1
|
Kläsener K, Herrmann N, Håversen L, Sundell T, Sundqvist M, Lundqvist C, Manna PT, Jonsson CA, Visentini M, Ljung Sass D, McGrath S, Grimstad K, Aranburu A, Mellgren K, Fogelstrand L, Forsman H, Ekwall O, Borén J, Gjertsson I, Reth M, Mårtensson I, Camponeschi A. Targeting CD38 with monoclonal antibodies disrupts key survival pathways in paediatric Burkitt's lymphoma malignant B cells. Clin Transl Immunology 2024; 13:e70011. [PMID: 39364393 PMCID: PMC11447455 DOI: 10.1002/cti2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Objectives Paediatric Burkitt's lymphoma (pBL) is the most common childhood non-Hodgkin B-cell lymphoma. Despite the encouraging survival rates for most children, treating cases with relapse/resistance to current therapies remains challenging. CD38 is a transmembrane protein highly expressed in pBL. This study investigates the effectiveness of CD38-targeting monoclonal antibodies (mAbs), daratumumab and isatuximab, in impairing crucial cellular processes and survival pathways in pBL malignant cells. Methods In silico analyses of patient samples, combined with in vitro experiments using the Ramos cell line, were conducted to assess the impact of daratumumab and isatuximab on cellular proliferation, apoptosis and the phosphoinositide 3-kinase (PI3K) pathway. Results Isatuximab was found to be more effective than daratumumab in disrupting B-cell receptor signalling, reducing cellular proliferation and inducing apoptosis. Additionally, isatuximab caused a significant impairment of the PI3K pathway and induced metabolic reprogramming in pBL cells. The study also revealed a correlation between CD38 and MYC expression levels in pBL patient samples, suggesting CD38 involvement in key oncogenic processes. Conclusion The study emphasises the therapeutic potential of CD38-targeting mAbs, particularly isatuximab, in pBL.
Collapse
Affiliation(s)
- Kathrin Kläsener
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Nadja Herrmann
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Timothy Sundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Paul T Manna
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcella Visentini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Diana Ljung Sass
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and AdolescentsUniversity of GothenburgGothenburgSweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kristoffer Grimstad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Karin Mellgren
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and AdolescentsUniversity of GothenburgGothenburgSweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Rheumatology, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Michael Reth
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Inga‐Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
2
|
de Moraes FCA, Sano VKT, Lôbo ADOM, Kelly FA, Morbach V, Pasqualotto E, Burbano RMR. Efficacy and Safety of Anti-CD38 Monoclonal Antibodies in Patients with Relapsed or Refractory Multiple Myeloma: A Meta-Analysis of Randomized Clinical Trials. J Pers Med 2024; 14:360. [PMID: 38672988 PMCID: PMC11051236 DOI: 10.3390/jpm14040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The benefit of associating anti-CD38 monoclonal antibodies to proteasome inhibitor (PI)/immunomodulatory agent (IA) and dexamethasone in the treatment of patients with relapsed or refractory multiple myeloma (MM) remains unclear. PubMed, Embase, and Cochrane Library databases were searched for randomized controlled trials that investigated the addition of anti-CD38 monoclonal antibodies to a therapy composed of PI/IA and dexamethasone versus PI/IA and dexamethasone alone for treating relapsed or refractory MM. Hazard ratios (HRs) or risk ratios (RRs) were computed for binary endpoints, with 95% confidence intervals (CIs). Six studies comprising 2191 patients were included. Anti-CD38 monoclonal antibody significantly improved progression-free survival (HR 0.52; 95% CI 0.43-0.61; p < 0.001) and overall survival (HR 0.72; 95% CI 0.63-0.83; p < 0.001). There was a significant increase in hematological adverse events, such as neutropenia (RR 1.41; 95% CI 1.26-1.58; p < 0.01) and thrombocytopenia (RR 1.14; 95% CI 1.02-1.27; p = 0.02), in the group treated with anti-CD38 monoclonal antibody. Also, there was a significant increase in non-hematological adverse events, such as dyspnea (RR 1.72; 95% CI 1.38-2.13; p < 0.01) and pneumonia (RR 1.34; 95% CI 1.13-1.59; p < 0.01), in the group treated with anti-CD38 monoclonal antibody. In conclusion, the incorporation of an anti-CD38 monoclonal antibody demonstrated a promising prospect for reshaping the established MM treatment paradigms.
Collapse
Affiliation(s)
| | | | | | | | - Victória Morbach
- Department of Medicine, Feevale University, Novo Hamburgo 93510-235, Brazil;
| | - Eric Pasqualotto
- Department of Medicine, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil;
| | | |
Collapse
|
3
|
Gao L, Du X, Li J, Qin FXF. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br J Cancer 2023; 128:492-504. [PMID: 36396822 PMCID: PMC9938187 DOI: 10.1038/s41416-022-02052-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Given that plenty of clinical findings and reviews have already explained in detail on the progression of CD38 in multiple myeloma and haematological system tumours, here we no longer give unnecessary discussion on the above progression. Though therapeutic antibodies have been regarded as a greatest breakthrough in multiple myeloma immunotherapies due to the durable anti-tumour responses in the clinic, but the role of CD38 in the immunologic regulation and evasion of non-hematopoietic solid tumours are just initiated and controversial. Therefore, we will focus on the bio-function of CD38 enzymatic substrates or metabolites in the variety of non-hematopoietic malignancies and the potential therapeutic value of targeting the CD38-NAD+ or CD38-cADPR/ADPR signal axis. Though limited, we review some ongoing researches and clinical trials on therapeutic approaches in solid tumour as well.
Collapse
Affiliation(s)
- Long Gao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Jiabin Li
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, China.
- Suzhou Institute of Systems Medicine, 215123, Suzhou, China.
| |
Collapse
|
4
|
Chen M, Zhao L, Yao F, Yang XD. Severe lung injury induced by CD38 monoclonal antibody Daratumumab and bortezomib-containing regimen in a patient with preexisting interstitial lung disease: a case report and literature review. J Clin Pharm Ther 2022; 47:2387-2392. [PMID: 36478570 DOI: 10.1111/jcpt.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Daratumumab, an anti-CD38 monoclonalantibody, is a safe and effective antibody used in the treatment of multiple myeloma (MM), which is rarely reported to cause severe pulmonary complications. CASE SUMMARY A 58-year-old man diagnosed with MM and preexisting interstitial lung disease developed a high fever and severe dyspnea after administering Daratumumab and bortezomib-containing regimen. Chest CT showed bilaterally and diffused ground-glass opacities and consolidations. A quick improvement was achieved in both clinical symptoms and chest imaging findings through the administration of large doses of methylprednisolone, followed by oral prednisolone. WHAT IS NEW AND CONCLUSION This is the first case reporting Daratumumab and bortezomib-containing regimen-induced lung injury characterized by preexisting interstitial lung disease.
Collapse
Affiliation(s)
- Meng Chen
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Zhao
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fang Yao
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiang Dong Yang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
Leleu X, Martin T, Weisel K, Schjesvold F, Iida S, Malavasi F, Manier S, Chang-Ki Min, Ocio EM, Pawlyn C, Perrot A, Quach H, Richter J, Spicka I, Yong K, Richardson PG. Anti-CD38 antibody therapy for patients with relapsed/refractory multiple myeloma: differential mechanisms of action and recent clinical trial outcomes. Ann Hematol 2022; 101:2123-2137. [PMID: 35943588 PMCID: PMC9463192 DOI: 10.1007/s00277-022-04917-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
CD38 is a transmembrane glycoprotein that functions both as a receptor and an ectoenzyme, playing key roles in the regulation of calcium signaling and migration of immune cells to tumor microenvironments. High expression on multiple myeloma (MM) cells and limited expression on normal cells makes CD38 an ideal target for the treatment of MM patients. Two monoclonal antibodies directed at CD38, isatuximab and daratumumab, are available for use in patients with relapsed and/or refractory MM (RRMM); daratumumab is also approved in newly diagnosed MM and light-chain amyloidosis. Clinical experience has shown that anti-CD38 antibody therapy is transforming treatment of MM owing to its anti-myeloma efficacy and manageable safety profile. Isatuximab and daratumumab possess similarities and differences in their mechanisms of action, likely imparted by their binding to distinct, non-overlapping epitopes on the CD38 molecule. In this review, we present the mechanistic properties of these two antibodies and outline available evidence on their abilities to induce adaptive immune responses and modulate the bone marrow niche in MM. Further, we discuss differences in regulatory labeling between these two agents and analyze recent key clinical trial results, including evidence in patients with underlying renal impairment and other poor prognostic factors. Finally, we describe the limited existing evidence for the use of isatuximab or daratumumab after disease progression on prior anti-CD38 mono- or combination therapy, highlighting the need for additional clinical evaluations to define optimal anti-CD38 antibody therapy selection and sequencing in RRMM.
