1
|
Wang X, Hu Y, Xu R. The pathogenic mechanism of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis. Neural Regen Res 2024; 19:800-806. [PMID: 37843214 PMCID: PMC10664110 DOI: 10.4103/1673-5374.382233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 10/17/2023] Open
Abstract
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex, basal ganglia, brainstem, and spinal cord, and commonly involves the muscles of the upper and/or lower extremities, and the muscles of the bulbar and/or respiratory regions. However, as the disease progresses, it affects the adjacent body regions, leading to generalized muscle weakness, occasionally along with memory, cognitive, behavioral, and language impairments; respiratory dysfunction occurs at the final stage of the disease. The disease has a complicated pathophysiology and currently, only riluzole, edaravone, and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries. The TAR DNA-binding protein 43 inclusions are observed in 97% of those diagnosed with amyotrophic lateral sclerosis. This review provides a preliminary overview of the potential effects of TAR DNA-binding protein 43 in the pathogenesis of amyotrophic lateral sclerosis, including the abnormalities in nucleoplasmic transport, RNA function, post-translational modification, liquid-liquid phase separation, stress granules, mitochondrial dysfunction, oxidative stress, axonal transport, protein quality control system, and non-cellular autonomous functions (e.g., glial cell functions and prion-like propagation).
Collapse
Affiliation(s)
- Xinxin Wang
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yushu Hu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Ke H, Liu K, Jiao B, Zhao L. Implications of TDP-43 in non-neuronal systems. Cell Commun Signal 2023; 21:338. [PMID: 37996849 PMCID: PMC10666381 DOI: 10.1186/s12964-023-01336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a versatile RNA/DNA-binding protein with multifaceted processes. While TDP-43 has been extensively studied in the context of degenerative diseases, recent evidence has also highlighted its crucial involvement in diverse life processes beyond neurodegeneration. Here, we mainly reviewed the function of TDP-43 in non-neurodegenerative physiological and pathological processes, including spermatogenesis, embryonic development, mammary gland development, tumor formation, and viral infection, highlighting its importance as a key regulatory factor for the maintenance of normal functions throughout life. TDP-43 exhibits diverse and sometimes opposite functionality across different cell types through various mechanisms, and its roles can shift at distinct stages within the same biological system. Consequently, TDP-43 operates in both a context-dependent and a stage-specific manner in response to a variety of internal and external stimuli. Video Abstract.
Collapse
Affiliation(s)
- Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Kang Liu
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
3
|
Kordala AJ, Stoodley J, Ahlskog N, Hanifi M, Garcia Guerra A, Bhomra A, Lim WF, Murray LM, Talbot K, Hammond SM, Wood MJA, Rinaldi C. PRMT inhibitor promotes SMN2 exon 7 inclusion and synergizes with nusinersen to rescue SMA mice. EMBO Mol Med 2023; 15:e17683. [PMID: 37724723 PMCID: PMC10630883 DOI: 10.15252/emmm.202317683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.
Collapse
Affiliation(s)
- Anna J Kordala
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Jessica Stoodley
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Nina Ahlskog
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | | | - Antonio Garcia Guerra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Amarjit Bhomra
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Wooi Fang Lim
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
- Euan McDonald Centre for Motor Neuron Disease ResearchUniversity of EdinburghEdinburghUK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe HospitalUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | | | - Matthew JA Wood
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| | - Carlo Rinaldi
- Department of PaediatricsUniversity of OxfordOxfordUK
- Institute of Developmental and Regenerative Medicine (IDRM)OxfordUK
- MDUK Oxford Neuromuscular CentreOxfordUK
| |
Collapse
|
4
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
5
|
Yang M, Qi R, Liu Y, Shen X, Zhao Y, Jin N, Wu R, Liu F, Gu J. Casein Kinase 1δ Phosphorylates TDP-43 and Suppresses Its Function in Tau mRNA Processing. J Alzheimers Dis 2023; 91:1527-1539. [PMID: 36641675 DOI: 10.3233/jad-220985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neurofibrillary tangle aggregated from anomalous hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD). Trans-active response DNA-binding protein of 43 kDa (TDP-43) enhances the instability and exon (E) 10 inclusion of tau mRNA. Cytoplasmic inclusion of hyperphosphorylated TDP-43 in the neurons constitutes the third most prevalent proteinopathy of AD. Casein kinase 1δ (CK1δ) is elevated in AD brain and phosphorylates TDP-43 in vitro. OBJECTIVE To determine the roles of CK1δ in phosphorylation, aggregation, and function of TDP-43 in the processing of tau mRNA. METHODS The interaction and colocalization of TDP-43 and CK1δ were analyzed by co-immunoprecipitation and immunofluorescence staining. TDP-43 phosphorylation by CK1δ was determined in vitro and in cultured cells. RIPA-insoluble TDP-43 aggregates obtained by ultracentrifugation were analyzed by immunoblots. The instability and E10 splicing of tau mRNA were studied by using a reporter of green fluorescence protein tailed with 3'-untranslational region of tau mRNA and a mini-tau gene and analyzed by real-time quantitative PCR and reverse transcriptional PCR. RESULTS We found that CK1δ interacted and co-localized with TDP-43. TDP-43 was phosphorylated by CK1δ at Ser379, Ser403/404, and Ser409/410 in vitro and in cultured cells, which was mutually enhanced. CK1δ overexpression promoted the aggregation of TDP-43 and suppressed its activity in enhancing the instability and E10 inclusion of tau mRNA. CONCLUSION CK1δ phosphorylates TDP-43, promotes its aggregation, and inhibits its activity in promoting the instability of tau mRNA and inclusion of tau E10. Elevated CK1δ in AD brain may contribute to TDP-43 and tau pathologies directly or indirectly.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Rongrong Qi
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuxiao Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xin Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yulou Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Ruozhen Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
6
|
