1
|
Rah SY, Joe Y, Park J, Ryter SW, Park C, Chung HT, Kim UH. CD38/ADP-ribose/TRPM2-mediated nuclear Ca 2+ signaling is essential for hepatic gluconeogenesis in fasting and diabetes. Exp Mol Med 2023; 55:1492-1505. [PMID: 37394593 PMCID: PMC10393965 DOI: 10.1038/s12276-023-01034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatic glucose production by glucagon is crucial for glucose homeostasis during fasting, yet the underlying mechanisms remain incompletely delineated. Although CD38 has been detected in the nucleus, its function in this compartment is unknown. Here, we demonstrate that nuclear CD38 (nCD38) controls glucagon-induced gluconeogenesis in primary hepatocytes and liver in a manner distinct from CD38 occurring in the cytoplasm and lysosomal compartments. We found that the localization of CD38 in the nucleus is required for glucose production by glucagon and that nCD38 activation requires NAD+ supplied by PKCδ-phosphorylated connexin 43. In fasting and diabetes, nCD38 promotes sustained Ca2+ signals via transient receptor potential melastatin 2 (TRPM2) activation by ADP-ribose, which enhances the transcription of glucose-6 phosphatase and phosphoenolpyruvate carboxykinase 1. These findings shed light on the role of nCD38 in glucagon-induced gluconeogenesis and provide insight into nuclear Ca2+ signals that mediate the transcription of key genes in gluconeogenesis under physiological conditions.
Collapse
Affiliation(s)
- So-Young Rah
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeongmin Park
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | | | - Chansu Park
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| | - Uh-Hyun Kim
- Department of Biochemistry and National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University, Medical School, Keum-am dong, Jeonju, 54907, Republic of Korea.
- Department of Biochemistry, School of Medicine, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
2
|
Luo L, Ma W, Liang K, Wang Y, Su J, Liu R, Liu T, Shyh-Chang N. Spatial metabolomics reveals skeletal myofiber subtypes. SCIENCE ADVANCES 2023; 9:eadd0455. [PMID: 36735792 PMCID: PMC10939097 DOI: 10.1126/sciadv.add0455] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Skeletal muscle myofibers are heterogeneous in their metabolism. However, metabolomic profiling of single myofibers has remained difficult. Mass spectrometry imaging (MSI) is a powerful tool for imaging molecular distributions. In this work, we optimized the workflow of matrix-assisted laser desorption/ionization (MALDI)-based MSI from cryosectioning to metabolomics data analysis to perform high-spatial resolution metabolomic profiling of slow- and fast-twitch myofibers. Combining the advantages of MSI and liquid chromatography-MS (LC-MS), we produced spatial metabolomics results that were more reliable. After the combination of high-spatial resolution MSI and LC-MS metabolomic analysis, we also discovered a new subtype of superfast type 2B myofibers that were enriched for fatty acid oxidative metabolism. Our technological workflow could serve as an engine for metabolomics discoveries, and our approach has the potential to provide critical insights into the metabolic heterogeneity and pathways that underlie fundamental biological processes and disease states.
Collapse
Affiliation(s)
- Lanfang Luo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenwu Ma
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Liang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuefan Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiali Su
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ruirui Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Taoyan Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ng Shyh-Chang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
3
|
Dakroub A, A. Nasser S, Younis N, Bhagani H, Al-Dhaheri Y, Pintus G, Eid AA, El-Yazbi AF, Eid AH. Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells 2020; 9:cells9112444. [PMID: 33182523 PMCID: PMC7696687 DOI: 10.3390/cells9112444] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis, with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly, eNAMPT has been associated with several metabolic disorders including obesity and type 1 and 2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical significance with a prospective promising diagnostic, prognostic, and therapeutic applications in many cardiovasculo-metabolic disorders.
Collapse
Affiliation(s)
- Ali Dakroub
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Suzanne A. Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon;
| | - Nour Younis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Humna Bhagani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, UAE;
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah P.O. Box 27272, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria 21521, El-Mesallah, Egypt
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon; (A.D.); (N.Y.); (H.B.); (A.F.E.-Y.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: or ; Tel.: +974-4403-3333
| |
Collapse
|
4
|
McCormick KL. Authors' Reply: Pyridine nucleotide regulation of hepatic endoplasmic reticulum calcium uptake. Physiol Rep 2020; 7:e14258. [PMID: 31599064 PMCID: PMC6785657 DOI: 10.14814/phy2.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Yoon G, Cho KA, Song J, Kim YK. Transcriptomic Analysis of High Fat Diet Fed Mouse Brain Cortex. Front Genet 2019; 10:83. [PMID: 30838024 PMCID: PMC6389608 DOI: 10.3389/fgene.2019.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
High fat diet can lead to metabolic diseases such as obesity and diabetes known to be chronic inflammatory diseases with high prevalence worldwide. Recent studies have reported cognitive dysfunction in obese patients is caused by a high fat diet. Accordingly, such dysfunction is called "type 3 diabetes" or "diabetic dementia." Although dysregulation of protein-coding genes has been extensively studied, profiling of non-coding RNAs including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) has not been reported yet. Therefore, the objective of this study was to obtain profiles of diverse RNAs and determine their patterns of alteration in high fat fed brain cortex compared to normal brain cortex. To investigate regulatory roles of both coding and non-coding RNAs in high fat diet brain, we performed RNA sequencing of ribosomal RNA-depleted RNAs and identified genome-wide lncRNAs and circRNAs expression and co-expression patterns of mRNAs in high fat diet mouse brain cortex. Our results showed expression levels of mRNAs related to neurogenesis, synapse, and calcium signaling were highly changed in high fat diet fed cortex. In addition, numerous differentially expressed lncRNAs and circRNAs were identified. Our study provides valuable expression profiles and potential function of both coding and non-coding RNAs in high fat diet fed brain cortex.
Collapse
Affiliation(s)
- Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| |
Collapse
|
6
|
NAD binding by human CD38 analyzed by Trp189 fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1189-1196. [PMID: 30472140 DOI: 10.1016/j.bbamcr.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022]
Abstract
The NAD-glycohydrolase/ADP-ribosyl cyclase CD38 catalyzes the metabolism of nicotinamide adenine dinucleotide (NAD) to the Ca2+ mobilizing second messengers ADP-ribose (ADPR), 2'-deoxy-ADPR, and cyclic ADP-ribose (cADPR). In the present study, we investigated binding and metabolism of NAD by a soluble fragment of human CD38, sCD38, and its catalytically inactive mutant by monitoring changes in endogenous tryptophan (Trp) fluorescence. Addition of NAD resulted in a concentration-dependent decrease in sCD38 fluorescence that is mainly caused by the Trp residue W189. Amplitude of the fluorescence decrease was fitted as one-site binding curve revealing a dissociation constant for NAD of 29 μM. A comparable dissociation constant was found with the catalytically inactive sCD38 mutant (KD 37 μM NAD) indicating that binding of NAD is not significantly affected by the mutation. The NAD-induced decrease in Trp fluorescence completely recovered in case of sCD38. Kinetics of recovery was slowed down with decreasing temperature and sCD38 concentration and increasing NAD concentration demonstrating that recovery in fluorescence is proportional to the enzymatic activity of sCD38. Accordingly, recovery in fluorescence was not observed with the catalytically inactive mutant. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
7
|
Nieborak A, Schneider R. Metabolic intermediates - Cellular messengers talking to chromatin modifiers. Mol Metab 2018; 14:39-52. [PMID: 29397344 PMCID: PMC6034042 DOI: 10.1016/j.molmet.2018.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To maintain homeostasis, cells need to coordinate the expression of their genes. Epigenetic mechanisms controlling transcription activation and repression include DNA methylation and post-translational modifications of histones, which can affect the architecture of chromatin and/or create 'docking platforms' for multiple binding proteins. These modifications can be dynamically set and removed by various enzymes that depend on the availability of key metabolites derived from different intracellular pathways. Therefore, small metabolites generated in anabolic and catabolic processes can integrate multiple external and internal stimuli and transfer information on the energetic state of a cell to the transcriptional machinery by regulating the activity of chromatin-modifying enzymes. SCOPE OF REVIEW This review provides an overview of the current literature and concepts on the connections and crosstalk between key cellular metabolites, enzymes responsible for their synthesis, recycling, and conversion and chromatin marks controlling gene expression. MAJOR CONCLUSIONS Whereas current evidence indicates that many chromatin-modifying enzymes respond to alterations in the levels of their cofactors, cosubstrates, and inhibitors, the detailed molecular mechanisms and functional consequences of such processes are largely unresolved. A deeper investigation of mechanisms responsible for altering the total cellular concentration of particular metabolites, as well as their nuclear abundance and accessibility for chromatin-modifying enzymes, will be necessary to better understand the crosstalk between metabolism, chromatin marks, and gene expression.
