1
|
Ye Y, Shetye SS, Birk DE, Soslowsky LJ. Regulatory Role of Collagen XI in the Establishment of Mechanical Properties of Tendons and Ligaments in Mice Is Tissue Dependent. J Biomech Eng 2025; 147:011003. [PMID: 39297758 PMCID: PMC11500803 DOI: 10.1115/1.4066570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Collagen XI is ubiquitous in tissues such as joint cartilage, cancellous bone, muscles, and tendons and is an important contributor during a crucial part in fibrillogenesis. The COL11A1 gene encodes one of three alpha chains of collagen XI. The present study elucidates the role of collagen XI in the establishment of mechanical properties of tendons and ligaments. We investigated the mechanical response of three tendons and one ligament tissues from wild type and a targeted mouse model null for collagen XI: Achilles tendon (ACH), the flexor digitorum longus tendon (FDL), the supraspinatus tendon (SST), and the anterior cruciate ligament (ACL). Area was substantially lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Maximum load and maximum stress were significantly lower in Col11a1ΔTen/ΔTen ACH and FDL. Stiffness was lower in Col11a1ΔTen/ΔTen ACH, FDL, and SST. Modulus was reduced in Col11a1ΔTen/ΔTen FDL and SST (both insertion site and midsubstance). Collagen fiber distributions were more aligned under load in both wild type group and Col11a1ΔTen/ΔTen groups. Results also revealed that the effect of collagen XI knockout on collagen fiber realignment is tendon-dependent and location-dependent (insertion versus midsubstance). In summary, this study clearly shows that the regulatory role of collagen XI on tendon and ligament is tissue specific and that joint hypermobility in type II Stickler's Syndrome may in part be due to suboptimal mechanical response of the soft tissues surrounding joints.
Collapse
Affiliation(s)
- Yaping Ye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL 33647
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6081
| |
Collapse
|
2
|
Newton JB, Weiss SN, Nuss CA, Darrieutort-Laffite C, Eekhoff JD, Birk DE, Soslowsky LJ. Decorin and/or biglycan knockdown in aged mouse patellar tendon impacts fibril morphology, scar area, and mechanical properties. J Orthop Res 2024; 42:2400-2413. [PMID: 38967120 PMCID: PMC11479833 DOI: 10.1002/jor.25931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Small leucine-rich proteoglycans, such as decorin and biglycan, play pivotal roles in collagen fibrillogenesis during development, healing, and aging in tendon. Previous work has shown that the absence of decorin and biglycan affects fibril shape and mechanical properties during tendon healing. However, the roles of decorin and biglycan in the healing process of aged tendons are unclear. Therefore the objective of this study was to evaluate the differential roles of decorin and biglycan during healing of patellar tendon injury in aged mice. Aged (300 days old) female Dcn+/+/Bgn+/+ control (WT, n = 52), Dcnflox/flox (I-Dcn-/-, n = 36), Bgnflox/flox (I-Bgn-/-, n = 36), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-, n = 36) mice with a tamoxifen-inducible Cre were utilized. Targeted gene expression, collagen fibril diameter distributions, mechanical properties, and histological assays were employed to assess the effects of knockdown of decorin and/or biglycan at the time of injury. Knockdown resulted in alterations in fibril diameter distribution and scar area, but surprisingly did not lead to many differences in mechanical properties. Biglycan played a larger role in early healing stages, while decorin is more significant in later stages, particularly in scar remodeling. This study highlights some of the differential roles of biglycan and decorin in the regulation of fibril structure and scar area, as well as influencing gene expression during healing in aged mice.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christelle Darrieutort-Laffite
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy D Eekhoff
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Flordia, USA
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Singh RB, Koh S, Sharma N, Woreta FA, Hafezi F, Dua HS, Jhanji V. Keratoconus. Nat Rev Dis Primers 2024; 10:81. [PMID: 39448666 DOI: 10.1038/s41572-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Fasika A Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Hafezi
- ELZA Institute, Zurich, Switzerland
- EMAGine AG, Zug, Switzerland
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harminder S Dua
- Department of Ophthalmology, University of Nottingham, Nottingham, UK
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Assal RA, Abd El-Bary RBED, Youness RA, Abdelrahman MM, Zahran H, Hosny KA, Esmat G, Breuhahn K, El-Ekiaby N, Fawzy IO, Abdelaziz AI. OncomiR-181a promotes carcinogenesis by repressing the extracellular matrix proteoglycan decorin in hepatocellular carcinoma. BMC Gastroenterol 2024; 24:337. [PMID: 39350070 PMCID: PMC11443891 DOI: 10.1186/s12876-024-03413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Proteoglycans are important tumor microenvironment extracellular matrix components. The regulation of key proteoglycans, such as decorin (DCN), by miRNAs has drawn attention since they have surfaced as novel therapeutic targets in cancer. Accordingly, this study aimed at identifying the impact of miR-181a in liver cancer and its regulatory role on the extracellular matrix proteoglycan, DCN, and hence on downstream oncogenes and tumor suppressor genes. RESULTS DCN was under-expressed in 22 cirrhotic and HCC liver tissues compared to that in 11 healthy tissues of liver transplantation donors. Conversely, miR-181a was over-expressed in HCC liver tissues compared to that in healthy liver tissues. In silico analysis predicted that DCN 3'UTR harbors two high-score oncomiR-181a binding regions. This was validated by pmiRGLO luciferase reporter assay. Ectopic miR-181a expression into HuH-7 cells repressed the transcript and protein levels of DCN as assessed fluorometrically and by western blotting. DCN siRNAs showed similar results to miR-181a, where they both enhanced the cellular viability, proliferation, and clonogenicity. They also increased Myc and E2F and decreased p53 and Rb signaling as assessed using reporter vectors harboring p53, Rb, Myc, and E2F response elements. Our findings demonstrated that miR-181a directly downregulated the expression of its direct downstream target DCN, which in turn affected downstream targets related to cellular proliferation and apoptosis. CONCLUSION To our knowledge, this is the first study to unveil the direct targeting of DCN by oncomiR-181a. We also highlighted that miR-181a affects targets related to cellular proliferation in HCC which may be partly mediated through inhibition of DCN transcription. Thus, miR-181a could be a promising biomarker for the early detection and monitoring of liver cancer progression. This would pave the way for the future targeting of the oncomiR-181a as a therapeutic approach in liver cancer, where miR-181a-based therapy approach could be potentially combined with chemotherapy and immunotherapy for the management of liver cancer.
Collapse
Affiliation(s)
- Reem Amr Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development (HU), Cairo, Egypt
- Department of Pharmacology and Toxicology, German University in Cairo (GUC), Cairo, Egypt
| | | | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, Egypt
| | | | - Hala Zahran
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karim Adel Hosny
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza, Egypt
| | | | | |
Collapse
|
5
|
Gómez-Fernández H, Alhakim-Khalak F, Ruiz-Alonso S, Díaz A, Tamayo J, Ramalingam M, Larra E, Pedraz JL. Comprehensive review of the state-of-the-art in corneal 3D bioprinting, including regulatory aspects. Int J Pharm 2024; 662:124510. [PMID: 39053675 DOI: 10.1016/j.ijpharm.2024.124510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The global shortage of corneal transplants has spurred an urgency in the quest for efficient treatments. This systematic review not only provides a concise overview of the current landscape of corneal morphology, physiology, diseases, and conventional treatments but crucially delves into the forefront of tissue engineering for corneal regeneration. Emphasizing cellular and acellular components, bioprinting techniques, and pertinent biological assays, it explores optimization strategies for manufacturing and cost-effectiveness. To bridge the gap between research and industrial production, the review outlines the essential regulatory strategy required in Europe, encompassing relevant directives, frameworks, and governing bodies. This comprehensive regulatory framework spans the entire process, from procuring initial components to marketing and subsequent product surveillance. In a pivotal shift towards the future, the review culminates by highlighting the latest advancements in this sector, particularly the integration of tissue therapy with artificial intelligence. This synergy promises substantial optimization of the overall process, paving the way for unprecedented breakthroughs in corneal regeneration. In essence, this review not only elucidates the current state of corneal treatments and tissue engineering but also outlines regulatory pathways and anticipates the transformative impact of artificial intelligence, providing a comprehensive guide for researchers, practitioners, and policymakers in the field.