Collapse
Affiliation(s)
- Xavier Leleu
- Service d'Hématologie Et Thérapie Cellulaire, CHU and CIC Inserm 1402, Poitiers Cedex, France.
| | - Thomas Martin
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Katja Weisel
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, KG Jebsen Center for B Cell Malignancies, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University, Nagoya, Japan
| | - Fabio Malavasi
- Department of Medical Sciences, University of Torino Medical School, Fondazione Ricerca Molinette, Turin, Italy
| | - Salomon Manier
- Department of Hematology, CHU, Universite de Lille, Lille, France
| | - Chang-Ki Min
- Department of Hematology, College of Medicine, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Enrique M Ocio
- Hospital Universitario Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
| | - Charlotte Pawlyn
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Aurore Perrot
- Department of Hematology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Hang Quach
- Clinical Haematology Service, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Mount Sinai, New York, NY, USA
| | - Ivan Spicka
- Department of Medicine, Department of Hematology, First Faculty of Medicine, Charles University and General Hospital, Prague, Czech Republic
| | - Kwee Yong
- Department of Haematology, University College, Hospitals NHS Foundation Trust, London, UK
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Paulus A, Malavasi F, Chanan-Khan A. CD38 as a multifaceted immunotherapeutic target in CLL. Leuk Lymphoma 2022; 63:2265-2275. [DOI: 10.1080/10428194.2022.2090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Aneel Paulus
- Department of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Fabio Malavasi
- Dipartimento Scienze Mediche, Università di Torino, Torino, Italy
- Fondazione Ricerca Molinette ONLUS, Università di Torino, Torino, Italy
| | - Asher Chanan-Khan
- Department of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
7
|
Richardson PG, Perrot A, San-Miguel J, Beksac M, Spicka I, Leleu X, Schjesvold F, Moreau P, Dimopoulos MA, Huang JSY, Minarik J, Cavo M, Prince HM, Malinge L, Dubin F, van de Velde H, Anderson KC. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): follow-up analysis of a randomised, phase 3 study. Lancet Oncol 2022; 23:416-427. [DOI: 10.1016/s1470-2045(22)00019-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
|
8
|
Terrar DA. Endolysosomal Calcium Release and Cardiac Physiology. Cell Calcium 2022; 104:102565. [DOI: 10.1016/j.ceca.2022.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
|
9
|
Gao L, Liu Y, Du X, Ma S, Ge M, Tang H, Han C, Zhao X, Liu Y, Shao Y, Wu Z, Zhang L, Meng F, Xiao-Feng Qin F. The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression. Cell Death Dis 2021; 12:680. [PMID: 34226519 PMCID: PMC8256983 DOI: 10.1038/s41419-021-03968-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
It has been recently reported that CD38 expressed on tumor cells of multiple murine and human origins could be upregulated in response to PD-L1 antibody therapy, which led to dysfunction of tumor-infiltrating CD8+ T immune cells due to increasing the production of adenosine. However, the role of tumor expressed-CD38 on neoplastic formation and progression remains elusive. In the present study, we aimed to delineate the molecular and biochemical function of the tumor-associated CD38 in lung adenocarcinoma progression. Our clinical data showed that the upregulation of tumor-originated CD38 was correlated with poor survival of lung cancer patients. Using multiple in vitro assays we found that the enzymatic activity of tumor expressed-CD38 facilitated lung cancer cell migration, proliferation, colony formation, and tumor development. Consistently, our in vivo results showed that inhibition of the enzymatic activity or antagonizing the enzymatic product of CD38 resulted in the similar inhibition of tumor proliferation and metastasis as CD38 gene knock-out or mutation. At biochemical level, we further identified that cADPR, the mainly hydrolytic product of CD38, was responsible for inducing the opening of TRPM2 iron channel leading to the influx of intracellular Ca2+ and then led to increasing levels of NRF2 while decreasing expression of KEAP1 in lung cancer cells. These findings suggested that malignant lung cancer cells were capable of using cADPR catalyzed by CD38 to facilitate tumor progression, and blocking the enzymatic activity of CD38 could be represented as an important strategy for preventing tumor progression.
Collapse
Affiliation(s)
- Long Gao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yuan Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Xiaohong Du
- Institute of Clinical Medicine Research, the Affiliated Suzhou Hospital of Nanjing Medical University; Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Sai Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Minmin Ge
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Haijun Tang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Chenfeng Han
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Xin Zhao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yanbin Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Yun Shao
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Zhao Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Fang Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| | - F Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
10
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
11
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
12
|
Baum N, Fliegert R, Bauche A, Hambach J, Menzel S, Haag F, Bannas P, Koch-Nolte F. Daratumumab and Nanobody-Based Heavy Chain Antibodies Inhibit the ADPR Cyclase but not the NAD + Hydrolase Activity of CD38-Expressing Multiple Myeloma Cells. Cancers (Basel) 2020; 13:cancers13010076. [PMID: 33396591 PMCID: PMC7795599 DOI: 10.3390/cancers13010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematological malignancy of antibody-producing plasma cells in the bone marrow. Nucleotides released from cells in the tumor microenvironment act as inflammatory danger signals. CD38 and other enzymes on the surface of cancer cells hydrolyze these nucleotides to immunosuppressive mediators, thereby hampering anti-tumor immune responses. Daratumumab and other CD38-specific antibodies mediate killing of tumor cells by natural killer cells, macrophages, and the complement system. Here, we investigated whether CD38-specific antibodies also inhibit the enzyme activity of CD38-expressing tumor cells, thereby providing a potential second mode of action. Our results showed that daratumumab and nanobody-based heavy chain antibodies inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38. Thus, there remains a need for better CD38-inhibitory antibodies. Abstract The nucleotides ATP and NAD+ are released from stressed cells as endogenous danger signals. Ecto-enzymes in the tumor microenvironment hydrolyze these inflammatory nucleotides to immunosuppressive adenosine, thereby, hampering anti-tumor immune responses. The NAD+ hydrolase CD38 is expressed at high levels on the cell surface of multiple myeloma (MM) cells. Daratumumab, a CD38-specific monoclonal antibody promotes cytotoxicity against MM cells. With long CDR3 loops, nanobodies and nanobody-based heavy chain antibodies (hcAbs) might bind to cavities on CD38 and thereby inhibit its enzyme activity more potently than conventional antibodies. The goal of our study was to establish assays for monitoring the enzymatic activities of CD38 on the cell surface of tumor cells and to assess the effects of CD38-specific antibodies on these activities. We monitored the enzymatic activity of CD38-expressing MM and other tumor cell lines, using fluorometric and HPLC assays. Our results showed that daratumumab and hcAb MU1067 inhibit the ADPR cyclase but not the NAD+ hydrolase activity of CD38-expressing MM cells. We conclude that neither clinically approved daratumumab nor recently developed nanobody-derived hcAbs provide a second mode of action against MM cells. Thus, there remains a quest for “double action” CD38-inhibitory antibodies.
Collapse
Affiliation(s)
- Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Ralf Fliegert
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.F.); (A.B.)
| | - Andreas Bauche
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.F.); (A.B.)
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
| | - Peter Bannas
- Department of Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.B.); (J.H.); (S.M.); (F.H.)
- Correspondence: ; Tel.: +49-407-4105-3612
| |
Collapse
|
13
|
Piedra-Quintero ZL, Wilson Z, Nava P, Guerau-de-Arellano M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front Immunol 2020; 11:597959. [PMID: 33329591 PMCID: PMC7734206 DOI: 10.3389/fimmu.2020.597959] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a molecule that can act as an enzyme, with NAD-depleting and intracellular signaling activity, or as a receptor with adhesive functions. CD38 can be found expressed either on the cell surface, where it may face the extracellular milieu or the cytosol, or in intracellular compartments, such as endoplasmic reticulum, nuclear membrane, and mitochondria. The main expression of CD38 is observed in hematopoietic cells, with some cell-type specific differences between mouse and human. The role of CD38 in immune cells ranges from modulating cell differentiation to effector functions during inflammation, where CD38 may regulate cell recruitment, cytokine release, and NAD availability. In line with a role in inflammation, CD38 appears to also play a critical role in inflammatory processes during autoimmunity, although whether CD38 has pathogenic or regulatory effects varies depending on the disease, immune cell, or animal model analyzed. Given the complexity of the physiology of CD38 it has been difficult to completely understand the biology of this molecule during autoimmune inflammation. In this review, we analyze current knowledge and controversies regarding the role of CD38 during inflammation and autoimmunity and novel molecular tools that may clarify current gaps in the field.
