1
|
Deng B, Luo J, Xu C, Zhang X, Li J, Yuan Q, Cao H. Biotransformation of Pb and As from sewage sludge and food waste by black soldier fly larvae: Migration mechanism of bacterial community and metalloregulatory protein scales. WATER RESEARCH 2024; 254:121405. [PMID: 38447376 DOI: 10.1016/j.watres.2024.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The accumulation and transformation of lead (Pb) and arsenic (As) during the digestion of sewage sludge (SS) by black soldier fly larvae (BSFL) remain unclear. In this study, we used 16 s rRNA and metagenomic sequencing techniques to investigate the correlation between the microbial community, metalloregulatory proteins (MRPs), and Pb and As migration and transformation. During the 15-day test period, BSFL were able to absorb 34-48 % of Pb and 32-45 % of As into their body. Changes in bacterial community abundance, upregulation of MRPs, and redundancy analysis (RDA) results confirmed that ZntA, EfeO, CadC, ArsR, ArsB, ArsD, and ArsA play major roles in the adsorption and stabilization of Pb and As, which is mainly due to the high contribution rates of Lactobacillus (48-59 %) and Enterococcus (21-23 %). Owing to the redox reaction, the regulation of the MRPs, and the change in pH, the Pb and As in the BSFL residue were mainly the residual fraction (F4). The RDA results showed that Lactobacillus and L.koreensis could significantly (P < 0.01) reduce the reducible fraction (F2) and F4 of Pb, whereas Firmicutes and L.fermentum can significantly (P < 0.05) promote the transformation of As to F4, thus realizing the passivation Pb and As. This study contributes to the understanding of Pb and As in SS adsorbed by BSFL and provides important insights into the factors that arise during the BSFL-mediated migration of Pb and As.
Collapse
Affiliation(s)
- Bo Deng
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Junlong Luo
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Chao Xu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Xin Zhang
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Jun Li
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Qiaoxia Yuan
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China.
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China.
| |
Collapse
|
2
|
Mariadasse R, Rajmichael R, Dwivedy A, Amala M, Ahmad M, Mutharasappan N, Biswal BK, Jeyakanthan J. Characterization of putative transcriptional regulator (PH0140) and its distal homologue. Cell Signal 2021; 84:110031. [PMID: 33932498 DOI: 10.1016/j.cellsig.2021.110031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
In this study, a phylogenetic tree was constructed using 1854 sequences of various Lrp/AnsC (FFRPs) and ArsR proteins from pathogenic and non-pathogenic organisms. Despite having sequence similarities, FFRPs and ArsR proteins functioning differently as a transcriptional regulator and de-repressor in the presence of exogenous amino acids and metal ions, respectively. To understand these functional differences, the structures of various FFRPs and ArsR proteins (134 sequences) were modeled. Several ArsR proteins exhibited high similarity to the FFRPs while in few proteins, unusual structural folds were observed. However, the Helix-turn-Helix (HTH) domains are common among them and the ligand-binding domains are structurally dissimilar suggest the differences in their binding preferences. Despite low sequence conservation, most of these proteins revealed negatively charged surfaces in the active site pockets. Representative structures (PH0140 and TtArsR protein) from FFRPs and ArsR protein families were considered and evaluated for their functional differences using molecular modeling studies. Our earlier study has explained the binding preference of exogenous Tryptophan and the related transcriptional regulatory mechanism of PH0140 protein. In this study, a Cu2+ ion-induced de-repression mechanism of the TtArsR-DNA complex was characterized through docking and molecular dynamics. Further, the proteins were purified and their efficiency for sensing Tryptophan and Cu2+ ions were analyzed using cyclic voltammetry. Overall, the study explores the structural evolution and functional difference of FFRPs and ArsR proteins that present the possibilities of PH0140 and TtArsR as potential bio-sensory molecules.
