1
|
Nagib M, Sayed AM, Korany AH, Abdelkader K, Shari FH, Mackay WG, Rateb ME. Human Defensins: Structure, Function, and Potential as Therapeutic Antimicrobial Agents with Highlights Against SARS CoV-2. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10436-8. [PMID: 39693007 DOI: 10.1007/s12602-024-10436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents. Human defensins have recently been the focus of medical and molecular biology studies due to their promising application in medicine and the pharmaceutical industry. This work aims to provide a comprehensive summary of the current developments of human defensins, including their identification, categorization, molecular features, expression, modes of action, and potential application in medical settings. Current obstacles and future opportunities for using human defensins are also covered. Furthermore, we shed light on the potential of this class as an antiviral agent, particularly against SARS CoV-2, by providing an in silico-based investigation of their plausible mechanisms of action.
Collapse
Affiliation(s)
- Maryam Nagib
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK
| | - Ahmed M Sayed
- Department of Pharmacognosy, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - Ahmed H Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni Suef, 62513, Egypt
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Falah H Shari
- Department of Clinical Biochemistry, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - William G Mackay
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Glasgow, G72 0LH, UK
| | - Mostafa E Rateb
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
| |
Collapse
|
2
|
Porter JM, Oswald MS, Busuttil K, Emmanuel SN, Bennett A, McKenna R, Smith JG. Mechanisms of AAV2 neutralization by human alpha-defensins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614754. [PMID: 39386661 PMCID: PMC11463608 DOI: 10.1101/2024.09.25.614754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Antiviral immunity compromises the efficacy of adeno-associated virus (AAV) vectors used for gene therapy. This is well understood for the adaptive immune response. However, innate immune effectors like alpha-defensin antimicrobial peptides also block AAV infection, although their mechanisms of action are unknown. To address this gap in knowledge, we investigated AAV2 neutralization by human neutrophil peptide 1 (HNP1), a myeloid alpha-defensin, and human defensin 5 (HD5), an enteric alpha-defensin. We found that both defensins bind to AAV2 and inhibit infection at low micromolar concentrations. While HD5 prevents AAV2 from binding to cells, HNP1 does not. However, AAV2 exposed to HD5 after binding to cells is still neutralized, indicating an additional block to infection. Accordingly, both HD5 and HNP1 inhibit externalization of the VP1 unique domain, which contains a phospholipase A 2 enzyme required for endosome escape and nuclear localization signals required for nuclear entry. Consequently, both defensins prevent AAV2 from reaching the nucleus. Disruption of intracellular trafficking of the viral genome to the nucleus is reminiscent of how alpha-defensins neutralize other non-enveloped viruses, suggesting a common mechanism of inhibition. These results will inform the development of vectors capable of overcoming these hurdles to improve the efficiency of gene therapy. Author Summary AAVs are commonly used as gene therapy vectors due to their broad tropism and lack of disease association; however, host innate immune factors, such as human alpha-defensin antimicrobial peptides, can hinder gene delivery. Although it is becoming increasingly evident that human alpha-defensins can block infection by a wide range of nonenveloped viruses, including AAVs, their mechanism of action remains poorly understood. In this study, we describe for the first time how two types of abundant human alpha-defensins neutralize a specific AAV serotype, AAV2. We found that one defensin prevents AAV2 from binding to cells, the first step in infection, while both defensins block a critical later step in AAV2 entry. Our findings support the emerging idea that defensins use a common strategy to block infection by DNA viruses that replicate in the nucleus. Through understanding how innate immune effectors interact with and impede AAV infection, vectors can be developed to bypass these interventions and allow more efficient gene delivery.
Collapse
|
3
|
Urmi UL, Vijay AK, Kuppusamy R, Islam S, Willcox MDP. A Review of the Antiviral Activity of Cationic Antimicrobial Peptides. Peptides 2023; 166:171024. [PMID: 37172781 PMCID: PMC10170872 DOI: 10.1016/j.peptides.2023.171024] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Viral epidemics are occurring frequently, and the COVID-19 viral pandemic has resulted in at least 6.5 million deaths worldwide. Although antiviral therapeutics are available, these may not have sufficient effect. The emergence of resistant or novel viruses requires new therapies. Cationic antimicrobial peptides are agents of the innate immune system that may offer a promising solution to viral infections. These peptides are gaining attention as possible therapies for viral infections or for use as prophylactic agents to prevent viral spread. This narrative review examines antiviral peptides, their structural features, and mechanism of activity. A total of 156 cationic antiviral peptides were examined for information of their mechanism of action against both enveloped and non-enveloped viruses. Antiviral peptides can be isolated from various natural sources or can be generated synthetically. The latter tend to be more specific and effective and can be made to have a broad spectrum of activity with minimal side effects. Their unique properties of being positively charges and amphipathic enable their main mode of action which is to target and disrupt viral lipid envelopes, thereby inhibiting viral entry and replication. This review offers a comprehensive summary of the current understanding of antiviral peptides, which could potentially aid in the design and creation of novel antiviral medications.
Collapse
Affiliation(s)
- Umme Laila Urmi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajesh Kuppusamy
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Salequl Islam
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia; Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
García-Beltrán JM, Arizcun M, Chaves-Pozo E. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Mar Drugs 2023; 21:md21050290. [PMID: 37233484 DOI: 10.3390/md21050290] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Aquaculture production is at a record level and is estimated to increase in the coming years. However, this production can be negatively affected by infectious diseases produced by viruses, bacteria, and parasites, causing fish mortality and economic losses. Antimicrobial peptides (AMPs) are small peptides that may be promising candidates to replace antibiotics because they are the first line of defense in animals against a wide variety of pathogens and have no negative effects; they also show additional activities such as antioxidant or immunoregulatory functions, which makes them powerful alternatives for use in aquaculture. Moreover, AMPs are highly available in natural sources and have already been used in the livestock farming and food industries. Photosynthetic marine organisms can survive under all kinds of environmental conditions and under extremely competitive environments thanks to their flexible metabolism. For this reason, these organisms represent a powerful source of bioactive molecules as nutraceuticals and pharmaceuticals, including AMPs. Therefore, in this study we reviewed the present knowledge about AMPs from photosynthetic marine organism sources and analyzed whether they could be suitable for use in aquaculture.
Collapse
Affiliation(s)
- José María García-Beltrán
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Marta Arizcun
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| |
Collapse
|
5
|
Hrynkiewicz R, Niedźwiedzka-Rystwej P. Etiology of viral induced acute liver failure and defensins as potential therapeutic agents in ALF treatment. Front Immunol 2023; 14:1153528. [PMID: 37153560 PMCID: PMC10160486 DOI: 10.3389/fimmu.2023.1153528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Acute liver failure (ALF) is a rare and severe disease, which, despite continuous advances in medicine, is still characterized by high mortality (65-85%). Very often, a liver transplant is the only effective treatment for ALF. Despite the implementation of prophylactic vaccinations in the world, the viral background of ALF is still a problem and leads to many deaths. Depending on the cause of ALF, it is sometimes possible to reverse this condition with appropriate therapies, which is why the search for effective antiviral agents seems to be a very desirable direction of research. Defensins, which are our natural antimicrobial peptides, have a very high potential to be used as therapeutic agents for infectious liver diseases. Previous studies on the expression of human defensins have shown that increased expression of human α and β-defensins in HCV and HBV infections is associated with a better response to treatment. Unfortunately, conducting clinical trials for ALF is very difficult due to the severity of the disease and the low incidence, therefore animal models are important for the development of new therapeutic strategies. One of the best animal models that has real reference to research on acute liver failure (ALF) is rabbit hemorrhagic disease in rabbits caused by the Lagovirus europaeus virus. So far, there have been no studies on the potential of defensins in rabbits infected with Lagovirus europaeus virus.