Collapse
Affiliation(s)
- Zayda L. Piedra-Quintero
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Zachary Wilson
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Biomedical Science Undergraduate Program, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), México City, México
| | - Mireia Guerau-de-Arellano
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Durnin L, Kurahashi M, Sanders KM, Mutafova-Yambolieva VN. Extracellular metabolism of the enteric inhibitory neurotransmitter β-nicotinamide adenine dinucleotide (β-NAD) in the murine colon. J Physiol 2020; 598:4509-4521. [PMID: 32735345 DOI: 10.1113/jp280051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS β-Nicotinamide adenine dinucleotide (β-NAD) is a key inhibitory neurotransmitter in the colon. The neuroeffector junction in the gut consists of enteric motor neurons and SIP syncytium, including smooth muscle cells (SMCs), interstitial cells of Cajal (ICC), and cells expressing platelet-derived growth factor receptor α (PDGFRα+ cells). Measuring metabolism of 1,N6 -etheno-NAD (eNAD) in colonic tunica muscularis and in SMCs, ICC and PDGFRα+ cells with HPLC-FLD, we report that (1) in tissues, eNAD is degraded to eADP-ribose, eAMP and e-adenosine (eADO) by CD38, ENPP1 and NT5E, (2) with SMCs and PDGFRα+ cells, eNAD is metabolized to eADO by ENPP1 and NT5E, (3) eNAD is not metabolized by ICC, (4) NT5E is expressed chiefly by SMCs and moderately by PDGFRα+ cells, (5) SIP cells are not the primary location of CD38. These data argue that the duration and strength of purinergic neurotransmission can be modulated by targeting multiple enzymes with specialized cellular distribution in the colon. ABSTRACT Prior studies suggest that β-nicotinamide adenine dinucleotide (β-NAD) is an important inhibitory motor neurotransmitter in the enteric nervous system. Metabolism of β-NAD at the neuroeffector junction (NEJ) is likely to be necessary for terminating inhibitory neurotransmission and may also produce bioactive metabolites. The enteric NEJ consists of enteric neurons and postjunctional cells of the SIP syncytium, including smooth muscle cells (SMCs), interstitial cells of Cajal (ICC), and cells expressing platelet-derived growth factor receptor α (PDGFRα+ cells). We examined possible specialized functions of the NEJ in β-NAD metabolism by determining the degradation of 1,N6 -etheno-NAD (eNAD) in colonic tunica muscularis of wild-type, Cd38-/- , Nt5e-/- , Enpp1-/- and Cd38-/- /Nt5e-/- mice and in SIP cells from mice expressing cell-specific fluorescent reporters purified by fluorescence activated cell sorting (FACS). We measured eNAD and its metabolites eADP-ribose (eADPR), eAMP and e-adenosine (eADO) from tissues and sorted SIP cells using liquid chromatography. eNAD exposed to colonic muscularis of wild-type mice produced eADPR, eAMP and eADO. CD38 mediated the conversion of eNAD to eADPR, whereas ENPP1 mediated degradation of eNAD and eADPR to eAMP. NT5E (aka CD73) was the primary enzyme forming eADO from eAMP. PDGFRα+ cells and SMCs were involved in production of eADO from eNAD, and ICC were not involved in extracellular metabolism of eNAD. CD38 mediated the eNAD metabolism in whole tissues, but CD38 did not appear to be functionally expressed by SMCs or ICC. NT5E was expressed in SMCs > PDGFRα+ cells. Our data show that extracellular metabolism of β-NAD in the colon is mediated by multiple enzymes with cell-specific expression.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
15
|
Yu P, Liu Z, Yu X, Ye P, Liu H, Xue X, Yang L, Li Z, Wu Y, Fang C, Zhao YJ, Yang F, Luo JH, Jiang LH, Zhang L, Zhang L, Yang W. Direct Gating of the TRPM2 Channel by cADPR via Specific Interactions with the ADPR Binding Pocket. Cell Rep 2020; 27:3684-3695.e4. [PMID: 31216484 DOI: 10.1016/j.celrep.2019.05.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/05/2019] [Accepted: 05/18/2019] [Indexed: 12/29/2022] Open
Abstract
cADPR is a well-recognized signaling molecule by modulating the RyRs, but considerable debate exists regarding whether cADPR can bind to and gate the TRPM2 channel, which mediates oxidative stress signaling in diverse physiological and pathological processes. Here, we show that purified cADPR evoked TRPM2 channel currents in both whole-cell and cell-free single-channel recordings and specific binding of cADPR to the purified NUDT9-H domain of TRPM2 by surface plasmon resonance. Furthermore, by combining computational modeling with electrophysiological recordings, we show that the TRPM2 channels carrying point mutations at H1346, T1347, L1379, S1391, E1409, and L1484 possess distinct sensitivity profiles for ADPR and cADPR. These results clearly indicate cADPR is a bona fide activator at the TRPM2 channel and clearly delineate the structural basis for cADPR binding, which not only lead to a better understanding in the gating mechanism of TRPM2 channel but also shed light on a cADPR-induced RyRs-independent Ca2+ signaling mechanism.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Xiafei Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Peiwu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Huan Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Xiwen Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Lixin Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Yang Wu
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Cheng Fang
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Yong Juan Zhao
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, P.R. China
| | - Fan Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian Hong Luo
- Department of Neurobiology, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Sino-UK Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Neurobiology, Xinxiang Medical University, Henan 453003, P.R. China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P.R. China
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China; Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China.
| |
Collapse
|
16
|
Dai Z, Zhang XN, Nasertorabi F, Cheng Q, Li J, Katz BB, Smbatyan G, Pei H, Louie SG, Lenz HJ, Stevens RC, Zhang Y. Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. SCIENCE ADVANCES 2020; 6:eaba6752. [PMID: 32537509 PMCID: PMC7269645 DOI: 10.1126/sciadv.aba6752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 05/02/2023]
Abstract
Most of the current antibody-drug conjugates (ADCs) in clinic are heterogeneous mixtures. To produce homogeneous ADCs, established procedures often require multiple steps or long reaction times. The introduced mutations or foreign sequences may cause high immunogenicity. Here, we explore a new concept of transforming CD38 enzymatic activity into a facile approach for generating site-specific ADCs. This was achieved through coupling bifunctional antibody-CD38 fusion proteins with designer dinucleotide-based covalent inhibitors with stably attached payloads. The resulting adenosine diphosphate-ribosyl cyclase-enabled ADC (ARC-ADC) with a drug-to-antibody ratio of 2 could be rapidly generated through single-step conjugation. The generated ARC-ADC targeting human epidermal growth factor receptor 2 (HER2) displays excellent stability and potency against HER2-positive breast cancer both in vitro and in vivo. This proof-of-concept study demonstrates a new strategy for production of site-specific ADCs. It may provide a general approach for the development of a novel class of ADCs with potentially enhanced properties.
Collapse
Affiliation(s)
- Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin B. Katz
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Raymond C. Stevens
- Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
- Corresponding author.
| |
Collapse
|
17
|
Rodríguez-Alba JC, Abrego-Peredo A, Gallardo-Hernández C, Pérez-Lara J, Santiago-Cruz JW, Jiang JW, Espinosa E. HIV Disease Progression: Overexpression of the Ectoenzyme CD38 as a Contributory Factor? Bioessays 2019; 41:e1800128. [PMID: 30537007 PMCID: PMC6545924 DOI: 10.1002/bies.201800128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Despite abundant evidence associating CD38 overexpression and CD4 T cell depletion in HIV infection, no causal relation has been investigated. To address this issue, a series of mechanisms are proposed, supported by evidence from different fields, by which CD38 overexpression can facilitate CD4 T cell depletion in HIV infection. According to this model, increased catalytic activity of CD38 may reduce CD4 T cells' cytoplasmic nicotin-amide adenine dinucleotide (NAD), leading to a chronic Warburg effect. This will reduce mitochondrial function. Simultaneously, CD38's catalytic products ADPR and cADPR may be transported to the cytoplasm, where they can activate calcium channels and increase cytoplasmic Ca2+ concentrations, further altering mitochondrial integrity. These mechanisms will decrease the viability and regenerative capacity of CD4 T cells. These hypotheses can be tested experimentally, and might reveal novel therapeutic targets. Also see the video abstract here https://youtu.be/k1LTyiTKPKs.
Collapse
Affiliation(s)
- J. C. Rodríguez-Alba
- Flow Cytometry Core Facility, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - A. Abrego-Peredo
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - C. Gallardo-Hernández
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. Pérez-Lara
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. W. Santiago-Cruz
- Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J., W. Jiang
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - E. Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| |
Collapse
|
18
|
Dai Z, Zhang XN, Nasertorabi F, Cheng Q, Pei H, Louie SG, Stevens RC, Zhang Y. Facile chemoenzymatic synthesis of a novel stable mimic of NAD . Chem Sci 2018; 9:8337-8342. [PMID: 30568770 PMCID: PMC6256357 DOI: 10.1039/c8sc03899f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor participating in a variety of important enzyme-catalyzed physiological and pathophysiological processes. Analogues of NAD+ provide key and valuable agents for investigating NAD+-dependent enzymes. In this study, we report the preparation of a novel stable NAD+ mimic, 4'-thioribose NAD+ (S-NAD+), using a facile and efficient chemoenzymatic approach. Substrate activity assays indicated the resulting S-NAD+ is chemically inert to human CD38 and sirtuin 2 enzymes, but capable of participating in redox reactions in a manner similar to NAD+. X-ray crystallographic analysis revealed binding of S-NAD+ to the active site of human CD38 and critical residues involved in leaving group activation and catalysis. By more closely mimicking NAD+ in geometry and electrostatics, the generated S-NAD+ offers a unique and important tool that can be extended to study enzymes utilizing NAD+.
Collapse
Affiliation(s)
- Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
| | - Fariborz Nasertorabi
- Departments of Biological Sciences and Chemistry , Bridge Institute , Michelson Center for Convergent Bioscience , University of Southern California , Los Angeles , CA 90089 , USA .
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA
| | - Raymond C Stevens
- Departments of Biological Sciences and Chemistry , Bridge Institute , Michelson Center for Convergent Bioscience , University of Southern California , Los Angeles , CA 90089 , USA .
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Ave , Los Angeles , CA 90089 , USA .
