1
|
Slater A, Khattak S, Thomas MR. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:465-473. [PMID: 38453424 PMCID: PMC11323372 DOI: 10.1093/ehjcvp/pvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Glycoprotein (GP) VI (GPVI) plays a major role in thrombosis but not haemostasis, making it a promising antithrombotic target. The primary role of GPVI on the surface of platelets is a signalling receptor for collagen, which is one of the most potent thrombotic sub-endothelial components that is exposed by atherosclerotic plaque rupture. Inhibition of GPVI has therefore been investigated as a strategy for treatment and prevention of atherothrombosis, such as during stroke and acute coronary syndromes. A range of specific GPVI inhibitors have been characterized, and two of these inhibitors, glenzocimab and revacept, have completed Phase II clinical trials in ischaemic stroke. In this review, we summarize mechanisms of GPVI activation and the latest progress of clinically tested GPVI inhibitors, including their mechanisms of action. By focusing on what is known about GPVI activation, we also discuss whether alternate strategies could be used to target GPVI.
Collapse
Affiliation(s)
- Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
| | - Sophia Khattak
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, Birmingham, UK
- Cardiology Department, Queen Elizabeth Hospital, University Hospitals Birmingham, B15 2GW, Birmingham, UK
| |
Collapse
|
2
|
Zhang Y, Zeng J, Bao S, Zhang B, Li X, Wang H, Cheng Y, Zhang H, Zu L, Xu X, Xu S, Song Z. Cancer progression and tumor hypercoagulability: a platelet perspective. J Thromb Thrombolysis 2024; 57:959-972. [PMID: 38760535 DOI: 10.1007/s11239-024-02993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Venous thromboembolism, which is common in cancer patients and accompanies or even precedes malignant tumors, is known as cancer-related thrombosis and is an important cause of cancer- associated death. At present, the exact etiology of the elevated incidence of venous thrombosis in cancer patients remains elusive. Platelets play a crucial role in blood coagulation, which is intimately linked to the development of arterial thrombosis. Additionally, platelets contribute to tumor progression and facilitate immune evasion by tumors. Tumor cells can interact with the coagulation system through various mechanisms, such as producing hemostatic proteins, activating platelets, and directly adhering to normal cells. The relationship between platelets and malignant tumors is also significant. In this review article, we will explore these connections.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shihao Bao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjie Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Jooss NJ, Diender MG, Fernández DI, Huang J, Heubel-Moenen FCJ, van der Veer A, Kuijpers MJE, Poulter NS, Henskens YMC, Te Loo M, Heemskerk JWM. Restraining of glycoprotein VI- and integrin α2β1-dependent thrombus formation by platelet PECAM1. Cell Mol Life Sci 2024; 81:44. [PMID: 38236412 PMCID: PMC10796532 DOI: 10.1007/s00018-023-05058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The platelet receptors, glycoprotein VI (GPVI) and integrin α2β1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2β1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2β1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2β1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2β1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2β1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2β1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2β1 engagement.
Collapse
Affiliation(s)
- Natalie J Jooss
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Molecular Haematology Unit, University of Oxford, Headington, OX3 9DS, UK
| | - Marije G Diender
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
| | - Delia I Fernández
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jingnan Huang
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Floor C J Heubel-Moenen
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Arian van der Veer
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
- Department of Pediatric Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Natalie S Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Nottingham, Midlands, UK
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maroeska Te Loo
- Department of Pediatric Hematology, Amalia Children's Hospital, Radboud UMC, Nijmegen, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
- Synapse Research Institute Maastricht, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Mazharian A, Maître B, Bornert A, Hennequin D, Lourenco-Rodrigues M, Geer MJ, Smith CW, Heising S, Walter M, Montel F, Walker LSK, de la Salle H, Watson SP, Gachet C, Senis YA. Treatment of congenital thrombocytopenia and decreased collagen reactivity in G6b-B-deficient mice. Blood Adv 2023; 7:46-59. [PMID: 36269841 PMCID: PMC9813534 DOI: 10.1182/bloodadvances.2022008873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023] Open
Abstract
Mice lacking the immunoreceptor tyrosine-based inhibition motif-containing co-inhibitory receptor G6b-B (Mpig6b, G6b knockout, KO) are born with a complex megakaryocyte (MK) per platelet phenotype, characterized by severe macrothrombocytopenia, expansion of the MK population, and focal myelofibrosis in the bone marrow and spleen. Platelets are almost completely devoid of the glycoprotein VI (GPVI)-FcRγ-chain collagen receptor complex, have reduced collagen integrin α2β1, elevated Syk tyrosine kinase activity, and a subset has increased surface immunoglobulins. A similar phenotype was recently reported in patients with null and loss-of-function mutations in MPIG6B. To better understand the cause and treatment of this pathology, we used pharmacological- and genetic-based approaches to rescue platelet counts and function in G6b KO mice. Intravenous immunoglobulin resulted in a transient partial recovery of platelet counts, whereas immune deficiency did not affect platelet counts or receptor expression in G6b KO mice. Syk loss-of-function (R41A) rescued macrothrombocytopenia, GPVI and α2β1 expression in G6b KO mice, whereas treatment with the Syk kinase inhibitor BI1002494 partially rescued platelet count but had no effect on GPVI and α2β1 expression or bleeding. The Src family kinase inhibitor dasatinib was not beneficial in G6b KO mice. In contrast, treatment with the thrombopoietin mimetic romiplostim rescued thrombocytopenia, GPVI expression, and platelet reactivity to collagen, suggesting that it may be a promising therapeutic option for patients lacking functional G6b-B. Intriguingly, GPVI and α2β1 expression were significantly downregulated in romiplostim-treated wild-type mice, whereas GPVI was upregulated in romiplostim-treated G6b KO mice, suggesting a cell intrinsic feedback mechanism that autoregulates platelet reactivity depending on physiological needs.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Blandine Maître
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Alicia Bornert
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Desline Hennequin
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Marc Lourenco-Rodrigues
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Mitchell J. Geer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Silke Heising
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michaela Walter
- Boehringer Ingelheim Pharma GmbH and Company KG, Ingelheim, Germany
| | - Florian Montel
- Boehringer Ingelheim Pharma GmbH and Company KG, Ingelheim, Germany
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Henri de la Salle
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Christian Gachet
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Yotis A. Senis
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
5
|
Batis H, Almugairi A, Almugren O, Aljabry M, Alqahtani F, Elbashir E, Elfaki M, Alsultan A. Detrimental variants in MPIG6B in two children with myelofibrosis: Does immune dysregulation contribute to myelofibrosis? Pediatr Blood Cancer 2021; 68:e29062. [PMID: 33871931 DOI: 10.1002/pbc.29062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Hasan Batis
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Areej Almugairi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City and National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Omar Almugren
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mansour Aljabry
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fatima Alqahtani
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Enas Elbashir
- Department of Pediatric Hematology/Oncology, King Abdullah Specialist Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammed Elfaki
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Oncology Center, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
8
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
9
|
Vögtle T, Sharma S, Mori J, Nagy Z, Semeniak D, Scandola C, Geer MJ, Smith CW, Lane J, Pollack S, Lassila R, Jouppila A, Barr AJ, Ogg DJ, Howard TD, McMiken HJ, Warwicker J, Geh C, Rowlinson R, Abbott WM, Eckly A, Schulze H, Wright GJ, Mazharian A, Fütterer K, Rajesh S, Douglas MR, Senis YA. Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. eLife 2019; 8:e46840. [PMID: 31436532 PMCID: PMC6742478 DOI: 10.7554/elife.46840] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
The immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B is critical for platelet production and activation. Loss of G6b-B results in severe macrothrombocytopenia, myelofibrosis and aberrant platelet function in mice and humans. Using a combination of immunohistochemistry, affinity chromatography and proteomics, we identified the extracellular matrix heparan sulfate (HS) proteoglycan perlecan as a G6b-B binding partner. Subsequent in vitro biochemical studies and a cell-based genetic screen demonstrated that the interaction is specifically mediated by the HS chains of perlecan. Biophysical analysis revealed that heparin forms a high-affinity complex with G6b-B and mediates dimerization. Using platelets from humans and genetically modified mice, we demonstrate that binding of G6b-B to HS and multivalent heparin inhibits platelet and megakaryocyte function by inducing downstream signaling via the tyrosine phosphatases Shp1 and Shp2. Our findings provide novel insights into how G6b-B is regulated and contribute to our understanding of the interaction of megakaryocytes and platelets with glycans.