Collapse
|
6
|
Porter JM, Oswald MS, Sharma A, Emmanuel S, Kansol A, Bennett A, McKenna R, Smith JG. A Single Surface-Exposed Amino Acid Determines Differential Neutralization of AAV1 and AAV6 by Human Alpha-Defensins. J Virol 2023; 97:e0006023. [PMID: 36916912 PMCID: PMC10062168 DOI: 10.1128/jvi.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors due to their low pathogenicity and tissue tropism properties. However, the efficacy of these vectors is impeded by interactions with the host immune system. One potential immune barrier to vector transduction is innate immune host defense peptides, such as alpha-defensins, which are potent antiviral agents against other nonenveloped viruses. To investigate the interaction between AAVs and alpha-defensins, we utilized two closely related AAV serotypes, AAV1 and AAV6. Although their capsids differ by only six residues, these two serotypes exhibit markedly different tissue tropisms and transduction efficiencies. Using two abundant human alpha-defensins, enteric human defensin 5 (HD5) and myeloid human neutrophil peptide 1 (HNP1), we found both serotype-specific and defensin-specific effects on AAV infection. AAV6 infection was uniformly neutralized by both defensins at low micromolar concentrations; however, inhibition of AAV1 infection was profoundly influenced by the timing of defensin exposure to the virus relative to viral attachment to the cell. Remarkably, these differences in the defensin-dependent infection phenotype between the viruses are completely dictated by the identity of a single, surface-exposed amino acid (position 531) that varies between the two serotypes. These findings reveal a determinant for defensin activity against a virus with unprecedented precision. Furthermore, they provide a rationale for the investigation of other AAV serotypes not only to understand the mechanism of neutralization of defensins against AAVs but also to design more efficient vectors. IMPORTANCE The ability of adeno-associated viruses (AAVs) to infect and deliver genetic material to a range of cell types makes them favorable gene therapy vectors. However, AAV vectors encounter a wide variety of host immune factors throughout the body, which can impede efficient gene delivery. One such group of factors is the alpha-defensins, which are a key component of the innate immune system that can directly block viral infection. By studying the impact that alpha-defensins have on AAV infection, we found that two similar AAV serotypes (AAV1 and AAV6) have different sensitivities to inhibition. We also identified a single amino acid (position 531) that differs between the two AAV serotypes and is responsible for mediating their defensin sensitivity. By investigating the effects that host immune factors have on AAV infection, more efficient vectors may be developed to evade intervention by the immune system prior to gene delivery.
Collapse
Affiliation(s)
- Jessica M. Porter
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mackenzi S. Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Anjali Sharma
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shanan Emmanuel
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Austin Kansol
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
7
|
Yaghobi R, Afshari A, Roozbeh J. Host and viral
RNA
dysregulation during
BK
polyomavirus
infection in kidney transplant recipients. WIRES RNA 2022:e1769. [DOI: 10.1002/wrna.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
8
|
Peng H, Fan P, Hong Y, He J, Zeng X, Xu F, Zhao Y, Jin T. 3' untranslated region variants in DEFA5 gene associated with susceptibility to IgA nephropathy in the Chinese Han population. Biomark Med 2022; 16:1151-1159. [PMID: 36632813 DOI: 10.2217/bmm-2022-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: To evaluate the association between single-nucleotide polymorphisms in the 3' untranslated region of the DEFA5 gene and IgA nephropathy (IgAN) risk, the authors performed an association study in the Chinese Han population. Materials & methods: The authors recruited 426 IgAN patients and 498 controls. The MassARRAY platform (Agena Bioscience, Inc., CA, USA) was used to genotype single-nucleotide polymorphisms in DEFA5. Odds ratios and 95% CIs were calculated through logistic regression analysis. Results: The authors observed that rs12716641 significantly reduced IgAN risk in the allele (odds ratio: 0.77; p = 0.026) and genotype (odds ratio: 0.75; p = 0.039) models. Stratification analysis revealed that several genotypes of rs12716641 played a protective role against IgAN. Conclusion: The authors' results revealed that single-nucleotide polymorphisms in the 3' untranslated region of DEFA5 were associated with IgAN risk.
Collapse
Affiliation(s)
- Hongwei Peng
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Pingyun Fan
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Yifen Hong
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Jing He
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Xiangxiu Zeng
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Fengguo Xu
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Yunxia Zhao
- Renal Medicine, Hainan Wanning People's Hospital, Wanning, Hainan Province, 571500, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology & Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi, 710000, China.,Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Redondo N, Rodríguez-Goncer I, Parra P, López-Medrano F, González E, Hernández A, Trujillo H, Ruiz-Merlo T, San Juan R, Folgueira MD, Andrés A, Aguado JM, Fernández-Ruiz M. Genetic polymorphisms in TLR3, IL10 and CD209 influence the risk of BK polyomavirus infection after kidney transplantation. Sci Rep 2022; 12:11338. [PMID: 35790769 PMCID: PMC9255529 DOI: 10.1038/s41598-022-15406-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Genetic determinants of BK polyomavirus infection after kidney transplantation remain poorly investigated. We assessed the potential impact of 13 different single nucleotide polymorphisms within genes mainly involved in innate immune responses on the risk of BKPyV viremia in 204 KT recipients. After a median follow-up of 1121.5 days, the cumulative incidence of any-level BKPyV viremia was 24.5% (50/204). There was a significant association between the minor T allele of TLR3 (rs3775291) SNP and the development of BKPyV viremia (adjusted hazard ratio [aHR]: 2.16; 95% confidence interval [CI]: 1.08–4.30; P value = 0.029), whereas the minor G allele of CD209 (rs4804803) SNP exerted a protective role (aHR: 0.54; 95% CI: 0.29–1.00; P value = 0.050). A higher incidence of BKPyV viremia was also observed for the minor G allele of IL10 (rs1800872) SNP, although the absence of BKPyV events among homozygotes for the reference allele prevented multivariable analysis. The BKPyV viremia-free survival rate decreased with the increasing number of unfavorable genotypes (100% [no unfavorable genotypes], 85.4% [1 genotype], 70.9% [2 genotypes], 52.5% [3 genotypes]; P value = 0.008). In conclusion, SNPs in TLR3, CD209 and IL10 genes play a role in modulating the susceptibility to any-level BKPyV viremia among KT recipients.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain. .,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Ana Hernández
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Hernando Trujillo
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - María Dolores Folgueira
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Centro de Actividades Ambulatorias, 6ª planta, Bloque D. Avda. de Córdoba, s/n, 28041, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER) en Enfermedades Infecciosas, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
10
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
11
|
Zhao J, You X, Zeng X. Research progress of BK virus and systemic lupus erythematosus. Lupus 2022; 31:522-531. [PMID: 35264023 DOI: 10.1177/09612033221084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients are often infected by viruses due to deficient immunity or immunosuppressant use. BK virus (BKV)mainly affects the kidney and can also cause multiple organ involvement throughout the body, which is similar to SLE. BKV is mostly a latent infection in vivo. The incidence of virus reactivation is higher in SLE patients. Reactivation of BKV can induce the production of autoantibodies, thereby promoting the occurrence and development of SLE.Purpose: Aim of this article is to review the prevalence and pathegenesis of BKV infection in SLE patients.Method: The literature search was conducted using four different databases including PubMed, Cochrane Library, Scopus and Web of Science.Results: BK virus is higher infection and reactivation in SLE patients. The "hapten carrier" mechanism may lead to the production of autoantibodies. Some immunosuppressive drugs, like leflumide and hydroxychloroquine, may show a protective effect.Conclusions: BKV infection plays a role in the occurrence and development of SLE, and its significance deserves further exploration.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Innate Immunity Response to BK Virus Infection in Polyomavirus-Associated Nephropathy in Kidney Transplant Recipients. TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BK polyomavirus (BKV) mainly causes infection in uroepithelial and renal tubular epithelial cells of either immunocompetent or immunocompromised hosts. Despite asymptomatic or mild clinical features in immunocompetent hosts with BK infection, serious complications are frequently found in immunocompromised patients, especially patients with kidney transplantation. Accordingly, BKV-associated nephropathy (BKVN) demonstrates a wide range of clinical manifestations, including ureteric stenosis and hemorrhagic cystitis. In addition, BKV re-infection in post-kidney transplantation is also a main cause of kidney allograft dysfunction and graft loss. Since the direct anti-BKV is unavailable, immune response against BKV infection is the main mechanism for organism control and might be a novel strategy to treat or suppress BKV. As such, the innate immunity, consisting of immune cells and soluble molecules, does not only suppress BKV but also enhances the subsequent adaptive immunity to eradicate the virus. Furthermore, the re-activation of BKV in BKVN of kidney-transplanted recipients seems to be related to the status of innate immunity. Therefore, this review aims to collate the most recent knowledge of innate immune response against BKV and the association between the innate immunity status of kidney-transplanted recipients and BKV re-activation.