- Department of Chemistry , Dornsife College of Letters, Arts and Sciences , University of Southern California , Los Angeles , CA 90089 , USA
- Norris Comprehensive Cancer Center , University of Southern California , Los Angeles , CA 90089 , USA
- Research Center for Liver Diseases , University of Southern California , Los Angeles , CA 90089 , USA
| |
Collapse
|
19
|
NAD binding by human CD38 analyzed by Trp189 fluorescence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1189-1196. [PMID: 30472140 DOI: 10.1016/j.bbamcr.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022]
Abstract
The NAD-glycohydrolase/ADP-ribosyl cyclase CD38 catalyzes the metabolism of nicotinamide adenine dinucleotide (NAD) to the Ca2+ mobilizing second messengers ADP-ribose (ADPR), 2'-deoxy-ADPR, and cyclic ADP-ribose (cADPR). In the present study, we investigated binding and metabolism of NAD by a soluble fragment of human CD38, sCD38, and its catalytically inactive mutant by monitoring changes in endogenous tryptophan (Trp) fluorescence. Addition of NAD resulted in a concentration-dependent decrease in sCD38 fluorescence that is mainly caused by the Trp residue W189. Amplitude of the fluorescence decrease was fitted as one-site binding curve revealing a dissociation constant for NAD of 29 μM. A comparable dissociation constant was found with the catalytically inactive sCD38 mutant (KD 37 μM NAD) indicating that binding of NAD is not significantly affected by the mutation. The NAD-induced decrease in Trp fluorescence completely recovered in case of sCD38. Kinetics of recovery was slowed down with decreasing temperature and sCD38 concentration and increasing NAD concentration demonstrating that recovery in fluorescence is proportional to the enzymatic activity of sCD38. Accordingly, recovery in fluorescence was not observed with the catalytically inactive mutant. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
20
|
An N, Hou YN, Zhang QX, Li T, Zhang QL, Fang C, Chen H, Lee HC, Zhao YJ, Du X. Anti-Multiple Myeloma Activity of Nanobody-Based Anti-CD38 Chimeric Antigen Receptor T Cells. Mol Pharm 2018; 15:4577-4588. [PMID: 30185037 DOI: 10.1021/acs.molpharmaceut.8b00584] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptor T cells (CAR-Ts) are a promising strategy for the treatment of many cancers, including multiple myeloma (MM), a hematological malignancy characterized by the high expression of CD38. To broaden the applications of using CD38 as a therapeutic target for the disease, we developed a new nanobody against CD38 and constructed a CD38-CAR that was composed of this nanobody as the targeting domain, and 4-1BB and CD3ζ as the costimulatory and activating domains, in a lentiviral vector. CD3+ T cells from healthy individuals were transduced with the CD38-CAR at an efficiency higher than 60%, as determined by CD38-CAR expression using flow cytometry. The CD38-CAR-Ts proliferated efficiently and produced more inflammatory cytokines, such as IL-2, IFN-γ, and TNF-α, when activated. The CD38-CAR-Ts effectively lysed CD38+ MM cell lines, including LP-1, RPMI 8226, OPM2, and MOLP8, and primary MM cells from multiple myeloma patients. The specificity was demonstrated by the fact that CD38-CAR-Ts showed little cytotoxicity on LP-1 cells with CD38 knocked out or on K562 cells, which do not express CD38. CD38-CAR-Ts appeared to have a very slight cytotoxicity against CD38+ fractions of T cells, B cells, and natural killer cells. In addition, the lysis of CD34+ hematopoietic progenitor cells did not completely inhibit the development of colony-forming units. In vivo, CD38-CAR-Ts inhibited tumor growth in NOD/SCID mice that were subcutaneously inoculated with RPMI 8226 cells. These results demonstrate that the CD38-CAR-Ts constructed with the anti-CD38 nanobody are a promising approach for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Na An
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518035 , China
| | - Yun Nan Hou
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Qiao Xia Zhang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518035 , China
| | - Ting Li
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Qiong Li Zhang
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518035 , China
| | - Cheng Fang
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Huan Chen
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518035 , China
| | - Hon Cheung Lee
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yong Juan Zhao
- Laboratory of Cytophysiology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Xin Du
- Shenzhen Bone Marrow Transplantation Public Service Platform, Department of Hematology , Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen 518035 , China
| |
Collapse
|
21
|
Abstract
Autoimmunity has both beneficial and harmful aspects. Beneficial aspects include: (1) removal of released intracytoplasmic antigens (ags) (cells at the end of their life span or damaged by outside agents) by specific nonpathogenic IgM autoantibodies and mononuclear cells and (2) recognition and elimination of cancerous cells. In contrast, harmful aspects include: (1) mounting a pathogenic autoimmune response against a tissue-derived ag, a 'modified self,' resulting in autoimmune disease and (2) inability to recognize and eliminate a cancerous clone. The immune system continuously faces internal and external influences; however, even when it is compromised or overwhelmed, it will still endeavor to regain and maintain tolerance to self. To promote this, we developed a 'modified vaccination technique' (MVT) (described as the third vaccination method after active and passive immunizations). It has two components: purified exogenous/endogenous ag (i.e., target ag) and a high-titer-specific antibody (ab) against the target ag made into an immune complex (IC) with predetermined immune-inducing components. The MVT works by ab information transfer (production of same class of immunoglobulin with the same specificity against the target ag that is present in the vaccine), thereby re-establishing tolerance to self (caused by exogenous/endogenous ags) following repeated administration of appropriate ICs. This vaccination technique can be used both prophylactically and therapeutically, and it mimics the immune system's natural abilities to respond to corrective information specifically, rapidly, safely and with minimal side effects and makes this approach a novel solution for many disorders that are difficult or impossible to cure or manage.
Collapse
|
22
|
MacDonald RJ, Shrimp JH, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep 2017; 7:17406. [PMID: 29234114 PMCID: PMC5727258 DOI: 10.1038/s41598-017-17720-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
CD38 is an ectoenzyme and receptor with key physiological roles. It metabolizes NAD+ to adenosine diphosphate ribose (ADPR) and cyclic ADPR, regulating several processes including calcium signalling. CD38 is both a positive and negative prognostic indicator in leukaemia. In all-trans retinoic acid (RA)-induced differentiation of acute promyelocytic leukaemia and HL-60 cells, CD38 is one of the earliest and most prominently upregulated proteins known. CD38 overexpression enhances differentiation, while morpholino- and siRNA-induced knockdown diminishes it. CD38, via Src family kinases and adapters, interacts with a MAPK signalling axis that propels differentiation. Motivated by evidence suggesting the importance of CD38, we sought to determine whether it functions via dimerization. We created a linker based on the suicide substrate arabinosyl-2′-fluoro-2′-deoxy NAD+ (F-araNAD+), dimeric F-araNAD+, to induce homodimerization. CD38 homodimerization did not affect RA-induced differentiation. Probing the importance of CD38 further, we created HL-60 cell lines with CRISPR/Cas9-mediated CD38 truncations. Deletion of its enzymatic domain did not affect differentiation. Apart from increased RA-induced CD11b expression, ablation of all but the first six amino acids of CD38 affected neither RA-induced differentiation nor associated signalling. Although we cannot discount the importance of this peptide, our study indicates that CD38 is not necessary for RA-induced differentiation.
Collapse
Affiliation(s)
- Robert J MacDonald
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jonathan H Shrimp
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
23
|
Second messenger analogues highlight unexpected substrate sensitivity of CD38: total synthesis of the hybrid "L-cyclic inosine 5'-diphosphate ribose". Sci Rep 2017; 7:16100. [PMID: 29170518 PMCID: PMC5700923 DOI: 10.1038/s41598-017-16388-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
The multifunctional, transmembrane glycoprotein human CD38 catalyses the synthesis of three key Ca2+-mobilising messengers, including cyclic adenosine 5′-diphosphate ribose (cADPR), and CD38 knockout studies have revealed the relevance of the related signalling pathways to disease. To generate inhibitors of CD38 by total synthesis, analogues based on the cyclic inosine 5′-diphosphate ribose (cIDPR) template were synthesised. In the first example of a sugar hybrid cIDPR analogue, “L-cIDPR”, the natural “northern” N1-linked D-ribose of cADPR was replaced by L-ribose. L-cIDPR is surprisingly still hydrolysed by CD38, whereas 8-Br-L-cIDPR is not cleaved, even at high enzyme concentrations. Thus, the inhibitory activity of L-cIDPR analogues appears to depend upon substitution of the base at C-8; 8-Br-L-cIDPR and 8-NH2-L-cIDPR inhibit CD38-mediated cADPR hydrolysis (IC50 7 μM and 21 µM respectively) with 8-Br-L-cIDPR over 20-fold more potent than 8-Br-cIDPR. In contrast, L-cIDPR displays a comparative 75-fold reduction in activity, but is only ca 2-fold less potent than cIDPR itself. Molecular modelling was used to explore the interaction of the CD38 catalytic residue Glu-226 with the “northern” ribose. We propose that Glu226 still acts as the catalytic residue even for an L-sugar substrate. 8-Br-L-cIDPR potentially binds non-productively in an upside-down fashion. Results highlight the key role of the “northern” ribose in the interaction of cADPR with CD38.
Collapse
|
24
|
Lin WK, Bolton EL, Cortopassi WA, Wang Y, O'Brien F, Maciejewska M, Jacobson MP, Garnham C, Ruas M, Parrington J, Lei M, Sitsapesan R, Galione A, Terrar DA. Synthesis of the Ca 2+-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in β-adrenoceptor signaling. J Biol Chem 2017; 292:13243-13257. [PMID: 28539361 PMCID: PMC5555186 DOI: 10.1074/jbc.m117.789347] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/13/2017] [Indexed: 11/28/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca2+-mobilizing messengers important for modulating cardiac excitation-contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR in vitro However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not CD38-/- mouse hearts supported NAADP and cADPR synthesis. Membrane permeabilization of cardiac myocytes with saponin and/or Triton X-100 increased NAADP synthesis, indicating that intracellular CD38 contributes to NAADP production. The permeabilization also permitted immunostaining of CD38, with a striated pattern in WT myocytes, whereas CD38-/- myocytes and nonpermeabilized WT myocytes showed little or no staining, without striation. A component of β-adrenoreceptor signaling in the heart involves NAADP and lysosomes. Accordingly, in the presence of isoproterenol, Ca2+ transients and contraction amplitudes were smaller in CD38-/- myocytes than in the WT. In addition, suppressing lysosomal function with bafilomycin A1 reduced the isoproterenol-induced increase in Ca2+ transients in cardiac myocytes from WT but not CD38-/- mice. Whole hearts isolated from CD38-/- mice and exposed to isoproterenol showed reduced arrhythmias. SAN4825, an ADP-ribosyl cyclase inhibitor that reduces cADPR and NAADP synthesis in mouse membrane fractions, was shown to bind to CD38 in docking simulations and reduced the isoproterenol-induced arrhythmias in WT hearts. These observations support generation of NAADP and cADPR by intracellular CD38, which contributes to effects of β-adrenoreceptor stimulation to increase both Ca2+ transients and the tendency to disturb heart rhythm.