Chiang WC, Fang YS, Lye YS, Weng TY, Ganesan K, Huang SH, Chang LY, Chou SC, Chen YR. Hyperphosphorylation-Mimetic TDP-43 Drives Amyloid Formation and Possesses Neuronal Toxicity at the Oligomeric Stage. ACS Chem Neurosci 2022; 13:2599-2612. [PMID: 36007056 DOI: 10.1021/acschemneuro.1c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TDP-43 proteinopathies cover a range of neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hyperphosphorylated TDP-43 was found within the inclusion bodies in disease lesions; however, the role of hyperphosphorylation and the toxic species are still ambiguous. To characterize the hyperphosphorylation effect of TDP-43, here, we employed five serine mutations implicated in the diseases at serine locations 379, 403, 404, 409, and 410 in the C-terminus to aspartate (S5D) and to alanine (S5A). We systematically characterized the conformation, liquid-liquid phase separation, oligomerization, and fibrillization of TDP-43 variants. Results revealed that the recombinant TDP-43 variants readily formed structurally similar spherical oligomers, as evidenced by circular dichroism spectroscopy, fluorescence spectroscopy, the TDP-43 oligomer-specific antibody assay, dynamic light scattering, and transmission electron microscopy. After incubation, only the phosphor-mimic S5D TDP-43 formed thioflavin-positive amyloid fibrils, whereas wild-type and S5A TDP-43 formed amorphous aggregates. We also examined membrane disruption, the cytotoxicity of human neuroblastoma, and the synaptic loss of primary neurons induced by oligomers and large aggregates of TDP-43. The results showed that all oligomeric TDP-43 variants were toxic regardless of hyperphosphorylation, but the fibrils and amorphous aggregates were not. Overall, our results demonstrated the hyperphosphorylation effect on fibril formation and the toxicity attributed from TDP-43 oligomers. This study facilitates the understanding and therapeutic development for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Wan-Chin Chiang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yu-Sheng Fang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan
| | - Yuh Shen Lye
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Yu Weng
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Kiruthika Ganesan
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Han Huang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Lan-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Shih-Chieh Chou
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 11529, Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Kuang-Fu Rd., Sec. 2., Hsinchu 30013, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
7
|
Altered TDP-43 Structure and Function: Key Insights into Aberrant RNA, Mitochondrial, and Cellular and Systemic Metabolism in Amyotrophic Lateral Sclerosis. Metabolites 2022; 12:metabo12080709. [PMID: 36005581 PMCID: PMC9415507 DOI: 10.3390/metabo12080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disorder with no cure available and limited treatment options. ALS is a highly heterogeneous disease, whereby patients present with vastly different phenotypes. Despite this heterogeneity, over 97% of patients will exhibit pathological TAR-DNA binding protein-43 (TDP-43) cytoplasmic inclusions. TDP-43 is a ubiquitously expressed RNA binding protein with the capacity to bind over 6000 RNA and DNA targets—particularly those involved in RNA, mitochondrial, and lipid metabolism. Here, we review the unique structure and function of TDP-43 and its role in affecting the aforementioned metabolic processes in ALS. Considering evidence published specifically in TDP-43-relevant in vitro, in vivo, and ex vivo models we posit that TDP-43 acts in a positive feedback loop with mRNA transcription/translation, stress granules, cytoplasmic aggregates, and mitochondrial proteins causing a relentless cycle of disease-like pathology eventuating in neuronal toxicity. Given its undeniable presence in ALS pathology, TDP-43 presents as a promising target for mechanistic disease modelling and future therapeutic investigations.
Collapse
|
8
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
9
|
Rajič Bumber J, Pilipović K, Janković T, Dolenec P, Gržeta N, Križ J, Župan G. Repetitive Traumatic Brain Injury Is Associated With TDP-43 Alterations, Neurodegeneration, and Glial Activation in Mice. J Neuropathol Exp Neurol 2021; 80:2-14. [PMID: 33212475 DOI: 10.1093/jnen/nlaa130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence points to a relationship between repetitive mild traumatic brain injury (mTBI), the Tar DNA binding protein 43 (TDP-43) pathology and some neurodegenerative diseases, but the underlying pathophysiological mechanisms are still unknown. We examined TDP-43 regulation, neurodegeneration, and glial responses following repetitive mTBI in nontransgenic mice and in animals with overexpression of human mutant TDP-43 protein (TDP-43G348C). In the frontal cortices of the injured nontransgenic animals, early TDP-43 cytoplasmatic translocation and overexpression of the protein and its pathological forms were detected. In the injured animals of both genotypes, neurodegeneration and pronounced glial activity were detected in the optic tract. In TDP-43G348C mice, these changes were significantly higher at day 7 after the last mTBI compared with the values in the nontransgenic animals. Results of this study suggest that the changes in the TDP-43 regulation in the frontal cortices of the nontransgenic animals were a transient stress response to the brain injury. Repetitive mTBI did not produce additional TDP-43 dysregulation or neurodegeneration or pronounced gliosis in the frontal cortex of TDP-43G348C mice. Our research also suggests that overexpression of mutated human TDP-43 possibly predisposes the brain to more intense neurodegeneration and glial activation in the optic tract after repetitive mTBI.
Collapse
Affiliation(s)
- Jelena Rajič Bumber
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Pilipović
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Tamara Janković
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Petra Dolenec
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nika Gržeta
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jasna Križ
- Department of Psychiatry and Neuroscience, Faculty of Medicine, University of Laval, Quebec, QC, Canada
| | - Gordana Župan
- From the Department of Pharmacology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
10
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
11
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
12
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
13
|
Flores BN, Li X, Malik AM, Martinez J, Beg AA, Barmada SJ. An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Rep 2020; 27:1133-1150.e8. [PMID: 31018129 PMCID: PMC6499398 DOI: 10.1016/j.celrep.2019.03.093] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
The majority of individuals with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) exhibit neuronal cytoplasmic inclusions rich in the RNA binding protein TDP43. Even so, the relation between the RNA binding properties of TDP43 and neurodegeneration remains obscure. Here, we show that engineered mutations disrupting a salt bridge between the RNA recognition motifs of TDP43 interfere with RNA binding and eliminate the recognition of native TDP43 substrates. The same mutations dramatically destabilize TDP43, alter its subcellular localization, and abrogate TDP43-dependent neuro-degeneration. Worms harboring homologous TDP-1 mutations phenocopy knockout strains, confirming the necessity of salt bridge residues for TDP43 function. Moreover, the accumulation of functional TDP43, but not RNA binding-deficient variants, disproportionately affects transcripts encoding ribo-some and oxidative phosphorylation components. These studies demonstrate the significance of the salt bridge in sustaining TDP43 stability and RNA binding properties, factors that are crucial for neurodegeneration arising from TDP43 deposition in ALS and FTD. Flores et al. uncover essential roles for an intramolecular salt bridge in the function of TDP43, an RNA binding protein implicated in neurodegenerative diseases. Salt bridge interruption attenuates TDP43 RNA binding affinity and specificity, destabilizes the protein, and prevents TDP43-mediated neurotoxicity arising from misprocessing of ribosomal and mitochondrial transcripts.