Collapse
Affiliation(s)
- Timo Vögtle
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Sumana Sharma
- Cell Surface Signalling LaboratoryWellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Jun Mori
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Daniela Semeniak
- Institute of Experimental BiomedicineUniversity Hospital WürzburgWürzburgGermany
| | - Cyril Scandola
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de StrasbourgStrasbourgFrance
| | - Mitchell J Geer
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Jordan Lane
- Sygnature Discovery LimitedNottinghamUnited Kingdom
| | | | - Riitta Lassila
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer CenterUniversity of Helsinki, Helsinki University HospitalHelsinkiFinland
- Aplagon OyHelsinkiFinland
| | - Annukka Jouppila
- Coagulation Disorders UnitHelsinki University Hospital Research InstituteHelsinkiFinland
| | - Alastair J Barr
- Department of Biomedical Science, Faculty of Science & TechnologyUniversity of WestminsterLondonUnited Kingdom
| | - Derek J Ogg
- Peak Proteins LimitedAlderley ParkCheshireUnited Kingdom
| | - Tina D Howard
- Peak Proteins LimitedAlderley ParkCheshireUnited Kingdom
| | | | - Juli Warwicker
- Peak Proteins LimitedAlderley ParkCheshireUnited Kingdom
| | - Catherine Geh
- Peak Proteins LimitedAlderley ParkCheshireUnited Kingdom
| | | | - W Mark Abbott
- Peak Proteins LimitedAlderley ParkCheshireUnited Kingdom
| | - Anita Eckly
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de StrasbourgStrasbourgFrance
| | - Harald Schulze
- Institute of Experimental BiomedicineUniversity Hospital WürzburgWürzburgGermany
| | - Gavin J Wright
- Cell Surface Signalling LaboratoryWellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Alexandra Mazharian
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Klaus Fütterer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Sundaresan Rajesh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Michael R Douglas
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
- Department of NeurologyDudley Group NHS Foundation TrustDudleyUnited Kingdom
- School of Life and Health SciencesAston UniversityBirminghamUnited Kingdom
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de StrasbourgStrasbourgFrance
| |
Collapse
|
10
|
Nurden AT. Clinical significance of altered collagen-receptor functioning in platelets with emphasis on glycoprotein VI. Blood Rev 2019; 38:100592. [PMID: 31351674 DOI: 10.1016/j.blre.2019.100592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Much interest surrounds the receptors α2β1 and glycoprotein VI (GPVI) whose synchronized action mediates the attachment and activation of platelets on collagen, essential for preventing blood loss but also the most thrombogenic component of the vessel wall. Subject to density variations on platelets through natural polymorphisms, the absence of α2β1 or GPVI uniquely leads to a substantial block of hemostasis without causing major bleeding. Specific to the megakaryocyte lineage, GPVI and its signaling pathways are most promising targets for anti-thrombotic therapy. This review looks at the clinical consequences of the loss of collagen receptor function with emphasis on both the inherited and acquired loss of GPVI with brief mention of mouse models when necessary. A detailed survey of rare case reports of patients with inherited disease-causing variants of the GP6 gene is followed by an assessment of the causes and clinical consequences of acquired GPVI deficiency, a more frequent finding most often due to antibody-induced platelet GPVI shedding. Release of soluble GPVI is brought about by platelet metalloproteinases; a process induced by ligand or antibody binding to GPVI or even high shear forces. Also included is an assessment of the clinical importance of GPVI-mediated platelet interactions with fibrin and of the promise shown by the pharmacological inhibition of GPVI in a cardiovascular context. The role for GPVI in platelet function in inflammation and in the evolution and treatment of major illnesses such as rheumatoid arthritis, cancer and sepsis is also discussed.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, PTIB, Hôpital Xavier Arnozan, 33600 Pessac, France.
| |
Collapse
|
11
|
|
12
|
Stefanini L, Bergmeier W. Negative regulators of platelet activation and adhesion. J Thromb Haemost 2018; 16:220-230. [PMID: 29193689 PMCID: PMC5809258 DOI: 10.1111/jth.13910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/29/2022]
Abstract
Platelets are small anucleated cells that constantly patrol the cardiovascular system to preserve its integrity and prevent excessive blood loss where the vessel lining is breached. Their key challenge is to form a hemostatic plug under conditions of high shear forces. To do so, platelets have evolved a molecular machinery that enables them to sense trace amounts of signals at the site of damage and to rapidly shift from a non-adhesive to a pro-adhesive state. However, this highly efficient molecular machinery can also lead to unintended platelet activation and cause clinical complications such as thrombocytopenia and thrombosis. Thus, several checkpoints are in place to tightly control platelet activation and adhesiveness in space and time. In this review, we will discuss select negative regulators of platelet activation, which are critical to maintain patrolling platelets in a quiescent, non-adhesive state and/or to limit platelet adhesion to sites of injury.
Collapse
Affiliation(s)
- L Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - W Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
ITIM receptors: more than just inhibitors of platelet activation. Blood 2017; 129:3407-3418. [PMID: 28465343 DOI: 10.1182/blood-2016-12-720185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbβ3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.