Collapse
Affiliation(s)
- Wee K Lin
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma L Bolton
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Wilian A Cortopassi
- the Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, and
| | - Yanwen Wang
- the Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Fiona O'Brien
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Matylda Maciejewska
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Matthew P Jacobson
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, and
| | - Clive Garnham
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Margarida Ruas
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ming Lei
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Rebecca Sitsapesan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Antony Galione
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Derek A Terrar
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| |
Collapse
|
25
|
Cytosolic interaction of type III human CD38 with CIB1 modulates cellular cyclic ADP-ribose levels. Proc Natl Acad Sci U S A 2017; 114:8283-8288. [PMID: 28720704 DOI: 10.1073/pnas.1703718114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD38 catalyzes the synthesis of the Ca2+ messenger, cyclic ADP-ribose (cADPR). It is generally considered to be a type II protein with the catalytic domain facing outside. How it can catalyze the synthesis of intracellular cADPR that targets the endoplasmic Ca2+ stores has not been resolved. We have proposed that CD38 can also exist in an opposite type III orientation with its catalytic domain facing the cytosol. Here, we developed a method using specific nanobodies to immunotarget two different epitopes simultaneously on the catalytic domain of the type III CD38 and firmly established that it is naturally occurring in human multiple myeloma cells. Because type III CD38 is topologically amenable to cytosolic regulation, we used yeast-two-hybrid screening to identify cytosolic Ca2+ and integrin-binding protein 1 (CIB1), as its interacting partner. The results from immunoprecipitation, ELISA, and bimolecular fluorescence complementation confirmed that CIB1 binds specifically to the catalytic domain of CD38, in vivo and in vitro. Mutational studies established that the N terminus of CIB1 is the interacting domain. Using shRNA to knock down and Cas9/guide RNA to knock out CIB1, a direct correlation between the cellular cADPR and CIB1 levels was demonstrated. The results indicate that the type III CD38 is functionally active in producing cellular cADPR and that the activity is specifically modulated through interaction with cytosolic CIB1.
Collapse
|
26
|
Barabas AZ, Cole CD, Graeff RM, Morcol T, Lafreniere R. A novel modified vaccination technique produces IgG antibodies that cause complement-mediated lysis of multiple myeloma cells carrying CD38 antigen. Hum Antibodies 2017; 24:45-51. [PMID: 28128764 DOI: 10.3233/hab-160294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives were to: 1) induce a lytic IgG antibody (ab) response (via the so called `third vaccination method') against CD38 antigen (ag) residing on the extra-cellular domain of multiple myeloma (MM) cells in recipient rabbits, by combining the CD38 ag with donor-derived anti-CD38 ag lytic IgG ab into an immune complex (IC); and 2) determine whether abs produced would cause complement-mediated lysis (in vitro) of human MM cells containing CD38 ag. The vaccine was created in a two-step process. First, ab (rabbit anti-CD38 ag IgG ab) was raised in donor rabbits by injections of low molecular weight soluble CD38 ag in Freund's complete adjuvant (FCA) and aqueous solution. Second, transfer of pathogenic lytic IgG ab response into recipient rabbits was achieved by injections of ICs composed of CD38 ag and homologous anti-CD38 ag IgG ab. Consequently, recipient rabbits produced the same ab with the same specificity against the target ag as was present in the inoculum, namely agglutinating, precipitating and lytic (as demonstrated in vitro). In an in vitro study, in the presence of complement, donor and recipient rabbits' immune sera caused lysis of CD38 ag associated human MM cells. The most effective lytic ab response causing sera were those from donor rabbits injected with CD38 ag in FCA and those from rabbits injected with ICs, especially when they were administered in adjuvants. These results provided proof of concept that the third vaccination method has good potential as a stand-alone and efficacious method of controlling cancer.
Collapse
Affiliation(s)
- Arpad Z Barabas
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Chad D Cole
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Richard M Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Tulin Morcol
- BioSante Pharmaceuticals, Inc., Doylestown, PA, USA
| | - Rene Lafreniere
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Barabas AZ, Cole CD, Graeff RM, Kovacs ZB, Lafreniere R. Suppression of tumor growth by a heterologous antibody directed against multiple myeloma dominant CD38 antigen in SCID mice injected with multiple myeloma cells. Hum Antibodies 2017; 24:53-57. [PMID: 28128765 DOI: 10.3233/hab-160295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Employing passive immunization - using a heterologous anti-CD38 IgG antibody containing serum - in SCID mice injected subcutaneously with human multiple myeloma cells, we have shown that treatments with the antiserum - especially in the presence of complement - significantly decreased cancer growth. However, administered antibody and complement was not sufficient in amount to prevent cancer cell multiplication and cancer growth expansion to a satisfactory degree. Larger volumes of the same components more than likely would have further reduced cancer growth and prolonged the life of mice. In control mice, cancer growth progressed faster proving that lytic immune response against multiple myeloma cells is necessary for cancer cell kill.
Collapse
Affiliation(s)
- Arpad Z Barabas
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Chad D Cole
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Richard M Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Zoltan B Kovacs
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Rene Lafreniere
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
Deshpande DA, Guedes AGP, Lund FE, Subramanian S, Walseth TF, Kannan MS. CD38 in the pathogenesis of allergic airway disease: Potential therapeutic targets. Pharmacol Ther 2016; 172:116-126. [PMID: 27939939 DOI: 10.1016/j.pharmthera.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD38 is an ectoenzyme that catalyzes the conversion of β-nicotinamide adenine dinucleotide (β-NAD) to cyclic adenosine diphosphoribose (cADPR) and adenosine diphosphoribose (ADPR) and NADP to nicotinic acid adenine dinucleotide phosphate (NAADP) and adenosine diphosphoribose-2'-phosphate (ADPR-P). The metabolites of NAD and NADP have roles in calcium signaling in different cell types including airway smooth muscle (ASM) cells. In ASM cells, inflammatory cytokines augment CD38 expression and to a greater magnitude in cells from asthmatics, indicating a greater capacity for the generation of cADPR and ADPR in ASM from asthmatics. CD38 deficient mice develop attenuated airway responsiveness to inhaled methacholine following allergen sensitization and challenge compared to wild-type mice indicating its potential role in asthma. Regulation of CD38 expression in ASM cells is achieved by mitogen activated protein kinases, specific isoforms of PI3 kinases, the transcription factors NF-κB and AP-1, and post-transcriptionally by microRNAs. This review will focus on the role of CD38 in intracellular calcium regulation in ASM, contribution to airway inflammation and airway hyperresponsiveness in mouse models of allergic airway inflammation, the transcriptional and post-transcriptional mechanisms of regulation of expression, and outline approaches to inhibit its expression and activity.
Collapse
Affiliation(s)
| | - Alonso G P Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota at Twin Cities, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, USA
| | | | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota at Twin Cities, USA
| | - Mathur S Kannan
- Department of Veterinary and Biomedical Sciences, University of Minnesota at Twin Cities, USA.
| |
Collapse
|
29
|
Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, Lam CMC, Wang XW, Xin D, Zhang P, Koch-Nolte F, Hao Q, Zhang H, Lee HC, Zhao YJ. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep 2016; 6:27055. [PMID: 27251573 PMCID: PMC4890012 DOI: 10.1038/srep27055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
CD38, as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein, we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved, identifying three separate epitopes on the carboxyl domain. Chromobodies, engineered by tagging the nanobody with fluorescence proteins, provide fast, simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin, PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines, with half maximal effective concentration reaching as low as 10−11 molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.
Collapse
Affiliation(s)
- Ting Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shali Qi
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mandy Unger
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yun Nan Hou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qi Wen Deng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Liu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Connie M C Lam
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xian Wang Wang
- Functional Laboratory, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Du Xin
- Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518029, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Quan Hao
- School of Biomedical Sciences, Li Ka Shing School of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department of Biology, and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China, Shenzhen 518055, China
| | - Hon Cheung Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Juan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
30
|
Ting KY, Leung CFP, Graeff RM, Lee HC, Hao Q, Kotaka M. Porcine CD38 exhibits prominent secondary NAD(+) cyclase activity. Protein Sci 2016; 25:650-61. [PMID: 26660500 DOI: 10.1002/pro.2859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/20/2015] [Indexed: 11/12/2022]
Abstract
Cyclic ADP-ribose (cADPR) mobilizes intracellular Ca(2+) stores and activates Ca(2+) influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD(+) by the multifunctional CD38/ADP-ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD(+) can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD(+) to form linear ADPR while Aplysia ADP-ribosyl cyclase prefers cyclizing NAD(+) to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD(+) cyclase activity producing cADPR. We also determined the X-ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD(+) reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively.
Collapse
Affiliation(s)
- Kai Yiu Ting
- School of Life Sciences, the Chinese University of Hong Kong, Hong Kong.,The Centre of Novel Biomaterials, the Chinese University of Hong Kong, Hong Kong
| | | | - Richard M Graeff
- Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hon Cheung Lee
- School of Chemical Biology & Biotechnology, Peking University Campus, Shenzhen, China
| | - Quan Hao
- Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Masayo Kotaka
- School of Life Sciences, the Chinese University of Hong Kong, Hong Kong.,The Centre of Novel Biomaterials, the Chinese University of Hong Kong, Hong Kong.,Department of Physiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|
31
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
32
|
Swarbrick J, Graeff R, Zhang H, Thomas MP, Hao Q, Potter BVL. Cyclic adenosine 5'-diphosphate ribose analogs without a "southern" ribose inhibit ADP-ribosyl cyclase-hydrolase CD38. J Med Chem 2014; 57:8517-29. [PMID: 25226087 PMCID: PMC4207131 DOI: 10.1021/jm501037u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyclic adenosine 5'-diphosphate ribose (cADPR) analogs based on the cyclic inosine 5'-diphosphate ribose (cIDPR) template were synthesized by recently developed stereo- and regioselective N1-ribosylation. Replacing the base N9-ribose with a butyl chain generates inhibitors of cADPR hydrolysis by the human ADP-ribosyl cyclase CD38 catalytic domain (shCD38), illustrating the nonessential nature of the "southern" ribose for binding. Butyl substitution generally improves potency relative to the parent cIDPRs, and 8-amino-N9-butyl-cIDPR is comparable to the best noncovalent CD38 inhibitors to date (IC50 = 3.3 μM). Crystallographic analysis of the shCD38:8-amino-N9-butyl-cIDPR complex to a 2.05 Å resolution unexpectedly reveals an N1-hydrolyzed ligand in the active site, suggesting that it is the N6-imino form of cADPR that is hydrolyzed by CD38. While HPLC studies confirm ligand cleavage at very high protein concentrations, they indicate that hydrolysis does not occur under physiological concentrations. Taken together, these analogs confirm that the "northern" ribose is critical for CD38 activity and inhibition, provide new insight into the mechanism of cADPR hydrolysis by CD38, and may aid future inhibitor design.