Collapse
Affiliation(s)
- Richard Mariadasse
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi 630 004, India
| | - Raji Rajmichael
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi 630 004, India
| | | | - Mathimaran Amala
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi 630 004, India
| | | | - Nachiappan Mutharasappan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi 630 004, India
| | | | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi 630 004, India.
| |
Collapse
|
3
|
Elcin E, Öktem HA. Inorganic Cadmium Detection Using a Fluorescent Whole-Cell Bacterial Bioreporter. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1755867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Evrim Elcin
- Department of Agricultural Biotechnology, Adnan Menderes University, Aydın, Turkey
| | - Huseyin Avni Öktem
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Nanobiz Technology Inc, Ankara, Turkey
| |
Collapse
|
4
|
Neethu CS, Mujeeb Rahiman KM, Saramma AV, Mohamed Hatha AA. Heavy-metal resistance in Gram-negative bacteria isolated from Kongsfjord, Arctic. Can J Microbiol 2015; 61:429-35. [PMID: 25942102 DOI: 10.1139/cjm-2014-0803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolation and characterization of heterotrophic Gram-negative bacteria was carried out from the sediment and water samples collected from Kongsfjord, Arctic. In this study, the potential of Arctic bacteria to tolerate heavy metals that are of ecological significance to the Arctic (selenium (Se), mercury (Hg), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) was investigated. Quantitative assay of 130 isolates by means of plate diffusion and tube dilution methods was carried out by incorporation of different concentrations of metals. Growth in Se and Pb at a concentration of 3000 μg/L was significantly lower (P≤0.0001) than at 2000 μg/L. The minimum inhibitory concentration for Cd and Hg was 50 μg/L (P≤0.0001, F=264.23 and P≤0.0001, F=291.08, respectively) even though in the tube dilution test, Hg-containing tubes showed much less growth, revealing its superior toxicity to Cd. Thus, the level of toxicity of heavy metals was found to be in the order of Hg>Cd>Cu>Zn>Pb>Se. Multiple-metal-resistant isolates were investigated for their resistance against antibiotics, and a positive correlation was observed between antibiotic and metal resistance for all the isolates tested. The resistant organisms thus observed might influence the organic and inorganic cycles in the Arctic and affect the ecosystem.
Collapse
Affiliation(s)
- C S Neethu
- Department of Marine Biology, Microbiology, and Biochemistry, School of Marine Science, Cochin University of Science and Technology, Cochin - 682016, Kerala, India
| | | | | | | |
Collapse
|
5
|
Del Giudice I, Limauro D, Pedone E, Bartolucci S, Fiorentino G. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2071-9. [PMID: 23800470 DOI: 10.1016/j.bbapap.2013.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 11/16/2022]
Abstract
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20mM and 15mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram+bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2×10(4)M(-1)s(-1). It also exhibited weak phosphatase activity with a kcat/KM value of 2.7×10(-4)M(-1)s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase.
Collapse
Affiliation(s)
- Immacolata Del Giudice
- Department of Biology, University of Naples Federico II, Edificio 7, via Cinthia, 80126 Naples, Italy
| | | | | | | | | |
Collapse
|
6
|
Gireesh-Babu P, Chaudhari A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol Biol Rep 2012; 39:11225-9. [DOI: 10.1007/s11033-012-2033-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/02/2012] [Indexed: 11/30/2022]
|
7
|
Haddad R, Maurice F, Viphakone N, Voisinet-Hakil F, Fribourg S, Minvielle-Sébastia L. An essential role for Clp1 in assembly of polyadenylation complex CF IA and Pol II transcription termination. Nucleic Acids Res 2011; 40:1226-39. [PMID: 21993300 PMCID: PMC3273802 DOI: 10.1093/nar/gkr800] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polyadenylation is a co-transcriptional process that modifies mRNA 3′-ends in eukaryotes. In yeast, CF IA and CPF constitute the core 3′-end maturation complex. CF IA comprises Rna14p, Rna15p, Pcf11p and Clp1p. CF IA interacts with the C-terminal domain of RNA Pol II largest subunit via Pcf11p which links pre-mRNA 3′-end processing to transcription termination. Here, we analysed the role of Clp1p in 3′ processing. Clp1p binds ATP and interacts in CF IA with Pcf11p only. Depletion of Clp1p abolishes transcription termination. Moreover, we found that association of mutations in the ATP-binding domain and in the distant Pcf11p-binding region impair 3′-end processing. Strikingly, these mutations prevent not only Clp1p-Pcf11p interaction but also association of Pcf11p with Rna14p-Rna15p. ChIP experiments showed that Rna15p cross-linking to the 3′-end of a protein-coding gene is perturbed by these mutations whereas Pcf11p is only partially affected. Our study reveals an essential role of Clp1p in CF IA organization. We postulate that Clp1p transmits conformational changes to RNA Pol II through Pcf11p to couple transcription termination and 3′-end processing. These rearrangements likely rely on the correct orientation of ATP within Clp1p.