Collapse
|
14
|
Delierneux C, Donis N, Servais L, Wéra O, Lecut C, Vandereyken M, Musumeci L, Rahmouni S, Schneider J, Eble JA, Lancellotti P, Oury C. Targeting of C-type lectin-like receptor 2 or P2Y12 for the prevention of platelet activation by immunotherapeutic CpG oligodeoxynucleotides. J Thromb Haemost 2017; 15:983-997. [PMID: 28296036 DOI: 10.1111/jth.13669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 11/30/2022]
Abstract
Essentials CpG oligodeoxynucleotide (ODN) immuotherapeutics cause undesired platelet activating effects. It is crucial to understand the mechanisms of these effects to identify protective strategies. CpG ODN-induced platelet activation depends on C-type lectin-like receptor 2 (CLEC-2) and P2Y12. Targeting CLEC-2 or P2Y12 fully prevents CpG ODN-induced platelet activation and thrombosis. SUMMARY Background Synthetic phosphorothioate-modified CpG oligodeoxynucleotides (ODNs) show potent immunostimulatory properties that are widely exploited in clinical trials of anticancer treatment. Unexpectedly, a recent study indicated that CpG ODNs activate human platelets via the immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor glycoprotein VI. Objective To further analyze the mechanisms of CpG ODN-induced platelet activation and identify potential inhibitory strategies. Methods In vitro analyses were performed on human and mouse platelets, and on cell lines expressing platelet ITAM receptors. CpG ODN platelet-activating effects were evaluated in a mouse model of thrombosis. Results We demonstrated platelet uptake of CpG ODNs, resulting in platelet activation and aggregation. C-type lectin-like receptor 2 (CLEC-2) expressed in DT40 cells bound CpG ODNs. CpG ODN uptake did not occur in CLEC-2-deficient mouse platelets. Inhibition of human CLEC-2 with a blocking antibody inhibited CpG ODN-induced platelet aggregation. CpG ODNs caused CLEC-2 dimerization, and provoked its internalization. They induced dense granule release before the onset of aggregation. Accordingly, pretreating platelets with apyrase, or inhibiting P2Y12 with cangrelor or clopidogrel, prevented CpG ODN platelet-activating effect. In vivo, intravenously injected CpG ODN interacted with platelets adhered to mouse injured endothelium, and promoted thrombus growth, which was inhibited by CLEC-2 deficiency or by clopidogrel. Conclusions CLEC-2 and P2Y12 are required for CpG ODN-induced platelet activation and thrombosis, and might be targeted to prevent adverse events in patients at risk.
Collapse
Affiliation(s)
- C Delierneux
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - N Donis
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - L Servais
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - O Wéra
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - C Lecut
- Department of Laboratory Hematology, CHU Sart-Tilman, Liège, Belgium
| | - M Vandereyken
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - L Musumeci
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | - S Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - J Schneider
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, Luxembourg City, Luxembourg
| | - J A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - P Lancellotti
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
- Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - C Oury
- Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, GIGA-Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart-Tilman, Liège, Belgium
| |
Collapse
|
15
|
Unsworth AJ, Bye AP, Gibbins JM. Platelet-Derived Inhibitors of Platelet Activation. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017. [PMCID: PMC7123044 DOI: 10.1007/978-3-319-47462-5_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Rollin J, Pouplard C, Gruel Y. Risk factors for heparin-induced thrombocytopenia: Focus on Fcγ receptors. Thromb Haemost 2016; 116:799-805. [PMID: 27358188 DOI: 10.1160/th16-02-0109] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/28/2016] [Indexed: 02/06/2023]
Abstract
Fcγ receptors have critical roles in the pathophysiology of heparin-induced thrombocytopenia (HIT), a severe immune-mediated complication of heparin treatment. Activation of platelets, monocytes and neutrophils by platelet-activating anti-PF4/heparin IgG antibodies results in thrombocytopenia, hypercoagulability and thrombosis in susceptible patients, effects that depend on FcγRIIA. In addition, FcγRIIIA receptors probably contribute to clearance of platelets sensitised by HIT immune complexes. FcγRI has also been reported to be involved in monocyte activation by HIT IgG antibodies and synthesis of tissue factor. This review focuses on the role of these FcγRs in HIT pathophysiology, including the potential influence of several gene variations associated with variable risk of HIT and related thrombosis. In particular, the 276P and 326Q alleles of CD148, a protein tyrosine phosphatase that regulates FcγRIIA signalling, are associated with a lower risk of HIT, and platelets from healthy donors expressing these alleles are hyporesponsive to anti-PF4/H antibodies. It was also recently demonstrated that the risk of thrombosis is higher in HIT patients expressing the R isoform of the FcγRIIA H131R polymorphism, with HIT antibodies shown to activate RR platelets more efficiently, mainly explained by an inhibitory effect of normal IgG2, which bound to the FcγRIIA 131H isoform more efficiently. Environmental risk factors probably interact with these gene polymorphisms affecting FcγRs, thereby increasing thrombosis risk in HIT.
Collapse
Affiliation(s)
| | | | - Yves Gruel
- Yves Gruel, Service d'Hématologie-Hémostase, Hôpital Trousseau, CHU de Tours, 37044 Tours Cedex, France, Tel.: +33 02 47 47 46 72, E-mail:
| |
Collapse
|
17
|
Bye AP, Unsworth AJ, Gibbins JM. Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost 2016; 14:918-30. [PMID: 26929147 PMCID: PMC4879507 DOI: 10.1111/jth.13302] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/11/2016] [Indexed: 01/22/2023]
Abstract
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology, and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation, or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators.
Collapse
Affiliation(s)
- A P Bye
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - A J Unsworth
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - J M Gibbins
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
18
|
Activation of glycoprotein VI (GPVI) and C-type lectin-like receptor-2 (CLEC-2) underlies platelet activation by diesel exhaust particles and other charged/hydrophobic ligands. Biochem J 2015; 468:459-73. [PMID: 25849538 DOI: 10.1042/bj20150192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023]
Abstract
Platelets are activated by a range of stimuli that share little or no resemblance in structure to each other or to recognized ligands, including diesel exhaust particles (DEP), small peptides [4N1-1, Champs (computed helical anti-membrane proteins), LSARLAF (Leu-Ser-Ala-Arg-Leu-Ala-Phe)], proteins (histones) and large polysaccharides (fucoidan, dextran sulfate). This miscellaneous group stimulate aggregation of human and mouse platelets through the glycoprotein VI (GPVI)-FcR γ-chain complex and/or C-type lectin-like receptor-2 (CLEC-2) as shown using platelets from mice deficient in either or both of these receptors. In addition, all of these ligands stimulate tyrosine phosphorylation in GPVI/CLEC-2-double-deficient platelets, indicating that they bind to additional surface receptors, although only in the case of dextran sulfate does this lead to activation. DEP, fucoidan and dextran sulfate, but not the other agonists, activate GPVI and CLEC-2 in transfected cell lines as shown using a sensitive reporter assay confirming a direct interaction with the two receptors. We conclude that this miscellaneous group of ligands bind to multiple proteins on the cell surface including GPVI and/or CLEC-2, inducing activation. These results have pathophysiological significance in a variety of conditions that involve exposure to activating charged/hydrophobic agents.