Collapse
Affiliation(s)
- Joanna
M. Swarbrick
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Richard Graeff
- Department
of Physiology, University of Hong Kong, Hong Kong, China
| | - Hongmin Zhang
- Department
of Physiology, University of Hong Kong, Hong Kong, China
| | - Mark P. Thomas
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Quan Hao
- Department
of Physiology, University of Hong Kong, Hong Kong, China
| | - Barry V. L. Potter
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom,Phone: ++44-1225-386639. Fax: ++44-1225-386114. E-mail:
| |
Collapse
|
33
|
The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia 2014; 29:356-68. [PMID: 24990614 DOI: 10.1038/leu.2014.207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/25/2022]
Abstract
The ecto-enzyme CD38 is gaining momentum as a novel therapeutic target for patients with hematological malignancies, with several anti-CD38 monoclonal antibodies in clinical trials with promising results. In chronic lymphocytic leukemia (CLL) CD38 is a marker of unfavorable prognosis and a central factor in the pathogenetic network underlying the disease: activation of CD38 regulates genetic pathways involved in proliferation and movement. Here we show that CD38 is enzymatically active in primary CLL cells and that its forced expression increases disease aggressiveness in a xenograft model. The effect is completely lost when using an enzyme-deficient version of CD38 with a single amino-acid mutation. Through the enzymatic conversion of NAD into ADPR (ADP-ribose) and cADPR (cyclic ADP-ribose), CD38 increases cytoplasmic Ca(2+) concentrations, positively influencing proliferation and signaling mediated via chemokine receptors or integrins. Consistently, inhibition of the enzymatic activities of CD38 using the flavonoid kuromanin blocks CLL chemotaxis, adhesion and in vivo homing. In a short-term xenograft model using primary cells, kuromanin treatment traps CLL cells in the blood, thereby increasing responses to chemotherapy. These results suggest that monoclonal antibodies that block the enzymatic activities of CD38 or enzyme inhibitors may prove therapeutically useful.
Collapse
|
34
|
Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1317-31. [PMID: 24721563 DOI: 10.1016/j.bbapap.2014.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/14/2023]
Abstract
Bovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD(+). To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2'-OH group of NAD(+), was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.
Collapse
|
35
|
Shrimp JH, Hu J, Dong M, Wang BS, MacDonald R, Jiang H, Hao Q, Yen A, Lin H. Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe. J Am Chem Soc 2014; 136:5656-63. [PMID: 24660829 PMCID: PMC4004212 DOI: 10.1021/ja411046j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Nicotinamide adenine dinucleotide
(NAD) is increasingly recognized
as an important signaling molecule that affects numerous biological
pathways. Thus, enzymes that metabolize NAD can have important biological
functions. One NAD-metabolizing enzyme in mammals is CD38, a type
II transmembrane protein that converts NAD primarily to adenosine
diphosphate ribose (ADPR) and a small amount of cyclic adenosine diphosphate
ribose (cADPR). Localization of CD38 was originally thought to be
only on the plasma membrane, but later reports showed either significant
or solely, intracellular CD38. With the efficient NAD-hydrolysis activity,
the intracellular CD38 may lead to depletion of cellular NAD, thus
producing harmful effects. Therefore, the intracellular localization
of CD38 needs to be carefully validated. Here, we report the synthesis
and application of a cell permeable, fluorescent small molecule (SR101–F-araNMN)
that can covalently label enzymatically active CD38 with minimal perturbation
of live cells. Using this fluorescent probe, we revealed that CD38
is predominately on the plasma membrane of Raji and retinoic acid
(RA)-treated HL-60 cells. Additionally, the probe revealed no CD38
expression in K562 cells, which was previously reported to have solely
intracellular CD38. The finding that very little intracellular CD38
exists in these cell lines suggests that the major enzymatic function
of CD38 is to hydrolyze extracellular rather than intracellular NAD.
The fluorescent activity-based probes that we developed allow the
localization of CD38 in different cells to be determined, thus enabling
a better understanding of the physiological function.
Collapse
Affiliation(s)
- Jonathan H Shrimp
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca 2+ signaling pathway. World J Biol Chem 2014; 5:58-67. [PMID: 24600514 PMCID: PMC3942542 DOI: 10.4331/wjbc.v5.i1.58] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/09/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mobilization of intracellular Ca2+ stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca2+ mobilizing nucleotide present in many cell types and species, from plants to animals. cADPR is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide. The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. It has been shown that many extracellular stimuli can induce cADPR production that leads to calcium release or influx, establishing cADPR as a second messenger. cADPR has been linked to a wide variety of cellular processes, but the molecular mechanisms regarding cADPR signaling remain elusive. The aim of this review is to summarize the CD38/cADPR/Ca2+ signaling pathway, focusing on the recent advances involving the mechanism and physiological functions of cADPR-mediated Ca2+ mobilization.
Collapse
|
37
|
Kuhn I, Kellenberger E, Schuber F, Muller-Steffner H. Schistosoma mansoni NAD(+) catabolizing enzyme: identification of key residues in catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2520-7. [PMID: 24035885 DOI: 10.1016/j.bbapap.2013.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/21/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Schistosoma mansoni NAD(+) catabolizing enzyme (SmNACE), a distant homolog of mammalian CD38, shows significant structural and functional analogy to the members of the CD38/ADP-ribosyl cyclase family. The hallmark of SmNACE is the lack of ADP-ribosyl cyclase activity that might be ascribed to subtle changes in its active site. To better characterize the residues of the active site we determined the kinetic parameters of nine mutants encompassing three acidic residues: (i) the putative catalytic residue Glu202 and (ii) two acidic residues within the 'signature' region (the conserved Glu124 and the downstream Asp133), (iii) Ser169, a strictly conserved polar residue and (iv) two aromatic residues (His103 and Trp165). We established the very important role of Glu202 and of the hydrophobic domains overwhelmingly in the efficiency of the nicotinamide-ribosyl bond cleavage step. We also demonstrated that in sharp contrast with mammalian CD38, the 'signature' Glu124 is as critical as Glu202 for catalysis by the parasite enzyme. The different environments of the two Glu residues in the crystal structure of CD38 and in the homology model of SmNACE could explain such functional discrepancies. Mutagenesis data and 3D structures also indicated the importance of aromatic residues, especially His103, in the stabilization of the reaction intermediate as well as in the selection of its conformation suitable for cyclization to cyclic ADP-ribose. Finally, we showed that inhibition of SmNACE by the natural product cyanidin requires the integrity of Glu202 and Glu124, but not of His103 and Trp165, hence suggesting different recognition modes for substrate and inhibitor.
Collapse
Affiliation(s)
- Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Medalis Drug Discovery Center, 74 route du Rhin, 67400 Illkirch, France
| | | | | | | |
Collapse
|
38
|
Moreau C, Liu Q, Graeff R, Wagner GK, Thomas MP, Swarbrick JM, Shuto S, Lee HC, Hao Q, Potter BVL. CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5'-Diphosphate Ribose Template. PLoS One 2013; 8:e66247. [PMID: 23840430 PMCID: PMC3686795 DOI: 10.1371/journal.pone.0066247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
Few inhibitors exist for CD38, a multifunctional enzyme catalyzing the formation and metabolism of the Ca(2+)-mobilizing second messenger cyclic adenosine 5'-diphosphoribose (cADPR). Synthetic, non-hydrolyzable ligands can facilitate structure-based inhibitor design. Molecular docking was used to reproduce the crystallographic binding mode of cyclic inosine 5'-diphosphoribose (N1-cIDPR) with CD38, revealing an exploitable pocket and predicting the potential to introduce an extra hydrogen bond interaction with Asp-155. The purine C-8 position of N1-cIDPR (IC50 276 µM) was extended with an amino or diaminobutane group and the 8-modified compounds were evaluated against CD38-catalyzed cADPR hydrolysis. Crystallography of an 8-amino N1-cIDPR:CD38 complex confirmed the predicted interaction with Asp-155, together with a second H-bond from a realigned Glu-146, rationalizing the improved inhibition (IC50 56 µM). Crystallography of a complex of cyclic ADP-carbocyclic ribose (cADPcR, IC50 129 µM) with CD38 illustrated that Glu-146 hydrogen bonds with the ligand N6-amino group. Both 8-amino N1-cIDPR and cADPcR bind deep in the active site reaching the catalytic residue Glu-226, and mimicking the likely location of cADPR during catalysis. Substantial overlap of the N1-cIDPR "northern" ribose monophosphate and the cADPcR carbocyclic ribose monophosphate regions suggests that this area is crucial for inhibitor design, leading to a new compound series of N1-inosine 5'-monophosphates (N1-IMPs). These small fragments inhibit hydrolysis of cADPR more efficiently than the parent cyclic compounds, with the best in the series demonstrating potent inhibition (IC50 = 7.6 µM). The lower molecular weight and relative simplicity of these compounds compared to cADPR make them attractive as a starting point for further inhibitor design.