Collapse
Affiliation(s)
- Brittany N Flores
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48104, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Ahmed M Malik
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48104, USA; Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Jose Martinez
- Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Asim A Beg
- Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Sami J Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48104, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA; Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA.
| |
Collapse
|
14
|
Lomonte P, Baklouti F, Binda O. The Biochemistry of Survival Motor Neuron Protein Is Paving the Way to Novel Therapies for Spinal Muscle Atrophy. Biochemistry 2020; 59:1391-1397. [PMID: 32227847 DOI: 10.1021/acs.biochem.9b01124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal muscle atrophy (SMA) is the leading genetic cause of infant mortality. SMA originates from the loss of functional survival motor neuron (SMN) protein. In most SMA cases, the SMN1 gene is deleted. However, in some cases, SMN is mutated, impairing its biological functions. SMN mutants could provide clues about the biological functions of SMN and the specific impact on SMA, potentially leading to the identification of new pathways and thus providing novel treatment alternatives, and even personalized care. Here, we discuss the biochemistry of SMN and the most recent SMA treatment strategies.
Collapse
Affiliation(s)
- Patrick Lomonte
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), 69008 Lyon, France
| | - Faouzi Baklouti
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), 69008 Lyon, France
| | - Olivier Binda
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène (INMG), 69008 Lyon, France
| |
Collapse
|
15
|
Picchiarelli G, Dupuis L. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress 2020; 4:76-91. [PMID: 32292882 PMCID: PMC7146060 DOI: 10.15698/cst2020.04.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.
Collapse
Affiliation(s)
- Gina Picchiarelli
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| |
Collapse
|
16
|
Thelen MP, Kye MJ. The Role of RNA Binding Proteins for Local mRNA Translation: Implications in Neurological Disorders. Front Mol Biosci 2020; 6:161. [PMID: 32010708 PMCID: PMC6974540 DOI: 10.3389/fmolb.2019.00161] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
As neurons are one of the most highly polarized cells in our body, they require sophisticated cellular mechanisms to maintain protein homeostasis in their subcellular compartments such as axons and dendrites. When neuronal protein homeostasis is disturbed due to genetic mutations or deletions, this often results in degeneration of neurons leading to devastating outcome such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and fragile X syndrome (FXS). Ribonucleoprotein (RNP) complexes are macromolecular complexes composed of RNA binding proteins (RBPs) and their target RNAs. RBPs contain RNA binding domains and bind to RNA molecules via specific sequence motifs. RNP complexes have various functions in gene expression including messenger RNA (mRNA) trafficking, RNA processing and silencing. In neurons, RBPs deliver specific sets of mRNAs to subcellular compartments such as axons and dendrites to be locally translated. Mutations or deletions in genes coding for RNPs have been reported as causes for neurological disorders such as SMA, ALS, and FXS. As RBPs determine axonal or dendritic mRNA repertoires as well as proteomes by trafficking selective mRNAs and regulating local protein synthesis, they play a crucial role for neuronal function. In this review, we summarize the role of well-known RBPs, SMN, TDP-43, FUS, and FMRP, and review their function for local protein synthesis in neurons. Furthermore, we discuss their pathological contribution to the neurological disorders.
Collapse
Affiliation(s)
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Lee YCG, Ventura IM, Rice GR, Chen DY, Colmenares SU, Long M. Rapid Evolution of Gained Essential Developmental Functions of a Young Gene via Interactions with Other Essential Genes. Mol Biol Evol 2020; 36:2212-2226. [PMID: 31187122 DOI: 10.1093/molbev/msz137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
New genes are of recent origin and only present in a subset of species in a phylogeny. Accumulated evidence suggests that new genes, like old genes that are conserved across species, can also take on important functions and be essential for the survival and reproductive success of organisms. Although there are detailed analyses of the mechanisms underlying new genes' gaining fertility functions, how new genes rapidly become essential for viability remains unclear. We focused on a young retro-duplicated gene (CG7804, which we named Cocoon) in Drosophila that originated between 4 and 10 Ma. We found that, unlike its evolutionarily conserved parental gene, Cocoon has evolved under positive selection and accumulated many amino acid differences at functional sites from the parental gene. Despite its young age, Cocoon is essential for the survival of Drosophila melanogaster at multiple developmental stages, including the critical embryonic stage, and its expression is essential in different tissues from those of its parental gene. Functional genomic analyses found that Cocoon acquired unique DNA-binding sites and has a contrasting effect on gene expression to that of its parental gene. Importantly, Cocoon binding predominantly locates at genes that have other essential functions and/or have multiple gene-gene interactions, suggesting that Cocoon acquired novel essential function to survival through forming interactions that have large impacts on the gene interaction network. Our study is an important step toward deciphering the evolutionary trajectory by which new genes functionally diverge from parental genes and become essential.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Iuri M Ventura
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| | - Gavin R Rice
- Department of Evolution and Ecology, University of California, Davis, Davis, CA.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Dong-Yuan Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| |
Collapse
|
18
|
Konieczny P, Artero R. Drosophila SMN2 minigene reporter model identifies moxifloxacin as a candidate therapy for SMA. FASEB J 2019; 34:3021-3036. [PMID: 31909520 DOI: 10.1096/fj.201802554rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conserved Drosophila blood-brain barrier and modulating exon 7 inclusion. The model was used for the screening of 1100 drugs from the Prestwick Chemical Library, resulting in 2.45% hit rate. The most promising candidate drugs were validated in patient-derived fibroblasts where they proved to increase SMN protein levels. Among them, moxifloxacin modulated SMN2 splicing by promoting exon 7 inclusion. The recovery of SMN protein levels was confirmed by increased colocalization of nuclear gems with Cajal Bodies. Thus, a Drosophila-based drug screen allowed the discovery of an FDA-approved small molecule with the potential to become a novel therapy for SMA.
Collapse
Affiliation(s)
- Piotr Konieczny
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| |
Collapse
|
19
|
Gu J, Chu D, Jin N, Chen F, Liu F. Cyclic AMP-Dependent Protein Kinase Phosphorylates TDP-43 and Modulates Its Function in Tau mRNA Processing. J Alzheimers Dis 2019; 70:1093-1102. [DOI: 10.3233/jad-190368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianlan Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
20
|
Gumina V, Colombrita C, Fallini C, Bossolasco P, Maraschi AM, Landers JE, Silani V, Ratti A. TDP-43 and NOVA-1 RNA-binding proteins as competitive splicing regulators of the schizophrenia-associated TNIK gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194413. [PMID: 31382054 DOI: 10.1016/j.bbagrm.2019.194413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
The RNA-binding protein TDP-43, associated to amyotrophic lateral sclerosis and frontotemporal dementia, regulates the alternative splicing of several genes, including the skipping of TNIK exon 15. TNIK, a genetic risk factor for schizophrenia and causative for intellectual disability, encodes for a Ser/Thr kinase regulating negatively F-actin dynamics. Here we show that in the human adult nervous system TNIK exon 15 is mostly included compared to the other tissues and that, during neuronal differentiation of human induced pluripotent stem cells and of human neuroblastoma cells, TNIK exon 15 inclusion increases independently of TDP-43 protein content. By studying the possible molecular interplay of TDP-43 with brain-specific splicing factors, we found that the neuronal NOVA-1 protein competitively inhibits both TDP-43 and hnRNPA2/B1 skipping activity on TNIK by means of a RNA-dependent interaction and that this competitive mechanism is common to other TDP-43 RNA targets. We also show that the TNIK protein isoforms including/excluding exon 15 differently regulate cell spreading in non-neuronal cells and neuritogenesis in primary cortical neurons. Our data suggest a complex regulation between the ubiquitous TDP-43 and the neuron-specific NOVA-1 splicing factors in the brain that may help better understand the pathobiology of both neurodegenerative diseases and schizophrenia.