Collapse
|
19
|
Abstract
The C-type lectin-like receptor CLEC-2 mediates platelet activation through a hem-immunoreceptor tyrosine-based activation motif (hemITAM). CLEC-2 initiates a Src- and Syk-dependent signaling cascade that is closely related to that of the 2 platelet ITAM receptors: glycoprotein (GP)VI and FcγRIIa. Activation of either of the ITAM receptors induces shedding of GPVI and proteolysis of the ITAM domain in FcγRIIa. In the present study, we generated monoclonal antibodies against human CLEC-2 and used these to measure CLEC-2 expression on resting and stimulated platelets and on other hematopoietic cells. We show that CLEC-2 is restricted to platelets with an average copy number of ∼2000 per cell and that activation of CLEC-2 induces proteolytic cleavage of GPVI and FcγRIIa but not of itself. We further show that CLEC-2 and GPVI are expressed on CD41+ microparticles in megakaryocyte cultures and in platelet-rich plasma, which are predominantly derived from megakaryocytes in healthy donors, whereas microparticles derived from activated platelets only express CLEC-2. Patients with rheumatoid arthritis, an inflammatory disease associated with increased microparticle production, had raised plasma levels of microparticles that expressed CLEC-2 but not GPVI. Thus, CLEC-2, unlike platelet ITAM receptors, is not regulated by proteolysis and can be used to monitor platelet-derived microparticles.
Collapse
|
20
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
21
|
Zimman A, Titz B, Komisopoulou E, Biswas S, Graeber TG, Podrez EA. Phosphoproteomic analysis of platelets activated by pro-thrombotic oxidized phospholipids and thrombin. PLoS One 2014; 9:e84488. [PMID: 24400094 PMCID: PMC3882224 DOI: 10.1371/journal.pone.0084488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Specific oxidized phospholipids (oxPCCD36) promote platelet hyper-reactivity and thrombosis in hyperlipidemia via the scavenger receptor CD36, however the signaling pathway(s) induced in platelets by oxPCCD36 are not well defined. We have employed mass spectrometry-based tyrosine, serine, and threonine phosphoproteomics for the unbiased analysis of platelet signaling pathways induced by oxPCCD36 as well as by the strong physiological agonist thrombin. oxPCCD36 and thrombin induced differential phosphorylation of 115 proteins (162 phosphorylation sites) and 181 proteins (334 phosphorylation sites) respectively. Most of the phosphoproteome changes induced by either agonist have never been reported in platelets; thus they provide candidates in the study of platelet signaling. Bioinformatic analyses of protein phosphorylation dependent responses were used to categorize preferential motifs for (de)phosphorylation, predict pathways and kinase activity, and construct a phosphoproteome network regulating integrin activation. A putative signaling pathway involving Src-family kinases, SYK, and PLCγ2 was identified in platelets activated by oxPCCD36. Subsequent ex vivo studies in human platelets demonstrated that this pathway is downstream of the scavenger receptor CD36 and is critical for platelet activation by oxPCCD36. Our results provide multiple insights into the mechanism of platelet activation and specifically in platelet regulation by oxPCCD36.
Collapse
Affiliation(s)
- Alejandro Zimman
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Bjoern Titz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Evangelia Komisopoulou
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sudipta Biswas
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Thomas G. Graeber
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, Institute for Molecular Medicine, Jonsson Comprehensive Cancer Center and California NanoSystems Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eugene A. Podrez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
The molecular pathways that regulate megakaryocyte production have historically been identified through multiple candidate gene approaches. Several transcription factors critical for generating megakaryocytes were identified by promoter analysis of megakaryocyte-specific genes, and their biological roles then verified by gene knockout studies; for example, GATA-1, NF-E2, and RUNX1 were identified in this way. In contrast, other transcription factors important for megakaryopoiesis were discovered through a systems approach; for example, c-Myb was found to be critical for the erythroid versus megakaryocyte lineage decision by genome-wide loss-of-function studies. The regulation of the levels of these transcription factors is, for the most part, cell intrinsic, although that assumption has recently been challenged. Epigenetics also impacts megakaryocyte gene expression, mediated by histone acetylation and methylation. Several cytokines have been identified to regulate megakaryocyte survival, proliferation, and differentiation, most prominent of which is thrombopoietin. Upon binding to its receptor, the product of the c-Mpl proto-oncogene, thrombopoietin induces a conformational change that activates a number of secondary messengers that promote cell survival, proliferation, and differentiation, and down-modulate receptor signaling. Among the best studied are the signal transducers and activators of transcription (STAT) proteins; phosphoinositol-3-kinase; mitogen-activated protein kinases; the phosphatases PTEN, SHP1, SHP2, and SHIP1; and the suppressors of cytokine signaling (SOCS) proteins. Additional signals activated by these secondary mediators include mammalian target of rapamycin; β(beta)-catenin; the G proteins Rac1, Rho, and CDC42; several transcription factors, including hypoxia-inducible factor 1α(alpha), the homeobox-containing proteins HOXB4 and HOXA9, and a number of signaling mediators that are reduced, including glycogen synthase kinase 3α(alpha) and the FOXO3 family of forkhead proteins. More recently, systematic interrogation of several aspects of megakaryocyte formation have been conducted, employing genomics, proteomics, and chromatin immunoprecipitation (ChIP) analyses, among others, and have yielded many previously unappreciated signaling mechanisms that regulate megakaryocyte lineage determination, proliferation, and differentiation. This chapter focuses on these pathways in normal and neoplastic megakaryopoiesis, and suggests areas that are ripe for further study.
Collapse
|
23
|
Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex. Blood 2013; 123:1393-402. [PMID: 24300854 DOI: 10.1182/blood-2013-04-496232] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fibrinogen binding to activated integrin induces outside-in signaling that results in stable platelet aggregates and clot retraction. How integrin αIIbβ3 is discouraged from spontaneous activation is not known. We have recently shown that junctional adhesion molecule-A (JAM-A) renders protection from thrombosis by suppressing integrin outside-in signaling. In this study, we show that JAM-A associates with integrin αIIbβ3 in resting platelets and dissociates upon platelet activation by agonists. We also show that integrin-associated JAM-A is tyrosine phosphorylated and is rapidly dephosphorylated upon platelet activation. C-terminal Src kinase (Csk) binds to tyrosine phosphorylated JAM-A through its Src homology 2 domain. Thus, JAM-A recruits Csk to the integrin-c-Src complex in resting platelets. Csk, in turn, keeps integrin-associated c-Src in an inactive state by phosphorylating Y(529) in its regulatory domain. Absence of JAM-A results in impaired c-SrcY(529) phosphorylation and augmentation of outside-in signaling-dependent c-Src activation. Our results strongly suggest that tyrosine-phosphorylated JAM-A is a Csk-binding protein and functions as an endogenous inhibitor of integrin signaling. JAM-A recruits Csk to the integrin-c-Src complex, where Csk negatively regulates c-Src activation, thereby suppressing the initiation of outside-in signaling. Upon agonist stimulation, JAM-A is dephosphorylated on the tyrosine, allowing the dissociation of Csk from the integrin complex, and thus facilitating outside-in signaling.