Collapse
Affiliation(s)
- Hodei Gómez-Fernández
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Fouad Alhakim-Khalak
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Sandra Ruiz-Alonso
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Aitor Díaz
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Julen Tamayo
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - Murugam Ramalingam
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain.
| | - Eva Larra
- AJL Ophthalmic, Ferdinand Zeppelin Kalea, 01510 Vitoria-Gasteiz, Spain.
| | - José L Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
6
|
Abd-Elhafeez HH, Massoud D, Mahmoud MS, Abdellah N, Salah AS, Mohamed NE, Sayed MAA, Shaalan M, Rutland CS, Abu-ELhamed AS, Soliman SA, Mustafa FEZA. Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco (Hypostomus plecostomus). Int J Vet Sci Med 2024; 12:101-124. [PMID: 39239634 PMCID: PMC11376312 DOI: 10.1080/23144599.2024.2374201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 09/07/2024] Open
Abstract
Studying scute and fin morphology are advantageous approaches for phylogenetic identification and provide information on biological linkages and evolutionary history that are essential for deciphering the fossil record. Despite this, no prior research has precisely characterized the histological structures of scutes in the common pleco. Therefore, this research investigated the microstructure and organization of bone tissue within the dermal skeleton, including the scutes and fins, in the common pleco, using light microscopy, stereomicroscopy, and scanning electron microscopy. The dermal scutes were organized in a pentagonal shape with denticular coverage and were obliquely aligned with the caudal portion pointing dorsally. The dermal scutes consisted of three distinct portions: the central, preterminal, and terminal portions. Each portion comprised three layers: a superficial bony plate, a basal bony plate, and a mid-plate. Both the superficial and basal bony plates were composed of lamellar bone and lamellar zonal bone, whilst the mid-plate consisted of secondary osteons and woven bone. In the terminal portion, the superficial and basal bony plates became thinner. The pectoral fin consists of spines and rays composed of lepidotrichium (two symmetrical hemi-rays). The spine contained centrifugal and centripetal lamellar and trabecular bones. A centripetal fibrous bone was implanted between the lamellar bones. Besides being oriented in a V shape, the hemi-rays were also composed of thin centrifugal and centripetal lamellar bones and trabecular bones. A fibrous bone was identified between the centrifugal and centripetal bones. The trabecular bone and lamellar bone were made up of bone spicules.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mohammed S Mahmoud
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, New Nasser City, Egypt
| | - Abdallah S Salah
- Institute of Aquaculture, University of Stirling, Stirling, UK
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nor-Elhoda Mohamed
- Faculty of Science, Biomedicine Branch, University of Science & Technology, Zewail, Egypt
| | | | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Caio University, Giza, Egypt
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Catrin S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Alaa Sayed Abu-ELhamed
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | | |
Collapse
|
7
|
Kumar R, Tripathi R, Sinha NR, Mohan RR. RNA-Seq Analysis Unraveling Novel Genes and Pathways Influencing Corneal Wound Healing. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 39240550 PMCID: PMC11383191 DOI: 10.1167/iovs.65.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Purpose Transdifferentiation of corneal fibroblasts to myofibroblasts in the stroma is a central mechanistic event in corneal wound healing. This study sought to characterize genes and pathways influencing transdifferentiation of human corneal fibroblasts (hCSFs) to human corneal myofibroblasts (hCMFs) using RNA sequencing (RNA-seq) to develop comprehensive mechanistic information and identify newer targets for corneal fibrosis management. Methods Primary hCSFs were derived from donor human corneas. hCMFs were generated by treating primary hCSFs with transforming growth factor β1 (TGFβ1; 5 ng/mL) for 72 hours under serum-free conditions. RNA was extracted using the RNeasy Plus Mini Kit and subjected to RNA-seq analysis after quality control testing. Differential gene expression, pathway enrichment, and protein-protein network analyses were performed using DESeq2, GSEA/PANTHER/Reactome, and Cytoscape/cytoHubba, respectively. Results RNA-seq analysis of hCMFs and hCSFs identified 3843 differentially expressed genes and transcripts (adjusted P < 0.05). The log(fold change) ≥ ±1.5 filter showed 816 upregulated and 739 downregulated genes between two cell types. Pathway enrichment analysis showed the highest normalized enrichment score for epithelial-to-mesenchymal transition (5.569), followed by mTORC1 signaling (2.949), angiogenesis (2.176), and TGFβ signaling (2.008). Protein-protein interaction network analysis identified the top 20 nodes influencing corneal myofibroblast development. The expression of a novel MXRA5 in corneal stroma and its association with corneal fibrosis was verified by real-time quantitative reverse transcription PCR and immunofluorescence. RNA-seq and gene count files were submitted to the NCBI Gene Expression Omnibus (GSE260476). Conclusions This study identified several novel genes involved in myofibroblast development, offering potential targets for developing newer therapeutic strategies for corneal fibrosis.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Ratnakar Tripathi
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
8
|
Wang B, Yang X, Li C, Yang R, Sun T, Yin Y. The shared molecular mechanism of spinal cord injury and sarcopenia: a comprehensive genomics analysis. Front Neurol 2024; 15:1373605. [PMID: 39281413 PMCID: PMC11392746 DOI: 10.3389/fneur.2024.1373605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction The occurrence of Spinal cord injury (SCI) brings economic burden and social burden to individuals, families and society, and the complications after SCI greatly affect the rehabilitation and treatment of patients in the later stage.This study focused on the potential biomarkers that co-exist in SCI and sarcopenia, with the expectation to diagnose and prognose patients in the acute phase and rehabilitation phase using comprehensive data analysis. Methods The datasets used in this study were downloaded from Gene Expression Omnibus (GEO) database. Firstly, the datasets were analyzed with the "DEseq2" and "Limma" R package to identify differentially expressed genes (DEGs), which were then visualized using volcano plots. The SCI and sarcopenia DEGs that overlapped were used to construct a protein-protein interaction (PPI) network. Three algorithms were used to obtain a list of the top 10 hub genes. Next, validation of the hub genes was performed using three datasets. According to the results, the top hub genes were DCN, FSTL1, and COL12A1, which subsequently underwent were Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. We also assessed immune cell infiltration with the CIBERSORT algorithm to explore the immune cell landscape. The correlations between the hub genes and age and body mass index were investigated. To illustrate the biological mechanisms of the hub genes more clearly, a single-cell RNA-seq dataset was assessed to determine gene expression when muscle injury occurred. According to our analysis and the role in muscle, we chose the fibro/adipogenic progenitors (FAPs) cluster in the next step of the analysis. In the sub cluster analysis, we use the "Monocle" package to perform the trajectory analysis in different injury time points and different cell states. Results A total of 144 overlapped genes were obtained from two datasets. Following PPI network analysis and validation, we finally identified three hub-genes (DCN, FSTL1, and COL12A1), which were significantly altered in sarcopenic SCI patients both before and after rehabilitation training. The three hub genes were also significantly expressed in the FAPs clusters. Furthermore, following injury, the expression of the hub genes changed with the time points, changing in FAPs cluster. Discussion Our study provides comprehensive insights into how muscle changes after SCI are associated with sarcopenia by moving from RNA-seq to RNA-SEQ, including Immune infiltration landscape, pesudotime change and so on. The three hub genes identified in this study could be used to distinguish the sarcopenia state at the genomic level. Additionally, they may also play a prognostic role in evaluating the efficiency of rehabilitation training.
Collapse
Affiliation(s)
- Binyang Wang
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
- The Affiliated Hospital of Yunnan University, Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Chuanxiong Li
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Rongxing Yang
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Tong Sun
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yong Yin
- Department of Rehabilitation, The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
9
|
Gao F, Yang X, Song W. Bioinspired Supramolecular Hydrogel from Design to Applications. SMALL METHODS 2024; 8:e2300753. [PMID: 37599261 DOI: 10.1002/smtd.202300753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Nature offers a wealth of opportunities to solve scientific and technological issues based on its unique structures and function. The dynamic non-covalent interaction is considered to be the main base of living functions of creatures including humans, animals, and plants. Supramolecular hydrogels formed by non-covalent bonding interactions has become a unique platform for constructing promising materials for medicine, energy, electronic, and biological substitute. In this review, the self-assemble principle of supramolecular hydrogels is summarized. Next, the stimulation of external environment that triggers the assembly or disassembly of supramolecular hydrogels are recapitulated, including temperature, mechanics, light, pH, ions, etc. The main applications of bioinspired supramolecular hydrogels in terms of bionic objects including humans, animals, and plants are also described. Although so many efforts are done for revealing the synergized mechanism of the function and non-covalent interactions on the supramolecular hydrogel, the complexity and variability between stimulus and non-covalent bonding in the supramolecular system still require impeccable theories. As an outlook, the bioinspired supramolecular hydrogel is just beginning to exhibit its great potential in human life, offering significant opportunities in drug delivery and screening, implantable devices and substitutions, tissue engineering, micro-fluidic devices, and biosensors.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuhao Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenlong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Ghorbani R, Rasouli M, Sefat F, Heidari Keshel S. Pathogenesis of Common Ocular Diseases: Emerging Trends in Extracellular Matrix Remodeling. Semin Ophthalmol 2024; 39:27-39. [PMID: 37424085 DOI: 10.1080/08820538.2023.2233601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The prevalence of visual impairments in human societies is worrying due to retinopathy complications of several chronic diseases such as diabetes, cardiovascular diseases, and many more that are on the rise worldwide. Since the proper function of this organ plays a pivotal role in people's quality of life, identifying factors affecting the development/exacerbation of ocular diseases is of particular interest among ophthalmology researchers. The extracellular matrix (ECM) is a reticular, three-dimensional (3D) structure that determines the shape and dimensions of tissues in the body. The ECM remodeling/hemostasis is a critical process in both physiological and pathological conditions. It consists of ECM deposition, degradation, and decrease/increase in the ECM components. However, disregulation of this process and an imbalance between the synthesis and degradation of ECM components are associated with many pathological situations, including ocular disorders. Despite the impact of ECM alterations on the development of ocular diseases, there is not much research conducted in this regard. Therefore, a better understanding in this regard, can pave the way toward discovering plausible strategies to either prevent or treat eye disorders. In this review, we will discuss the importance of ECM changes as a sentimental factor in various ocular diseases based on the research done up to now.