Collapse
|
8
|
Banci L, Bertini I, Ciofi-Baffoni S, Poggi L, Vanarotti M, Tottey S, Waldron KJ, Robinson NJ. NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1. J Biol Inorg Chem 2009; 15:87-98. [DOI: 10.1007/s00775-009-0568-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|
9
|
Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus. ACTA ACUST UNITED AC 2009; 113:737-45. [DOI: 10.1016/j.mycres.2009.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/16/2009] [Accepted: 02/18/2009] [Indexed: 02/06/2023]
|
10
|
Banci L, Bertini I, Ciofi-Baffoni S. Copper trafficking in biology: an NMR approach. HFSP JOURNAL 2009; 3:165-75. [PMID: 19949444 DOI: 10.2976/1.3078306] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 11/19/2022]
Abstract
Copper ions are essential for living organisms because they are involved in several fundamental biological processes. Biomolecules interacting with copper ions have to be characterized as such, when bound to the metal ion, and when they interact with other biomolecules or substrates. The characterization is both structural and dynamic. In this context, NMR is a preferred tool of investigation because it allows shedding light on what happens in solution. Here, the NMR contribution to the copper trafficking is described, providing precious information on biochemical pathways, which are essential to understand the mechanisms of life at the molecular level.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, and Magnetic Resonance Center CERM, University of Florence, Scientific Campus, 50019, Sesto Fiorentino, Florence, Italy
| | | | | |
Collapse
|
11
|
Mortari A, Campos-Reales N, Corda G, Brown N, Csöregi E. Protein-Based Capacitive Biosensors: a New Tool for Structure-Activity Relationship Studies. ELECTROANAL 2008. [DOI: 10.1002/elan.200604400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Karlsen OA, Lillehaug JR, Jensen HB. The presence of multiple c-type cytochromes at the surface of the methanotrophic bacterium Methylococcus capsulatus (Bath) is regulated by copper. Mol Microbiol 2008; 70:15-26. [PMID: 18681943 DOI: 10.1111/j.1365-2958.2008.06380.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Identification of surface proteins is essential to understand bacterial communication with its environment. Analysis of the surface-associated proteins of Methylococcus capsulatus (Bath) revealed a highly dynamic structure responding closely to the availability of copper in the medium in the range from approximately 0 to 10 microM. Several c-type cytochromes, including three novel multihaem proteins, are present at the cellular surface, a feature that is otherwise a peculiarity of dissimilatory metal-reducing bacteria. At low copper concentrations, the cytochrome c(553o) and the cytochrome c(553o) family protein, encoded by the MCA0421 and MCA0423 genes, respectively, are major constituents of the surfaceome and show a fine-tuned copper-dependent regulation of expression. Two novel members of the cytochrome c(553o) family were identified: MCA0338 was abundant between 5 and 10 microM copper, while MCA2259 was detected only in the surface fraction obtained from approximately 0 microM copper cultures. The presence at the bacterial surface of several c-type cytochromes, generally involved in energy transduction, indicates strongly that redox processes take place at the bacterial surface. Due to the unique role of copper in the biology of M. capsulatus (Bath), it appears that c-type cytochromes have essential functions in copper homeostasis allowing the cells to adapt to varying copper exposure.
Collapse
Affiliation(s)
- O A Karlsen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|
13
|
Lahiri S, Pulakat L, Gavini N. Functional participation of a nifH-arsA2 chimeric fusion gene in arsenic reduction by Escherichia coli. Biochem Biophys Res Commun 2008; 368:311-317. [PMID: 18230343 DOI: 10.1016/j.bbrc.2008.01.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/15/2008] [Indexed: 05/25/2023]
Abstract
The NifH (dimer) and ArsA proteins are structural homologs and share common motifs like nucleotide-binding domains, signal transduction domains and also possible similar metal center ligands. Given the similarity between two proteins, we investigated if the NifH protein from Azotobacter vinelandii could functionally substitute for the ArsA1 half of the ArsA protein of Escherichia coli. The chimeric NifH-ArsA2 protein was expressed and detected in the E. coli strain by Western blotting. Growth comparisons of E. coli strains containing plasmids encoding for complete ArsA, partial ArsA (ArsA2) or chimeric ArsA (NifH-ArsA2) in media with increasing sodium arsenite concentrations (0-5 mM) showed that the chimeric NifH-ArsA2 could substitute for the ArsA. This functional complementation demonstrated the strong conservation of essential domains that have been maintained in NifH and ArsA even after their divergence to perform varied functions.