Collapse
Affiliation(s)
- Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Qun Liu
- Macromolar Diffraction Facility, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, United States of America
| | - Richard Graeff
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gerd K. Wagner
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Joanna M. Swarbrick
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China
| | - Quan Hao
- Macromolar Diffraction Facility, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, United States of America
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| |
Collapse
|
39
|
Jiang H, Sherwood R, Zhang S, Zhu X, Liu Q, Graeff R, Kriksunov IA, Lee HC, Hao Q, Lin H. Identification of ADP-ribosylation sites of CD38 mutants by precursor ion scanning mass spectrometry. Anal Biochem 2012; 433:218-26. [PMID: 23123429 DOI: 10.1016/j.ab.2012.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/16/2022]
Abstract
Protein ADP-ribosylation, including mono- and poly-ADP-ribosylation, is increasingly recognized to play important roles in various biological pathways. Molecular understanding of the functions of ADP-ribosylation requires the identification of the sites of modification. Although tandem mass spectrometry (MS/MS) is widely recognized as an effective means for determining protein modifications, identification of ADP-ribosylation sites has been challenging due to the labile and hydrophilic nature of the modification. Here we applied precursor ion scanning-triggered MS/MS analysis on a hybrid quadrupole linear ion trap mass spectrometer for selectively detecting ADP-ribosylated peptides and determining the auto-ADP-ribosylation sites of CD38 (cluster of differentiation 38) E226D and E226Q mutants. CD38 is an enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to ADP-ribose. Here we show that NAD can covalently label CD38 E226D and E226Q mutants but not wild-type CD38. In this study, we have successfully identified the D226/Q226 and K129 residues of the two CD38 mutants being the ADP-ribosylation sites using precursor ion scanning hybrid quadrupole linear ion trap mass spectrometry. The results offer insights about the CD38 enzymatic reaction mechanism. The precursor ion scanning method should be useful for identifying the modification sites of other ADP-ribosyltransferases such as poly(ADP-ribose) polymerases.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang X, Mou Z. Expression of the human NAD(P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1209-18. [PMID: 22670756 DOI: 10.1094/mpmi-10-11-0278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant systemic acquired resistance (SAR) is a long-lasting, broad-spectrum immune response that is mounted after primary pathogen infection. Although SAR has been extensively researched, the molecular mechanisms underlying its activation have not been completely understood. We have previously shown that the electron carrier NAD(P) leaks into the plant extracellular compartment upon pathogen attack and that exogenous NAD(P) activates defense gene expression and disease resistance in local treated leaves, suggesting that extracellular NAD(P) [eNAD(P)] might function as a signal molecule activating plant immune responses. To further establish the function of eNAD(P) in plant immunity, we tested the effect of exogenous NAD(P) on resistance gene-mediated hypersensitive response (HR) and SAR. We found that exogenous NAD(P) completely suppresses HR-mediated cell death but does not affect HR-mediated disease resistance. Local application of exogenous NAD(P) is unable to induce SAR in distal tissues, indicating that eNAD(P) is not a sufficient signal for SAR activation. Using transgenic Arabidopsis plants expressing the human NAD(P)-metabolizing ectoenzyme CD38, we demonstrated that altering eNAD(P) concentration or signaling compromises biological induction of SAR. This result suggests that eNAD(P) may play a critical signaling role in activation of SAR.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
41
|
Lee HC. Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) as messengers for calcium mobilization. J Biol Chem 2012; 287:31633-40. [PMID: 22822066 DOI: 10.1074/jbc.r112.349464] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate were discovered >2 decades ago. That they are second messengers for mobilizing Ca(2+) stores has since been firmly established. Separate stores and distinct Ca(2+) channels are targeted, with cyclic ADP-ribose acting on the ryanodine receptors in the endoplasmic reticulum, whereas nicotinic acid adenine dinucleotide phosphate mobilizes the endolysosomes via the two-pore channels. Despite the structural and functional differences, both messengers are synthesized by a ubiquitous enzyme, CD38, whose crystal structure and catalytic mechanism have now been well elucidated. How this novel signaling enzyme is regulated remains largely unknown and is the focus of this minireview.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Egea PF, Muller-Steffner H, Kuhn I, Cakir-Kiefer C, Oppenheimer NJ, Stroud RM, Kellenberger E, Schuber F. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates. PLoS One 2012; 7:e34918. [PMID: 22529956 PMCID: PMC3329556 DOI: 10.1371/journal.pone.0034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/06/2012] [Indexed: 01/02/2023] Open
Abstract
Bovine CD38/NAD+glycohydrolase (bCD38) catalyses the hydrolysis of NAD+ into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2′-fluorinated analogs of NAD+. Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218. Compared to the non-covalent (Michaelis) complex, the ligands adopt a more folded conformation in the covalent complexes. Altogether these crystallographic snapshots along the reaction pathway reveal the drastic conformational rearrangements undergone by the ligand during catalysis with the repositioning of its adenine ring from a solvent-exposed position stacked against Trp168 to a more buried position stacked against Trp181. This adenine flipping between conserved tryptophans is a prerequisite for the proper positioning of the N1 of the adenine ring to perform the nucleophilic attack on the C1′ of the ribofuranoside ring ultimately yielding cADPR. In all structures, however, the adenine ring adopts the most thermodynamically favorable anti conformation, explaining why cyclization, which requires a syn conformation, remains a rare alternate event in the reactions catalyzed by bCD38 (cADPR represents only 1% of the reaction products). In the Michaelis complex, the substrate is bound in a constrained conformation; the enzyme uses this ground-state destabilization, in addition to a hydrophobic environment and desolvation of the nicotinamide-ribosyl bond, to destabilize the scissile bond leading to the formation of a ribooxocarbenium ion intermediate. The Glu218 side chain stabilizes this reaction intermediate and plays another important role during catalysis by polarizing the 2′-OH of the substrate NAD+. Based on our structural analysis and data on active site mutants, we propose a detailed analysis of the catalytic mechanism.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (PFE); (FS)
| | - Hélène Muller-Steffner
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Isabelle Kuhn
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Céline Cakir-Kiefer
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, UR AFPA, Nancy Université, Vandoeuvre-les-Nancy, France
| | - Norman J. Oppenheimer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Francis Schuber
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail: (PFE); (FS)
| |
Collapse
|
43
|
Ikeda T, Takasawa S, Noguchi N, Nata K, Yamauchi A, Takahashi I, Yoshikawa T, Sugawara A, Yonekura H, Okamoto H. Identification of a major enzyme for the synthesis and hydrolysis of cyclic ADP-ribose in amphibian cells and evolutional conservation of the enzyme from human to invertebrate. Mol Cell Biochem 2012; 366:69-80. [PMID: 22422046 DOI: 10.1007/s11010-012-1284-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
Cyclic ADP-ribose (cADPR), a metabolite of NAD(+), is known to function as a second messenger for intracellular Ca(2+) mobilization in various vertebrate and invertebrate tissues. In this study, we isolated two Xenopus laevis cDNAs (frog cd38 and cd157 cDNAs) homologous to the one encoding the human cADPR-metabolizing enzyme CD38. Frog CD38 and CD157 are 298-amino acid proteins with 35.9 and 27.2 % identity to human CD38 and CD157, respectively. Transfection of expression vectors for frog CD38 and CD157 into COS-7 cells revealed that frog CD38 had NAD(+) glycohydrolase, ADP-ribosyl cyclase (ARC), and cADPR hydrolase activities, and that frog CD157 had no enzymatic activity under physiological conditions. In addition, when recombinant CD38 and frog brain homogenate were electrophoresed on an SDS-polyacrylamide gel, ARC of the brain homogenate migrated to the same position in the gel as that of frog CD38, suggesting that frog CD38 is the major enzyme responsible for cADPR metabolism in amphibian cells. The frog cd38 gene consists of eight exons and is ubiquitously expressed in various tissues. These findings provide evidence for the existence of the CD38-cADPR signaling system in frog cells and suggest that the CD38-cADPR signaling system is conserved during vertebrate evolution.