Collapse
Affiliation(s)
- Raziyeh Ghorbani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Blair HC, Larrouture QC, Tourkova IL, Nelson DJ, Dobrowolski SF, Schlesinger PH. Epithelial-like transport of mineral distinguishes bone formation from other connective tissues. J Cell Biochem 2023; 124:1889-1899. [PMID: 37991446 PMCID: PMC10880123 DOI: 10.1002/jcb.30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
We review unique properties of bone formation including current understanding of mechanisms of bone mineral transport. We focus on formation only; mechanism of bone degradation is a separate topic not considered. Bone matrix is compared to other connective tissues composed mainly of the same proteins, but without the specialized mechanism for continuous transport and deposition of mineral. Indeed other connective tissues add mechanisms to prevent mineral formation. We start with the epithelial-like surfaces that mediate transport of phosphate to be incorporated into hydroxyapatite in bone, or in its ancestral tissue, the tooth. These include several phosphate producing or phosphate transport-related proteins with special expression in large quantities in bone, particularly in the bone-surface osteoblasts. In all connective tissues including bone, the proteins that constitute the protein matrix are mainly type I collagen and γ-carboxylate-containing small proteins in similar molar quantities to collagen. Specialized proteins that regulate connective tissue structure and formation are surprisingly similar in mineralized and non-mineralized tissues. While serum calcium and phosphate are adequate to precipitate mineral, specialized mechanisms normally prevent mineral formation except in bone, where continuous transport and deposition of mineral occurs.
Collapse
Affiliation(s)
- Harry C Blair
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | | | - Irina L. Tourkova
- Veteran’s Affairs Medical Center, Pittsburgh PA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Deborah J Nelson
- Dept of Neurobiology, Pharmacology & Physiology, University of Chicago, Chicago IL
| | | | | |
Collapse
|
12
|
Biyik I, Soysal C, Ince OUO, Durmus S, Oztas E, Keskin N, Isiklar OO, Karaagac OH, Gelisgen R, Uzun H. Prediction of Preterm Delivery Using Serum Ischemia Modified Albumin, Biglycan, and Decorin Levels in Women with Threatened Preterm Labor. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:e754-e763. [PMID: 38141595 DOI: 10.1055/s-0043-1772593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE The serum ischemia modified albumin (IMA), biglycan, and decorin levels of pregnant women who were hospitalized for threatened preterm labor were measured. METHODS Fifty-one consecutive pregnant women with a single pregnancy between the 24th and 36th weeks with a diagnosis of threatened preterm labor were included in the present prospective cohort study. RESULTS As a result of multivariate logistic regression analysis for predicting preterm delivery within 24 hours, 48 hours, 7 days, 14 days, ≤ 35 gestational weeks, and ≤ 37 gestational weeks after admission, area under the curve (AUC) (95% confidence interval [CI[) values were 0.95 (0.89-1.00), 0.93 (0.86-0.99), 0.91 (0.83-0.98), 0.92 (0.85-0.99), 0.82 (0.69-0.96), and 0.89 (0.80-0.98), respectively. In the present study, IMA and biglycan levels were found to be higher and decorin levels lower in women admitted to the hospital with threatened preterm labor and who gave preterm birth within 48 hours compared with those who gave birth after 48 hours. CONCLUSION In pregnant women admitted to the hospital with threatened preterm labor, the prediction preterm delivery of the combined model created by adding IMA, decorin, and biglycan in addition to the TVS CL measurement was higher than the TVS CL measurement alone. CLINICAL TRIAL REGISTRATION The present trial was registered at ClinicalTrials.gov, number NCT04451928.
Collapse
Affiliation(s)
- Ismail Biyik
- Department of Obstetrics and Gynecology, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cenk Soysal
- Department of Obstetrics and Gynecology, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ozlem Ulas Onur Ince
- Department of Obstetrics and Gynecology, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
- Department of Statistics, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Sinem Durmus
- Department of Medical Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Efser Oztas
- Department of Obstetrics and Gynecology, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Nadi Keskin
- Department of Obstetrics and Gynecology, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Ozben Ozden Isiklar
- Department of Medical Biochemistry, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Oğuz Han Karaagac
- Department of Obstetrics and Gynecology, School of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Remise Gelisgen
- Department of Medical Biochemistry, School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| |
Collapse
|
13
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Kinoshita M, Yamada S, Sasaki J, Suzuki S, Kajikawa T, Iwayama T, Fujihara C, Imazato S, Murakami S. Mice Lacking PLAP-1/Asporin Show Alteration of Periodontal Ligament Structures and Acceleration of Bone Loss in Periodontitis. Int J Mol Sci 2023; 24:15989. [PMID: 37958972 PMCID: PMC10649079 DOI: 10.3390/ijms242115989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Periodontal ligament-associated protein 1 (PLAP-1), also known as Asporin, is an extracellular matrix protein expressed in the periodontal ligament and plays a crucial role in periodontal tissue homeostasis. Our previous research demonstrated that PLAP-1 may inhibit TLR2/4-mediated inflammatory responses, thereby exerting a protective function against periodontitis. However, the precise roles of PLAP-1 in the periodontal ligament (PDL) and its relationship to periodontitis have not been fully explored. In this study, we employed PLAP-1 knockout mice to investigate its roles and contributions to PDL tissue and function in a ligature-induced periodontitis model. Mandibular bone samples were collected from 10-week-old male C57BL/6 (WT) and PLAP-1 knockout (KO) mice. These samples were analyzed through micro-computed tomography (μCT) scanning, hematoxylin and eosin (HE) staining, picrosirius red staining, and fluorescence immunostaining using antibodies targeting extracellular matrix proteins. Additionally, the structure of the PDL collagen fibrils was examined using transmission electron microscopy (TEM). We also conducted tooth extraction and ligature-induced periodontitis models using both wild-type and PLAP-1 KO mice. PLAP-1 KO mice did not exhibit any changes in alveolar bone resorption up to the age of 10 weeks, but they did display an enlarged PDL space, as confirmed by μCT and histological analyses. Fluorescence immunostaining revealed increased expression of extracellular matrix proteins, including Col3, BGN, and DCN, in the PDL tissues of PLAP-1 KO mice. TEM analysis demonstrated an increase in collagen diameter within the PDL of PLAP-1 KO mice. In line with these findings, the maximum stress required for tooth extraction was significantly lower in PLAP-1 KO mice in the tooth extraction model compared to WT mice (13.89 N ± 1.34 and 16.51 N ± 1.31, respectively). In the ligature-induced periodontitis model, PLAP-1 knockout resulted in highly severe alveolar bone resorption, with a higher number of collagen fiber bundle tears and significantly more osteoclasts in the periodontium. Our results demonstrate that mice lacking PLAP-1/Asporin show alteration of periodontal ligament structures and acceleration of bone loss in periodontitis. This underscores the significant role of PLAP-1 in maintaining collagen fibrils in the PDL and suggests the potential of PLAP-1 as a therapeutic target for periodontal diseases.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoru Yamada
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Junichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shigeki Suzuki
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tetsuhiro Kajikawa
- Department of Periodontology and Endodontolgy, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Miyagi, Japan; (S.S.); (T.K.)
| | - Tomoaki Iwayama
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Chiharu Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| | - Satoshi Imazato
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (J.S.); (S.I.)
| | - Shinya Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Osaka, Japan; (M.K.); (T.I.); (C.F.); (S.M.)
| |
Collapse
|
15
|
Leahy TP, Fung AK, Weiss SN, Dyment NA, Soslowsky LJ. Investigating the temporal roles of decorin and biglycan in tendon healing. J Orthop Res 2023; 41:2238-2249. [PMID: 37132501 PMCID: PMC10525000 DOI: 10.1002/jor.25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
The small leucine-rich proteoglycans, decorin and biglycan, are minor components of the tendon extracellular matrix that regulate fibrillogenesis and matrix assembly. Our study objective was to define the temporal roles of decorin and biglycan during tendon healing using inducible knockout mice to include genetic knockdown at specific phases of healing: time of injury, the proliferative phase, and the remodeling phase. We hypothesized that knockdown of decorin or biglycan would adversely affect tendon healing, and that by prescribing the timing of knockdown, we could elucidate the temporal roles of these proteins during healing. Contrary to our hypothesis, decorin knockdown did not affect tendon healing. However, when biglycan was knocked down, either alone or coupled with decorin, tendon modulus was increased relative to wild-type mice, and this finding was consistent among all induction timepoints. At 6 weeks postinjury, we observed increased expression of genes associated with the extracellular matrix and growth factor signaling in the biglycan knockdown and compound decorin-biglycan knockdown tendons. Interestingly, these groups demonstrated opposing trends in gene expression as a function of knockdown-induction timepoint, highlighting distinct temporal roles for decorin and biglycan. In summary, this study finds that biglycan plays multiple functions throughout tendon healing, with the most impactful, detrimental role likely occurring during late-stage healing. Statement of clinical importance: This study helps to define the molecular factors that regulate tendon healing, which may aid in the development of new clinical therapies.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley K. Fung
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N. Weiss
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
17
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
18
|
Kim H, Jang JH, Han W, Hwang HJ, Jang J, Kim JY, Cho DW. Extracellular matrix-based sticky sealants for scar-free corneal tissue reconstruction. Biomaterials 2023; 292:121941. [PMID: 36495802 DOI: 10.1016/j.biomaterials.2022.121941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
Regenerative medicine requires both tissue restoration and ease of compliance for clinical application. Considering this, sticky tissue sealants have been shown to have great potentials over surgical suturing and wound treatment. However, tissue sealants currently used pose challenges such as uncontrollable adhesion formation, mechanical mismatch, and lack of tissue restoration. A new sticky sealant based on gelatinized cornea-derived extracellular matrix (GelCodE) with a visible light-activating system is firstly being introduced in this study. De novo tissue regeneration relies on the matrisome in charge of tissue-organization and development within GelCodE while visible light-based photopolymerization with ruthenium/sodium persulfate rapidly induces covalent bonds with the adjacent tissues. The ease of not only in vivo application, biocompatibility, and biointegration, but also exceptional de novo tissue formation is demonstrated in this study. Interestingly, newly regenerated tissues were shown to have normal tissue-like matrices with little scar formation. Hence, this work presents a promising strategy to meet clinical demands for scar-free tissue recovery with superior ease of clinical application.