Collapse
|
13
|
Zakaryan H, Chilingaryan G, Arabyan E, Serobian A, Wang G. Natural antimicrobial peptides as a source of new antiviral agents. J Gen Virol 2021; 102. [PMID: 34554085 PMCID: PMC10026734 DOI: 10.1099/jgv.0.001661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical-chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.
Collapse
Affiliation(s)
- Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
- Denovo Sciences CJSC, 0033, Yerevan, Armenia
| | - Garri Chilingaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | - Erik Arabyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, 0014, Yerevan, Armenia
| | | | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
14
|
Li D, Chen P, Shi T, Mehmood A, Qiu J. HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to Human ACE2 by Molecular Simulation. Interdiscip Sci 2021; 13:766-777. [PMID: 34363600 PMCID: PMC8346780 DOI: 10.1007/s12539-021-00462-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus (COVID-19) pandemic is still spreading all over the world. As reported, angiotensin-converting enzyme-2 (ACE2) is a receptor of SARS-CoV-2 spike protein that initializes viral entry into host cells. Previously, the human defensin 5 (HD5) has been experimentally confirmed to be functional against the SARS-CoV-2. The present study proposes a human cathelicidin known as LL37 that strongly binds to the carboxypeptidase domain of human ACE2 compared to HD5. Therefore, LL37 bears a great potential to be tested as an anti-SARS-CoVD-2 peptide. We investigated the molecular interactions formed between the LL37 and ACE2 as well as HD5 and ACE2 tailed by their thermodynamic stability. The MM-PBSA and free energy landscape analysis outcomes confirmed its possible inhibitory effect against the SARS-CoV-2. The results obtained here could help propose a promising therapeutic strategy against the havoc caused by SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Peiqin Chen
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jingfei Qiu
- AI Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
15
|
Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses 2021; 13:v13071246. [PMID: 34206990 PMCID: PMC8310277 DOI: 10.3390/v13071246] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Innate immunity during acute infection plays a critical role in the disease severity of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), and is likely to contribute to COVID-19 disease outcomes. Defensins are highly abundant innate immune factors in neutrophils and epithelial cells, including intestinal Paneth cells, and exhibit antimicrobial and immune-modulatory activities. In this study, we investigated the effects of human α- and β-defensins and RC101, a θ-defensin analog, on SARS-CoV-2 infection. We found that human neutrophil peptides (HNPs) 1-3, human defensin (HD) 5 and RC101 exhibited potent antiviral activity against pseudotyped viruses expressing SARS-CoV-2 spike proteins. HNP4 and HD6 had weak anti-SARS-CoV-2 activity, whereas human β-defensins (HBD2, HBD5 and HBD6) had no effect. HNP1, HD5 and RC101 also inhibited infection by replication-competent SARS-CoV-2 viruses and SARS-CoV-2 variants. Pretreatment of cells with HNP1, HD5 or RC101 provided some protection against viral infection. These defensins did not have an effect when provided post-infection, indicating their effect was directed towards viral entry. Indeed, HNP1 inhibited viral fusion but not the binding of the spike receptor-binding domain to hACE2. The anti-SARS-CoV-2 effect of defensins was influenced by the structure of the peptides, as linear unstructured forms of HNP1 and HD5 lost their antiviral function. Pro-HD5, the precursor of HD5, did not block infection by SARS-CoV-2. High virus titers overcame the effect of low levels of HNP1, indicating that defensins act on the virion. HNP1, HD5 and RC101 also blocked viral infection of intestinal and lung epithelial cells. The protective effects of defensins reported here suggest that they may be useful additives to the antivirus arsenal and should be thoroughly studied.
Collapse
|
16
|
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog 2021; 155:104930. [PMID: 33933603 PMCID: PMC8084285 DOI: 10.1016/j.micpath.2021.104930] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitously present small peptides, which play a critical function in the innate immune system. The defensin class of AMPs represented an evolutionarily ancient family containing cationic cysteine residue and frequently expressed in epithelial or neutrophils cells. It plays myriad functions in host innate immune responses against various infection. Defensin has a broad spectrum of antimicrobial activities, including anti-bacteria, anti-viruses (AVPs), anti-fungi, anti-cancers, and also overcoming bacterial drug resistance. In this review, we compiled the progress on defensin, particularly incorporating the mechanism of action, their application as an antiviral agent, prospects in different areas, and limitations to be solved as an antiviral peptide. Defensins were explored, in particular, their capacity to stimulate innate and adaptive immunity by trigging as anti-coronavirus (COVID-19) peptides. The present review summarised its immunomodulatory and immunoenhancing properties and predominantly focused on its promising therapeutic adjuvant choices for combat against viral infection.
Collapse
Affiliation(s)
| | - Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Manish Singh Sansi
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, Haryana, India; Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
17
|
Murugan NA, Raja KMP, Saraswathi NT. Peptide-Based Antiviral Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:261-284. [PMID: 34258744 DOI: 10.1007/978-981-16-0267-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - K Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India.
| | - N T Saraswathi
- School of Chemical & Biotechnology, Sastra Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
18
|
Diaz K, Hu CT, Sul Y, Bromme BA, Myers ND, Skorohodova KV, Gounder AP, Smith JG. Defensin-driven viral evolution. PLoS Pathog 2020; 16:e1009018. [PMID: 33232373 PMCID: PMC7723274 DOI: 10.1371/journal.ppat.1009018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/08/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023] Open
Abstract
Enteric alpha-defensins are potent effectors of innate immunity that are abundantly expressed in the small intestine. Certain enteric bacteria and viruses are resistant to defensins and even appropriate them to enhance infection despite neutralization of closely related microbes. We therefore hypothesized that defensins impose selective pressure during fecal-oral transmission. Upon passaging a defensin-sensitive serotype of adenovirus in the presence of a human defensin, mutations in the major capsid protein hexon accumulated. In contrast, prior studies identified the vertex proteins as important determinants of defensin antiviral activity. Infection and biochemical assays suggest that a balance between increased cell binding and a downstream block in intracellular trafficking mediated by defensin interactions with all of the major capsid proteins dictates the outcome of infection. These results extensively revise our understanding of the interplay between defensins and non-enveloped viruses. Furthermore, they provide a feasible rationale for defensins shaping viral evolution, resulting in differences in infection phenotypes of closely related viruses. Defensins are potent antimicrobial peptides that are found on human mucosal surfaces and can directly neutralize viruses. They are abundant in the small intestine, which is constantly challenged by ingested viral pathogens. Interestingly, non-enveloped viruses, such as adenovirus, that infect the gastrointestinal system are unaffected by defensins or can even appropriate defensins to enhance their infection. In contrast, respiratory adenoviruses are neutralized by the same defensins. How enteric viruses overcome defensin neutralization is not well understood. Our studies are the first to show that defensins can drive the evolution of non-enveloped viruses. Furthermore, we identify important components within human adenovirus that dictate sensitivity to defensins. This new insight into defensin-virus interactions informs our understanding of mucosal immunity to viral infections.