Collapse
|
24
|
Ozaki Y, Suzuki-Inoue K, Inoue O. Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. J Thromb Haemost 2013; 11 Suppl 1:330-9. [PMID: 23809136 DOI: 10.1111/jth.12235] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While very different in structure, GPVI - the major collagen receptor on platelet membranes, the GPIb-IX-V complex - the receptor for von Willebrand factor, and CLEC-2, a novel platelet activation receptor for podoplanin, share several common features in terms of function and platelet activation signal transduction pathways. All employ Src family kinases (SFK), Syk, and other signaling molecules involving tyrosine phosphorylation, similar to those of immunoreceptors for T and B cells. There appear to be overlapping functional roles for these glycoproteins, and in some cases, they can compensate for each other, suggesting a degree of redundancy. New ligands for these receptors are being identified, which broadens their functional relevancy. This is particularly true for CLEC-2, whose functions beyond hemostasis are being explored. The common mode of signaling, clustering, and localization to glycosphingolipid-enriched microdomains (GEMs) suggest that GEMs are central to signaling function by ligand-dependent association of these receptors, SFK, Syk, phosphotyrosine phosphatases, and other signaling molecules.
Collapse
Affiliation(s)
- Y Ozaki
- Department of Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| | | | | |
Collapse
|
25
|
Abstract
Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
Collapse
Affiliation(s)
- Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W. M. Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Levi
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Hughes CE, Sinha U, Pandey A, Eble JA, O'Callaghan CA, Watson SP. Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem 2012; 288:5127-35. [PMID: 23264619 PMCID: PMC3576117 DOI: 10.1074/jbc.m112.411462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.
Collapse
Affiliation(s)
- Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
27
|
Hughes CE, Radhakrishnan UP, Lordkipanidzé M, Egginton S, Dijkstra JM, Jagadeeswaran P, Watson SP. G6f-like is an ITAM-containing collagen receptor in thrombocytes. PLoS One 2012; 7:e52622. [PMID: 23285115 PMCID: PMC3528668 DOI: 10.1371/journal.pone.0052622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/20/2012] [Indexed: 01/22/2023] Open
Abstract
Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.
Collapse
Affiliation(s)
- Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
28
|
Coxon CH, Sadler AJ, Huo J, Campbell RD. An investigation of hierachical protein recruitment to the inhibitory platelet receptor, G6B-b. PLoS One 2012; 7:e49543. [PMID: 23185356 PMCID: PMC3501490 DOI: 10.1371/journal.pone.0049543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Platelet activation is regulated by both positive and negative signals. G6B-b is an inhibitory platelet receptor with an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). The molecular basis of inhibition by G6B-b is currently unknown but thought to involve the SH2 domain-containing tyrosine phosphatase SHP-1. Here we show that G6B-b also associates with SHP-2, as well as SHP-1, in human platelets. Using a number of biochemical approaches, we found these interactions to be direct and that the tandem SH2 domains of SHP-2 demonstrated a binding affinity for G6B-b 100-fold higher than that of SHP-1. It was also observed that while SHP-1 has an absolute requirement for phosphorylation at both motifs to bind, SHP-2 can associate with G6B-b when only one motif is phosphorylated, with the N-terminal SH2 domain and the ITIM being most important for the interaction. A number of other previously unreported SH2 domain-containing proteins, including Syk and PLCγ2, also demonstrated specificity for G6B-b phosphomotifs and may serve to explain the observation that G6B-b remains inhibitory in the absence of both SHP-1 and SHP-2. In addition, the presence of dual phosphorylated G6B-b in washed human platelets can reduce the EC(50) for both CRP and collagen.
Collapse
Affiliation(s)
- Carmen H. Coxon
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Amanda J. Sadler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jiandong Huo
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - R. Duncan Campbell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Mazharian A, Wang YJ, Mori J, Bem D, Finney B, Heising S, Gissen P, White JG, Berndt MC, Gardiner EE, Nieswandt B, Douglas MR, Campbell RD, Watson SP, Senis YA. Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function. Sci Signal 2012; 5:ra78. [PMID: 23112346 PMCID: PMC4973664 DOI: 10.1126/scisignal.2002936] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelets are highly reactive cell fragments that adhere to exposed extracellular matrix (ECM) and prevent excessive blood loss by forming clots. Paradoxically, megakaryocytes, which produce platelets in the bone marrow, remain relatively refractory to the ECM-rich environment of the bone marrow despite having the same repertoire of receptors as platelets. These include the ITAM (immunoreceptor tyrosine-based activation motif)-containing collagen receptor complex, which consists of glycoprotein VI (GPVI) and the Fc receptor γ-chain, and the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing receptor G6b-B. We showed that mice lacking G6b-B exhibited macrothrombocytopenia (reduced platelet numbers and the presence of enlarged platelets) and a susceptibility to bleeding as a result of aberrant platelet production and function. Platelet numbers were markedly reduced in G6b-B-deficient mice compared to those in wild-type mice because of increased platelet turnover. Furthermore, megakaryocytes in G6b-B-deficient mice showed enhanced metalloproteinase production, which led to increased shedding of cell-surface receptors, including GPVI and GPIbα. In addition, G6b-B-deficient megakaryocytes exhibited reduced integrin-mediated functions and defective formation of proplatelets, the long filamentous projections from which platelets bud off. Together, these findings establish G6b-B as a major inhibitory receptor regulating megakaryocyte activation, function, and platelet production.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ying-Jie Wang
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jun Mori
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Danai Bem
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Brenda Finney
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Silke Heising
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul Gissen
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - James G. White
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael C. Berndt
- Biomedical Diagnostics Institute, Dublin City University and Royal College of Surgeons in Ireland, Glasnevin, Dublin 9, Ireland
| | - Elizabeth E. Gardiner
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Michael R. Douglas
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Department of Neurology, Dudley Group of Hospitals NHS Foundation Trust, Dudley DY1 2HQ, UK
| | - Robert D. Campbell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Steve P. Watson
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yotis A. Senis
- Centre of Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
Xie J. The C-type lectin-like receptors of Dectin-1 cluster in natural killer gene complex. Glycoconj J 2012; 29:273-84. [DOI: 10.1007/s10719-012-9419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 11/30/2022]
|
31
|
Jones CI, Barrett NE, Moraes LA, Gibbins JM, Jackson DE. Endogenous inhibitory mechanisms and the regulation of platelet function. Methods Mol Biol 2012; 788:341-66. [PMID: 22130718 DOI: 10.1007/978-1-61779-307-3_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The response of platelets to changes in the immediate environment is always a balance between activatory and inhibitory signals, the cumulative effect of which is either activation or quiescence. This is true of platelets in free flowing blood and of their regulation of haemostasis and thrombosis. In this review, we consider the endogenous inhibitory mechanisms that combine to regulate platelet activation. These include those derived from the endothelium (nitric oxide, prostacyclin, CD39), inhibitory receptors on the surface of platelets (platelet endothelial cell adhesion molecule-1, carcinoembryonic antigen cell adhesion molecule 1, G6b-B - including evidence for the role of Ig-ITIM superfamily members in the negative regulation of ITAM-associated GPVI platelet-collagen interactions and GPCR-mediated signalling and in positive regulation of "outside-in" integrin α(IIb)β(3)-mediated signalling), intracellular inhibitory receptors (retinoic X receptor, glucocorticoid receptor, peroxisome proliferator-activated receptors, liver X receptor), and emerging inhibitory pathways (canonical Wnt signalling, Semaphorin 3A, endothelial cell specific adhesion molecule, and junctional adhesion molecule-A).