Collapse
Affiliation(s)
- Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Je-Hwan Jang
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea
| | - Wonil Han
- Division of Integrative Bioscience and Biotechnology, POSTECH, 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea
| | - Hyun-Jeong Hwang
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea; Department of Convergence IT Engineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, 77 Cheongam-ro, Nam-gu, POSTECH, 37673, Pohang, Kyungbuk, Republic of Korea.
| | - Joon Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea; KU Center for Animal Blood Medical Science, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 05029, Seoul, Republic of Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, 37673, Pohang, Kyungbuk, Republic of Korea; Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, 03722, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Qin H, Du L, Luo Z, He Z, Wang Q, Chen S, Zhu YL. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism. Front Bioeng Biotechnol 2022; 10:1080430. [PMID: 36588943 PMCID: PMC9800839 DOI: 10.3389/fbioe.2022.1080430] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Musculoskeletal soft tissue injuries are very common and usually occur during both sporting and everyday activities. The intervention of adjuvant therapies to promote tissue regeneration is of great importance to improving people's quality of life and extending their productive lives. Though many studies have focused on the positive results and effectiveness of the LIPUS on soft tissue, the molecular mechanisms standing behind LIPUS effects are much less explored and reported, especially the intracellular signaling pathways. We incorporated all research on LIPUS in soft tissue diseases since 2005 and summarized studies that uncovered the intracellular molecular mechanism. This review will also provide the latest evidence-based research progress in this field and suggest research directions for future experiments.
Collapse
Affiliation(s)
- Haocheng Qin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Du
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopedics, Kunshan Hospital of Chinese Medicine, Suzhou, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Regulation of biomineralization by proteoglycans: From mechanisms to application. Carbohydr Polym 2022; 294:119773. [DOI: 10.1016/j.carbpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
21
|
Mogensen EH, Poulsen ET, Thøgersen IB, Yamamoto K, Brüel A, Enghild JJ. The low-density lipoprotein receptor-related protein 1 (LRP1) interactome in the human cornea. Exp Eye Res 2022; 219:109081. [PMID: 35461874 DOI: 10.1016/j.exer.2022.109081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/27/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022]
Abstract
The human cornea is responsible for approximately 70% of the eye's optical power and, together with the lens, constitutes the only transparent tissue in the human body. Low-density lipoprotein receptor-related protein 1 (LRP1), a large, multitalented endocytic receptor, is expressed throughout the human cornea, yet its role in the cornea remains unknown. More than 30 years ago, LRP1 was purified by exploiting its affinity for the activated form of the protease inhibitor alpha-2-macroblulin (A2M), and the original purification protocol is generally referred to in studies involving full-length LRP1. Here, we provide a novel and simplified LRP1 purification protocol based on LRP1's affinity for receptor-related protein (RAP) that produces significantly higher yields of authentic LRP1. Purified LRP1 was used to map its unknown interactome in the human cornea. Corneal proteins extracted under physiologically relevant conditions were subjected to LRP1 affinity pull-down, and LRP1 ligand candidates were identified by LC-MS/MS. A total of 28 LRP1 ligand candidates were found, including 22 novel ligands. The LRP1 corneal interactome suggests a novel role for LRP1 as a regulator of the corneal immune response, structure, and ultimately corneal transparency.
Collapse
Affiliation(s)
- Emilie Hage Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
Lopez SG, Bonassar LJ. The role of SLRPs and large aggregating proteoglycans in collagen fibrillogenesis, extracellular matrix assembly, and mechanical function of fibrocartilage. Connect Tissue Res 2022; 63:269-286. [PMID: 33726572 DOI: 10.1080/03008207.2021.1903887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Proteoglycans, especially small leucine rich proteoglycans (SLRPs), play major roles in facilitating the development and regulation of collagen fibers and other extracellular matrix components. However, their roles in fibrocartilage have not been widely reviewed. Here, we discuss both SLRP and large aggregating proteoglycan's roles in collagen fibrillogenesis and extracellular matrix assembly in fibrocartilage tissues such as the meniscus, annulus fibrosus (AF), and TMJ disc. We also discuss their expression levels throughout development, aging and degeneration, as well as repair. METHODS A review of literature discussing proteoglycans and collagen fibrillogenesis in fibrocartilage was conducted and data from these manuscripts were analyzed and grouped to discuss trends throughout the tissue's architectural zones and developmental stage. RESULTS The spatial collagen architecture of these fibrocartilaginous tissues is reflected in the distribution of proteoglycans expressed, suggesting that each proteoglycan plays an important role in the type of architecture presented and associated mechanical function. CONCLUSION The unique structure-function relationship of fibrocartilage makes the varied architectures throughout the tissues imperative for their success and understanding the functions of these proteoglycans in developing and maintaining the fiber structure could inform future work in fibrocartilage replacement using tissue engineered constructs.
Collapse
Affiliation(s)
- Serafina G Lopez
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Meinig of Biomedical Engineering, Cornell University, Ithaca, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Li H, Ye Z, Li Z. Identification of the potential biological target molecules related to primary open-angle glaucoma. BMC Ophthalmol 2022; 22:188. [PMID: 35461232 PMCID: PMC9034601 DOI: 10.1186/s12886-022-02368-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
Background To identify the potential biological target molecules and the corresponding interaction networks in primary open-angle glaucoma (POAG) development. Methods The microarray datasets of GSE138125 and GSE27276 concerning lncRNA and mRNA expression profiles in trabecular meshwork of POAG were downloaded from the Gene Expression Omnibus database. The R software was applied to identify differentially expressed (DE) lncRNAs and mRNAs in POAG, and to perform GO and KEGG functional enrichment analysis. Protein–protein interaction (PPI) network and module analysis, and lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network were performed by Cytoscape software. Results A total of 567 DE-mRNAs were identified from GSE138125 and GSE27276, including 298 up-regulated and 269 down-regulated mRNAs, which were found enriching in biological processes of extracellular matrix organization and epidermis development, respectively. KEGG pathway enrichment analysis further revealed that module genes in PPI network were primarily involved in the AGE-PAGE, PI3K-Akt and TGF-β signaling pathways. Moreover, 897 up-regulated and 1036 down-regulated DE-lncRNAs were identified from GSE138125. Through literature review and databases searching, we obtained 712 lncRNA-miRNA and 337 miRNA-mRNA pairs based on the selected eight POAG-related miRNAs. After excluding 702 lncRNAs and 284 mRNAs that were not comprised in the DE-lncRNA and DE-mRNAs, a total of 53 lncRNA nodes, eight miRNA nodes, 10 mRNA nodes, and 78 edges were included in the final ceRNA network. Conclusions This study demonstrated the lncRNA and mRNA expression profiles of trabecular meshwork in POAG patients and the normal controls, and identified potentially ceRNAs and pathways which might improve the pathogenic understanding of this ocular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02368-0.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
24
|
Wu M, Downie LE, Hill LJ, Chinnery HR. The effect of topical decorin on temporal changes to corneal immune cells after epithelial abrasion. J Neuroinflammation 2022; 19:90. [PMID: 35414012 PMCID: PMC9006562 DOI: 10.1186/s12974-022-02444-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Corneal immune cells interact with corneal sensory nerves during both homeostasis and inflammation. This study sought to evaluate temporal changes to corneal immune cell density in a mouse model of epithelial abrasion and nerve injury, and to investigate the immunomodulatory effects of topical decorin, which we have shown previously to promote corneal nerve regeneration. METHODS Bilateral corneal epithelial abrasions (2 mm) were performed on C57BL/6J mice. Topical decorin or saline eye drops were applied three times daily for 12 h, 24 h, 3 days or 5 days. Optical coherence tomography imaging was performed to measure the abrasion area. The densities of corneal sensory nerves (β-tubulin III) and immune cells, including dendritic cells (DCs; CD11c+), macrophages (Iba-1+) and neutrophils (NIMP-R14+) were measured. Cx3cr1gfp/gfp mice that spontaneously lack resident corneal intraepithelial DCs were used to investigate the specific contribution of epithelial DCs. Neuropeptide and cytokine gene expression was evaluated using qRT-PCR at 12 h post-injury. RESULTS In decorin-treated corneas, higher intraepithelial DC densities and lower neutrophil densities were observed at 24 h after injury, compared to saline controls. At 12 h post-injury, topical decorin application was associated with greater re-epithelialisation. At 5 days post-injury, corneal stromal macrophage density in the decorin-treated and contralateral eyes was lower, and nerve density was higher, compared to eyes treated with saline only. Lower expression of transforming growth factor beta (TGF-β) and higher expression of CSPG4 mRNA was detected in corneas treated with topical decorin. There was no difference in corneal neutrophil density in Cx3cr1gfp/gfp mice treated with or without decorin at 12 h. CONCLUSIONS Topical decorin regulates immune cell dynamics after corneal injury, by inhibiting neutrophils and recruiting intraepithelial DCs during the acute phase (< 24 h), and inhibiting macrophage density at the study endpoint (5 days). These immunomodulatory effects were associated with faster re-epithelialisation and likely contribute to promoting sensory nerve regeneration. The findings suggest a potential interaction between DCs and neutrophils with topical decorin treatment, as the decorin-induced neutrophil inhibition was absent in Cx3cr1gfp/gfp mice that lack corneal epithelial DCs. TGF-β and CSPG4 proteoglycan likely regulate decorin-mediated innate immune cell responses and nerve regeneration after injury.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