Collapse
Affiliation(s)
- Anna Nieborak
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Faculty of Biology, LMU, 82152 Martinsried, Germany.
| |
Collapse
|
8
|
Trampert DC, Nathanson MH. Regulation of bile secretion by calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1761-1770. [PMID: 29787781 DOI: 10.1016/j.bbamcr.2018.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022]
Abstract
Calcium (Ca2+) signaling controls secretion in many types of cells and tissues. In the liver, Ca2+ regulates secretion in both hepatocytes, which are responsible for primary formation of bile, and cholangiocytes, which line the biliary tree and further condition the bile before it is secreted. Cholestatic liver diseases, which are characterized by impaired bile secretion, may result from impaired Ca2+ signaling mechanisms in either hepatocytes or cholangiocytes. This review will discuss the Ca2+ signaling machinery and mechanisms responsible for regulation of secretion in both hepatocytes and cholangiocytes, and the pathophysiological changes in Ca2+ signaling that can occur in each of these cell types to result in cholestasis.
Collapse
Affiliation(s)
- David C Trampert
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA
| | - Michael H Nathanson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8019, USA.
| |
Collapse
|
9
|
Pinto MCX, Kihara AH, Goulart VAM, Tonelli FMP, Gomes KN, Ulrich H, Resende RR. Calcium signaling and cell proliferation. Cell Signal 2015; 27:2139-49. [PMID: 26275497 DOI: 10.1016/j.cellsig.2015.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review.
Collapse
Affiliation(s)
- Mauro Cunha Xavier Pinto
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Universidade Federal do ABC, Centro de Matemática, Computação e Cognição, Rua Arcturus (Jd Antares), 09606-070, São Bernardo do Campo, SP, Brazil
| | - Vânia A M Goulart
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Fernanda M P Tonelli
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil
| | - Katia N Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Presyes 748, 05508-000 São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Univtreersidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Instituto Nanocell, Rua Santo Antônio, 420, 35500-041 Divinópolis, MG, Brazil.
| |
Collapse
|
10
|
CD38-mediated Ca(2+) signaling contributes to glucagon-induced hepatic gluconeogenesis. Sci Rep 2015; 5:10741. [PMID: 26038839 PMCID: PMC4454144 DOI: 10.1038/srep10741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/27/2015] [Indexed: 01/02/2023] Open
Abstract
CD38 is a multifunctional enzyme for the synthesis of Ca2+ second messengers. Glucagon promotes hepatic glucose production through Ca2+ signaling in the fasting condition. In this study, we investigated the role of CD38 in the glucagon signaling of hepatocytes. Here, we show that glucagon induces cyclic ADP-ribose (cADPR) production and sustained Ca2+ increases via CD38 in hepatocytes. 8-Br-cADPR, an antagonistic cADPR analog, completely blocked glucagon-induced Ca2+ increases and phosphorylation of cAMP response element-binding protein (CREB). Moreover, glucagon-induced sustained Ca2+ signals and translocation of CREB-regulated transcription coactivator 2 to the nucleus were absent and glucagon-induced glucose production and expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (Pck1) are remarkably reduced in hepatocytes from CD38−/− mice. Furthermore, in the fasting condition, CD38−/− mice have decreased blood glucose and hepatic expression of G6Pase and Pck1 compared to wild type mice. Our data suggest that CD38/cADPR-mediated Ca2+ signals play a key role in glucagon-induced gluconeogenesis in hepatocytes, and that the signal pathway has significant clinical implications in metabolic diseases, including type 2 diabetes.
Collapse
|
11
|
Shrimp JH, Hu J, Dong M, Wang BS, MacDonald R, Jiang H, Hao Q, Yen A, Lin H. Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe. J Am Chem Soc 2014; 136:5656-63. [PMID: 24660829 PMCID: PMC4004212 DOI: 10.1021/ja411046j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Nicotinamide adenine dinucleotide
(NAD) is increasingly recognized
as an important signaling molecule that affects numerous biological
pathways. Thus, enzymes that metabolize NAD can have important biological
functions. One NAD-metabolizing enzyme in mammals is CD38, a type
II transmembrane protein that converts NAD primarily to adenosine
diphosphate ribose (ADPR) and a small amount of cyclic adenosine diphosphate
ribose (cADPR). Localization of CD38 was originally thought to be
only on the plasma membrane, but later reports showed either significant
or solely, intracellular CD38. With the efficient NAD-hydrolysis activity,
the intracellular CD38 may lead to depletion of cellular NAD, thus
producing harmful effects. Therefore, the intracellular localization
of CD38 needs to be carefully validated. Here, we report the synthesis
and application of a cell permeable, fluorescent small molecule (SR101–F-araNMN)
that can covalently label enzymatically active CD38 with minimal perturbation
of live cells. Using this fluorescent probe, we revealed that CD38
is predominately on the plasma membrane of Raji and retinoic acid
(RA)-treated HL-60 cells. Additionally, the probe revealed no CD38
expression in K562 cells, which was previously reported to have solely
intracellular CD38. The finding that very little intracellular CD38
exists in these cell lines suggests that the major enzymatic function
of CD38 is to hydrolyze extracellular rather than intracellular NAD.
The fluorescent activity-based probes that we developed allow the
localization of CD38 in different cells to be determined, thus enabling
a better understanding of the physiological function.
Collapse
Affiliation(s)
- Jonathan H Shrimp
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca 2+ signaling pathway. World J Biol Chem 2014; 5:58-67. [PMID: 24600514 PMCID: PMC3942542 DOI: 10.4331/wjbc.v5.i1.58] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/09/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mobilization of intracellular Ca2+ stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizing nucleotide present in many cell types and species, from plants to animals. cADPR is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide. The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. It has been shown that many extracellular stimuli can induce cADPR production that leads to calcium release or influx, establishing cADPR as a second messenger. cADPR has been linked to a wide variety of cellular processes, but the molecular mechanisms regarding cADPR signaling remain elusive. The aim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advances involving the mechanism and physiological functions of cADPR-mediated Ca2+ mobilization.