Collapse
Affiliation(s)
- Valentina Gumina
- Istituto Auxologico Italiano, IRCCS, Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Via Zucchi 18, 20095, Cusano Milanino, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Via F. Sforza 35, 20122 Milan, Italy
| | - Claudia Colombrita
- Istituto Auxologico Italiano, IRCCS, Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, ASC 6-1053, Worcester, MA 01605, USA.
| | - Patrizia Bossolasco
- Istituto Auxologico Italiano, IRCCS, Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Via Zucchi 18, 20095, Cusano Milanino, Milan, Italy
| | - Anna Maria Maraschi
- Istituto Auxologico Italiano, IRCCS, Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Via Zucchi 18, 20095, Cusano Milanino, Milan, Italy.
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, ASC 6-1053, Worcester, MA 01605, USA.
| | - Vincenzo Silani
- Istituto Auxologico Italiano, IRCCS, Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Via Zucchi 18, 20095, Cusano Milanino, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Via F. Sforza 35, 20122 Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Antonia Ratti
- Istituto Auxologico Italiano, IRCCS, Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Via Zucchi 18, 20095, Cusano Milanino, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090, Segrate, Milan, Italy.
| |
Collapse
|
21
|
Activation of Cryptic 3' Splice-Sites by SRSF2 Contributes to Cassette Exon Skipping. Cells 2019; 8:cells8070696. [PMID: 31295920 PMCID: PMC6678912 DOI: 10.3390/cells8070696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Here we show that the serine/arginine rich splicing factor 2 (SRSF2) promotes cryptic 3′ splice-site (3′AG′) usage during cassette exon exclusion in survival of motor neuron (SMN2) minigenes. Deletion of the 3′AG′ (3′AG′1), its associated branch point (BP′) and polypyrimidine tract (PPT′) sequences directs SRSF2 to promote a second 3′AG′ (3′AG′2) with less conserved associated region for intron splicing. Furthermore, deletion of both 3′AG′1 and 3′AG′2 and their associated sequences triggered usage of a third 3′AG′3 that has very weak associated sequences. Interestingly, when intron splicing was directed to the 3′AG′ cryptic splice-sites, intron splicing from the canonical 3′AG splice-site was reduced along with a decrease in cassette exon inclusion. Moreover, multiple SRSF2 binding sites within the intron are responsible for 3′AG′ activation. We conclude that SRSF2 facilitates exon exclusion by activating a cryptic 3′AG′ and inhibiting downstream intron splicing.
Collapse
|
22
|
Souček P, Réblová K, Kramárek M, Radová L, Grymová T, Hujová P, Kováčová T, Lexa M, Grodecká L, Freiberger T. High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing. RNA Biol 2019; 16:1364-1376. [PMID: 31213135 DOI: 10.1080/15476286.2019.1630796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.
Collapse
Affiliation(s)
- Přemysl Souček
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Kamila Réblová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Michal Kramárek
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Lenka Radová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Tereza Grymová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tatiana Kováčová
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University , Brno , Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic
| | - Tomáš Freiberger
- Medical Genomics RG, Central European Institute of Technology, Masaryk University , Brno , Czech Republic.,Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation , Brno , Czech Republic.,Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
23
|
Koza P, Beroun A, Konopka A, Górkiewicz T, Bijoch L, Torres JC, Bulska E, Knapska E, Kaczmarek L, Konopka W. Neuronal TDP-43 depletion affects activity-dependent plasticity. Neurobiol Dis 2019; 130:104499. [PMID: 31176717 DOI: 10.1016/j.nbd.2019.104499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a hallmark of some neurodegenerative disorders, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. TDP-43-related pathology is characterized by its abnormally phosphorylated and ubiquitinated aggregates. It is involved in many aspects of RNA processing, including mRNA splicing, transport, and translation. However, its exact physiological function and role in mechanisms that lead to neuronal degeneration remain elusive. Transgenic rats that were characterized by TDP-43 depletion in neurons exhibited enhancement of the acquisition of fear memory. At the cellular level, TDP-43-depleted neurons exhibited a decrease in the short-term plasticity of intrinsic neuronal excitability. The induction of long-term potentiation in the CA3-CA1 areas of the hippocampus resulted in more stable synaptic enhancement. At the molecular level, the protein levels of an unedited (R) FLOP variant of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR1 and GluR2/3 subunits decreased in the hippocampus. Alterations of FLOP/FLIP subunit composition affected AMPAR kinetics, reflected by cyclothiazide-dependent slowing of the decay time of AMPAR-mediated miniature excitatory postsynaptic currents. These findings suggest that TDP-43 may regulate activity-dependent neuronal plasticity, possibly by regulating the splicing of genes that are responsible for fast synaptic transmission and membrane potential.
Collapse
Affiliation(s)
- Paulina Koza
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Beroun
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tomasz Górkiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Bijoch
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Julio C Torres
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
24
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
25
|
The N Termini of TAR DNA-Binding Protein 43 (TDP43) C-Terminal Fragments Influence Degradation, Aggregation Propensity, and Morphology. Mol Cell Biol 2018; 38:MCB.00243-18. [PMID: 29987190 PMCID: PMC6146831 DOI: 10.1128/mcb.00243-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023] Open
Abstract
Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Fragments of the TAR DNA-binding protein 43 (TDP43) are major components of intracellular aggregates associated with amyotrophic lateral sclerosis and frontotemporal dementia. A variety of C-terminal fragments (CTFs) exist, with distinct N termini; however, little is known regarding their differences in metabolism and aggregation dynamics. Previously, we found that specific CTFs accumulate in the absence of the Arg/N-end rule pathway of the ubiquitin proteasome system (UPS) and that their degradation requires arginyl-tRNA protein transferase 1 (ATE1). Here, we examined two specific CTFs of TDP43 (TDP43219 and TDP43247), which are ∼85% identical and differ at their N termini by 28 amino acids. We found that TDP43247 is degraded primarily by the Arg/N-end rule pathway, whereas degradation of TDP43219 continues in the absence of ATE1. These fragments also differ in their aggregation propensities and form morphologically distinct aggregates. This work reveals that the N termini of otherwise similar CTFs have profound effects on fragment behavior and may influence clinical outcomes in neurodegeneration associated with aggregation.
