonucleotides (ODN) have potent immunostimulatory properties exploited in clinical vaccine trials. How CpG ODN are captured and delivered to the intracellular receptor TLR9, however, has been elusive. Here we show that DEC-205, a multilectin receptor expressed by a variety of cells, is a receptor for CpG ODN. When CpG ODN are used as an adjuvant, mice deficient in DEC-205 have impaired dendritic cell (DC) and B-cell maturation, are unable to make some cytokines such as IL-12, and display suboptimal cytotoxic T-cell responses. We reveal that DEC-205 directly binds class B CpG ODN and enhances their uptake. The CpG-ODN binding function of DEC-205 is conserved between mouse and man, although human DEC-205 preferentially binds a specific class B CpG ODN that has been selected for human clinical trials. Our findings identify an important receptor for class B CpG ODN and reveal a unique function for DEC-205.
Collapse
|
45
|
Impact on the host of the Yersinia pestis-specific virulence set and the contribution of the pla surface protease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:211-6. [PMID: 22782765 DOI: 10.1007/978-1-4614-3561-7_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Cao L, Lim T, Jun S, Thornburg T, Avci R, Yang X. Vulnerabilities in Yersinia pestis caf operon are unveiled by a Salmonella vector. PLoS One 2012; 7:e36283. [PMID: 22558420 PMCID: PMC3340336 DOI: 10.1371/journal.pone.0036283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
During infection, Yersinia pestis uses its F1 capsule to enhance survival and cause virulence to mammalian host. Since F1 is produced in large quantities and secreted into the host tissues, it also serves as a major immune target. To hold this detrimental effect under proper control, Y. pestis expresses the caf operon (encoding the F1 capsule) in a temperature-dependent manner. However, additional properties of the caf operon limit its expression. By overexpressing the caf operon in wild-type Salmonella enterica serovar Typhimurium under a potent promoter, virulence of Salmonella was greatly attenuated both in vitro and in vivo. In contrast, expression of the caf operon under the regulation of its native promoter exhibited negligible impairment of Salmonellae virulence. In-depth investigation revealed all individual genes in the caf operon attenuated Salmonella when overexpressed. The deleterious effects of caf operon and the caf individual genes were further confirmed when they were overexpressed in Y. pestis KIM6+. This study suggests that by using a weak inducible promoter, the detrimental effects of the caf operon are minimally manifested in Y. pestis. Thus, through tight regulation of the caf operon, Y. pestis precisely balances its capsular anti-phagocytic properties with the detrimental effects of caf during interaction with mammalian host.
Collapse
Affiliation(s)
- Ling Cao
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Timothy Lim
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - SangMu Jun
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Theresa Thornburg
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Recep Avci
- Imaging and Chemical Analysis Laboratory, Department of Physics, Montana State University, Bozeman, Montana, United States of America
| | - Xinghong Yang
- Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
47
|
Caminschi I, Maraskovsky E, Heath WR. Targeting Dendritic Cells in vivo for Cancer Therapy. Front Immunol 2012; 3:13. [PMID: 22566899 PMCID: PMC3342351 DOI: 10.3389/fimmu.2012.00013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo.
Collapse
Affiliation(s)
- Irina Caminschi
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research Melbourne, VIC, Australia
| | | | | |
Collapse
|
48
|
Abstract
Myeloid cells are key drivers of physiological responses to pathogen invasion or tissue damage. Members of the C-type lectin receptor (CLR) family stand out among the specialized receptors utilized by myeloid cells to orchestrate these responses. CLR ligands include carbohydrate, protein, and lipid components of both pathogens and self, which variably trigger endocytic, phagocytic, proinflammatory, or anti-inflammatory reactions. These varied outcomes rely on a versatile system for CLR signaling that includes tyrosine-based motifs that recruit kinases, phosphatases, or endocytic adaptors as well as nontyrosine-based signals that modulate the activation of other pathways or couple to the uptake machinery. Here, we review the signaling properties of myeloid CLRs and how they impact the role of myeloid cells in innate and adaptive immunity.
Collapse
Affiliation(s)
- David Sancho
- Department of Vascular Biology and Inflammation, CNIC, Centro Nacional de Investigaciones Cardiovasculares, E-28029, Madrid, Spain.
| | | |
Collapse
|
49
|
Substrates of the plasminogen activator protease of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:253-60. [PMID: 22782771 DOI: 10.1007/978-1-4614-3561-7_32] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Rosenzweig JA, Jejelowo O, Sha J, Erova TE, Brackman SM, Kirtley ML, van Lier CJ, Chopra AK. Progress on plague vaccine development. Appl Microbiol Biotechnol 2011; 91:265-86. [PMID: 21670978 DOI: 10.1007/s00253-011-3380-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | | | | | | | | | | | | | | |
Collapse
|