25
|
Xu X, Ha P, Yen E, Li C, Zheng Z. Small Leucine-Rich Proteoglycans in Tendon Wound Healing. Adv Wound Care (New Rochelle) 2022; 11:202-214. [PMID: 34978952 DOI: 10.1089/wound.2021.0069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: Tendon injury possesses a high morbidity rate and is difficult to achieve a satisfying prognosis with currently available treatment strategies. Current approaches used for tendon healing always lead to the formation of fibrovascular scar tissue, which significantly compromises the biomechanics of the healed tendon. Moreover, the related functional deficiency deteriorates over time with an increased injury recurrence risk. Small leucine-rich proteoglycans (SLRPs) link and interact with collagen fibrils to regulate tendon structure and biomechanics, which can provide a new and promising method in the field of tendon injury management. Recent Advances: The effect of SLRPs on tendon development has been extensively investigated. SLRP deficiency impairs tendon collagen fibril structure and biomechanic properties, while administration of SLRPs generally benefits tendon wound healing and regains better mechanical properties. Critical Issues: Current knowledge on the role of SLRPs in tendon development and regeneration mostly comes from uninjured knockout mice, and mainly focuses on the morphology description of collagen fibril profile and mechanical properties. Little is known about the regulatory mechanism on the molecular level. Future Directions: This article reviews the current knowledge in this highly translational topic and provides an evidence-based conclusion, thereby encouraging in-depth investigations of SLRPs in tendons and the development of SLRP-based treatments for desired tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic Surgery, Beijing Stomatological Hospital of Capital Medical University, Beijing, People's Republic of China
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Pin Ha
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Emily Yen
- Arcadia High School, Arcadia, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
26
|
Advances in Microscopic Studies of Tendinopathy: Literature Review and Current Trends, with Special Reference to Neovascularization Process. J Clin Med 2022; 11:jcm11061572. [PMID: 35329898 PMCID: PMC8949578 DOI: 10.3390/jcm11061572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
Tendinopathy is a process of chaotic extracellular matrix remodeling followed by increased secretion of enzymes and mediators of inflammation. The histopathological assessment of tendinous tissue is crucial to formulate the diagnosis and establish the severity of tendon degeneration. Nevertheless, the microscopic analysis of tendinous tissue features is often challenging. In this review, we aimed to compare the most popular scales used in tendon pathology assessment and reevaluate the role of the neovascularization process. The following scores were evaluated: the Bonar score, the Movin score, the Astrom and Rausing Score, and the Soslowsky score. Moreover, the role of neovascularization in tendon degeneration was reassessed. The Bonar system is the most commonly used in tendon pathology. According to the literature, hematoxylin and eosin with additional Alcian Blue staining seems to provide satisfactory results. Furthermore, two observers experienced in musculoskeletal pathology are sufficient for tendinopathy microscopic evaluation. The control, due to similar and typical alterations in tendinous tissue, is not necessary. Neovascularization plays an ambiguous role in tendon disorders. The neovascularization process is crucial in the tendon healing process. On the other hand, it is also an important component of the degeneration of tendinous tissue when the regeneration is incomplete and insufficient. The microscopic analysis of tendinous tissue features is often challenging. The assessment of tendinous tissue using the Bonar system is the most universal. The neovascularization variable in tendinopathy scoring systems should be reconsidered due to discrepancies in studies.
Collapse
|
27
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Wu SY, Kim W, Kremen TJ. In Vitro Cellular Strain Models of Tendon Biology and Tenogenic Differentiation. Front Bioeng Biotechnol 2022; 10:826748. [PMID: 35242750 PMCID: PMC8886160 DOI: 10.3389/fbioe.2022.826748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Research has shown that the surrounding biomechanical environment plays a significant role in the development, differentiation, repair, and degradation of tendon, but the interactions between tendon cells and the forces they experience are complex. In vitro mechanical stimulation models attempt to understand the effects of mechanical load on tendon and connective tissue progenitor cells. This article reviews multiple mechanical stimulation models used to study tendon mechanobiology and provides an overview of the current progress in modelling the complex native biomechanical environment of tendon. Though great strides have been made in advancing the understanding of the role of mechanical stimulation in tendon development, damage, and repair, there exists no ideal in vitro model. Further comparative studies and careful consideration of loading parameters, cell populations, and biochemical additives may further offer new insight into an ideal model for the support of tendon regeneration studies.
Collapse
Affiliation(s)
- Shannon Y. Wu
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Won Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- *Correspondence: Thomas J. Kremen Jr,
| |
Collapse
|
29
|
Colon-Caraballo M, Lee N, Nallasamy S, Myers K, Hudson D, Iozzo RV, Mahendroo M. Novel regulatory roles of small leucine-rich proteoglycans in remodeling of the uterine cervix in pregnancy. Matrix Biol 2022; 105:53-71. [PMID: 34863915 PMCID: PMC9446484 DOI: 10.1016/j.matbio.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023]
Abstract
The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - Shanmugasundaram Nallasamy
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Burlington, Vermont 05405
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - David Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington Seattle, Washington 98165
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Correspondence to: Mala Mahendroo, Ph.D, Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
30
|
Chen J, Sun T, You Y, Wu B, Wang X, Wu J. Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration. Front Cell Dev Biol 2021; 9:760532. [PMID: 34917612 PMCID: PMC8669051 DOI: 10.3389/fcell.2021.760532] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Stem cells maintain a subtle balance between self-renewal and differentiation under the regulatory network supported by both intracellular and extracellular components. Proteoglycans are large glycoproteins present abundantly on the cell surface and in the extracellular matrix where they play pivotal roles in facilitating signaling transduction and maintaining stem cell homeostasis. In this review, we outline distinct proteoglycans profiles and their functions in the regulation of stem cell homeostasis, as well as recent progress and prospects of utilizing proteoglycans/glycosaminoglycans as a novel glycomics carrier or bio-active molecules in bone regeneration.
Collapse
Affiliation(s)
- Jiawen Chen
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yan You
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Shenzhen Stomatology Hospital, Southern Medical University, Shenzhen, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United states
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. Int J Mol Sci 2021; 22:ijms221910584. [PMID: 34638928 PMCID: PMC8509074 DOI: 10.3390/ijms221910584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Two small leucine-rich proteoglycans (SLRP), decorin and biglycan, play important roles in structural–functional integrity of the placenta and fetal membranes, and their alterations can result in several pregnancy-associated diseases. In this review, we briefly discuss normal placental structure and functions, define and classify SLRPs, and then focus on two SLRPs, decorin (DCN) and biglycan (BGN). We discuss the consequences of deletions/mutations of DCN and BGN. We then summarize DCN and BGN expression in the pregnant uterus, myometrium, decidua, placenta, and fetal membranes. Actions of these SLRPs as ligands are then discussed in the context of multiple binding partners in the extracellular matrix and cell surface (receptors), as well as their alterations in pathological pregnancies, such as preeclampsia, fetal growth restriction, and preterm premature rupture of membranes. Lastly, we raise some unanswered questions as food for thought.
Collapse
|
32
|
Halari CD, Nandi P, Jeyarajah MJ, Renaud SJ, Lala PK. Decorin production by the human decidua: role in decidual cell maturation. Mol Hum Reprod 2021; 26:784-796. [PMID: 32866233 DOI: 10.1093/molehr/gaaa058] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/11/2020] [Indexed: 01/13/2023] Open
Abstract
Decidualization involves the proliferation and differentiation of fibroblast-like endometrial stromal cells into epithelioid-shaped and secretory 'decidual' cells in response to steroid hormones. Human decidual cells produce insulin-like growth factor-binding protein-1 and prolactin (PRL), two well-recognized markers of decidual cell maturation and a proteoglycan decorin (DCN). We reported that DCN restrains the human trophoblast renewal, migration, invasion and endovascular differentiation needed for uterine arterial remodeling during normal pregnancy. DCN overproduction by the decidua is associated with a hypo-invasive placenta and a serious pregnancy disorder, pre-eclampsia (PE). Furthermore, elevated maternal plasma DCN levels during the second trimester is a predictive biomarker of PE. While these paracrine roles of decidua-derived DCN on trophoblast physiology and pathology have been well-defined, it remains unknown whether DCN plays any autocrine role in decidual cell development. The objectives of this study were to examine: the kinetics of DCN production during decidualization of human endometrial stromal cells; gestational age-related changes in DCN production by the first trimester decidua; and a possible autocrine role of DCN on decidual cell maturation. We found that DCN production is enhanced during decidualization of both primary and immortalized human endometrial stromal cells in vitro and during early gestation in decidual samples tested ex vivo, and that it is important for endometrial stromal cell maturation into a decidual phenotype. Decorin-depleted human endometrial stromal cells exposed to decidualizing stimuli failed to mature fully, as evidenced by fibroblastoid morphology, reduced insulin-like growth factor-binding protein-1 and PRL expression, and reduction in cellular ploidy. We identified heart and neural crest derivatives-expressed protein 2, and progesterone receptor as potential downstream mediators of DCN effects.