Collapse
|
13
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
14
|
Zhao Y, Graeff R, Lee HC. Roles of cADPR and NAADP in pancreatic cells. Acta Biochim Biophys Sin (Shanghai) 2012; 44:719-29. [PMID: 22677461 DOI: 10.1093/abbs/gms044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are Ca(2+)-mobilizing nucleotides that were discovered in the late 1980s. Two decades of investigations have built up a considerable understanding about these two molecules that are related because both are derived from pyridine nucleotides and known to be generated by CD38/ADP-ribosyl cyclases. cADPR has been shown to target the ryanodine receptors in the endoplasmic reticulum whereas NAADP stimulates the two-pore channels in the endo-lysosomes. Accumulating results indicate that cADPR and NAADP are second messenger molecules mediating Ca(2+) signaling activated by a wide range of agonists. This article reviews what is known about these two molecules, especially regarding their signaling roles in the pancreatic cells.
Collapse
Affiliation(s)
- Yongjuan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
15
|
Kwong AKY, Chen Z, Zhang H, Leung FP, Lam CMC, Ting KY, Zhang L, Hao Q, Zhang LH, Lee HC. Catalysis-based inhibitors of the calcium signaling function of CD38. Biochemistry 2011; 51:555-64. [PMID: 22142305 DOI: 10.1021/bi201509f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD38 is a signaling enzyme responsible for catalyzing the synthesis of cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate; both are universal Ca(2+) messenger molecules. Ablation of the CD38 gene in mice causes multiple physiological defects, including impaired oxytocin release, that result in altered social behavior. A series of catalysis-based inhibitors of CD38 were designed and synthesized, starting with arabinosyl-2'-fluoro-2'-deoxynicotinamide mononucleotide. Structure-function relationships were analyzed to assess the structural determinants important for inhibiting the NADase activity of CD38. X-ray crystallography was used to reveal the covalent intermediates that were formed with the catalytic residue, Glu226. Metabolically stable analogues that were resistant to inactivation by phosphatase and esterase were synthesized and shown to be effective in inhibiting intracellular cADPR production in human HL-60 cells during induction of differentiation by retinoic acid. The inhibition was species-independent, and the analogues were similarly effective in blocking the cyclization reaction of CD38 in rat ventricular tissue extracts, as well as inhibiting the α-agonist-induced constriction in rat mesentery arteries. These compounds thus represent the first generally applicable and catalysis-based inhibitors of the Ca(2+) signaling function of CD38.
Collapse
Affiliation(s)
- Anna Ka Yee Kwong
- Department of Physiology, 4/F Lab Block, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Masuda W, Jimi E. CD38/ADP-ribosyl cyclase in the rat sublingual gland: Subcellular localization under resting and saliva-secreting conditions. Arch Biochem Biophys 2011; 513:131-9. [DOI: 10.1016/j.abb.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/01/2022]
|
17
|
Lee HC. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:699-711. [PMID: 21786193 DOI: 10.1007/s11427-011-4197-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 12/17/2022]
Abstract
The concept advanced by Berridge and colleagues that intracellular Ca(2+)-stores can be mobilized in an agonist-dependent and messenger (IP(3))-mediated manner has put Ca(2+)-mobilization at the center stage of signal transduction mechanisms. During the late 1980s, we showed that Ca(2+)-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP(3)) and identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Zhao YJ, Zhang HM, Lam CMC, Hao Q, Lee HC. Cytosolic CD38 protein forms intact disulfides and is active in elevating intracellular cyclic ADP-ribose. J Biol Chem 2011; 286:22170-7. [PMID: 21524995 DOI: 10.1074/jbc.m111.228379] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD38 catalyzes the synthesis of cyclic ADP-ribose (cADPR), a Ca(2+) messenger responsible for regulating a wide range of physiological functions. It is generally regarded as an ectoenzyme, but its intracellular localization has also been well documented. It is not known if internal CD38 is enzymatically active and contributes to the Ca(2+) signaling function. In this study, we engineered a novel soluble form of CD38 that can be efficiently expressed in the cytosol and use cytosolic NAD as a substrate to produce cADPR intracellularly. The activity of the engineered CD38 could be decreased by mutating the catalytic residue Glu-226 and increased by the double mutation E146A/T221F, which increased its cADPR synthesis activity by >11-fold. Remarkably, the engineered CD38 exhibited the ability to form the critical disulfide linkages required for its enzymatic activity. This was verified by using a monoclonal antibody generated against a critical disulfide, Cys-254-Cys-275. The specificity of the antibody was established by x-ray crystallography and site-directed mutagenesis. The engineered CD38 is thus a novel example challenging the general belief that cytosolic proteins do not possess disulfides. As a further refinement of this approach, the engineered CD38 was placed under the control of tetracycline using an autoregulated construct. This study has set the stage for in vivo manipulation of cADPR metabolism.
Collapse
Affiliation(s)
- Yong Juan Zhao
- Department of Physiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
19
|
Alonso MT, García-Sancho J. Nuclear Ca(2+) signalling. Cell Calcium 2010; 49:280-9. [PMID: 21146212 DOI: 10.1016/j.ceca.2010.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Ca(2+) signalling is important for controlling gene transcription. Changes of the cytosolic Ca(2+) ([Ca(2+)](C)) may promote migration of transcription factors or transcriptional regulators to the nucleus. Changes of the nucleoplasmic Ca(2+) ([Ca(2+)](N)) can also regulate directly gene expression. [Ca(2+)](N) may change by propagation of [Ca(2+)](C) changes through the nuclear envelope or by direct release of Ca(2+) inside the nucleus. In the last case nuclear and cytosolic signalling can be dissociated. Phosphatidylinositol bisphosphate, phospholipase C and cyclic ADP-ribosyl cyclase are present inside the nucleus. Inositol trisphosphate receptors (IP(3)R) and ryanodine receptors (RyR) have also been found in the nucleus and can be activated by agonists. Furthermore, nuclear location of the synthesizing enzymes and receptors may be atypical, not associated to the nuclear envelope or other membranes. The possible role of nuclear subdomains such as speckles, nucleoplasmic reticulum, multi-macromolecular complexes and nuclear nanovesicles is discussed.
Collapse
Affiliation(s)
- Maria Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | | |
Collapse
|
20
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Okamoto H, Takasawa S. Recent advances in physiological and pathological significance of NAD+ metabolites: roles of poly(ADP-ribose) and cyclic ADP-ribose in insulin secretion and diabetogenesis. Nutr Res Rev 2009; 16:253-66. [PMID: 19087393 DOI: 10.1079/nrr200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poly(ADP-ribose) synthetase/polymerase (PARP) activation causes NAD+ depletion in pancreatic beta-cells, which results in necrotic cell death. On the other hand, ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (CD38) synthesizes cyclic ADP-ribose from NAD+, which acts as a second messenger, mobilizing intracellular Ca2+ for insulin secretion in response to glucose in beta-cells. PARP also acts as a regenerating gene (Reg) transcription factor to induce beta-cell regeneration. This provides the new concept that NAD+ metabolism can control the cellular function through gene expression. Clinically, PARP could be one of the most important therapeutic targets; PARP inhibitors prevent cell death, maintain the formation of a second messenger, cyclic ADP-ribose, to achieve cell function, and keep PARP functional as a transcription factor for cell regeneration.