Collapse
|
26
|
Abstract
Trans activation response DNA/RNA-binding protein 43 kDa (TDP-43) regulates RNA splicing and stability. TDP-43 is a component of ubiquitin-positive inclusion bodies of motor neurons from patients with amyotrophic lateral sclerosis, suggesting a role in disease pathogenesis. Toxic intracellular TDP-43 aggregation may cause neuronal cell death. The loss of TDP-43 in animal models causes lethality in early development. Furthermore, TDP-43 knockdown in adult animals and cells increases aberrant splicing. Uridine-rich small nuclear RNA (U snRNA) regulation is disrupted in cultured neuroblastoma cells with TDP-43 knockdown and in motor neurons in amyotrophic lateral sclerosis. Aberrant mRNA splicing and U snRNA expression are likely key processes in neuronal cell death. We review the research history and future perspectives of aberrant splicing by TDP-43 loss.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan 001-0021
| |
Collapse
|
27
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
28
|
TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types. Sci Rep 2018; 8:7551. [PMID: 29765078 PMCID: PMC5953947 DOI: 10.1038/s41598-018-25767-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic foci that form in response to various external stimuli and are essential to cell survival following stress. SGs are studied in several diseases, including ALS and FTD, which involve the degeneration of motor and cortical neurons, respectively, and are now realized to be linked pathogenically by TDP-43, originally discovered as a component of ubiquitin-positive aggregates within patients’ neurons and some glial cells. So far, studies to undercover the role of TDP-43 in SGs have used primarily transformed cell lines, and thus rely on the extrapolation of the mechanisms to cell types affected in ALS/FTD, potentially masking cell specific effects. Here, we investigate SG dynamics in primary motor and cortical neurons as well as astrocytes. Our data suggest a cell and stress specificity and demonstrate a requirement for TDP-43 for efficient SG dynamics. In addition, based on our in vitro approach, our data suggest that aging may be an important modifier of SG dynamics which could have relevance to the initiation and/or progression of age-related neurodegenerative diseases.
Collapse
|
29
|
Anderson EN, Gochenaur L, Singh A, Grant R, Patel K, Watkins S, Wu JY, Pandey UB. Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet 2018; 27:1366-1381. [PMID: 29432563 PMCID: PMC6455923 DOI: 10.1093/hmg/ddy047] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) has been predicted to be a predisposing factor for amyotrophic lateral sclerosis (ALS) and other neurological disorders. Despite the importance of TBI in ALS progression, the underlying cellular and molecular mechanisms are still an enigma. Here, we examined the contribution of TBI as an extrinsic factor and investigated whether TBI influences the susceptibility of developing neurodegenerative symptoms. To evaluate the effects of TBI in vivo, we applied mild to severe trauma to Drosophila and found that TBI leads to the induction of stress granules (SGs) in the brain. The degree of SGs induction directly correlates with the level of trauma. Furthermore, we observed that the level of mortality is directly proportional to the number of traumatic hits. Interestingly, trauma-induced SGs are ubiquitin, p62 and TDP-43 positive, and persistently remain over time suggesting that SGs might be aggregates and exert toxicity in our fly models. Intriguingly, TBI on animals expressing ALS-linked genes increased mortality and locomotion dysfunction suggesting that mild trauma might aggravate neurodegenerative symptoms associated with ALS. Furthermore, we found elevated levels of high molecular weight ubiquitinated proteins and p62 in animals expressing ALS-causing genes with TBI, suggesting that TBI may lead to the defects in protein degradation pathways. Finally, we observed that genetic and pharmacological induction of autophagy enhanced the clearance of SGs and promoted survival of flies in vivo. Together, our study demonstrates that trauma can induce SG formation in vivo and might enhance neurodegenerative phenotypes in the fly models of ALS.
Collapse
Affiliation(s)
- Eric N Anderson
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Lauren Gochenaur
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi Singh
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Rogan Grant
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Krishani Patel
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Simon Watkins
- Center for Biological Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Udai Bhan Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Neuroscience, Dietrich School of Arts and Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
30
|
Volkening K, Keller BA, Leystra-Lantz C, Strong MJ. RNA and Protein Interactors with TDP-43 in Human Spinal-Cord Lysates in Amyotrophic Lateral Sclerosis. J Proteome Res 2018. [DOI: 10.1021/acs.jproteome.8b00126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Singh RN, Singh NN. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. ADVANCES IN NEUROBIOLOGY 2018; 20:31-61. [PMID: 29916015 DOI: 10.1007/978-3-319-89689-2_2] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
32
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
33
|
Herzog JJ, Deshpande M, Shapiro L, Rodal AA, Paradis S. TDP-43 misexpression causes defects in dendritic growth. Sci Rep 2017; 7:15656. [PMID: 29142232 PMCID: PMC5688077 DOI: 10.1038/s41598-017-15914-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) share overlapping genetic causes and disease symptoms, and are linked neuropathologically by the RNA binding protein TDP-43 (TAR DNA binding protein-43 kDa). TDP-43 regulates RNA metabolism, trafficking, and localization of thousands of target genes. However, the cellular and molecular mechanisms by which dysfunction of TDP-43 contributes to disease pathogenesis and progression remain unclear. Severe changes in the structure of neuronal dendritic arbors disrupt proper circuit connectivity, which in turn could contribute to neurodegenerative disease. Although aberrant dendritic morphology has been reported in non-TDP-43 mouse models of ALS and in human ALS patients, this phenotype is largely unexplored with regards to TDP-43. Here we have employed a primary rodent neuronal culture model to study the cellular effects of TDP-43 dysfunction in hippocampal and cortical neurons. We show that manipulation of TDP-43 expression levels causes significant defects in dendritic branching and outgrowth, without an immediate effect on cell viability. The effect on dendritic morphology is dependent on the RNA-binding ability of TDP-43. Thus, this model system will be useful in identifying pathways downstream of TDP-43 that mediate dendritic arborization, which may provide potential new avenues for therapeutic intervention in ALS/FTD.