Collapse
Affiliation(s)
- Karina Diaz
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ciara T. Hu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Youngmee Sul
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Beth A. Bromme
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Nicolle D. Myers
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ksenia V. Skorohodova
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Anshu P. Gounder
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kapil S, Sharma V. d-Amino acids in antimicrobial peptides: a potential approach to treat and combat antimicrobial resistance. Can J Microbiol 2020; 67:119-137. [PMID: 32783775 DOI: 10.1139/cjm-2020-0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is one of the leading challenges in the human healthcare segment. Advances in antimicrobial resistance have triggered exploration of natural alternatives to stabilize its seriousness. Antimicrobial peptides are small, positively charged oligopeptides that are as potent as commercially available antibiotics against a wide spectrum of organisms, such as Gram-positive bacteria, Gram-negative bacteria, viruses, and fungal strains. In addition to their antibiotic capabilities, these peptides possess anticancer activity, activate the immune response, and regulate inflammation. Peptides have distinct modes of action and fall into various categories due to their amino acid composition. Although antimicrobial peptides specifically target the bacterial cytoplasmic membrane, they can also target the cell nucleus and protein synthesis. Owing to the increasing demand for novel treatments against the threat of antimicrobial resistance, naturally synthesized peptides are a beneficial development concept. Antimicrobial peptides are pervasive and can easily be modified using de-novo synthesis technology. Antimicrobial peptides can be isolated from natural resources such as humans, plants, bacteria, and fungi. This review gives a brief overview of antimicrobial peptides and their diastereomeric composition. Other current trends, the future scope of antimicrobial peptides, and the role of d-amino acids are also discussed, with a specific emphasis on the design and development of new drugs.
Collapse
Affiliation(s)
- Shikha Kapil
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| | - Vipasha Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| |
Collapse
|
20
|
Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N, Garcia M. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes. Front Microbiol 2020; 11:1155. [PMID: 32582097 PMCID: PMC7283518 DOI: 10.3389/fmicb.2020.01155] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Keratinocytes, the main cells of the epidermis, are the first site of replication as well as the first line of defense against many viruses such as arboviruses, enteroviruses, herpes viruses, human papillomaviruses, or vaccinia virus. During viral replication, these cells can sense virus associated molecular patterns leading to the initiation of an innate immune response composed of pro-inflammatory cytokines, chemokines, and antimicrobial peptides. Human keratinocytes produce and secrete at least nine antimicrobial peptides: human cathelicidin LL-37, types 1–4 human β-defensins, S100 peptides such as psoriasin (S100A7), calprotectin (S100A8/9) and koebnerisin (S100A15), and RNase 7. These peptides can exert direct antiviral effects on the viral particle or its replication cycle, and indirect antiviral activity, by modulating the host immune response. The purpose of this review is to summarize current knowledge of antiviral and immunomodulatory properties of human keratinocyte antimicrobial peptides.
Collapse
Affiliation(s)
- Céline Chessa
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Clément Jousselin
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Michel Wehbe
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, LITEC EA 4331, Université de Poitiers, Poitiers, France
| |
Collapse
|
21
|
An Alphaherpesvirus Exploits Antimicrobial β-Defensins To Initiate Respiratory Tract Infection. J Virol 2020; 94:JVI.01676-19. [PMID: 31996426 PMCID: PMC7108845 DOI: 10.1128/jvi.01676-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 01/22/2023] Open
Abstract
How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine β-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution. β-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal β-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits β-defensins to invade its host and initiate viral spread. The equine β-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis. IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine β-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution.
Collapse
|
22
|
Brice DC, Diamond G. Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 2020; 27:1420-1443. [PMID: 31385762 PMCID: PMC9008596 DOI: 10.2174/0929867326666190805151654] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/05/2023]
Abstract
Peptides with broad-spectrum antimicrobial activity are found widely expressed throughout nature. As they participate in a number of different aspects of innate immunity in mammals, they have been termed Host Defense Peptides (HDPs). Due to their common structural features, including an amphipathic structure and cationic charge, they have been widely shown to interact with and disrupt microbial membranes. Thus, it is not surprising that human HDPs have activity against enveloped viruses as well as bacteria and fungi. However, these peptides also exhibit activity against a wide range of non-enveloped viruses as well, acting at a number of different steps in viral infection. This review focuses on the activity of human host defense peptides, including alpha- and beta-defensins and the sole human cathelicidin, LL-37, against both enveloped and non-enveloped viruses. The broad spectrum of antiviral activity of these peptides, both in vitro and in vivo suggest that they play an important role in the innate antiviral defense against viral infections. Furthermore, the literature suggests that they may be developed into antiviral therapeutic agents.