Collapse
Affiliation(s)
- Hiroshi Okamoto
- Department of Biochemistry and Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories) Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | |
Collapse
|
22
|
Chini EN. CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des 2009; 15:57-63. [PMID: 19149603 DOI: 10.2174/138161209787185788] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD38 is a multifunctional enzyme that uses nicotinamide adenine dinucleotide (NAD) as a substrate to generate second messengers. Recently, CD38 was also identified as one of the main cellular NADases in mammalian tissues and appears to regulate cellular levels of NAD in multiple tissues and cells. Due to the emerging role of NAD as a key molecule in multiple signaling pathways, and metabolic conditions it is imperative to determine the cellular mechanisms that regulate the synthesis and degradation of this nucleotide. In fact, recently it has been shown that NAD participates in multiple physiological processes such as insulin secretion, control of energy metabolism, neuronal and cardiac cell survival, airway constriction, asthma, aging and longevity. The discovery of CD38 as the main cellular NADase in mammalian tissues, and the characterization of its role on the control of cellular NAD levels indicate that CD38 may serve as a pharmacological target for multiple conditions.
Collapse
Affiliation(s)
- Eduardo Nunes Chini
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour? Nutr Res Rev 2009; 21:42-55. [PMID: 19079853 DOI: 10.1017/s0954422408945182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pyridine nucleotide NAD+ is derived from dietary niacin and serves as the substrate for the synthesis of cyclic ADP-ribose (cADPR), an intracellular Ca signalling molecule that plays an important role in synaptic plasticity in the hippocampus, a region of the brain involved in spatial learning. cADPR is formed in part via the activity of the ADP-ribosyl cyclase enzyme CD38, which is widespread throughout the brain. In the present review, current evidence of the relationship between dietary niacin and behaviour is presented following investigations of the effect of niacin deficiency, pharmacological nicotinamide supplementation and CD38 gene deletion on brain nucleotides and spatial learning ability in mice and rats. In young male rats, both niacin deficiency and nicotinamide supplementation significantly altered brain NAD+ and cADPR, both of which were inversely correlated with spatial learning ability. These results were consistent across three different models of niacin deficiency (pair feeding, partially restricted feeding and niacin recovery). Similar changes in spatial learning ability were observed in Cd38- / - mice, which also showed decreases in brain cADPR. These findings suggest an inverse relationship between spatial learning ability, dietary niacin intake and cADPR, although a direct link between cADPR and spatial learning ability is still missing. Dietary niacin may therefore play a role in the molecular events regulating learning performance, and further investigations of niacin intake, CD38 and cADPR may help identify potential molecular targets for clinical intervention to enhance learning and prevent or reverse cognitive decline.
Collapse
|
24
|
Orciani M, Trubiani O, Guarnieri S, Ferrero E, Di Primio R. CD38 is constitutively expressed in the nucleus of human hematopoietic cells. J Cell Biochem 2008; 105:905-12. [PMID: 18759251 DOI: 10.1002/jcb.21887] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CD38 is a type II glycoprotein that acts both as a bifunctional enzyme, responsible for the synthesis and hydrolysis of cyclic ADP-ribose, and as a signal-transducing surface receptor. Although CD38 was originally described as a plasma membrane molecule, several reports indicate that CD38 is expressed in the nucleus, even in cells known to be CD38 surface-negative. In this study, firstly we investigated the presence of nuclear CD38 by immunofluorescence and confocal microscopy using a panel of hematopoietic cell lines that exhibit different levels of CD38 plasma membrane expression. Our second aim was to explore the relationship between the nuclear and plasma membrane forms of CD38 in human cell lines which represent discrete early maturation stages of the human lymphoid and myeloid compartments. Our results indicate that CD38 is constitutively present in the nucleus of cells belonging to distinct lineages. Furthermore, nuclear CD38 appears to be independent of the plasma membrane pool. The presence of nuclear CD38 during different stages of hematopoietic differentiation suggests that it may play a role in the control of nuclear Ca(2+) homeostasis and NAD levels.
Collapse
Affiliation(s)
- M Orciani
- Department of Molecular Pathology and Innovative Therapies, Histology Section, Marche Polytechnic University, Ancona, Italy
| | | | | | | | | |
Collapse
|
25
|
Bezin S, Charpentier G, Lee HC, Baux G, Fossier P, Cancela JM. Regulation of nuclear Ca2+ signaling by translocation of the Ca2+ messenger synthesizing enzyme ADP-ribosyl cyclase during neuronal depolarization. J Biol Chem 2008; 283:27859-27870. [PMID: 18632662 DOI: 10.1074/jbc.m804701200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, voltage-gated Ca(2+) channels and nuclear Ca(2+) signaling play important roles, such as in the regulation of gene expression. However, the link between electrical activity and biochemical cascade activation involved in the generation of the nuclear Ca(2+) signaling is poorly understood. Here we show that depolarization of Aplysia neurons induces the translocation of ADP-ribosyl cyclase, a Ca(2+) messenger synthesizing enzyme, from the cytosol into the nucleus. The translocation is dependent on Ca(2+) influx mainly through the voltage-dependent L-type Ca(2+) channels. We report also that specific nucleoplasmic Ca(2+) signals can be induced by three different calcium messengers, cyclic ADP-ribose, nicotinic acid adenine dinucleotide phosphate (NAADP), both produced by the ADP-ribosyl cyclase, and inositol 1,4,5-trisphosphate (IP(3)). Moreover, our pharmacological data show that NAADP acts on its own receptor, which cooperates with the IP(3) and the ryanodine receptors to generate nucleoplasmic Ca(2+) oscillations. We propose a new model where voltage-dependent L-type Ca(2+) channel-induced nuclear translocation of the cytosolic cyclase is a crucial step in the fine tuning of nuclear Ca(2+) signals in neurons.
Collapse
Affiliation(s)
- Stéphanie Bezin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - Gilles Charpentier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France; Université Bordeaux 1 Laboratoire DMPFCS, IECB, 2, Rue Robert Escarpit, 33607 Pessac, France
| | - Hon Cheung Lee
- Department of Physiology, University of Hong Kong, 4/F Lab Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong
| | - Gérard Baux
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - Philippe Fossier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France
| | - José-Manuel Cancela
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette Cedex, France.
| |
Collapse
|
26
|
Trubiani O, Guarnieri S, Eleuterio E, Di Giuseppe F, Orciani M, Angelucci S, Di Primio R. Insights into nuclear localization and dynamic association of CD38 in Raji and K562 cells. J Cell Biochem 2008; 103:1294-308. [PMID: 17786980 DOI: 10.1002/jcb.21510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CD38 is a type II transmembrane glycoprotein found mainly on the plasma membrane involved in the metabolism of cADPR and NAADP, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. Recent data report the presence of CD38 in different cellular compartments raising new questions about its effective role in cellular metabolism. In rat hepatocyte nuclei, CD38 has been proposed as a responsive to cADPR integral inner membrane protein suggesting that the nuclear envelope may also be an important source of Ca2+ stores. Further reports indicating that CD38 is localized in nuclear compartments in a variety of cell types and tissues including brain, liver, eye, spleen, and bone raise the condition of resolving the question concerning the effective presence of CD38 within the nucleus. Here we report data supporting the presence of CD38 at nuclear level independently of expression of surface CD38. We utilized two different human leukemia cell lines expressing or not expressing CD38 molecule on their cell surface. The morphological and biochemical results including enzymatic activity and proteomic determinations explain the effective nuclear localization of CD38 in human Raji and K562 cells. Since cell nucleus is a complex and highly dynamic environment with many functionally specialized regions, the nuclear localization of specific proteins represents an important mechanism in signal transduction. The presence of CD38 at the interchromatin region whether linked to nuclear scaffold or stored in nuclear structures as micronuclei and Cajal bodies co-localizing with coilin, suggests its involvement in nuclear processes including transcription, replication, repairing and splicing.