Collapse
Affiliation(s)
- C D Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - P Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - M J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - S J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - P K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
33
|
Han B, Li Q, Wang C, Chandrasekaran P, Zhou Y, Qin L, Liu XS, Enomoto-Iwamoto M, Kong D, Iozzo RV, Birk DE, Han L. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2021; 29:1181-1192. [PMID: 33915295 PMCID: PMC8319061 DOI: 10.1016/j.joca.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To delineate the activities of decorin and biglycan in the progression of post-traumatic osteoarthritis (PTOA). DESIGN Three-month-old inducible biglycan (BgniKO) and decorin/biglycan compound (Dcn/BgniKO) knockout mice were subjected to the destabilization of the medial meniscus (DMM) surgery to induce PTOA. The OA phenotype was evaluated by assessing joint structure and sulfated glycosaminoglycan (sGAG) staining via histology, surface collagen fibril nanostructure and calcium content via scanning electron microscopy, tissue modulus via atomic force microscopy-nanoindentation, as well as subchondral bone structure and meniscus ossification via micro-computed tomography. Outcomes were compared with previous findings in the inducible decorin (DcniKO) knockout mice. RESULTS In the DMM model, BgniKO mice developed similar degree of OA as the control (0.44 [-0.18 1.05] difference in modified Mankin score), different from the more severe OA phenotype observed in DcniKO mice (1.38 [0.91 1.85] difference). Dcn/BgniKO mice exhibited similar histological OA phenotype as DcniKO mice (1.51 [0.97 2.04] difference vs control), including aggravated loss of sGAGs, salient surface fibrillation and formation of osteophyte. Meanwhile, Dcn/BgniKO mice showed further cartilage thinning than DcniKO mice, resulting in the exposure of underlying calcified tissues and aberrantly high surface modulus. BgniKO and Dcn/BgniKO mice developed altered subchondral trabecular bone structure in both Sham and DMM groups, while DcniKO and control mice did not. CONCLUSION In PTOA, decorin plays a more crucial role than biglycan in regulating cartilage degeneration, while biglycan is more important in regulating subchondral bone structure. The two have distinct activities and modest synergy in the pathogenesis of PTOA.
Collapse
Affiliation(s)
- B Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Q Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - C Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - P Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Y Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - L Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - X S Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - M Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - D Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - D E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States.
| |
Collapse
|
34
|
Allaith S, Tew SR, Hughes CE, Clegg PD, Canty-Laird EG, Comerford EJ. Characterisation of key proteoglycans in the cranial cruciate ligaments (CCLs) from two dog breeds with different predispositions to CCL disease and rupture. Vet J 2021; 272:105657. [PMID: 33941333 DOI: 10.1016/j.tvjl.2021.105657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
Cranial cruciate ligament disease and rupture (CCLD/R) is one of the most common orthopaedic conditions in dogs, eventually leading to osteoarthritis of the stifle joint. Certain dog breeds such as the Staffordshire bull terrier have an increased risk of developing CCLD/R. Previous studies into CCLD/R have found that glycosaminoglycan levels were elevated in cranial cruciate ligament (CCL) tissue from high-risk breeds when compared to the CCL from a low-risk breed to CCLD/R. Our objective was to determine specific proteoglycans/glycosaminoglycans in the CCL and to see whether their content was altered in dog breeds with differing predispositions to CCLD/R. Disease-free CCLs from Staffordshire bull terriers (moderate/high-risk to CCLD/R) and Greyhounds (low-risk to CCLD/R) were collected and key proteoglycan/glycosaminoglycans were determined by semi-quantitative Western blotting, quantitative biochemistry, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Gene expression of fibromodulin (P = 0.03), aggrecan (P = 0.0003), and chondroitin-6-sulphate stubs (P = 0.01) were significantly increased, and for fibromodulin this correlated with an increase in protein content in Staffordshire bull terriers compared to Greyhound CCLs (P = 0.02). Decorin (P = 0.03) and ADAMTS-4 (P = 0.04) gene expression were significantly increased in Greyhounds compared to Staffordshire bull terrier CCLs. The increase of specific proteoglycans and glycosaminoglycans within the Staffordshire bull terrier CCLs may indicate a response to higher compressive loads, potentially altering their risk to traumatic injury. The higher decorin content in the Greyhound CCLs is essential for maintaining collagen fibril strength, while the increase of ADAMTS-4 indicates a higher rate of turnover helping to regulate normal CCL homeostasis in Greyhounds.
Collapse
Affiliation(s)
- S Allaith
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - S R Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - C E Hughes
- School of Biosciences, University of Cardiff, Sir Martin Evans Building, Museum Avenue, Cardiff, CF 10 3AX, UK
| | - P D Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - E G Canty-Laird
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK
| | - E J Comerford
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK; Small Animal Teaching Hospital, Leahurst Campus, School of Veterinary Science, University of Liverpool, Chester High Rd, Neston CH64 7TE, UK; The Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), UK.
| |
Collapse
|
35
|
Mutoji KN, Sun M, Elliott G, Moreno IY, Hughes C, Gesteira TF, Coulson-Thomas VJ. Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. Int J Mol Sci 2021; 22:5708. [PMID: 34071909 PMCID: PMC8199272 DOI: 10.3390/ijms22115708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Corneal transparency relies on the precise arrangement and orientation of collagen fibrils, made of mostly Type I and V collagen fibrils and proteoglycans (PGs). PGs are essential for correct collagen fibrillogenesis and maintaining corneal homeostasis. We investigated the spatial and temporal distribution of glycosaminoglycans (GAGs) and PGs after a chemical injury. The chemical composition of chondroitin sulfate (CS)/dermatan sulfate (DS) and heparan sulfate (HS) were characterized in mouse corneas 5 and 14 days after alkali burn (AB), and compared to uninjured corneas. The expression profile and corneal distribution of CS/DSPGs and keratan sulfate (KS) PGs were also analyzed. We found a significant overall increase in CS after AB, with an increase in sulfated forms of CS and a decrease in lesser sulfated forms of CS. Expression of the CSPGs biglycan and versican was increased after AB, while decorin expression was decreased. We also found an increase in KS expression 14 days after AB, with an increase in lumican and mimecan expression, and a decrease in keratocan expression. No significant changes in HS composition were noted after AB. Taken together, our study reveals significant changes in the composition of the extracellular matrix following a corneal chemical injury.
Collapse
Affiliation(s)
- Kazadi N. Mutoji
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Mingxia Sun
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Garrett Elliott
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| | - Clare Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
- Optimvia, Batavia, OH 45103, USA
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204, USA; (K.N.M.); (M.S.); (G.E.); (I.Y.M.); (T.F.G.)
| |
Collapse
|
36
|
Smith LR, Pichika R, Meza RC, Gillies AR, Baliki MN, Chambers HG, Lieber RL. Contribution of extracellular matrix components to the stiffness of skeletal muscle contractures in patients with cerebral palsy. Connect Tissue Res 2021; 62:287-298. [PMID: 31779492 PMCID: PMC7253322 DOI: 10.1080/03008207.2019.1694011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Joint contractures in children with cerebral palsy contain muscle tissue that is mechanically stiffer with higher collagen content than typically developing children. Interestingly, the correlation between collagen content and stiffness is weak. To date, no data are available on collagen types or other extracellular matrix proteins in these muscles, nor any information regarding their function. Thus, our purpose was to measure specific extracellular protein composition in cerebral palsy and typically developing human muscles along with structural aspects of extracellular matrix architecture to determine the extent to which these explain mechanical properties. Materials and Methods: Biopsies were collected from children with cerebral palsy undergoing muscle lengthening procedures and typically developing children undergoing anterior cruciate ligament reconstruction. Tissue was prepared for the determination of collagen types I, III, IV, and VI, proteoglycan, biglycan, decorin, hyaluronic acid/uronic acid and collagen crosslinking. Results: All collagen types increased in cerebral palsy along with pyridinoline crosslinks, total proteoglycan, and uronic acid. In all cases, type I or total collagen and total proteoglycan were positive predictors, while biglycan was a negative predictor of stiffness. Together these parameters accounted for a greater degree of variance within groups than across groups, demonstrating an altered relationship between extracellular matrix and stiffness with cerebral palsy. Further, stereological analysis revealed a significant increase in collagen fibrils organized in cables and an increased volume fraction of fibroblasts in CP muscle. Conclusions: These data demonstrate a novel adaptation of muscle extracellular matrix in children with cerebral palsy that includes alterations in extracellular matrix protein composition and structure related to mechanical function.