Collapse
Affiliation(s)
- Josiah J Herzog
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Mugdha Deshpande
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Leah Shapiro
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Avital A Rodal
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Suzanne Paradis
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA.
| |
Collapse
|
34
|
Chen T, Turner BJ, Beart PM, Sheehan-Hennessy L, Elekwachi C, Muyderman H. Glutathione monoethyl ester prevents TDP-43 pathology in motor neuronal NSC-34 cells. Neurochem Int 2017; 112:278-287. [PMID: 28818672 DOI: 10.1016/j.neuint.2017.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Oxidative stress is recognised as central in a range of neurological diseases including Amyotrophic lateral sclerosis (ALS), a disease characterised by fast progressing death of motor neurons in the brain and spinal cord. Cellular pathology includes cytosolic protein aggregates in motor neurons and glia of which potentially cytotoxic hyper-phosphorylated fragments of the Transactive response DNA Binding Protein 43 kDa (TDP-43) constitute a major component. This is closely associated with an additional loss of nuclear TDP-43 expression indicating a "loss of function" mechanism, accelerating motor neuron (MN) loss. Furthermore, mutations in TDP-43 cause familial ALS and ALS-like disease in animal models. In this study, we investigated the role of glutathione (GSH) in modulating oxidative stress responses in TDP-43 pathology in motor neuron NSC-34 cells. Results demonstrate that depletion of GSH produces pathology similar to that of mutant TDP-43, including occurrence of cytosolic aggregates, TDP-43 phosphorylation and nuclear clearing of endogenous TDP-43. We also demonstrate that introduction of mutant TDP-43A315T and silencing of endogenous TDP-43, but not overexpression of wild-type TDP-43, result in similar pathology, including depletion of intracellular GSH, possibly resulting from a decreased expression of a regulatory subunit of ɣ-glutamylcysteine ligase (GCLM), a rate limiting enzyme in GSH synthesis. Importantly, treatment of mutant cells with GSH monoethyl ester (GSHe) that directly increases intracellular GSH and bypasses the need for GSH synthesis, protected against mutant-induced TDP-43 pathology, including reducing aggregate formation, nuclear clearance, reactive oxygen species (ROS) production and cell death. Our data strongly suggest that oxidative stress is central to TDP-43 pathology and may result from a loss of function affecting GSH synthesis and that treatments directly aimed at restoring cellular GSH content may be beneficial in preventing cell death in TDP-43-mediated ALS.
Collapse
Affiliation(s)
- Tong Chen
- Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Philip M Beart
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Lucy Sheehan-Hennessy
- Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Chinasom Elekwachi
- Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Hakan Muyderman
- Centre for Neuroscience and Discipline of Medical Biochemistry, Flinders Medical Science and Technology, College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
35
|
Humphrey J, Emmett W, Fratta P, Isaacs AM, Plagnol V. Quantitative analysis of cryptic splicing associated with TDP-43 depletion. BMC Med Genomics 2017; 10:38. [PMID: 28549443 PMCID: PMC5446763 DOI: 10.1186/s12920-017-0274-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. METHODS We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. RESULTS We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. CONCLUSIONS Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD.
Collapse
Affiliation(s)
- Jack Humphrey
- University College London Genetics Institute, Gower Street, London, UK.
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.
| | - Warren Emmett
- University College London Genetics Institute, Gower Street, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- The Francis Crick Institute, Midland Road, London, UK
| | - Pietro Fratta
- Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Vincent Plagnol
- University College London Genetics Institute, Gower Street, London, UK
| |
Collapse
|
36
|
Ederle H, Dormann D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett 2017; 591:1489-1507. [PMID: 28380257 DOI: 10.1002/1873-3468.12646] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 12/13/2022]
Abstract
Misfolded or mislocalized RNA-binding proteins (RBPs) and, consequently, altered mRNA processing, can cause neuronal dysfunction, eventually leading to neurodegeneration. Two prominent examples are the RBPs TAR DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS), which form pathological messenger ribonucleoprotein aggregates in patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastating neurodegenerative disorders. Here, we review the multiple functions of TDP-43 and FUS in mRNA processing, both in the nucleus and in the cytoplasm. We discuss how TDP-43 and FUS may exit the nucleus and how defects in both nuclear and cytosolic mRNA processing events, and possibly nuclear export defects, may contribute to neurodegeneration and ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Helena Ederle
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- BioMedical Center (BMC), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany.,Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Germany
| |
Collapse
|
37
|
Securinine enhances SMN2 exon 7 inclusion in spinal muscular atrophy cells. Biomed Pharmacother 2017; 88:708-714. [PMID: 28152480 DOI: 10.1016/j.biopha.2017.01.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 11/23/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of motor neurons in the spinal cord, leading to muscular atrophy. SMA is caused by deletions or mutations in the survival motor neuron gene (SMN1) on chromosome 5q13. A second copy of the SMN gene (SMN2) also exists on chromosome 5, and both genes can produce functional protein. However, due to alternative splicing of the exon 7, the majority of SMN protein produced by SMN2 is truncated and unable to compensate for the loss of SMN1. Increasing full-length SMN protein production by promoting the exon 7 inclusion in SMN2 mRNA or increasing SMN2 gene transcription could be a therapeutic approach for SMA. In this study, we screened for the compounds that enhance SMN2 exon 7 inclusion by using SMN2 minigene-luciferase reporter system. We found that securinine can increase luciferase activity, indicating that securinine promoted SMN2 exon 7 inclusion. In addition, securinine increased full-length SMN2 mRNA and SMN protein expression in SMA patient-derived lymphoid cell lines. To investigate the mechanism of securinine effect on SMN2 splicing, we compared the protein levels of relevant splicing factors between securinine-treated and untreated cells. We found that securinine downregulated hnRNP A1 and Sam68 and upregulated Tra2-β1 expression. However, securinine, unlike HDAC inhibitors, did not enhance tra2-β1 gene transcription, indicating a post-transcriptional mechanism for Tra2-β1 upregulation. Furthermore, we treated SMA-like mice with securinine by i.p. injection and found that securinine treatment increased SMN2 exon 7 inclusion and SMN protein expression in the brain and spinal cord. According to our results, securinine might have the potential to become a therapeutic drug for SMA disease.
Collapse
|
38
|
Amyotrophic Lateral Sclerosis Pathogenesis Converges on Defects in Protein Homeostasis Associated with TDP-43 Mislocalization and Proteasome-Mediated Degradation Overload. Curr Top Dev Biol 2017; 121:111-171. [DOI: 10.1016/bs.ctdb.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Majumder P, Chu JF, Chatterjee B, Swamy KBS, Shen CKJ. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol 2016; 132:721-738. [PMID: 27518042 PMCID: PMC5073124 DOI: 10.1007/s00401-016-1603-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/15/2023]
Abstract
For proper mammalian brain development and functioning, the translation of many neuronal mRNAs needs to be repressed without neuronal activity stimulations. We have discovered that the expression of a subclass of neuronal proteins essential for neurodevelopment and neuron plasticity is co-regulated at the translational level by TDP-43 and the Fragile X Syndrome protein FMRP. Using molecular, cellular and imaging approaches, we show that these two RNA-binding proteins (RBP) co-repress the translation initiation of Rac1, Map1b and GluR1 mRNAs, and consequently the hippocampal spinogenesis. The co-repression occurs through binding of TDP-43 to mRNA(s) at specific UG/GU sequences and recruitment of the inhibitory CYFIP1-FMRP complex by its glycine-rich domain. This novel regulatory scenario could be utilized to silence a significant portion of around 160 common target mRNAs of the two RBPs. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases.