Collapse
Affiliation(s)
- Oriana Trubiani
- Department of Oral Science, University "G. D'Annunzio", Chieti-Pescara, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
AIM Functional evidence suggests the presence of two types of intracellular Ca(2+) channels responsible for the release of Ca(2+) from Ca(2+)-stores, i.e. inositol-1,4,5-trisphosphate (IP(3)R) and ryanodine receptors (RyR), in rat colonic epithelium. Generally, three ryanodine receptor isoforms (RyR1-RyR3) are known; however, the type of RyR at this epithelium is unknown and was the focus of the present study. METHODS RyRs were characterized by molecular biological and immunohistochemical methods in the rat colon. RESULTS A transcript of RyR1 was found in mRNA from colonic crypts. In contrast, RyR2 and RyR3 were found in their corresponding reference tissues, but not in the cDNA from colonic crypts suggesting a predominant expression of the RyR1 isoform in this epithelium. In order to characterize the subcellular localization of RyR1, immunohistochemical experiments were performed. They showed that RyR1 is present in the lamina epithelialis mucosae and smooth muscle cells and is distributed equally along the whole crypt axis with no difference between surface and crypt cells. A double staining with IP(3)R3, the dominant cytoplasmic isoform of IP3Rs in this epithelium, revealed that there is only little colocalization of the two receptor subtypes within the epithelial cells. Furthermore, the epithelium is equipped with the enzyme CD38 responsible for the production of cyclic adenosine diphosphate ribose, the physiological agonist of RyR. RyRs are known to be activated by changes in the redox state. The oxidant, monochloramine evoked a ruthenium red-sensitive Ca(2+) release all over the crypt axis. This release was unaffected by prior stimulation of IP(3) receptors with ATP (and vice versa). CONCLUSION The present data suggest a functional separation of IP(3)- and ryanodine receptor-carrying Ca(2+) stores in the colonic epithelium.
Collapse
Affiliation(s)
- G Prinz
- Institute for Veterinary Physiology, University of Giessen, Giessen, Germany
| | | |
Collapse
|
28
|
Partida-Sanchez S, Gasser A, Fliegert R, Siebrands CC, Dammermann W, Shi G, Mousseau BJ, Sumoza-Toledo A, Bhagat H, Walseth TF, Guse AH, Lund FE. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. THE JOURNAL OF IMMUNOLOGY 2008; 179:7827-39. [PMID: 18025229 DOI: 10.4049/jimmunol.179.11.7827] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ectoenzyme CD38 catalyzes the production of cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from its substrate, NAD(+). Both products of the CD38 enzyme reaction play important roles in signal transduction, as cADPR regulates calcium release from intracellular stores and ADPR controls cation entry through the plasma membrane channel TRPM2. We previously demonstrated that CD38 and the cADPR generated by CD38 regulate calcium signaling in leukocytes stimulated with some, but not all, chemokines and controls leukocyte migration to inflammatory sites. However, it is not known whether the other CD38 product, ADPR, also regulates leukocyte trafficking In this study we characterize 8-bromo (8Br)-ADPR, a novel compound that specifically inhibits ADPR-activated cation influx without affecting other key calcium release and entry pathways. Using 8Br-ADPR, we demonstrate that ADPR controls calcium influx and chemotaxis in mouse neutrophils and dendritic cells activated through chemokine receptors that rely on CD38 and cADPR for activity, including mouse FPR1, CXCR4, and CCR7. Furthermore, we show that the calcium and chemotactic responses of leukocytes are not dependent on poly-ADP-ribose polymerase 1 (PARP-1), another potential source of ADPR in some leukocytes. Finally, we demonstrate that NAD(+) analogues specifically block calcium influx and migration of chemokine-stimulated neutrophils without affecting PARP-1-dependent calcium responses. Collectively, these data identify ADPR as a new and important second messenger of mouse neutrophil and dendritic cell migration, suggest that CD38, rather than PARP-1, may be an important source of ADPR in these cells, and indicate that inhibitors of ADPR-gated calcium entry, such as 8Br-ADPR, have the potential to be used as anti-inflammatory agents.
Collapse
|
29
|
Bezin S, Fossier P, Cancela JM. Nucleoplasmic reticulum is not essential in nuclear calcium signalling mediated by cyclic ADPribose in primary neurons. Pflugers Arch 2008; 456:581-6. [PMID: 18197416 DOI: 10.1007/s00424-007-0435-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/06/2007] [Accepted: 12/14/2007] [Indexed: 11/30/2022]
Abstract
Nuclear calcium regulation is essential for controlling nuclear processes such as gene expression. Recent studies, mostly performed on immortalized or transformed cell lines, reported the presence of a nucleoplasmic reticulum (NR). It has been suggested that NR acts as a storage organelle having an important role in nuclear Ca2+ signalling. However, whether NR is present and necessary in primary neurons for generation of nuclear Ca2+ signalling has never been investigated. Here, we show, by confocal microscopy and by electronic microscopy, that nuclei in intact neurons or isolated nuclei are not endowed with NR. Finally, our experiments performed on isolated nuclei from Aplysia giant neurons show that the nuclear envelope acts as a functional Ca2+ store which can be mobilized by the second messenger cyclic ADPribose to elicit a nucleoplasmic Ca2+ elevation. Our study provides evidence that nuclear Ca2+ signals can be independent of the presence of NR in neurons.
Collapse
Affiliation(s)
- S Bezin
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC 2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
30
|
Orciani M, Trubiani O, Cavaletti G, Guarnieri S, Salvolini E, Tredici G, Di Primio R. Expression of CD38 in Human Neuroblastoma Sh-SY5Y Cells. Int J Immunopathol Pharmacol 2008; 21:97-105. [DOI: 10.1177/039463200802100111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human CD38 antigen is a 42–45 kDa type II transmembrane glycoprotein with a short N-terminal cytoplasmic domain and a long C-terminal extracellular region. It is widely expressed in different cell types including thymocytes, activated T cells, and terminally differentiated B cells (plasma cells) and it is involved in cellular proliferation and adhesion. CD38 acts as an ectocyclase that converts NAD+ to the Ca2+-releasing second messenger cyclic ADP-ribose (cADPR). It has been also demonstrated that increased extracellular levels of NAD+ and cADPR are involved in inflammatory diseases and in cellular damage, such as ischemia. In the present study, we have characterized the expression of CD38 in human neuroblastoma SH-SY5Y cell line. All-trans-retinoic acid (ATRA) treatment was used to induce cell differentiation. Our results indicate that: a) even if SH-SY5Y cells have a negative phenotype express CD38 at nuclear level, ATRA treatment does not influence this pattern; b) CD38 localizing to the nucleus may co-localize with p80-coilin positive nuclear-coiled bodies; c) purified nuclei, by Western blot determinations using anti-CD38 antibodies, display a band with a molecular mass of −42 kDa; d) SH-SY5Y cells show nuclear ADP-ribosyl cyclase due to CD38 activity; e) the basal level of CD38 mRNA shows a time-dependent increase after treatment with ATRA. These results suggest that the presence of constitutive fully functional CD38 in the SH-SY5Y nucleus has some important implications for intracellular generation of cADP-ribose and subsequent nucleoplasmic calcium release.