Collapse
Affiliation(s)
- Lucas R. Smith
- Departments of Neurobiology, Physiology, and Behavior and Physical Medicine and Rehabilitation, University of California, Davis, CA, 95616, USA
| | - Rajeswari Pichika
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Rachel C. Meza
- Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA,Department of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison R. Gillies
- Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA
| | - Marwan N. Baliki
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Henry G. Chambers
- Department of Orthopaedics, Rady Children’s Hospital, San Diego, CA, USA
| | - Richard L. Lieber
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA,Department of Orthopaedic Surgery, University of California San Diego,La Jolla, CA, 92093-0863, USA,Hines V.A. Medical Center, Maywood, IL, USA
| |
Collapse
|
37
|
Balne PK, Gupta S, Zhang J, Bristow D, Faubion M, Heil SD, Sinha PR, Green SL, Iozzo RV, Mohan RR. The functional role of decorin in corneal neovascularization in vivo. Exp Eye Res 2021; 207:108610. [PMID: 33940009 DOI: 10.1016/j.exer.2021.108610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Our earlier decorin (Dcn) gene overexpression studies found that the targeted Dcn gene transfer into the cornea inhibited corneal angiogenesis in vivo using a rabbit model. In this study, we tested the hypothesis that anti-angiogenic effects of decorin in the cornea are mediated by alterations in a normal physiologic balance of pro- and anti-angiogenic factors using decorin deficient (Dcn-/-) and wild type (Dcn+/+) mice. Corneal neovascularization (CNV) in Dcn-/- and Dcn+/+ mice was produced with a standard chemical injury technique. The clinical progression of CNV in mice was monitored with stereo- and slit-lamp microscopes, and histopathological hematoxylin and eosin (H&E) staining. Protein and mRNA expression of pro- and anti-angiogenic factors in the cornea were evaluated using immunofluorescence and quantitative real-time PCR, respectively. Slit-lamp clinical eye examinations revealed significantly more CNV in Dcn-/- mice than the Dcn+/+ mice post-injury (p < 0.05) and AAV5-Dcn gene therapy significantly reduced CNV in Dcn-/- mice compered to no AAV5-Dcn gene therapy controls (p < 0.001). H&E-stained corneal sections exhibited morphology with several neovessels in injured corneas of the Dcn-/- mice than the Dcn+/+ mice. Immunofluorescence of corneal sections displayed significantly higher expression of α-smooth muscle actin (α-SMA) and endoglin proteins in Dcn-/- mice than Dcn+/+ mice (p < 0.05). Quantitative real-time PCR found significantly increased mRNA levels of pro-angiogenic factors endoglin (2.53-fold; p < 0.05), Vegf (2.47-fold; p < 0.05), and Pecam (2.14-fold; p < 0.05) and anti-angiogenic factor Vegfr2 (1.56-fold; p < 0.05) in the normal cornea of the Dcn-/- mice than the Dcn+/+ mice. Furthermore, neovascularized Dcn-/- mice corneas showed greater increase in mRNA expression of pro-angiogenic factors endoglin (4.58-fold; p < 0.0001), Vegf (4.16-fold; p < 0.0001), and Pdgf (2.15-fold; p < 0.0001) and reduced expression of anti-angiogenic factors Ang2 (0.12-fold; p < 0.05), Timp1 (0.22-fold; p < 0.05), and Vegfr2 (0.67-fold; p > 0.05) compared to neovascularized Dcn+/+ mice corneas. These gene deficience studies carried with transgenic Dcn-/- mice revealed decorin's role in influencing a physiologic balance between pro-and anti-angiogenic factors in the normal and injured cornea. We infer that the functional deletion of Dcn promotes irregular corneal repair and aggravates CNV.
Collapse
Affiliation(s)
- Praveen K Balne
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Jinjin Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Daniel Bristow
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Matthew Faubion
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sally D Heil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Prashant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Sydney L Green
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
38
|
Saranathan V, Finet C. Cellular and developmental basis of avian structural coloration. Curr Opin Genet Dev 2021; 69:56-64. [PMID: 33684846 DOI: 10.1016/j.gde.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Vivid structural colors in birds are a conspicuous and vital part of their phenotype. They are produced by a rich diversity of integumentary photonic nanostructures in skin and feathers. Unlike pigmentary coloration, whose genetic basis is being elucidated, little is known regarding the pathways underpinning organismal structural coloration. Here, we review available data on the development of avian structural colors. In particular, feather photonic nanostructures are understood to be intracellularly self-assembled by physicochemical forces typically seen in soft colloidal systems. We identify promising avenues for future research that can address current knowledge gaps, which are also highly relevant for the sustainable engineering of advanced bioinspired and biomimetic materials.
Collapse
Affiliation(s)
- Vinodkumar Saranathan
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore; NUS Nanotechnology and Nanoscience Initiative, National University of Singapore, 117581, Singapore.
| | - Cédric Finet
- Division of Science, Yale-NUS College, 10 College Avenue West, 138609, Singapore
| |
Collapse
|
39
|
Schneider M, Pawlak R, Weber GR, Dillinger AE, Kuespert S, Iozzo RV, Quigley HA, Ohlmann A, Tamm ER, Fuchshofer R. A novel ocular function for decorin in the aqueous humor outflow. Matrix Biol 2021; 97:1-19. [PMID: 33582236 DOI: 10.1016/j.matbio.2021.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Primary open-angle glaucoma, a neurodegenerative disorder characterized by degeneration of optic nerve axons, is a frequent cause of vision loss and blindness worldwide. Several randomized multicenter studies have identified intraocular pressure as the major risk factor for its development, caused by an increased outflow resistance to the aqueous humor within the trabecular meshwork. However, the molecular mechanism for increased outflow resistance in POAG has not been fully established. One of the proposed players is the pro-fibrotic transforming growth factor (TGF)-β2, which is found in higher amounts in the aqueous humor of patients with POAG. In this study we elucidated the role of decorin, a small leucine-rich proteoglycan and known antagonist of TGF-β, in the region of aqueous humor outflow tissue. Utilizing decorin deficient mice, we discovered that decorin modulated TGF-β signaling in the canonical outflow pathways and the lack of decorin in vivo caused an increase in intraocular pressure. Additionally, the Dcn-/- mice showed significant loss of optic nerve axons and morphological changes in the glial lamina, typical features of glaucoma. Moreover, using human trabecular meshwork cells we discovered that soluble decorin attenuated TGF-β2 mediated synthesis and expression of typical downstream target genes including CCN2/CTGF, FN and COL IV. Finally, we found a negative reciprocal regulation of decorin and TGF-β, with a dramatic downregulation of decorin in the canonical outflow pathways of patients with primary open-angle glaucoma. Collectively, our results indicate that decorin plays an important role in the pathogenesis of primary open-angle glaucoma and offers novel perspectives in the treatment of this serious disease.
Collapse
Affiliation(s)
- Magdalena Schneider
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Ramona Pawlak
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Gregor R Weber
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea E Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States
| | - Harry A Quigley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany.
| |
Collapse
|
40
|
Ashworth S, Harrington J, Hammond GM, Bains KK, Koudouna E, Hayes AJ, Ralphs JR, Regini JW, Young RD, Hayashi R, Nishida K, Hughes CE, Quantock AJ. Chondroitin Sulfate as a Potential Modulator of the Stem Cell Niche in Cornea. Front Cell Dev Biol 2021; 8:567358. [PMID: 33511110 PMCID: PMC7835413 DOI: 10.3389/fcell.2020.567358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chondroitin sulfate (CS) is an important component of the extracellular matrix in multiple biological tissues. In cornea, the CS glycosaminoglycan (GAG) exists in hybrid form, whereby some of the repeating disaccharides are dermatan sulfate (DS). These CS/DS GAGs in cornea, through their presence on the proteoglycans, decorin and biglycan, help control collagen fibrillogenesis and organization. CS also acts as a regulatory ligand for a spectrum of signaling molecules, including morphogens, cytokines, chemokines, and enzymes during corneal growth and development. There is a growing body of evidence that precise expression of CS or CS/DS with specific sulfation motifs helps define the local extracellular compartment that contributes to maintenance of the stem cell phenotype. Indeed, recent evidence shows that CS sulfation motifs recognized by antibodies 4C3, 7D4, and 3B3 identify stem cell populations and their niches, along with activated progenitor cells and transitional areas of tissue development in the fetal human elbow. Various sulfation motifs identified by some CS antibodies are also specifically located in the limbal region at the edge of the mature cornea, which is widely accepted to represent the corneal epithelial stem cell niche. Emerging data also implicate developmental changes in the distribution of CS during corneal morphogenesis. This article will reflect upon the potential roles of CS and CS/DS in maintenance of the stem cell niche in cornea, and will contemplate the possible involvement of CS in the generation of eye-like tissues from human iPS (induced pluripotent stem) cells.
Collapse
Affiliation(s)
- Sean Ashworth
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jodie Harrington
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.,Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Greg M Hammond
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Kiranjit K Bains
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Elena Koudouna
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Anthony J Hayes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - James R Ralphs
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Justyn W Regini
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert D Young
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Clare E Hughes
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
41
|
Abstract
Preterm birth is a leading cause of neonatal mortality in the US and globally, with preterm premature rupture of fetal membranes (PPROM) accounting for one third of preterm births. Currently no predictive diagnostics are available to precisely assess risk and potentially reduce the incidence of PPROM. Bigycan and decorin, the main proteoglycans present in human fetal membranes, are involved in the physiological maturation of fetal membranes as well as in the pathophysiology of preterm birth. The serum protein sex hormone-binding globulin (SHBG) has recently been identified as a predictor of spontaneous preterm birth. We hypothesize that the balance between serum decorin and biglycan on one hand and SHBG on the other hand may provide insight into the status of the fetal membranes in early pregnancy, thereby predicting PPROM prior to symptoms. Using chart review, 18 patients with confirmed cases of PPROM were identified from 2013-2016. Second trimester residual serum was retreived from freezer storage for these cases along with 5 matched controls for each case. The biomarkers biglycan, decorin and SHBG were analyzed first separately, then in combination to determine their ability to predict PPROM. The predictive score for the combined model displays an AUC = 0.774. The ROC curve of the predicted score has an optimal threshold of 0.238 and a sensitivity and specificity of 0.72 and 0.84 respectively. This prenatal serum panel is a promising serum screening-based biochemical model to predict PPROM in asymptomatic women.
Collapse
|
42
|
Chery DR, Han B, Zhou Y, Wang C, Adams SM, Chandrasekaran P, Kwok B, Heo SJ, Enomoto-Iwamoto M, Lu XL, Kong D, Iozzo RV, Birk DE, Mauck RL, Han L. Decorin regulates cartilage pericellular matrix micromechanobiology. Matrix Biol 2020; 96:1-17. [PMID: 33246102 DOI: 10.1016/j.matbio.2020.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.