Collapse
Affiliation(s)
- Chris I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, The University of Reading, Reading, UK
| | | | | | | | | |
Collapse
|
32
|
Abstract
Well-understood functions for "traditional" platelet receptors are described, but "newer" receptors are equally discussed. Receptors are described biochemically (structure, ligand(s), protein partners, and function) and whenever possible, their clinical importance (mutations, polymorphisms, syndrome) are highlighted.
Collapse
Affiliation(s)
- Alexandre Kauskot
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
33
|
Abstract
Platelets pose unique challenges to cell biologists due to their lack of nucleus and low levels of messenger RNA. Platelets cannot be cultured in great abundance or manipulated using common recombinant DNA technologies. As a result, platelet research has lagged behind that of nucleated cells. The advent of mass spectrometry and its application to protein biochemistry brought with it great hopes for the platelet community that are now being realized. This technology is ideally suited for identifying low-abundance proteins, protein-protein interactions, and post-translational modifications in complex protein mixtures. Over the past 10 years, proteomics has delivered in many ways, providing platelet biologists with a comprehensive list of proteins expressed in platelets, information on post-translational modifications, protein interactions and sub-cellular localization. Several novel and important platelet membrane proteins, including CLEC-2, CD148, G6b-B, G6f, and Hsp47, have been identified using proteomics-based approaches. New, more sensitive instrumentation and novel approaches are making it increasingly possible to identify ever lower amounts of proteins. In this chapter we highlight some of the major achievements of platelet proteomics to date, discussing challenges and how they were overcome. We also discuss new frontiers and applications of proteomics to platelets and microparticles in health and disease, as we strive to better understand the molecular mechanisms underlying the platelet response to vascular injury.
Collapse
Affiliation(s)
- Yotis Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
34
|
Abstract
Atherothrombosis often underlies coronary artery disease, stroke, and peripheral arterial disease. Antiplatelet drugs have come to the forefront of prophylactic treatment of atherothrombotic disease. Dual antiplatelet therapy of aspirin plus clopidogrel-the current standard-has benefits, but it also has limitations with regard to pharmacologic properties and adverse effects with often severe bleeding complications. For these reasons, within the last decade or so, the investigation of novel antiplatelet targets has prospered. Target identification can be the result of large-scale genomic or proteomic studies, functional genomics in animal models, the genetic analysis of patients with inherited bleeding disorders, or a combination of these techniques.
Collapse
|
35
|
Suzuki-Inoue K, Inoue O, Ozaki Y. Novel platelet activation receptor CLEC-2: from discovery to prospects. J Thromb Haemost 2011; 9 Suppl 1:44-55. [PMID: 21781241 DOI: 10.1111/j.1538-7836.2011.04335.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) has been identified as a receptor for the platelet activating snake venom rhodocytin. CLEC-2 elicits powerful platelet activation signals in conjunction with Src, Syk kinases, and phospholipase Cγ2, similar to the collagen receptor glycoprotein (GP) VI/FcRγ-chain complex. In contrast to GPVI/FcRγ, which initiates platelet activation through the tandem YxxL motif immunoreceptor tyrosine-based activation motif (ITAM), CLEC-2 signals via the single YxxL motif hemi-ITAM. The endogenous ligand of CLEC-2 has been identified as podoplanin, which is expressed on the surface of tumour cells and facilitates tumour metastasis by inducing platelet activation. Studies of CLEC-2-deficient mice have revealed several physiological roles of CLEC-2. Podoplanin is also expressed in lymphatic endothelial cells as well as several other cells, including type I alveolar cells and kidney podocytes, but is absent from vascular endothelial cells. In the developmental stages, when the primary lymph sac is derived from the cardinal vein, podoplanin activates platelets in lymphatic endothelial cells by binding to CLEC-2, which facilitates blood/lymphatic vessel separation. Moreover, CLEC-2 is involved in thrombus stabilisation under flow conditions in part through homophilic interactions. However, the absence of CLEC-2 does not significantly increase bleeding tendency. CLEC-2 may be a good target protein for novel anti-platelet drugs or anti-metastatic drugs having therapeutic and preventive effects on arterial thrombosis and cancer, the primary causes of mortality in developed countries. In this article, we review the mechanisms of signal transduction, structure, expression, and function of CLEC-2.
Collapse
Affiliation(s)
- K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | |
Collapse
|
36
|
Abstract
Platelets are a remarkable mammalian adaptation that are required for human survival by virtue of their ability to prevent and arrest bleeding. Ironically, however, in the past century, the platelets' hemostatic activity became maladaptive for the increasingly large percentage of individuals who develop age-dependent progressive atherosclerosis. As a result, platelets also make a major contribution to ischemic thrombotic vascular disease, the leading cause of death worldwide. In this brief review, I provide historical descriptions of a highly selected group of topics to provide a framework for understanding our current knowledge and the trends that are likely to continue into the future of platelet research. For convenience, I separate the eras of platelet research into the "Descriptive Period" extending from ~1880-1960 and the "Mechanistic Period" encompassing the past ~50 years since 1960. We currently are reaching yet another inflection point, as there is a major shift from a focus on traditional biochemistry and cell and molecular biology to an era of single molecule biophysics, single cell biology, single cell molecular biology, structural biology, computational simulations, and the high-throughput, data-dense techniques collectively named with the "omics postfix". Given the progress made in understanding, diagnosing, and treating many rare and common platelet disorders during the past 50 years, I think it appropriate to consider it a Golden Age of Platelet Research and to recognize all of the investigators who have made important contributions to this remarkable achievement..
Collapse
Affiliation(s)
- Barry S. Coller
- Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, Tel: 212-327-7490, Fax: 212-327-7493
| |
Collapse
|
37
|
Xue J, Zhang X, Zhao H, Fu Q, Cao Y, Wang Y, Feng X, Fu A. Leukocyte-associated immunoglobulin-like receptor-1 is expressed on human megakaryocytes and negatively regulates the maturation of primary megakaryocytic progenitors and cell line. Biochem Biophys Res Commun 2011; 405:128-33. [PMID: 21216234 DOI: 10.1016/j.bbrc.2010.12.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 12/31/2010] [Indexed: 12/19/2022]
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory collagen receptor which belongs to the immunoglobulin (Ig) superfamily. Although the inhibitory function of LAIR-1 has been extensively described in multiple leukocytes, its role in megakaryocyte (MK) has not been explored so far. Here, we show that LAIR-1 is expressed on human bone marrow CD34(+)CD41a(+) and CD41a(+)CD42b(+) cells. LAIR-1 is also detectable in a fraction of human cord blood CD34(+) cell-derived MK that has morphological characteristics of immature MK. In megakaryoblastic cell line Dami, the membrane protein expression of LAIR-1 is up-regulated significantly when cells are treated with phorbol ester phorbol 12-myristate 13-acetate (PMA). Furthermore, cross-linking of LAIR-1 in Dami cells with its natural ligand or anti-LAIR-1 antibody leads to the inhibition of cell proliferation and PMA-promoted differentiation when examined by the MK lineage-specific markers (CD41a and CD42b) and polyploidization. In addition, we also observed that cross-linking of LAIR-1 results in decreased MK generation from primary human CD34(+) cells cultured in a cytokines cocktail that contains TPO. These results suggest that LAIR-1 is a likely candidate for an early marker of MK differentiation, and provide initial evidence indicating that LAIR-1 serves as a negative regulator of megakaryocytopoiesis.