Collapse
Affiliation(s)
- David C. Brice
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Box 100424, Gainesville, Florida 32610, USA
| |
Collapse
|
23
|
Zhang D, He Y, Ye Y, Ma Y, Zhang P, Zhu H, Xu N, Liang S. Little Antimicrobial Peptides with Big Therapeutic Roles. Protein Pept Lett 2019; 26:564-578. [PMID: 30799781 DOI: 10.2174/1573406415666190222141905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
Abstract
Antimicrobial Peptides (AMPs) are short amphipathic biological molecules generally with less than 100 amino acids. AMPs not only present high bioactivities against bacteria, fungi or protists-induced infections, but also play important roles in anticancer activity, immune response and inflammation regulation. AMPs are classified as ribosomally synthesized, non-ribosomally synthesized and post-translationally modified, non-ribosomally synthesized ones and several synthetic or semisynthetic peptides according to their synthesis with or without the involvement of ribosomes. The molecular characterization and bioactivity action mechanisms are summarized for several ribosomally synthesized AMPs and main non-ribosomally synthesized members (cyclopeptides, lipopeptides, glycopeptides, lipoglycopeptides). We also analyze challenges and new strategies to overcome drug resistance and application limitations for AMP discovery. In conclusion, the growing novel small molecular AMPs have huge therapeutic potentials of antibacterial, antiviral, anticancer and immunoregulatory bioactivities through new techniquesdriven drug discovery strategy including bioinformatics prediction, de novo rational design and biosynthesis.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanni Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.,Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
24
|
Gulati NM, Miyagi M, Wiens ME, Smith JG, Stewart PL. α-Defensin HD5 Stabilizes Human Papillomavirus 16 Capsid/Core Interactions. Pathog Immun 2019; 4:196-234. [PMID: 31583330 PMCID: PMC6755940 DOI: 10.20411/pai.v4i2.314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Human papillomavirus (HPV) is linked to nearly all cases of cervical cancer. Despite available vaccines, a deeper understanding of the immune response to HPV is needed. Human α-defensin 5 (HD5), an innate immune effector peptide, blocks infection of multiple sero-types of HPV, including high-risk HPV16. While a common mechanism of α-defensin anti-viral activity against nonenveloped viruses such as HPV has emerged, there is limited understanding of how α-defensins bind to viral capsids to block infection. Methods: We have used cryo-electron microscopy (cryoEM), mass spectrometry (MS) crosslinking and differential lysine modification studies, and molecular dynamics (MD) simulations to probe the interaction of HPV16 pseudovirions (PsVs) with HD5. Results: CryoEM single particle reconstruction did not reveal HD5 density on the capsid surface. Rather, increased density was observed under the capsid shell in the presence of HD5. MS studies indicate that HD5 binds near the L1 and L2 capsid proteins and specifically near the C-terminal region of L1. MD simulations indicate that favorable electrostatic interactions can be formed between HD5 and the L1 C-terminal tail. Conclusions: A model is presented for how HD5 affects HPV16 structure and cell entry. In this model, HD5 binds to disordered regions of L1 and L2 protruding from the icosahedrally ordered capsid. HD5 acts to cement interactions between L1 and L2 and leads to a closer association of the L2/genome core with the L1 capsid. This model provides a structural rationale for our prior observation that HD5 interferes with the separation of L1 from the L2/genome complex during cell entry. Graphical Abstract
Collapse
Affiliation(s)
- Neetu M Gulati
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Mayim E Wiens
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Phoebe L Stewart
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
25
|
Peptide-Protein Interaction Studies of Antimicrobial Peptides Targeting Middle East Respiratory Syndrome Coronavirus Spike Protein: An In Silico Approach. Adv Bioinformatics 2019; 2019:6815105. [PMID: 31354813 PMCID: PMC6634063 DOI: 10.1155/2019/6815105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
There is no effective therapeutic or vaccine for Middle East Respiratory Syndrome and this study attempts to find therapy using peptide by establishing a basis for the peptide-protein interactions through in silico docking studies for the spike protein of MERS-CoV. The antimicrobial peptides (AMPs) were retrieved from the antimicrobial peptide database (APD3) and shortlisted based on certain important physicochemical properties. The binding mode of the shortlisted peptides was measured based on the number of clusters which forms in a protein-peptide docking using Piper. As a result, we identified a list of putative AMPs which binds to the spike protein of MERS-CoV, which may be crucial in providing the inhibitory action. It is observed that seven putative peptides have good binding score based on cluster size cutoff of 208. We conclude that seven peptides, namely, AP00225, AP00180, AP00549, AP00744, AP00729, AP00764, and AP00223, could possibly have binding with the active site of the MERS-CoV spike protein. These seven AMPs could serve as a therapeutic option for MERS and enhance its treatment outcome.
Collapse
|
26
|
Park MS, Kim JI, Lee I, Park S, Bae JY, Park MS. Towards the Application of Human Defensins as Antivirals. Biomol Ther (Seoul) 2018; 26:242-254. [PMID: 29310427 PMCID: PMC5933891 DOI: 10.4062/biomolther.2017.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express α- and β-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the ‘defensin vaccine’ concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sehee Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Abstract
Discovering new therapeutics for human viral diseases is important for combatting emerging infectious viruses and omnipresent circulating viruses as well as those that can become resistant to the drugs we currently have available. The innate host defense peptide (HDP) repertoire present in animals is a wealth of potential antimicrobial agents that could be mined to meet these needs. While much of the body of research regarding HDPs is in the context of bacteria, there is increasing evidence that they can be an effective source for antivirals. Peptides can be identified in a number of ways, including eco-conservation-minded approaches. Those shown to have antiviral properties can be modified to exhibit desired properties as the relationship between structure and function is elucidated and then developed into therapeutics for human use. This review looks at the discovery and therapeutic potential of HDPs for human viral infections.
Collapse
|
28
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
29
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
30
|
Synthetic Porcine Hepcidin Exhibits Different Roles in Escherichia coli and Salmonella Infections. Antimicrob Agents Chemother 2017; 61:AAC.02638-16. [PMID: 28760901 DOI: 10.1128/aac.02638-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Hepcidin, an antimicrobial peptide, was discovered to integrate diverse signals from iron status and an infection threat and orchestrate a series of host-protective responses. Several studies have investigated the antimicrobial role of hepcidin, but the results have been controversial. Here, we aimed to examine the role of hepcidin in bacterial adherence and invasion in vitro We found that porcine hepcidin could decrease the amount of the extracellular pathogen enterotoxigenic Escherichia coli (ETEC) K88 that adhered to cells because it caused the aggregation of the bacteria. However, addition of hepcidin to macrophages infected with the intracellular pathogen Salmonella enterica serovar Typhimurium enhanced the intracellular growth of the pathogen through the degradation of ferroportin, an iron export protein, and then the sequestration of intracellular iron. Intracellular iron was unavailable by use of the iron chelator deferiprone (DFO), which reduced intracellular bacterial growth. These results demonstrate that hepcidin exhibits different functions in extracellular and intracellular bacterial infections, which suggests that different defense strategies should be taken to prevent bacterial infection.
Collapse
|
31
|
Trang VD, Rockett R, Jeoffreys N, Trung NV, Hai An HP, Kok J, Dwyer DE. BK polyomavirus: a review of the virology, pathogenesis, clinical and laboratory features, and treatment. Future Virol 2017. [DOI: 10.2217/fvl-2017-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BK polyomavirus (BKPyV) is a non-enveloped, circular dsDNA virus with a genome of approximately 5100 base pairs. It can be divided into four major genotypes, but the effects of different genotypes on clinical disease are uncertain. Primary BKPyV infection is generally acquired asymptomatically in childhood. It establishes low-level persistence in many tissues, particularly the genitourinary tract. Reactivation can lead to severe disease including BKPyV-associated nephropathy confirmed by renal biopsy, hemorrhagic cystitis and meningoencephalitis. Nucleic acid amplification testing of blood and urine is the main diagnostic and prognostic test for BKPyV infection. The treatment of BKPyV infection has concentrated on reduction in immunosuppressive therapy. Recent studies suggest that antiviral drugs have demonstrated only modest benefit, but adoptive T-cell therapies offer potential advances.