Collapse
Affiliation(s)
- Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Durnin L, Hwang SJ, Ward SM, Sanders KM, Mutafova-Yambolieva VN. Adenosine 5-diphosphate-ribose is a neural regulator in primate and murine large intestine along with β-NAD(+). J Physiol 2012; 590:1921-41. [PMID: 22351627 DOI: 10.1113/jphysiol.2011.222414] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine 5′-triphosphate (ATP) has long been considered to be the purine inhibitory neurotransmitter in gastrointestinal (GI) muscles, but recent studies indicate that another purine nucleotide, β-nicotinamide adenine dinucleotide (β-NAD(+)), meets pre- and postsynaptic criteria for a neurotransmitter better than ATP in primate and murine colons. Using a small-volume superfusion assay and HPLC with fluorescence detection and intracellular microelectrode techniques we compared β-NAD(+) and ATP metabolism and postjunctional effects of the primary extracellular metabolites of β-NAD(+) and ATP, namely ADP-ribose (ADPR) and ADP in colonic muscles from cynomolgus monkeys and wild-type (CD38(+/+)) and CD38(−/−) mice. ADPR and ADP caused membrane hyperpolarization that, like nerve-evoked inhibitory junctional potentials (IJPs), were inhibited by apamin. IJPs and hyperpolarization responses to ADPR, but not ADP, were inhibited by the P2Y1 receptor antagonist (1R,2S,4S,5S)-4-[2-iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS2500). Degradation of β-NAD(+) and ADPR was greater per unit mass in muscles containing only nerve processes than in muscles also containing myenteric ganglia. Thus, mechanisms for generation of ADPR from β-NAD(+) and for termination of the action of ADPR are likely to be present near sites of neurotransmitter release. Degradation of β-NAD(+) to ADPR and other metabolites appears to be mediated by pathways besides CD38, the main NAD-glycohydrolase in mammals. Degradation of β-NAD(+) and ATP were equal in colon. ADPR like its precursor, β-NAD(+), mimicked the effects of the endogenous purine neurotransmitter in primate and murine colons. Taken together, our observations support a novel hypothesis in which multiple purines contribute to enteric inhibitory regulation of gastrointestinal motility.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0575, USA
| | | | | | | | | |
Collapse
|
45
|
Durnin L, Dai Y, Aiba I, Shuttleworth CW, Yamboliev IA, Mutafova-Yambolieva VN. Release, neuronal effects and removal of extracellular β-nicotinamide adenine dinucleotide (β-NAD⁺) in the rat brain. Eur J Neurosci 2012; 35:423-35. [PMID: 22276961 DOI: 10.1111/j.1460-9568.2011.07957.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent evidence supports an emerging role of β-nicotinamide adenine dinucleotide (β-NAD(+) ) as a novel neurotransmitter and neuromodulator in the peripheral nervous system -β-NAD(+) is released in nerve-smooth muscle preparations and adrenal chromaffin cells in a manner characteristic of a neurotransmitter. It is currently unclear whether this holds true for the CNS. Using a small-chamber superfusion assay and high-sensitivity high-pressure liquid chromatography techniques, we demonstrate that high-K(+) stimulation of rat forebrain synaptosomes evokes overflow of β-NAD(+) , adenosine 5'-triphosphate, and their metabolites adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate, adenosine, ADP-ribose (ADPR) and cyclic ADPR. The high-K(+) -evoked overflow of β-NAD(+) is attenuated by cleavage of SNAP-25 with botulinum neurotoxin A, by inhibition of N-type voltage-dependent Ca(2+) channels with ω-conotoxin GVIA, and by inhibition of the proton gradient of synaptic vesicles with bafilomycin A1, suggesting that β-NAD(+) is likely released via vesicle exocytosis. Western analysis demonstrates that CD38, a multifunctional protein that metabolizes β-NAD(+) , is present on synaptosomal membranes and in the cytosol. Intact synaptosomes degrade β-NAD(+) . 1,N (6) -etheno-NAD, a fluorescent analog of β-NAD(+) , is taken by synaptosomes and this uptake is attenuated by authentic β-NAD(+) , but not by the connexin 43 inhibitor Gap 27. In cortical neurons local applications of β-NAD(+) cause rapid Ca(2+) transients, likely due to influx of extracellular Ca(2+) . Therefore, rat brain synaptosomes can actively release, degrade and uptake β-NAD(+) , and β-NAD(+) can stimulate postsynaptic neurons, all criteria needed for a substance to be considered a candidate neurotransmitter in the brain.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kwong AKY, Chen Z, Zhang H, Leung FP, Lam CMC, Ting KY, Zhang L, Hao Q, Zhang LH, Lee HC. Catalysis-based inhibitors of the calcium signaling function of CD38. Biochemistry 2011; 51:555-64. [PMID: 22142305 DOI: 10.1021/bi201509f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD38 is a signaling enzyme responsible for catalyzing the synthesis of cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate; both are universal Ca(2+) messenger molecules. Ablation of the CD38 gene in mice causes multiple physiological defects, including impaired oxytocin release, that result in altered social behavior. A series of catalysis-based inhibitors of CD38 were designed and synthesized, starting with arabinosyl-2'-fluoro-2'-deoxynicotinamide mononucleotide. Structure-function relationships were analyzed to assess the structural determinants important for inhibiting the NADase activity of CD38. X-ray crystallography was used to reveal the covalent intermediates that were formed with the catalytic residue, Glu226. Metabolically stable analogues that were resistant to inactivation by phosphatase and esterase were synthesized and shown to be effective in inhibiting intracellular cADPR production in human HL-60 cells during induction of differentiation by retinoic acid. The inhibition was species-independent, and the analogues were similarly effective in blocking the cyclization reaction of CD38 in rat ventricular tissue extracts, as well as inhibiting the α-agonist-induced constriction in rat mesentery arteries. These compounds thus represent the first generally applicable and catalysis-based inhibitors of the Ca(2+) signaling function of CD38.
Collapse
Affiliation(s)
- Anna Ka Yee Kwong
- Department of Physiology, 4/F Lab Block, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kotaka M, Graeff R, Chen Z, Zhang LH, Lee HC, Hao Q. Structural studies of intermediates along the cyclization pathway of Aplysia ADP-ribosyl cyclase. J Mol Biol 2011; 415:514-26. [PMID: 22138343 DOI: 10.1016/j.jmb.2011.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022]
Abstract
Cyclic ADP-ribose (cADPR) is a calcium messenger that can mobilize intracellular Ca²⁺ stores and activate Ca²⁺ influx to regulate a wide range of physiological processes. Aplysia cyclase is the first member of the ADP-ribosyl cyclases identified to catalyze the cyclization of NAD⁺ into cADPR. The catalysis involves a two-step reaction, the elimination of the nicotinamide ring and the cyclization of the intermediate resulting in the covalent attachment of the purine ring to the terminal ribose. Aplysia cyclase exhibits a high degree of leniency towards the purine base of its substrate, and the cyclization reaction takes place at either the N1- or the N7-position of the purine ring. To decipher the mechanism of cyclization in Aplysia cyclase, we used a crystallization setup with multiple Aplysia cyclase molecules present in the asymmetric unit. With the use of natural substrates and analogs, not only were we able to capture multiple snapshots during enzyme catalysis resulting in either N1 or N7 linkage of the purine ring to the terminal ribose, we were also able to observe, for the first time, the cyclized products of both N1 and N7 cyclization bound in the active site of Aplysia cyclase.
Collapse
Affiliation(s)
- Masayo Kotaka
- Department of Physiology, University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
48
|
Durnin L, Mutafova-Yambolieva VN. Cyclic ADP-ribose requires CD38 to regulate the release of ATP in visceral smooth muscle. FEBS J 2011; 278:3095-108. [PMID: 21740519 PMCID: PMC4838287 DOI: 10.1111/j.1742-4658.2011.08233.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is well established that the intracellular second messenger cADP-ribose (cADPR) activates Ca(2+) release from the sarcoplasmic reticulum through ryanodine receptors. CD38 is a multifunctional enzyme involved in the formation of cADPR in mammals. CD38 has also been reported to transport cADPR in several cell lines. Here, we demonstrate a role for extracellular cADPR and CD38 in modulating the spontaneous, but not the electrical field stimulation-evoked, release of ATP in visceral smooth muscle. Using a small-volume superfusion assay and an HPLC technique with fluorescence detection, we measured the spontaneous and evoked release of ATP in bladder detrusor smooth muscles isolated from CD38(+/+) and CD38(-/-) mice. cADPR (1 nM) enhanced the spontaneous overflow of ATP in bladders isolated from CD38(+/+) mice. This effect was abolished by the inhibitor of cADPR receptors on sarcoplasmic reticulum 8-bromo-cADPR (80 μM) and by ryanodine (50 μm), but not by the nonselective P2 purinergic receptor antagonist pyridoxal phosphate 6-azophenyl-2',4'-disulfonate (30 μM). cADPR failed to facilitate the spontaneous ATP overflow in bladders isolated from CD38(-/-) mice, indicating that CD38 is crucial for the enhancing effects of extracellular cADPR on spontaneous ATP release. Contractile responses to ATP were potentiated by cADPR, suggesting that the two adenine nucleotides may work in synergy to maintain the resting tone of the bladder. In conclusion, extracellular cADPR enhances the spontaneous release of ATP in the bladder by influx via CD38 and subsequent activation of intracellular cADPR receptors, probably causing an increase in intracellular Ca(2+) in neuronal cells.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0575, USA
| | | |
Collapse
|
49
|
Lee HC. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. SCIENCE CHINA-LIFE SCIENCES 2011; 54:699-711. [PMID: 21786193 DOI: 10.1007/s11427-011-4197-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 12/17/2022]
Abstract
The concept advanced by Berridge and colleagues that intracellular Ca(2+)-stores can be mobilized in an agonist-dependent and messenger (IP(3))-mediated manner has put Ca(2+)-mobilization at the center stage of signal transduction mechanisms. During the late 1980s, we showed that Ca(2+)-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP(3)) and identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.
Collapse
Affiliation(s)
- Hon Cheung Lee
- Department of Physiology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Kellenberger E, Kuhn I, Schuber F, Muller-Steffner H. Flavonoids as inhibitors of human CD38. Bioorg Med Chem Lett 2011; 21:3939-42. [PMID: 21641214 DOI: 10.1016/j.bmcl.2011.05.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
Abstract
CD38 is a multifunctional enzyme which is ubiquitously distributed in mammalian tissues. It is involved in the conversion of NAD(P)(+) into cyclic ADP-ribose, NAADP(+) and ADP-ribose and the role of these metabolites in multiple Ca(2+) signaling pathways makes CD38 a novel potential pharmacological target. The dire paucity of CD38 inhibitors, however, renders the search for new molecular tools highly desirable. We report that human CD38 is inhibited at low micromolar concentrations by flavonoids such as luteolinidin, kuromanin and luteolin (IC(50) <10 μM). Docking studies provide some clues on the mode of interaction of these molecules with the active site of CD38.
Collapse
Affiliation(s)
- Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France
| | | | | | | |
Collapse
|