Collapse
Affiliation(s)
| | - O. Trubiani
- Department of Oral Science, University “G. D'Annunzio”, Chieti-Pescsara
| | - G. Cavaletti
- Department of Neuroscience and Biomedical Technologies, University of Milano Bicocca, Monza
| | - S. Guarnieri
- Department of Basic and Applied Medical Science, Institute of Myology, University “G. D'Annunzio”, Chieti-Pescara, Italy
| | | | - G. Tredici
- Department of Neuroscience and Biomedical Technologies, University of Milano Bicocca, Monza
| | | |
Collapse
|
31
|
Alteration of enzymatic properties of cell-surface antigen CD38 by agonistic anti-CD38 antibodies that prolong B cell survival and induce activation. Int Immunopharmacol 2007; 8:59-70. [PMID: 18068101 DOI: 10.1016/j.intimp.2007.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/16/2007] [Accepted: 10/09/2007] [Indexed: 11/20/2022]
Abstract
Leukocyte cell-surface antigen CD38 is a single-transmembrane protein. CD38 ligation by anti-CD38 antibodies triggers the growth or apoptosis of immune cells. Although the extracellular domain of CD38 has multifunctional catalytic activities including NAD(+) glycohydrolase and cyclase, the CD38-mediated cell survival or death appears to be independent of its catalytic activity. It is proposed that a conformational change of CD38 triggers the signalling. The conformational change of CD38 could influence its catalytic activity. However, the agonistic anti-CD38 antibody that alters the catalytic activity of CD38 has not been reported so far. In the present study, we demonstrated that two agonistic anti-mouse CD38 mAbs (CS/2 and clone 90) change the catalytic activities of CD38. CS/2 was clearly more potent than clone 90 in prolonging B cell survival and activation. CS/2 inhibited the NAD(+) glycohydrolase activity of both the isolated extracellular domain of CD38 (FLAG-CD38) and cell-surface CD38. Kinetic analysis suggested a non-competitive inhibition. On the other hand, clone 90 stimulated the NAD(+) glycohydrolase activity of FLAG-CD38 and had little effect on the NAD(+) glycohydrolase activity of cell-surface CD38. CS/2 and clone 90 had no effect on the cyclase activity of FLAG-CD38 and inhibited the cyclase activity of cell-surface CD38. Accordingly, these agonistic antibodies probably induce the conformational changes of CD38 that are evident in the distinct alterations of the catalytic site. The antibodies will be useful tools to analyze the conformational change of CD38 in the process of triggering B cell survival and the activation signal.
Collapse
|
32
|
Liu Q, Kriksunov IA, Moreau C, Graeff R, Potter BVL, Lee HC, Hao Q. Catalysis-associated conformational changes revealed by human CD38 complexed with a non-hydrolyzable substrate analog. J Biol Chem 2007; 282:24825-32. [PMID: 17591784 DOI: 10.1074/jbc.m701653200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose (cADPR) is a calcium mobilization messenger important for mediating a wide range of physiological functions. The endogenous levels of cADPR in mammalian tissues are primarily controlled by CD38, a multifunctional enzyme capable of both synthesizing and hydrolyzing cADPR. In this study, a novel non-hydrolyzable analog of cADPR, N1-cIDPR (N1-cyclic inosine diphosphate ribose), was utilized to elucidate the structural determinants involved in the hydrolysis of cADPR. N1-cIDPR inhibits CD38-catalyzed cADPR hydrolysis with an IC(50) of 0.26 mM. N1-cIDPR forms a complex with CD38 or its inactive mutant in which the catalytic residue Glu-226 is mutated. Both complexes have been determined by x-ray crystallography at 1.7 and 1.76 A resolution, respectively. The results show that N1-cIDPR forms two hydrogen bonds (2.61 and 2.64 A) with Glu-226, confirming our previously proposed model for cADPR catalysis. Structural analyses reveal that both the enzyme and substrate cADPR undergo catalysis-associated conformational changes. From the enzyme side, residues Glu-146, Asp-147, and Trp-125 work collaboratively to facilitate the formation of the Michaelis complex. From the substrate side, cADPR is found to change its conformation to fit into the active site until it reaches the catalytic residue. The binary CD38-cADPR model described here represents the most detailed description of the CD38-catalyzed hydrolysis of cADPR at atomic resolution. Our structural model should provide insights into the design of effective cADPR analogs.
Collapse
Affiliation(s)
- Qun Liu
- MacCHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
CD38 is a novel multifunctional protein that serves not only as an antigen but also as an enzyme. It catalyzes the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two structurally and functionally distinct Ca(2+) messengers targeting, respectively, the endoplasmic reticulum and lysosomal Ca(2+) stores. The protein has recently been crystallized and its three-dimensional structure solved to a resolution of 1.9 A. The crystal structure of a binary complex reveals critical interactions between residues at the active site and a bound substrate, providing mechanistic insights to its novel multi-functional catalysis. This article reviews the current advances in the understanding of the structural determinants that control the multiple enzymatic reactions catalyzed by CD38.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Lee HC. Structure and enzymatic functions of human CD38. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 12:317-23. [PMID: 17380198 PMCID: PMC1829193 DOI: 10.2119/2006–00086.lee] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 12/07/2006] [Indexed: 12/12/2022]
Abstract
CD38 is a novel multifunctional protein that serves not only as an antigen but also as an enzyme. It catalyzes the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two structurally and functionally distinct Ca(2+) messengers targeting, respectively, the endoplasmic reticulum and lysosomal Ca(2+) stores. The protein has recently been crystallized and its three-dimensional structure solved to a resolution of 1.9 A. The crystal structure of a binary complex reveals critical interactions between residues at the active site and a bound substrate, providing mechanistic insights to its novel multi-functional catalysis. This article reviews the current advances in the understanding of the structural determinants that control the multiple enzymatic reactions catalyzed by CD38.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 2006; 70:789-829. [PMID: 16959969 PMCID: PMC1594587 DOI: 10.1128/mmbr.00040-05] [Citation(s) in RCA: 508] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD(+)-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as "programmed necrosis" (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., "histone code"), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear ADP-ribosylation processes and other NAD(+)-dependent pathways is discussed.
Collapse
Affiliation(s)
- Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
36
|
Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC, Chini EN. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 2006; 349:353-9. [PMID: 16935261 DOI: 10.1016/j.bbrc.2006.08.066] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 08/11/2006] [Indexed: 11/25/2022]
Abstract
The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes.
Collapse
Affiliation(s)
- Pinar Aksoy
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 2006; 5:ra67. [PMID: 16730329 DOI: 10.1126/scisignal.2002700] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.
Collapse
Affiliation(s)
- Pinar Aksoy
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | | | | | | |
Collapse
|
38
|
Aksoy P, White TA, Thompson M, Chini EN. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem Biophys Res Commun 2006; 345:1386-92. [PMID: 16730329 DOI: 10.1016/j.bbrc.2006.05.042] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.