Collapse
Affiliation(s)
- Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Ying Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
43
|
Pantham P, Armstrong DL, Bodnariuc J, Haupt O, Johnson AW, Underhill L, Iozzo RV, Lechner BE, Wildman DE. Transcriptomic profiling of fetal membranes of mice deficient in biglycan and decorin as a model of preterm birth†. Biol Reprod 2020; 104:611-623. [PMID: 33165521 DOI: 10.1093/biolre/ioaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/09/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Approximately, 25% of all preterm births are due to preterm premature rupture of membranes. Mice deficient in proteoglycans biglycan (Bgn) and decorin (Dcn) display abnormal fetal membranes and increased incidence of preterm birth. We conducted RNA-Seq to profile fetal membranes and identify molecular pathways that may lead to preterm birth in double knockout (DKO) mice (Bgn-/-; Dcn-/-) compared to wild-type (WT) at two different gestational stages, E12 and E18 (n = 3 in each group). 3264 transcripts were differentially regulated in E18 DKO vs. WT fetal membranes, and 96 transcripts differentially regulated in E12 DKO vs. WT fetal membranes (FDR < 0.05, log 2 FC ≥ 1). Differentially regulated transcripts in E18 DKO fetal membranes were significantly enriched for genes involved in cell cycle regulation, extracellular matrix-receptor interaction, and the complement cascade. Fifty transcripts involved in the cell cycle were altered in E18 DKO fetal membranes (40↓, 10↑, FDR < 0.05), including p21 and p57 (↑), and Tgfb2, Smad3, CycA, Cdk1, and Cdk2(↓). Thirty-one transcripts involved in the complement cascade were altered (11↓, 20↑, FDR < 0.05) in E18 DKO fetal membranes, including C1q, C2, and C3 (↑). Differentially expressed genes in the top three molecular pathways (1) showed evidence of negative or purifying selection, and (2) were significantly enriched (Z-score > 10) for transcription factor binding sites for Nr2f1 at E18. We propose that in DKO mice, cell cycle arrest results in lack of cell proliferation in fetal membranes, inability to contain the growing fetus, and preterm birth.
Collapse
Affiliation(s)
- Priyadarshini Pantham
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Don L Armstrong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Bodnariuc
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Owen Haupt
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy Wagoner Johnson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lori Underhill
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Beatrice E Lechner
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
44
|
Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Sci Rep 2020; 10:19065. [PMID: 33149218 PMCID: PMC7642422 DOI: 10.1038/s41598-020-76107-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/22/2020] [Indexed: 01/19/2023] Open
Abstract
The extracellular matrix (ECM) is a complex mixture composed of fibrillar collagens as well as additional protein and carbohydrate components. Proteoglycans (PGs) contribute to the heterogeneity of the ECM and play an important role in its structure and function. While the small leucine rich proteoglycans (SLRPs), including decorin and lumican, have been studied extensively as mediators of collagen fibrillogenesis and organization, the function of large matrix PGs in collagen matrices is less well known. In this study, we showed that different matrix PGs have distinct roles in regulating collagen behaviors. We found that versican, a large chondroitin sulfate PG, promotes collagen fibrillogenesis in a turbidity assay and upregulates cell-mediated collagen compaction and reorganization, whereas aggrecan, a structurally-similar large PG, has different and often opposing effects on collagen. Compared to versican, decorin and lumican also have distinct functions in regulating collagen behaviors. The different ways in which matrix PGs interact with collagen have important implications for understanding the role of the ECM in diseases such as fibrosis and cancer, and suggest that matrix PGs are potential therapeutic targets.
Collapse
|
45
|
Leiphart RJ, Shetye SS, Weiss SN, Dyment NA, Soslowsky LJ. Induced Knockdown of Decorin, Alone and in Tandem With Biglycan Knockdown, Directly Increases Aged Murine Patellar Tendon Viscoelastic Properties. J Biomech Eng 2020; 142:111006. [PMID: 32766748 PMCID: PMC7580841 DOI: 10.1115/1.4048030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Tendon injuries increase with age, yet the age-associated changes in tendon properties remain unexplained. Decorin and biglycan are two matrix proteoglycans that play complex roles in regulating tendon formation, maturation, and aging, most notably in extracellular matrix assembly and maintenance. However, the roles of decorin and biglycan have not been temporally isolated in a homeostatic aged context. The goal of this work was to temporally isolate and define the roles of decorin and biglycan in regulating aged murine patellar tendon mechanical properties. We hypothesized that decorin would have a larger influence than biglycan on aged tendon mechanical properties and that biglycan would have an additive role in this regulation. When decorin and biglycan were knocked down in aged tendons, minimal changes in gene expression were observed, implying that these models directly define the roles of decorin and biglycan in regulating tendon mechanical properties. Knockdown of decorin or biglycan led to minimal changes in quasi-static mechanical properties. However, decorin deficiency led to increases in stress relaxation and phase shift that were exacerbated when coupled with biglycan deficiency. This study highlights an important role for decorin, alone and in tandem with biglycan, in regulating aged tendon viscoelastic properties.
Collapse
Affiliation(s)
- Ryan J. Leiphart
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie N. Weiss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Nathaniel A. Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 307A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
46
|
Kamil S, Mohan RR. Corneal stromal wound healing: Major regulators and therapeutic targets. Ocul Surf 2020; 19:290-306. [PMID: 33127599 DOI: 10.1016/j.jtos.2020.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Corneal stromal wound healing is a complex event that occurs to restore the transparency of an injured cornea. It involves immediate apoptosis of keratocytes followed by their activation, proliferation, migration, and trans-differentiation to myofibroblasts. Myofibroblasts contract to close the wound and secrete extracellular matrix and proteinases to remodel it. Released proteinases may degenerate the basement membrane allowing an influx of cytokines from overlying epithelium. Immune cells infiltrate the wound to clear cellular debris and prevent infections. Gradually basement membrane regenerates, myofibroblasts and immune cells disappear, abnormal matrix is resorbed, and transparency of the cornea is restored. Often this cascade deregulates and corneal opacity results. Factors that prevent corneal opacity after an injury have always intrigued the researchers. They hold clinical relevance as they can guide the outcomes of corneal surgeries. Studies in the past have shed light on the role of various factors in stromal healing. TGFβ (transforming growth factor-beta) signaling is the central player guiding stromal responses. Other major regulators include myofibroblasts, basement membrane, collagen fibrils, small leucine-rich proteoglycans, biophysical cues, proteins derived from extracellular matrix, and membrane channels. The knowledge about their roles helped to develop novel therapies to prevent corneal opacity. This article reviews the role of major regulators that determine the outcome of stromal healing. It also discusses emerging therapies that modulate the role of these regulators to prevent stromal opacity.
Collapse
Affiliation(s)
- Sabeeh Kamil
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health Vision Research Program, Department of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
47
|
Kuroda J, Itabashi T, Iwane AH, Aramaki T, Kondo S. The Physical Role of Mesenchymal Cells Driven by the Actin Cytoskeleton Is Essential for the Orientation of Collagen Fibrils in Zebrafish Fins. Front Cell Dev Biol 2020; 8:580520. [PMID: 33154970 PMCID: PMC7591588 DOI: 10.3389/fcell.2020.580520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrous collagen imparts physical strength and flexibility to tissues by forming huge complexes. The density and orientation of collagen fibers must be correctly specified for the optimal physical property of the collagen complex. However, little is known about its underlying cellular mechanisms. Actinotrichia are collagen fibers aligned at the fin-tip of bony fish and are easily visible under the microscope due to their thick, linear structure. We used the actinotrichia as a model system to investigate how cells manipulate collagen fibers. The 3D image obtained by focused ion beam scanning electron microscopy (FIB-SEM) showed that the pseudopodia of mesenchymal cells encircle the multiple actinotrichia. We then co-incubated the mesenchymal cells and actinotrichia in vitro, and time-lapse analysis revealed how cells use pseudopods to align collagen fiber orientation. This in vitro behavior is dependent on actin polymerization in mesenchymal cells. Inhibition of actin polymerization in mesenchymal cells results in mis-orientation of actinotrichia in the fin. These results reveal how mesenchymal cells are involved in fin formation and have important implications for the physical interaction between cells and collagen fibers.
Collapse
Affiliation(s)
- Junpei Kuroda
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-Hiroshima, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| |
Collapse
|
48
|
Baghy K, Reszegi A, Tátrai P, Kovalszky I. Decorin in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:17-38. [PMID: 32845500 DOI: 10.1007/978-3-030-48457-6_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-β, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
49
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
50
|
Fukuda K. Corneal fibroblasts: Function and markers. Exp Eye Res 2020; 200:108229. [PMID: 32919991 DOI: 10.1016/j.exer.2020.108229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Corneal stromal keratocytes contribute to the maintenance of corneal transparency and shape by synthesizing and degrading extracellular matrix. They are quiescent in the healthy cornea, but they become activated in response to insults from the external environment that breach the corneal epithelium, with such activation being associated with phenotypic transformation into fibroblasts. Corneal fibroblasts (activated keratocytes) act as sentinel cells to sense various external stimuli-including damage-associated molecular patterns derived from injured cells, pathogen-associated molecular patterns of infectious microorganisms, and inflammatory mediators such as cytokines-under pathological conditions such as trauma, infection, and allergy. The expression of various chemokines and adhesion molecules by corneal fibroblasts determines the selective recruitment and activation of inflammatory cells in a manner dependent on the type of insult. In infectious keratitis, the interaction of corneal fibroblasts with various components of microbes and with cytokines derived from infiltrated inflammatory cells results in excessive degradation of stromal collagen and consequent corneal ulceration. Corneal fibroblasts distinguish between type 1 and type 2 inflammation through recognition of corresponding cytokines, with their activation by type 2 cytokines contributing to the pathogenesis of corneal lesions in severe ocular allergic diseases. Pharmacological targeting of corneal fibroblast function is thus a potential novel therapeutic approach to prevention of excessive corneal stromal inflammation, damage, and scarring.
Collapse
Affiliation(s)
- Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|