Collapse
Affiliation(s)
- Van Dinh Trang
- Clinical Laboratory, National Hospital of Tropical Diseases, 78-Giai Phong, Dong Da, Hanoi, Vietnam
- Western Clinical School, Westmead Hospital, The University of Sydney, NSW 2006, Australia
| | - Rebecca Rockett
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Neisha Jeoffreys
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Nguyen Vu Trung
- Clinical Laboratory, National Hospital of Tropical Diseases, 78-Giai Phong, Dong Da, Hanoi, Vietnam
- Department of Medical Microbiology, Hanoi Medical University, No. 1 Ton That Tung St, Dong Da, Hanoi, Vietnam
| | - Ha Phan Hai An
- Department of International Cooperation, Hanoi Medical University, No. 1 Ton That Tung St, Dong Da, Hanoi, Vietnam
- Kidney Diseases & Dialysis Department, Viet Duc Hospital, No. 40 Trang Thi St, Hoan Kiem, Hanoi, Vietnam
| | - Jen Kok
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Dominic E Dwyer
- Western Clinical School, Westmead Hospital, The University of Sydney, NSW 2006, Australia
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
32
|
Abstract
α, β, and θ defensins are effectors of the innate immune system with potent antibacterial, antiviral, and antifungal activity. Defensins have direct antiviral activity in cell culture, with varied mechanisms for individual viruses, although some common themes have emerged. In addition, defensins have potent immunomodulatory activity that can alter innate and adaptive immune responses to viral infection. In some cases, there is evidence for paradoxical escape from defensin neutralization or enhancement of viral infection. The direct and indirect activities of defensins have led to their development as therapeutics and vaccine components. The major area of investigation that continues to lag is the connection between the effects of defensins in cell culture models and viral pathogenesis in vivo. Model systems to study defensin biology, including more physiologic models designed to bridge this gap, are also discussed.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Karina Diaz
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
33
|
α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome. mBio 2017; 8:mBio.02304-16. [PMID: 28119475 PMCID: PMC5263252 DOI: 10.1128/mbio.02304-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5) blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV) infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses. IMPORTANCE Although the antiviral activity of α-defensins against enveloped viruses can be largely explained by interference with receptor binding and fusion, a common mechanism for inhibition of nonenveloped viruses remains elusive. In studies of a prominent human α-defensin that is expressed in the gut and in the male and female genitourinary tract, we discovered striking parallels between the mechanisms of inhibition of HPV and human adenovirus infection. Thus, detailed studies of the impact of α-defensins on the intracellular trafficking of two disparate viruses support a general mechanism of α-defensin antiviral activity against nonenveloped viruses.
Collapse
|
34
|
Vigil D, Konstantinov NK, Barry M, Harford AM, Servilla KS, Kim YH, Sun Y, Ganta K, Tzamaloukas AH. BK nephropathy in the native kidneys of patients with organ transplants: Clinical spectrum of BK infection. World J Transplant 2016; 6:472-504. [PMID: 27683628 PMCID: PMC5036119 DOI: 10.5500/wjt.v6.i3.472] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 02/05/2023] Open
Abstract
Nephropathy secondary to BK virus, a member of the Papoviridae family of viruses, has been recognized for some time as an important cause of allograft dysfunction in renal transplant recipients. In recent times, BK nephropathy (BKN) of the native kidneys has being increasingly recognized as a cause of chronic kidney disease in patients with solid organ transplants, bone marrow transplants and in patients with other clinical entities associated with immunosuppression. In such patients renal dysfunction is often attributed to other factors including nephrotoxicity of medications used to prevent rejection of the transplanted organs. Renal biopsy is required for the diagnosis of BKN. Quantitation of the BK viral load in blood and urine are surrogate diagnostic methods. The treatment of BKN is based on reduction of the immunosuppressive medications. Several compounds have shown antiviral activity, but have not consistently shown to have beneficial effects in BKN. In addition to BKN, BK viral infection can cause severe urinary bladder cystitis, ureteritis and urinary tract obstruction as well as manifestations in other organ systems including the central nervous system, the respiratory system, the gastrointestinal system and the hematopoietic system. BK viral infection has also been implicated in tumorigenesis. The spectrum of clinical manifestations from BK infection and infection from other members of the Papoviridae family is widening. Prevention and treatment of BK infection and infections from other Papovaviruses are subjects of intense research.
Collapse
|
35
|
Defensins at the Mucosal Surface: Latest Insights into Defensin-Virus Interactions. J Virol 2016; 90:5216-5218. [PMID: 27009960 DOI: 10.1128/jvi.00904-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Defensins are innate immune effector peptides expressed at mucosal surfaces throughout the human body and are potently antiviral in vitro The role of defensins in viral pathogenesis in vivo is poorly understood; however, recent studies have revealed that defensin-virus interactions in vivo are complicated and distinct from their proposed antiviral mechanisms in vitro These findings highlight the need for additional research that connects defensin neutralization of viruses in cell culture to in vivo antiviral mechanisms.
Collapse
|
36
|
Kariminik A, Yaghobi R, Dabiri S. Innate Immunity and BK Virus: Prospective Strategies. Viral Immunol 2016; 29:74-82. [PMID: 26752693 DOI: 10.1089/vim.2015.0099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent information demonstrated that BK virus reactivation is a dominant complication after kidney transplantation, which occurs because of immunosuppression. BK virus reactivation is the main reason of transplanted kidney losing. Immune response against BK virus is the major inhibitor of the virus reactivation. Therefore, improving our knowledge regarding the main parameters that fight against BK viruses can shed light on to direct new treatment strategies to suppress BK infection. Innate immunity consists of numerous cell systems and also soluble molecules, which not only suppress virus replication, but also activate adaptive immunity to eradicate the infection. Additionally, it appears that immune responses against reactivated BK virus are the main reasons for induction of BK virus-associated nephropathy (BKAN). Thus, improving our knowledge regarding the parameters and detailed mechanisms of innate immunity and also the status of innate immunity of the patients with BK virus reactivation and its complications can introduce new prospective strategies to either prevent or as therapy of the complication. Therefore, this review was aimed to collate the most recent data regarding the roles played by innate immunity against BK virus and also the status of innate immunity in the patients with reactivation BK virus and BKAN.
Collapse
Affiliation(s)
- Ashraf Kariminik
- 1 Shiraz Branch, Department of Microbiology, Islamic Azad University , Shiraz, Iran .,2 Fars Research and Science Branch, Department of Microbiology, Islamic Azad University , Fars, Iran
| | - Ramin Yaghobi
- 3 Shiraz Transplant Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Shahriar Dabiri
- 4 Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman University of Medical Sciences , Kerman, Iran
| |
Collapse
|
37
|
Epand RM. Antiviral Host Defence Peptides. HOST DEFENSE PEPTIDES AND THEIR POTENTIAL AS THERAPEUTIC AGENTS 2016. [PMCID: PMC7123656 DOI: 10.1007/978-3-319-32949-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ongoing global mortality and morbidity associated with viral pathogens highlights the need for the continued development of effective, novel antiviral molecules. The antiviral activity of cationic host defence peptides is of significant interest as novel therapeutics for treating viral infection and predominantly due to their broad spectrum antiviral activity. These peptides also display powerful immunomodulatory activity and are key mediators of inflammation. Therefore, they offer a significant opportunity to inform the development of novel therapeutics for treating viral infections by either directly targeting the pathogen or by enhancing the innate immune response. In this chapter, we review the antiviral activity of cathelicidins and defensins, and examine the potential for these peptides to be used as novel antiviral agents.
Collapse
Affiliation(s)
- Richard M. Epand
- Health Sciences Centre, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
38
|
Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J Virol 2014; 89:2866-74. [PMID: 25540379 DOI: 10.1128/jvi.02901-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human papillomavirus (HPV) is a significant oncogenic virus, but the innate immune response to HPV is poorly understood. Human α-defensin 5 (HD5) is an innate immune effector peptide secreted by epithelial cells in the genitourinary tract. HD5 is broadly antimicrobial, exhibiting potent antiviral activity against HPV at physiologic concentrations; however, the specific mechanism of HD5-mediated inhibition against HPV is unknown. During infection, the HPV capsid undergoes several critical cell-mediated viral protein processing steps, including unfolding and cleavage of the minor capsid protein L2 by host cyclophilin B and furin. Using HPV16 pseudovirus, we show that HD5 interacts directly with the virus and inhibits the furin-mediated cleavage of L2 at the cell surface during infection at a step downstream of the cyclophilin B-mediated unfolding of L2. Importantly, HD5 does not affect the enzymatic activity of furin directly. Thus, our data support a model in which HD5 prevents furin from accessing L2 by occluding the furin cleavage site via direct binding to the viral capsid. IMPORTANCE Our study elucidates a new antiviral action for α-defensins against nonenveloped viruses in which HD5 directly interferes with a critical host-mediated viral processing step, furin cleavage of L2, at the cell surface. Blocking this key event has deleterious effects on the intracellular steps of virus infection. Thus, in addition to informing the antiviral mechanisms of α-defensins, our studies highlight the critical role of furin cleavage in HPV entry. Innate immune control, mediated in part by α-defensins expressed in the genital mucosa, may influence susceptibility to HPV infections that lead to cervical cancer. Moreover, understanding the mechanism of these natural antivirals may inform the design of therapeutics to limit HPV infection.