Collapse
Affiliation(s)
- Pinar Aksoy
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN, USA
| | | | | | | |
Collapse
|
39
|
Bezin S, Charpentier G, Fossier P, Cancela JM. The Ca2+-releasing messenger NAADP, a new player in the nervous system. ACTA ACUST UNITED AC 2006; 99:111-8. [PMID: 16458493 DOI: 10.1016/j.jphysparis.2005.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Many physiological processes are controlled by a great diversity of Ca2+ signals. Within cell, Ca2+ signals depend upon Ca2+ entry and/or Ca2+ release from internal Ca2+ stores. The control of Ca2+-store mobilization is ensured by a family of messengers comprising inositol 1,4,5 trisphosphate, cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). From recent works, new concepts have emerged where activation of the cells by outside stimuli, acting at the plasma membrane, results in the synthesis of multiple Ca2+-releasing messengers which may interact and shape complex Ca2+ signals in the cytosol as well as in the nucleus. This contribution will cover the most recent advances on NAADP signalling with some emphasis on neurons.
Collapse
Affiliation(s)
- Stéphanie Bezin
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, UPR 9040, 1 Avenue de La Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
40
|
Marius P, Guerra MT, Nathanson MH, Ehrlich BE, Leite MF. Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 2006; 39:65-73. [PMID: 16289270 DOI: 10.1016/j.ceca.2005.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Ca(2+) signals control DNA synthesis and repair, gene transcription, and other cell functions that occur within the nucleus. The nuclear envelope can store Ca(2+) and release it into the nucleus via either the inositol 1,4,5-trisphosphate receptor (InsP3R) or the ryanodine receptor (RyR). Furthermore, many cell types have a reticular network within their nuclei and InsP3Rs on this nucleoplasmic reticulum permit local subnuclear control of Ca(2+) signals and Ca(2+)-dependent intranuclear events. However, it is unknown whether RyR similarly is expressed on the nucleoplasmic reticulum and can control subnuclear Ca(2+) signals. Here we report that the type 1 RyR is expressed on intranuclear extensions of the sarcoplasmic reticulum of C2C12 cells, a skeletal muscle derived cell line. In addition, two-photon photorelease of caged Ca(2+) in the region of the nucleoplasmic reticulum evoked Ca(2+)-induced Ca(2+) release (CICR) within the nucleus, which could be suppressed by the RyR inhibitor dantrolene. These results show that intranuclear extensions of the nuclear envelope have functional RyR and provide a possible mechanism whereby cells expressing RyR can regulate Ca(2+) signals in discrete regions within the nucleus.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/physiology
- Calcium Signaling/physiology
- Cell Line
- Cell Nucleus/chemistry
- Cell Nucleus/metabolism
- Cytoplasm/chemistry
- Cytoplasm/metabolism
- Dantrolene/pharmacology
- Endoplasmic Reticulum/chemistry
- Endoplasmic Reticulum/metabolism
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Microscopy, Fluorescence
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Nuclear Envelope/chemistry
- Nuclear Envelope/metabolism
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Ryanodine Receptor Calcium Release Channel/analysis
- Ryanodine Receptor Calcium Release Channel/drug effects
- Ryanodine Receptor Calcium Release Channel/metabolism
Collapse
Affiliation(s)
- Phedra Marius
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
41
|
Lizotte E, Tremblay A, Allen BG, Fiset C. Isolation and characterization of subcellular protein fractions from mouse heart. Anal Biochem 2005; 345:47-54. [PMID: 16125124 DOI: 10.1016/j.ab.2005.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/15/2005] [Accepted: 07/01/2005] [Indexed: 11/21/2022]
Abstract
In this study, we report different protocols used to obtain highly enriched and well-characterized protein fractions that could be used to determine the subcellular localization of proteins. Different protein fractions (total, cytosolic, total membrane, sarcolemmal, and nuclear) were isolated from mouse heart by a combination of either polytron homogenization or liquid nitrogen pulverization followed by density gradient centrifugation. Triton X-100 was used in specific fractions to help in the solubilization of proteins obtained with fractionation protocols. Following the isolation, enzymatic assays and Western blot analysis were used to evaluate the enrichment and/or cross-contamination of these protein fractions. Glucose-6-phosphate dehydrogenase, Na+/K+-ATPase, mitochondrial Ca2+-ATPase, sarco-endoplasmic reticulum Ca2+-ATPase, glucose-regulated protein, and nucleoporin P62 were used as specific markers for the cytosol, sarcolemma, mitochondria, sarco-endoplasmic reticulum, endoplasmic reticulum, and nucleus, respectively. The results show that we obtained enriched protein fractions with little to no cross-contamination. These purification protocols allow us to obtain different protein fractions that could be used in a wide variety of studies.
Collapse
Affiliation(s)
- Eric Lizotte
- Research Center, Montreal Heart Institute, and Faculty of Pharmacy, Montreal University, Montreal, Que., Canada H3C 3J7
| | | | | | | |
Collapse
|
42
|
Evans AM, Wyatt CN, Kinnear NP, Clark JH, Blanco EA. Pyridine nucleotides and calcium signalling in arterial smooth muscle: from cell physiology to pharmacology. Pharmacol Ther 2005; 107:286-313. [PMID: 16005073 DOI: 10.1016/j.pharmthera.2005.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
It is generally accepted that the mobilisation of intracellular Ca2+ stores plays a pivotal role in the regulation of arterial smooth muscle function, paradoxically during both contraction and relaxation. However, the spatiotemporal pattern of different Ca2+ signals that elicit such responses may also contribute to the regulation of, for example, differential gene expression. These findings, among others, demonstrate the importance of discrete spatiotemporal Ca2+ signalling patterns and the mechanisms that underpin them. Of fundamental importance in this respect is the realisation that different Ca2+ storing organelles may be selected by the discrete or coordinated actions of multiple Ca2+ mobilising messengers. When considering such messengers, it is generally accepted that sarcoplasmic reticulum (SR) stores may be mobilised by the ubiquitous messenger inositol 1,4,5 trisphosphate. However, relatively little attention has been paid to the role of Ca2+ mobilising pyridine nucleotides in arterial smooth muscle, namely, cyclic adenosine diphosphate-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). This review will therefore focus on these novel mechanisms of calcium signalling and their likely therapeutic potential.
Collapse
Affiliation(s)
- A Mark Evans
- Division of Biomedical Sciences, School of Biology, Bute Building, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK.
| | | | | | | | | |
Collapse
|
43
|
Lund FE, Moutin MJ, Muller-Steffner H, Schuber F. ADP-ribosyl cyclase and GDP-ribosyl cyclase activities are not always equivalent: impact on the study of the physiological role of cyclic ADP-ribose. Anal Biochem 2005; 346:336-8. [PMID: 16212930 DOI: 10.1016/j.ab.2005.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Frances E Lund
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA
| | | | | | | |
Collapse
|
44
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2005; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
45
|
Khoo KM, Chang CF, Schubert J, Wondrak E, Chng HH. Expression and purification of the recombinant His-tagged GST-CD38 fusion protein using the baculovirus/insect cell expression system. Protein Expr Purif 2005; 40:396-403. [PMID: 15766882 DOI: 10.1016/j.pep.2004.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Indexed: 11/28/2022]
Abstract
CD38 is a type II transmembrane glycoprotein found in myriad mammalian tissues and cell types. It is known for its involvement in the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. CD38 itself has been shown to have clinical significance in certain diseases with possible utilization in diagnostic and prognostic applications. Previous studies on several autoimmune diseases have shown the usefulness of recombinant CD38 protein expressed from Escherichia coli and Pichia pastoris in the detection of autoantibodies to CD38 via Western blot and ELISA. In this study, we produced a 6 x His-tagged GST-CD38 fusion protein using a recombinant baculovirus/insect cell expression technique that was purified as a soluble protein. The fusion protein was purified to homogeneity by affinity and gel filtration chromatography steps. It has an apparent molecular mass of 56 kDa on SDS-PAGE gel stained with Coomassie blue and was recognized on Western blots by antibodies against human CD38 as well as the polyhistidine tag. Peptide mass fingerprinting analysis confirmed the identity of human CD38 in the fusion protein.