Collapse
Affiliation(s)
- Jiangnan Xue
- Department of Immunology, Binzhou Medical University, Yantai, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Séverin S, Pollitt AY, Navarro-Nuñez L, Nash CA, Mourão-Sá D, Eble JA, Senis YA, Watson SP. Syk-dependent phosphorylation of CLEC-2: a novel mechanism of hem-immunoreceptor tyrosine-based activation motif signaling. J Biol Chem 2010; 286:4107-16. [PMID: 21098033 PMCID: PMC3039337 DOI: 10.1074/jbc.m110.167502] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.
Collapse
Affiliation(s)
- Sonia Séverin
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Nash CA, Séverin S, Dawood BB, Makris M, Mumford A, Wilde J, Senis YA, Watson SP. Src family kinases are essential for primary aggregation by G(i) -coupled receptors. J Thromb Haemost 2010; 8:2273-82. [PMID: 20738760 DOI: 10.1111/j.1538-7836.2010.03992.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION AND BACKGROUND Adrenaline stimulates biphasic aggregation in plasma through the G(i) -coupled α(2A) -adrenoreceptor. In the present study, we demonstrate that both primary and secondary wave aggregation induced by adrenaline in plasma is blocked by two structurally distinct inhibitors of Src family kinases, dasatinib and PD0173952. METHODS AND RESULTS In contrast, primary aggregation is partially inhibited or unaffected in the presence of inhibitors of cyclo-oxygenase, phosphoinositide (PI) 3-kinases, and P2Y(1) and P2Y(12) ADP receptors, although secondary aggregation is abolished. The ability of adrenaline to inhibit adenylyl cyclase and to synergize with platelet agonists in mediating platelet activation in plasma is retained in the presence of Src family kinase inhibition. Moreover, adrenaline does not activate Src family kinases, as determined by western blotting of their regulatory tyrosines, suggesting that constitutive signaling from Src family kinases may underlie their role in activation. Adrenaline is widely used in clinical laboratories for investigation of patients with suspected bleeding disorders. In a group of 90 unrelated patients with a clinically diagnosed platelet bleeding disorder, we identified four who did not exhibit primary wave aggregation in response to adrenaline, although the catecholamine potentiated the response to other agonists, and five who failed to undergo secondary wave aggregation. In contrast, adrenaline stimulated biphasic aggregation in 60 controls. All of the patients with a defective response to adrenaline had impaired ADP-induced platelet activation. CONCLUSIONS The present results indicate a previously unappreciated role for Src family kinases in mediating G(i) signaling in plasma, and demonstrate heterogeneity in response to adrenaline in patients with a clinically diagnosed platelet disorder.
Collapse
Affiliation(s)
- C A Nash
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
SUMMARY The glycoprotein VI (GPVI)-FcR gamma-chain complex initiates powerful activation of platelets by the subendothelial matrix proteins collagen and laminin through an immunoreceptor tyrosine-based activation motif (ITAM)-regulated signaling pathway. ITAMs are characterized by two YxxL sequences separated by 6-12 amino acids and are found associated with several classes of immunoglobulin (Ig) and C-type lectin receptors in hematopoietic cells, including Fc receptors. Cross-linking of the Ig GPVI leads to phosphorylation of two conserved tyrosines in the FcR gamma-chain ITAM by Src family tyrosine kinases, followed by binding and activation of the tandem SH2 domain-containing Syk tyrosine kinase and stimulation of a downstream signaling cascade that culminates in activation of phospholipase Cgamma2 (PLCgamma2). In contrast, the C-type lectin receptor CLEC-2 mediates powerful platelet activation through Src and Syk kinases, but regulates Syk through a novel dimerization mechanism via a single YxxL motif known as a hemITAM. CLEC-2 is a receptor for podoplanin, which is expressed at high levels in several tissues, including type 1 lung alveolar cells, lymphatic endothelial cells, kidney podocytes and some tumors, but is absent from vascular endothelial cells and platelets. In this article, we compare the mechanism of platelet activation by GPVI and CLEC-2 and consider their functional roles in hemostasis and other vascular processes, including maintenance of vascular integrity, angiogenesis and lymphogenesis.
Collapse
Affiliation(s)
- S P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
41
|
Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 2010; 234:335-52. [PMID: 20193029 DOI: 10.1111/j.0105-2896.2009.00882.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Section of Infection and Immunity, Institute of Molecular Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
42
|
Critical role of Src-Syk-PLC{gamma}2 signaling in megakaryocyte migration and thrombopoiesis. Blood 2010; 116:793-800. [PMID: 20457868 DOI: 10.1182/blood-2010-03-275990] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migration of megakaryocytes (MKs) from the proliferative osteoblastic niche to the capillary-rich vascular niche is essential for proplatelet formation and platelet release. In this study, we explore the role of surface glycoprotein receptors and signaling proteins in regulating MK migration and platelet recovery after immune-induced thrombocytopenia. We show that spreading and migration of mouse primary bone marrow-derived MKs on a fibronectin matrix are abolished by the Src family kinases inhibitor PP1, the Syk kinase inhibitor R406 and the integrin alphaIIbbeta3 antagonist lotrafiban. We also demonstrate that these responses are inhibited in primary phospholipase C gamma2 (PLCgamma2)-deficient MKs. Conversely, MK spreading and migration were unaltered in the absence of the collagen receptor, the glycoprotein VI-FcRgamma-chain complex. We previously reported a correlation between a defect in MK migration and platelet recovery in the absence of platelet endothelial cell adhesion molecule-1 and the tyrosine phosphatase CD148. This correlation also holds for mice deficient in PLCgamma2. This study identifies a model in which integrin signaling via Src family kinases and Syk kinase to PLCgamma2 is required for MK spreading, migration, and platelet formation.