Collapse
|
40
|
Perera ND, Sheean RK, Crouch PJ, White AR, Horne MK, Turner BJ. Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice. Hum Mol Genet 2016; 25:4080-4093. [DOI: 10.1093/hmg/ddw247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
|
41
|
Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 Suppl 1:95-111. [PMID: 27015757 DOI: 10.1111/jnc.13625] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
42
|
Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 2016; 6:23281. [PMID: 26980269 PMCID: PMC4793195 DOI: 10.1038/srep23281] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is the major disease-associated protein involved in the pathogenesis and progression of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions linked to TDP-43 pathology (FTLD-TDP). Abnormal phosphorylation, truncation and cytoplasmic mis-localization are known to be the characteristics for the aggregated forms of TDP-43, and gain of toxic abnormal TDP-43 or loss of function of physiological TDP-43 have been suggested as the cause of neurodegeneration. However, most of the post-translational modifications or truncation sites in the abnormal TDP-43 in brains of patients remain to be identified by protein chemical analysis. In this study, we carried out a highly sensitive liquid chromatography-mass spectrometry analysis of Sarkosyl-insoluble pathological TDP-43 from brains of ALS patients and identified several novel phosphorylation sites, deamidation sites, and cleavage sites. Almost all modifications were localized in the Gly-rich C-terminal half. Most of the cleavage sites identified in this study are novel and are located in N-terminal half, suggesting that these sites may be more accessible to proteolytic enzymes. The data obtained in this study provide a foundation for the molecular mechanisms of TDP-43 aggregation and ALS pathogenesis.
Collapse
|
43
|
Roses AD, Akkari PA, Chiba-Falek O, Lutz MW, Gottschalk WK, Saunders AM, Saul B, Sundseth S, Burns D. Structural variants can be more informative for disease diagnostics, prognostics and translation than current SNP mapping and exon sequencing. Expert Opin Drug Metab Toxicol 2016; 12:135-47. [PMID: 26727306 DOI: 10.1517/17425255.2016.1133586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In this article we discuss several human neurological diseases and their relationship to specific highly polymorphic small structural variants (SVs). Unlike genome-wide association analysis (GWAS), this methodology is not a genome screen to define new possibly associated genes, requiring statistical corrections for a million association tests. SVs provide local mapping information at a specific locus. Used with phylogenetic analysis, the specific association of length variants can be mapped and recognized. AREAS COVERED This experimental strategy provides identification of DNA variants, particularly variable length Simple Sequence Repeats (SSRs or STRs or microsatellites) that provide specific local association data at the SV locus. Phylogenetic analysis that includes the specific appearance of different length SV variations can differentiate specific phenotypic risks in a population such as age of onset related to variable length polymorphisms and risk of phenotypic variations associated with several adjacent structural variations (SVs). We focus on data for three recent examples associated with Alzheimer's disease, Levy Bodies, and Parkinson's disease. EXPERT OPINION SVs are understudied, but have led directly to mechanism of pathogenesis studies involving the regulation of gene expression. The identification of specific length polymorphisms associated with clinical disease has led to translational advances and new drug discovery.
Collapse
Affiliation(s)
- Allen D Roses
- a Department of Neurology and Neurosciences , Duke University , Durham , NC , USA.,b Zinfandel Pharmaceuticals , Chapel Hill , NC , USA
| | | | | | - Michael W Lutz
- d Department of Neurology , Duke University , Durham , NC , USA
| | | | | | - Bob Saul
- e Polymorphic DNA , Alameda , CA , USA
| | - Scott Sundseth
- f Caberner Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - Daniel Burns
- g Zinfandel Pharmaceuticals, Inc , Raleigh-Durham , NC , USA
| |
Collapse
|
44
|
Varghese DS, Chandran U, Soumya A, Pillai SM, Jayakrishnan K, Reddi PP, Kumar PG. Aberrant expression of TAR DNA binding protein-43 is associated with spermatogenic disorders in men. Reprod Fertil Dev 2016; 28:713-22. [DOI: 10.1071/rd14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Loss of function of TAR DNA-binding protein (TDP-43) has been implicated in neurodegenerative disorders in both humans and animal models. TDP-43 has also been shown to be cis-acting transcriptional repressor of the acrosome vesicle (Acrv) gene in mice. In the present study, we investigated the expression of the TDP-43 transcript (TARDBP) and protein in germ cells from 11 fertile and 98 subfertile men to verify its potential association with poor seminograms. The expression profile of TDP-43 was characterised in immature germ cells and spermatozoa from semen from fertile and subfertile men using reverse transcription–polymerase chain reaction, western blotting and immunofluorescence. Although germ cells from subfertile men tested negative for TARDBP, the full-length message of the same was detected in fertile men. TDP-43 was detected in spermatozoa from fertile men using western blot analysis and immunofluorescence. The expression of this protein was negligible in spermatozoa from men with primary spermatogenic dysfunction. We conclude that a deficiency in the TDP-43 expression is associated with defective spermatogenesis and male infertility. We propose that TDP-43 could be used as a marker of male factor infertility.
Collapse
|
45
|
Xia Q, Wang H, Hao Z, Fu C, Hu Q, Gao F, Ren H, Chen D, Han J, Ying Z, Wang G. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J 2015; 35:121-42. [PMID: 26702100 DOI: 10.15252/embj.201591998] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration.