Collapse
Affiliation(s)
- Keng Meng Khoo
- Department of Rheumatology, Allergy, and Immunology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.
| | | | | | | | | |
Collapse
|
46
|
Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2005; 288:L773-88. [PMID: 15821018 DOI: 10.1152/ajplung.00217.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contractility of airway smooth muscle cells is dependent on dynamic changes in the concentration of intracellular calcium. Signaling molecules such as inositol 1,4,5-trisphosphate and cyclic ADP-ribose play pivotal roles in the control of intracellular calcium concentration. Alterations in the processes involved in the regulation of intracellular calcium concentration contribute to the pathogenesis of airway diseases such as asthma. Recent studies have identified cyclic ADP-ribose as a calcium-mobilizing second messenger in airway smooth muscle cells, and modulation of the pathway involved in its metabolism results in altered calcium homeostasis and may contribute to airway hyperresponsiveness. In this review, we describe the basic mechanisms underlying the dynamics of calcium regulation and the role of CD38/cADPR, a novel pathway, in the context of airway smooth muscle function and its contribution to airway diseases such as asthma.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Dept. of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
47
|
Bai N, Lee HC, Laher I. Emerging role of cyclic ADP-ribose (cADPR) in smooth muscle. Pharmacol Ther 2004; 105:189-207. [PMID: 15670626 DOI: 10.1016/j.pharmthera.2004.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
Cyclic adenosine diphosphate ribose (cADPR) is a naturally occurring cyclic nucleotide and represents a novel class of endogenous Ca(2+) messengers implicated in the regulation of the gating properties of ryanodine receptors (RyRs). This action of cADPR occurs independently from the inositol-1,4,5-trisphosphate (IP(3)) receptor. The regulation of intracellular Ca(2+) release is a fundamental element of cellular Ca(2+) homeostasis since a number of smooth muscle functions (tone, proliferation, apoptosis, and gene expression) are modulated by intracellular Ca(2+) concentration ([Ca(2+)](i)). There has been a surge in the efforts aimed at understanding the mechanisms of cADPR-mediated Ca(2+) mobilization and its impact on smooth muscle function. This review summarizes the proposed roles of cADPR in the regulation of smooth muscle tone.
Collapse
Affiliation(s)
- Ni Bai
- Department of Pharmacology and Therapeutics, University of British Columbia Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
48
|
Sun L, Iqbal J, Dolgilevich S, Yuen T, Wu XB, Moonga BS, Adebanjo OA, Bevis PJR, Lund F, Huang CLH, Blair HC, Abe E, Zaidi M. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption. FASEB J 2003; 17:369-75. [PMID: 12631576 DOI: 10.1096/fj.02-0205com] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have evaluated the role of the ADP-ribosyl cyclase, CD38, in bone remodeling, a process by which the skeleton is being renewed constantly through the coordinated activity of osteoclasts and osteoblasts. CD38 catalyzes the cyclization of its substrate, NAD+, to the Ca2+-releasing second messenger, cyclic ADP-ribose (cADPr). We have shown previously that CD38 is expressed both in osteoblasts and osteoclasts. Its activation in the osteoclast triggers Ca2+ release through ryanodine receptors (RyRs), stimulation of interleukin-6 (IL-6), and an inhibition of bone resorption. Here, we have examined the consequences of deleting the CD38 gene in mice on skeletal remodeling. We report that CD38-/- mice displayed a markedly reduced bone mineral density (BMD) at the femur, tibia, and lumbar spine at 3 months and at the lumbar spine at 4 months, with full normalization of the BMD at all sites at 5 months. The osteoporosis at 3 months was accompanied by a reduction in primary spongiosa and increased osteoclast surfaces on histomorphometric analysis. Hematopoetic stem cells isolated ex vivo from CD38-/- mice showed a dramatic approximately fourfold increase in osteoclast formation in response to incubation for 6 days with RANK-L and M-CSF. The osteoclasts so formed in these cultures showed a approximately 2.5-fold increase in resorptive activity compared with wild-type cells. However, when adherent bone marrow stromal cells were allowed to mature into alkaline phosphatase-positive colony-forming units (CFU-Fs), those derived from CD38-/- mice showed a significant reduction in differentiation compared with wild-type cells. Real-time RT-PCR on mRNA isolated from osteoclasts at day 6 showed a significant reduction in IL-6 and IL-6 receptor mRNA, together with significant decreases in the expression of all calcineurin A isoforms, alpha, beta, and gamma. These findings establish a critical role for CD38 in osteoclast formation and bone resorption. We speculate that CD38 functions as a cellular NAD+ "sensor," particularly during periods of active motility and secretion.
Collapse
Affiliation(s)
- Li Sun
- Mount Sinai Bone Program and Department of Medicine and Geriatrics, Mount Sinai School of Medicine, and Division of Endocrinology and Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Medical Center, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ceni C, Pochon N, Brun V, Muller-Steffner H, Andrieux A, Grunwald D, Schuber F, De Waard M, Lund F, Villaz M, Moutin MJ. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain. Biochem J 2003; 370:175-83. [PMID: 12403647 PMCID: PMC1223139 DOI: 10.1042/bj20020604] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2002] [Revised: 09/19/2002] [Accepted: 10/29/2002] [Indexed: 11/17/2022]
Abstract
CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue.
Collapse
Affiliation(s)
- Claire Ceni
- Laboratoire Canaux Ioniques et Signalisation, INSERM EMI 9931, DRDC-CEA, 17 avenue des Martyrs, 38051 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Munshi CB, Graeff R, Lee HC. Evidence for a causal role of CD38 expression in granulocytic differentiation of human HL-60 cells. J Biol Chem 2002; 277:49453-8. [PMID: 12386160 DOI: 10.1074/jbc.m209313200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granulocytic differentiation of human HL-60 cells can be induced by retinoic acid and is accompanied by a massive expression of CD38, a multi-functional enzyme responsible for metabolizing cyclic ADP-ribose (cADPR), a Ca(2+) messenger. Immunofluorescence staining showed that CD38 was expressed not only on the surface of intact HL-60 cells but also intracellularly, which was revealed after permeabilization with Triton. Concomitant with CD38 expression was the accumulation of cADPR, and both time courses preceded the onset of differentiation, suggesting a causal role for CD38. Consistently, treatment of HL-60 cells with a permeant inhibitor of CD38, nicotinamide, inhibited both the CD38 activity and differentiation. More specific blockage of CD38 expression was achieved by using morpholino antisense oligonucleotides targeting its mRNA, which produced a corresponding inhibition of differentiation as well. Similar inhibitory effects were observed when CD38 expression was reduced by the RNA interference technique targeting two separate regions of the coding sequence of CD38. Further support came from transfecting HL-60 cells with a Tet-On expression vector containing a full-length CD38. Subsequent treatments with doxycycline induced both CD38 expression and differentiation in the absence of retinoic acid. These results provide the first evidence that CD38 expression and the consequential accumulation of cADPR play a causal role in mediating cellular differentiation.
Collapse
Affiliation(s)
- Cyrus B Munshi
- Department of Pharmacology, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|