Collapse
|
39
|
Anti-lipopolysaccharide factor isoform 3 from Penaeus monodon (ALFPm3) exhibits antiviral activity by interacting with WSSV structural proteins. Antiviral Res 2014; 110:142-50. [DOI: 10.1016/j.antiviral.2014.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/30/2014] [Accepted: 08/07/2014] [Indexed: 11/24/2022]
|
40
|
Pelc RS, McClure JC, Sears KT, Chung A, Rahman MS, Ceraul SM. Defending the fort: a role for defensin-2 in limiting Rickettsia montanensis infection of Dermacentor variabilis. INSECT MOLECULAR BIOLOGY 2014; 23:457-65. [PMID: 24779891 PMCID: PMC4106998 DOI: 10.1111/imb.12094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The importance of tick defensins is evidenced by their expression in a wide variety of tick tissues and prevalence across many tick genera. To date, the functional and biological significance of defensin-2 as a rickettsiastatic or rickettsiacidal antimicrobial peptide has not been addressed. In a previous study, defensin-2 transcription was shown to increase in Dermacentor variabilis ticks challenged with Rickettsia montanensis. In the present study, the hypothesis that defensin-2 is functional as a rickettsiastatic and/or rickettsiacidal antimicrobial peptide is tested. We show that defensin-2 plays a role in reducing burden after acquisition of Rickettsia montanensis through capillary feeding. Moreover, defensin-2 is shown to associate with R. montanensis in vitro and in vivo, causing cytoplasmic leakiness.
Collapse
Affiliation(s)
- R S Pelc
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
41
|
Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS. The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol 2014; 29:1139-49. [PMID: 23732397 PMCID: PMC3800267 DOI: 10.1007/s00467-013-2513-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/27/2022]
Abstract
Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.
Collapse
Affiliation(s)
- John David Spencer
- Department of Pediatrics, Division of Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA,
| | | | | | | | | |
Collapse
|
42
|
Abstract
There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Silke M. Currie
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
43
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
44
|
Cheng DQ, Li Y, Huang JF. Molecular evolution of the primate α-/θ-defensin multigene family. PLoS One 2014; 9:e97425. [PMID: 24819937 PMCID: PMC4018336 DOI: 10.1371/journal.pone.0097425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/21/2014] [Indexed: 12/18/2022] Open
Abstract
The primate α-/θ-defensin multigene family encodes versatile endogenous cationic and amphipathic peptides that have broad-spectrum antibacterial, antifungal and antiviral activity. Although previous studies have reported that α-/θ-defensin (DEFA/DEFT) genes are under birth-and-death evolution with frequent duplication and rapid evolution, the phylogenetic relationships of the primate DEFA/DEFT genes; the genetic bases for the existence of similar antimicrobial spectra among closely related species; and the evolutionary processes involved in the emergence of cyclic θ-defensins in Old World monkeys and their subsequent loss of function in humans, chimpanzees and gorillas require further investigation. In this study, the DEFA/DEFT gene repertoires from primate and treeshrew were collected, followed by detailed phylogenetic, sequence and structure, selection pressure and comparative genomics analyses. All treeshrew, prosimian and simian DEFA/DEFT genes are grouped into two major clades, which are tissue-specific for enteric and myeloid defensins in simians. The simian enteric and myeloid α-defensins are classified into six functional gene clusters with diverged sequences, variable structures, altered functional constraints and different selection pressures, which likely reflect the antimicrobial spectra among closely related species. Species-specific duplication or pseudogenization within each simian cluster implies that the antimicrobial spectrum is ever-shifting, most likely challenged by the ever-changing pathogen environment. The DEFT evolved from the myeloid DEFA8. The prosegment of θ-defensin is detected with adaptive changes coevolving with the new protein fold of mature peptide, coincident with the importance of the prosegment for the correct folding of the mature peptide. Lastly, a less-is-hitchhiking hypothesis was proposed as a possible explanation for the expansion of pseudogene DEFTP and the loss of functional DEFT, where the gain or loss of the hitchhiker is determined by its adjacent driver gene during the birth-and-death evolutionary process.
Collapse
Affiliation(s)
- Dong-Qiang Cheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Yaan, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Institute of Zoology-Chinese University of Hongkong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming, China
- * E-mail:
| |
Collapse
|
45
|
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425:4965-80. [PMID: 24095897 PMCID: PMC3842434 DOI: 10.1016/j.jmb.2013.09.038] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/21/2022]
Abstract
Defensins are an effector component of the innate immune system with broad antimicrobial activity. Humans express two types of defensins, α- and β-defensins, which have antiviral activity against both enveloped and non-enveloped viruses. The diversity of defensin-sensitive viral species reflects a multitude of antiviral mechanisms. These include direct defensin targeting of viral envelopes, glycoproteins, and capsids in addition to inhibition of viral fusion and post-entry neutralization. Binding and modulation of host cell surface receptors and disruption of intracellular signaling by defensins can also inhibit viral replication. In addition, defensins can function as chemokines to augment and alter adaptive immune responses, revealing an indirect antiviral mechanism. Nonetheless, many questions regarding the antiviral activities of defensins remain. Although significant mechanistic data are known for α-defensins, molecular details for β-defensin inhibition are mostly lacking. Importantly, the role of defensin antiviral activity in vivo has not been addressed due to the lack of a complete defensin knockout model. Overall, the antiviral activity of defensins is well established as are the variety of mechanisms by which defensins achieve this inhibition; however, additional research is needed to fully understand the role of defensins in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Jason G. Smith
- University of Washington School of Medicine, Box 357735, 1705 North East Pacific Street, Seattle, WA 98195, USA
| |
Collapse
|
46
|
The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing endoplasmic reticulum traffic and stabilizing the viral capsid. J Virol 2013; 88:948-60. [PMID: 24198413 DOI: 10.1128/jvi.02766-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a fatal disease with limited treatment options, both clinically and in the research pipeline. Potential therapies would target and neutralize its etiologic agent, JC polyomavirus (JCPyV). The innate immune response to JCPyV infection has not been studied, and little is known about the initial host response to polyomavirus infection. This study examined the ability of a human alpha defensin, HD5, to neutralize JCPyV infection in human fetal glial cells. We show that HD5, by binding to the virion, blocks infection. The JCPyV-HD5 complexes bind to and enter host cells but are reduced in their ability to reach the endoplasmic reticulum (ER), where virions are normally uncoated. Furthermore, HD5 binding to the virion stabilizes the capsid and prevents genome release. Our results show that HD5 neutralizes JCPyV infection at an early postentry step in the viral life cycle by stabilizing the viral capsid and disrupting JCPyV trafficking. This study provides a naturally occurring platform for developing antivirals to treat PML and also expands on the known capabilities of human defensins.