Collapse
|
43
|
Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 2010; 285:18352-63. [PMID: 20356841 DOI: 10.1074/jbc.m109.077602] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein kinase A (PKA) activation by cAMP phosphorylates multiple target proteins in numerous platelet inhibitory pathways that have a very important role in maintaining circulating platelets in a resting state. Here we show that in thrombin- and collagen-stimulated platelets, PKA is activated by cAMP-independent mechanisms involving dissociation of the catalytic subunit of PKA (PKAc) from an NFkappaB-IkappaBalpha-PKAc complex. We demonstrate mRNA and protein expression for most of the NFkappaB family members in platelets. From resting platelets, PKAc was co-immunoprecipitated with IkappaBalpha, and conversely, IkappaBalpha was also co-immunoprecipitated with PKAc. This interaction was significantly reduced in thrombin- and collagen-stimulated platelets. Stimulation of platelets with thrombin- or collagen-activated IKK, at least partly by PI3 kinase-dependent pathways, leading to phosphorylation of IkappaBalpha, disruption of an IkappaBalpha-PKAc complex, and release of free, active PKAc, which phosphorylated VASP and other PKA substrates. IKK inhibitor inhibited thrombin-stimulated IkBalpha phosphorylation, PKA-IkBalpha dissociation, and VASP phosphorylation, and potentiated integrin alphaIIbbeta3 activation and the early phase of platelet aggregation. We conclude that thrombin and collagen not only cause platelet activation but also appear to fine-tune this response by initiating downstream NFkappaB-dependent PKAc activation, as a novel feedback inhibitory signaling mechanism for preventing undesired platelet activation.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombühlstrasse 12, D-97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The C-type lectin receptor CLEC-2 activates platelets through Src and Syk tyrosine kinases, leading to tyrosine phosphorylation of downstream adapter proteins and effector enzymes, including phospholipase-C gamma2. Signaling is initiated through phosphorylation of a single conserved tyrosine located in a YxxL sequence in the CLEC-2 cytosolic tail. The signaling pathway used by CLEC-2 shares many similarities with that used by receptors that have 1 or more copies of an immunoreceptor tyrosine-based activation motif, defined by the sequence Yxx(L/I)x(6-12)Yxx(L/I), in their cytosolic tails or associated receptor chains. Phosphorylation of the conserved immunoreceptor tyrosine-based activation motif tyrosines promotes Syk binding and activation through binding of the Syk tandem SH2 domains. In this report, we present evidence using peptide pull-down studies, surface plasmon resonance, quantitative Western blotting, tryptophan fluorescence measurements, and competition experiments that Syk activation by CLEC-2 is mediated by the cross-linking through the tandem SH2 domains with a stoichiometry of 2:1. In support of this model, cross-linking and electron microscopy demonstrate that CLEC-2 is present as a dimer in resting platelets and converted to larger complexes on activation. This is a unique mode of activation of Syk by a single YxxL-containing receptor.
Collapse
|
45
|
Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kühn H, Hazen SL, Goodall AH, Hamali HA, Collins PW, O'Donnell VB. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 2010; 285:6891-903. [PMID: 20061396 PMCID: PMC2844139 DOI: 10.1074/jbc.m109.078428] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 ± 1.42 (PE) or 18.35 ± 4.61 (PC), whereas free was 65.5 ± 17.6 ng/4 × 107 cells (n = 5 separate donors, mean ± S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca2+ mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.
Collapse
|
46
|
Molecular priming of Lyn by GPVI enables an immune receptor to adopt a hemostatic role. Proc Natl Acad Sci U S A 2009; 106:21167-72. [PMID: 19940238 DOI: 10.1073/pnas.0906436106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The immune receptor signaling pathway is used by nonimmune cells, but the molecular adaptations that underlie its functional diversification are not known. Circulating platelets use the immune receptor homologue glycoprotein VI (GPVI) to respond to collagen exposed at sites of vessel injury. In contrast to immune cell responses, platelet activation must take place within seconds to successfully form thrombi in flowing blood. Here, we show that the GPVI receptor utilizes a unique intracellular proline-rich domain (PRD) to accelerate platelet activation, a requirement for efficient platelet adhesion to collagen under flow. The GPVI PRD specifically binds the Src-family kinase Lyn and directly activates it, presumably through SH3 displacement. In resting platelets, Lyn is constitutively bound to GPVI in an activated state and platelets lacking Lyn exhibit defective collagen adhesion like that of platelets with GPVI receptors lacking the PRD. These findings define a molecular priming mechanism that enables an immune-type receptor to adopt a hemostatic function. These studies also demonstrate that active kinases can constitutively associate with immune-type receptors without initiating signal transduction before receptor ligation, consistent with a recent molecular model of immune receptor signaling in which receptor ligation is required to bring active kinases to their receptor substrates.
Collapse
|
47
|
Stalker TJ, Wu J, Morgans A, Traxler EA, Wang L, Chatterjee MS, Lee D, Quertermous T, Hall RA, Hammer DA, Diamond SL, Brass LF. Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost 2009; 7:1886-96. [PMID: 19740102 PMCID: PMC4441405 DOI: 10.1111/j.1538-7836.2009.03606.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In resting platelets, endothelial cell specific adhesion molecule (ESAM) is located in alpha granules, increasing its cell surface expression following platelet activation. However, the function of ESAM on platelets is unknown. OBJECTIVE To determine whether ESAM has a role in thrombus formation. METHODS AND RESULTS We found that following platelet activation ESAM localizes to the junctions between adjacent platelets, suggesting a role for this protein in contact-dependent events that regulate thrombus formation. To test this hypothesis we examined the effect of ESAM deletion on platelet function. In vivo, ESAM(-/-) mice achieved more stable hemostasis than wild-type mice following tail transection, and developed larger thrombi following laser injury of cremaster muscle arterioles. In vitro, ESAM(-/-) platelets aggregated at lower concentrations of G protein-dependent agonists than wild-type platelets, and were more resistant to disaggregation. In contrast, agonist-induced calcium mobilization, alpha(IIb)beta(3) activation, alpha-granule secretion and platelet spreading, were normal in ESAM-deficient platelets. To understand the molecular mechanism by which ESAM regulates platelet activity, we utilized a PDZ domain array to identify the scaffold protein NHERF-1 as an ESAM binding protein, and further demonstrated that it associates with ESAM in both resting and activated platelets. CONCLUSIONS These findings support a model in which ESAM localizes to platelet contacts following platelet activation in order to limit thrombus growth and stability so that the optimal hemostatic response occurs following vascular injury.
Collapse
Affiliation(s)
- T J Stalker
- Department of Medicine, The Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Members of the Src family of protein tyrosine kinases play important roles in platelet adhesion, activation, and aggregation. The purpose of this review is to summarize current knowledge regarding how Src family kinase activity is regulated in general, to describe what is known about mechanisms underlying SFK activation in platelets, and to discuss platelet proteins that contribute to SFK inactivation, particularly those that use phosphotyrosine-containing sequences to recruit phosphatases and kinases to sites of SFK activity.
Collapse
Affiliation(s)
- D K Newman
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI 53226, USA.
| |
Collapse
|
49
|
O’Callaghan CA. Thrombomodulation via CLEC-2 targeting. Curr Opin Pharmacol 2009; 9:90-5. [DOI: 10.1016/j.coph.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/22/2022]
|