Collapse
Affiliation(s)
- Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Cheng Fu
- Key Laboratory of Brain Function and Disease, School of Life Sciences University of Science & Technology of China Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Feng Gao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Dong Chen
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences Southeast University, Nanjing, Jiangsu, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China Key Laboratory of Brain Function and Disease, School of Life Sciences University of Science & Technology of China Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
46
|
Xia Q, Wang G, Wang H, Hu Q, Ying Z. Folliculin, a tumor suppressor associated with Birt-Hogg-Dubé (BHD) syndrome, is a novel modifier of TDP-43 cytoplasmic translocation and aggregation. Hum Mol Genet 2015; 25:83-96. [PMID: 26516189 DOI: 10.1093/hmg/ddv450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
TDP-43 was identified as the major component of ubiquitin and autophagosome-positive cytoplasmic inclusions in neurons in the large majority of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) patients. It has been shown that a loss of nuclear TDP-43 in combination with enhanced cytoplasmic mislocalization of TDP-43, which is associated with accumulation of TDP-43 aggregates in the cytosol, is an early and key event in TDP-43-mediated neurodegeneration. However, the mechanism underlying TDP-43 nucleocytoplasmic shuttling is still not clear. Here, we show that the tumor suppressor folliculin (FLCN) is a novel positive regulator of TDP-43 cytoplasmic translocation. FLCN directly interacts with TDP-43. The amino acids 202-299 of FLCN and RNA-recognition motif domains of TDP-43 are necessary for their interaction. In addition, both exogenous and endogenous FLCNs are required for TDP-43 cytoplasmic accumulation, protein aggregation and stress granule formation. Overall, our study suggests that FLCN may play an important role in the regulation of TDP-43 nucleocytoplasmic shuttling and TDP-43-mediated proteinopathy.
Collapse
Affiliation(s)
- Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China, Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China and
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qingsong Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
47
|
Amlie-Wolf A, Ryvkin P, Tong R, Dragomir I, Suh E, Xu Y, Van Deerlin VM, Gregory BD, Kwong LK, Trojanowski JQ, Lee VMY, Wang LS, Lee EB. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin. PLoS One 2015; 10:e0141836. [PMID: 26510133 PMCID: PMC4624943 DOI: 10.1371/journal.pone.0141836] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is normally a nuclear RNA-binding protein that exhibits a range of functions including regulation of alternative splicing, RNA trafficking, and RNA stability. However, in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved, and is mislocalized to the cytoplasm where it forms distinctive aggregates. We previously developed a mouse model expressing human TDP-43 with a mutation in its nuclear localization signal (ΔNLS-hTDP-43) so that the protein preferentially localizes to the cytoplasm. These mice did not exhibit a significant number of cytoplasmic aggregates, but did display dramatic changes in gene expression as measured by microarray, suggesting that cytoplasmic TDP-43 may be associated with a toxic gain-of-function. Here, we analyze new RNA-sequencing data from the ΔNLS-hTDP-43 mouse model, together with published RNA-sequencing data obtained previously from TDP-43 antisense oligonucleotide (ASO) knockdown mice to investigate further the dysregulation of gene expression in the ΔNLS model. This analysis reveals that the transcriptomic effects of the overexpression of the ΔNLS-hTDP-43 transgene are likely due to a gain of cytoplasmic function. Moreover, cytoplasmic TDP-43 expression alters transcripts that regulate chromatin assembly, the nucleolus, lysosomal function, and histone 3' untranslated region (UTR) processing. These transcriptomic alterations correlate with observed histologic abnormalities in heterochromatin structure and nuclear size in transgenic mouse and human brains.
Collapse
Affiliation(s)
- Alexandre Amlie-Wolf
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Paul Ryvkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rui Tong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Isabelle Dragomir
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - EunRan Suh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Yan Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Vivianna M. Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian D. Gregory
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Linda K. Kwong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Edward B. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
48
|
Pagliarini V, Pelosi L, Bustamante MB, Nobili A, Berardinelli MG, D'Amelio M, Musarò A, Sette C. SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy. J Cell Biol 2015; 211:77-90. [PMID: 26438828 PMCID: PMC4602033 DOI: 10.1083/jcb.201502059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023] Open
Abstract
Knockout of the splicing factor SAM68 promotes SMN2 splicing, improving neuromuscular defects and viability in SMA mice. Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model.
Collapse
Affiliation(s)
- Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Laura Pelosi
- Institute Pasteur Cenci-Bolognetti Foundation, DAHFMO-Unit of Histology and Medical Embryology, IIM, University of Rome La Sapienza, 00161 Rome, Italy
| | - Maria Blaire Bustamante
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Annalisa Nobili
- Laboratory of Molecular Neuroscience, Fondazione Santa Lucia, 00143 Rome, Italy Medical School University Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Grazia Berardinelli
- Institute Pasteur Cenci-Bolognetti Foundation, DAHFMO-Unit of Histology and Medical Embryology, IIM, University of Rome La Sapienza, 00161 Rome, Italy
| | - Marcello D'Amelio
- Laboratory of Molecular Neuroscience, Fondazione Santa Lucia, 00143 Rome, Italy Medical School University Campus Bio-Medico, 00128 Rome, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti Foundation, DAHFMO-Unit of Histology and Medical Embryology, IIM, University of Rome La Sapienza, 00161 Rome, Italy Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
49
|
Cheng CW, Lin MJ, Shen CKJ. Rapamycin alleviates pathogenesis of a newDrosophilamodel of ALS-TDP. J Neurogenet 2015. [DOI: 10.3109/01677063.2015.1077832] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Xiao S, Sanelli T, Chiang H, Sun Y, Chakrabartty A, Keith J, Rogaeva E, Zinman L, Robertson J. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol 2015; 130:49-61. [PMID: 25788357 PMCID: PMC4468798 DOI: 10.1007/s00401-015-1412-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/24/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
The presence of lower molecular weight species comprising the C-terminal region of TAR DNA-binding protein 43 (TDP-43) is a characteristic of TDP-43 proteinopathy in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here, we have identified a novel splice variant of TDP-43 that is upregulated in ALS and generates a 35-kDa N-terminally truncated species through use of an alternate translation initiation codon (ATGMet85), denoted here as Met85-TDP-35. Met85-TDP-35 expressed ectopically in human neuroblastoma cells exhibited reduced solubility, cytoplasmic distribution, and aggregation. Furthermore, Met85-TDP-35 sequestered full-length TDP-43 from the nucleus to form cytoplasmic aggregates. Expression of Met85-TDP-35 in primary motor neurons resulted in the formation of Met85-TDP-35-positive cytoplasmic aggregates and motor neuron death. A neo-epitope antibody specific for Met85-TDP-35 labeled the 35-kDa lower molecular weight species on immunoblots of urea-soluble extracts from ALS-FTLD disease-affected tissues and co-labeled TDP-43-positive inclusions in ALS spinal cord sections, confirming the physiological relevance of this species. These results show that the 35-kDa low molecular weight species in ALS-FTLD can be generated from an abnormal splicing event and use of a downstream initiation codon and may represent a mechanism by which TDP-43 elicits its pathogenicity.
Collapse
Affiliation(s)
- Shangxi Xiao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Teresa Sanelli
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Helen Chiang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Yulong Sun
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Avijit Chakrabartty
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5T 2S8 Canada
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5 Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8 Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5 Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8 Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5T 2S8 Canada
| |
Collapse
|