Collapse
|
47
|
Kasthuri SR, Wan Q, Umasuthan N, Bathige SDNK, Lim BS, Jung HB, Lee J, Whang I. Genomic characterization, expression analysis, and antimicrobial function of a glyrichin homologue from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1406-1415. [PMID: 23968692 DOI: 10.1016/j.fsi.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Antimicrobial peptides are important innate effector molecules, playing a vital role in antimicrobial immunity in all species. Glyrichin is a transmembrane protein and an antibacterial peptide, exerting its functions against a wide range of pathogenic bacteria. In this study, cDNA and a BAC clone harboring the glyrichin gene were identified from rock bream and characterized. Genomic characterization showed that the OfGlyrichin gene exhibited a 3 exon-2 intron structure. OfGlyrichin is a 79-amino-acid protein with a transmembrane domain at (22)GFMMGFAVGMAAGAMFGTFSCLR(44). Pairwise and multiple sequence alignments showed high identity and conservation with mammalian orthologues. Phylogenetic analysis showed a close relationship with fish species. Higher levels of OfGlyrichin transcripts were detected in the liver from healthy rock bream which were induced by immunogens like lipopolysaccharide, poly I:C, rock bream irido virus, Edwardsiella tarda and Streptococcus iniae. The synthetic peptide (pOf19) showed antibacterial activity against Escherichia coli, E. tarda, and S. iniae. Analysis of the bacterial morphological features after pOf19 peptide treatment showed breakage of the cell membrane, affirming that antibacterial function is accomplished through membrane lysis. The pOf19 peptide also showed antiviral activity against RBIV infection. The high conservation of the genomic structure and protein, together with the antimicrobial roles of OfGlyrichin, provide evidence for the evolutionary existence of this protein playing a vital role in innate immune defense in rock bream.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ding J, Tasker C, Valere K, Sihvonen T, Descalzi-Montoya DB, Lu W, Chang TL. Anti-HIV activity of human defensin 5 in primary CD4+ T cells under serum-deprived conditions is a consequence of defensin-mediated cytotoxicity. PLoS One 2013; 8:e76038. [PMID: 24086683 PMCID: PMC3783372 DOI: 10.1371/journal.pone.0076038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We have previously shown that human defensin 5 (HD5) promotes HIV infectivity in both primary CD4+ T cells and HeLa cells expressing CD4 and CCR5. HD5 is induced in response to sexually transmitted infections (STIs) such as Chlamydia trachomatis and Neisseria gonorrhoeae, suggesting it plays a role in STI-mediated enhancement of HIV transmission. In contrast to our findings, a recent study reports that HD5 has an anti-HIV effect in primary CD4+ T cells under serum-deprived conditions. To resolve these apparently contradictory observations, we investigated experimental parameters that might contribute to contrasting effects of HD5. RESULTS Serum-deprived culture conditions were associated with anti-HIV activity. In contrast to the dependence of the HIV enhancing effect on HD5 structure, the anti-HIV activity in serum-deprived primary CD4+ T cells was independent of HD5 structure as the linear peptide [Abu] HD5 exhibited similar anti-HIV activity. Under serum deprived conditions, HD5 blocked CD4-receptor-independent HIV-1vsv infection before or after viral entry. We found that HD5 and its linear form induced significant cell death in primary CD4+ T cells under serum-deprived culture conditions. HD5-mediated apoptosis was observed as early as 2 h after addition of defensins to serum-deprived primary CD4+ T cells. In contrast to primary CD4+ T cells, HD5 did not induce cytotoxicity and promote HIV infectivity of HeLa-CD4-CCR5 cells under serum-deprived conditions. CONCLUSIONS These results indicate that under serum-deprived culture conditions HD5 is toxic for primary CD4+ T cells, warranting caution in data interpretation.
Collapse
Affiliation(s)
- Jian Ding
- Public Health Research Institute, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Carley Tasker
- Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Kimyata Valere
- Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Tiina Sihvonen
- Public Health Research Institute, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dante B. Descalzi-Montoya
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Graduate School of Biomedical Sciences, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Microbiology and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
49
|
Cellular response to Trypanosoma cruzi infection induces secretion of defensin α-1, which damages the flagellum, neutralizes trypanosome motility, and inhibits infection. Infect Immun 2013; 81:4139-48. [PMID: 23980110 DOI: 10.1128/iai.01459-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that colonic epithelial model HCT116 cells respond to Trypanosoma cruzi infection by secreting defensin α-1, which reduces infection. We also report the early effects of defensin α-1 on invasive trypomastigotes that involve damage of the flagellar structure to inhibit parasite motility and reduce cellular infection. Short exposure of defensin α-1 to trypomastigotes shows that defensin α-1 binds to the flagellum, resulting in flagellar membrane and axoneme alterations, followed by breaking of the flagellar membrane connected to the trypanosome body, leading to detachment and release of the parasite flagellum. In addition, defensin α-1 induces a significant reduction in parasite motility in a peptide concentration-dependent manner, which is abrogated by anti-defensin α-1 IgG. Preincubation of trypomastigotes with a concentration of defensin α-1 that inhibits 50% trypanosome motility significantly reduced cellular infection by 80%. Thus, human defensin α-1 is an innate immune molecule that is secreted by HCT116 cells in response to T. cruzi infection, inhibits T. cruzi motility, and plays an important role in reducing cellular infection. This is the first report showing a novel cellular innate immune response to a human parasite by secretion of defensin α-1, which neutralizes the motility of a human parasite to reduce cellular infection. The mode of activity of human defensin α-1 against T. cruzi and its function may provide insights for the development of new antiparasitic strategies.
Collapse
|
50
|
Flatt JW, Kim R, Smith JG, Nemerow GR, Stewart PL. An intrinsically disordered region of the adenovirus capsid is implicated in neutralization by human alpha defensin 5. PLoS One 2013; 8:e61571. [PMID: 23620768 PMCID: PMC3631211 DOI: 10.1371/journal.pone.0061571] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
Human α-defensins are proteins of the innate immune system that suppress viral and bacterial infections by multiple mechanisms including membrane disruption. For viruses that lack envelopes, such as human adenovirus (HAdV), other, less well defined, mechanisms must be involved. A previous structural study on the interaction of an α-defensin, human α-defensin 5 (HD5), with HAdV led to a proposed mechanism in which HD5 stabilizes the vertex region of the capsid and blocks uncoating steps required for infectivity. Studies with virus chimeras comprised of capsid proteins from sensitive and resistant serotypes supported this model. To further characterize the critical binding site, we determined subnanometer resolution cryo-electron microscopy (cryoEM) structures of HD5 complexed with both neutralization-sensitive and -resistant HAdV chimeras. Models were built for the vertex regions of these chimeras with monomeric and dimeric forms of HD5 in various initial orientations. CryoEM guided molecular dynamics flexible fitting (MDFF) was used to restrain the majority of the vertex model in well-defined cryoEM density. The RGD-containing penton base loops of both the sensitive and resistant virus chimeras are predicted to be intrinsically disordered, and little cryoEM density is observed for them. In simulations these loops from the sensitive virus chimera, interact with HD5, bridge the penton base and fiber proteins, and provides significant stabilization with a three-fold increase in the intermolecular nonbonded interactions of the vertex complex. In the case of the resistant virus chimera, simulations revealed fewer bridging interactions and reduced stabilization by HD5. This study implicates a key dynamic region in mediating a stabilizing interaction between a viral capsid and a protein of the innate immune system with potent anti-viral activity.
Collapse
Affiliation(s)
- Justin W. Flatt
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert Kim
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Glen R. Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phoebe L. Stewart
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|