Collapse
Affiliation(s)
- Surobhi Lahiri
- Department of Biological Sciences, Mississippi State University, P.O. Box GY, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
14
|
Niggli V, Sigel E. Anticipating antiport in P-type ATPases. Trends Biochem Sci 2008; 33:156-60. [PMID: 18343670 DOI: 10.1016/j.tibs.2007.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/03/2007] [Accepted: 12/07/2007] [Indexed: 11/20/2022]
Abstract
Cation-transporting P-type ATPases show a high degree of structural and functional homology. Nevertheless, for many members of this large family, the molecular mechanism of transport is unclear; namely, whether transport is electrogenic or not and if countertransport is involved remains to be established. In a few well-studied cases such as the Na(+)-K(+)-ATPase, plasma membrane Ca(2+) ATPase (PMCA) and sarcoplasmic reticulum Ca(2+) ATPase (SERCA) countertransport has been clearly demonstrated. New data based on the crystal structure of SERCA now strongly indicate that countertransport could be mandatory for all P-type ATPases. This concept should be verified for other known and for all newly characterized P-type ATPases.
Collapse
Affiliation(s)
- Verena Niggli
- Institute of Pathology, University of Bern, Murtenstrasse 31, Bern, Switzerland.
| | | |
Collapse
|
15
|
Sitthisak S, Knutsson L, Webb JW, Jayaswal RK. Molecular characterization of the copper transport system in Staphylococcus aureus. MICROBIOLOGY-SGM 2008; 153:4274-4283. [PMID: 18048940 DOI: 10.1099/mic.0.2007/009860-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Staphylococcus aureus copA gene codes for a putative copper-translocating P-type ATPase and the downstream copZ gene codes for a copper chaperone. Genome database analyses demonstrate that these copper transport genes are highly conserved in S. aureus. The expression of copA and copZ was inducible by copper and to some extent by ferric and lead ions. A mutant strain containing a partially deleted copA gene was more sensitive than the parent strain to copper, ferric and lead ions. The copper-sensitive phenotype was due to the accumulation of intracellular copper and thus the copA product is involved in the export of copper ions. The metal-sensitive phenotype of the mutant was complemented in trans by a 2.7 kbp DNA containing copA. We have cloned and overexpressed the metal-binding domains of CopA and CopZ and have shown by site-directed mutagenesis that the cysteine residues in the CXXC metal-binding motif in CopA are involved in copper binding and thus play an important role in copper transport in S. aureus.
Collapse
Affiliation(s)
- Sutthirat Sitthisak
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Lawrence Knutsson
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - James W Webb
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | | |
Collapse
|
16
|
Vílchez R, Pozo C, Gómez MA, Rodelas B, González-López J. Dominance of sphingomonads in a copper-exposed biofilm community for groundwater treatment. MICROBIOLOGY-SGM 2007; 153:325-337. [PMID: 17259604 DOI: 10.1099/mic.0.2006/002139-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure, biological activity and microbial biodiversity of a biofilm used for the removal of copper from groundwater were studied and compared with those of a biofilm grown under copper-free conditions. A laboratory-scale submerged fixed biofilter was fed with groundwater (2.3 l h(-1)) artificially polluted with Cu(II) (15 mg l(-1)) and amended with sucrose (150 mg l(-1)) as carbon source. Between 73 and 90 % of the Cu(II) was removed from water during long-term operation (over 200 days). The biofilm was a complex ecosystem, consisting of eukaryotic and prokaryotic micro-organisms. Scanning electron microscopy revealed marked structural changes in the biofilm induced by Cu(II), compared to the biofilm grown in absence of the heavy metal. Analysis of cell-bound extracellular polymeric substances (EPS) demonstrated a significant modification of the composition of cell envelopes in response to Cu(II). Transmission electron microscopy and energy-dispersive X-ray microanalysis (EDX) showed that copper bioaccumulated in the EPS matrix by becoming bound to phosphates and/or silicates, whereas copper accumulated only intracytoplasmically in cells of eukaryotic microbes. Cu(II) also decreased sucrose consumption, ATP content and alkaline phosphatase activity of the biofilm. A detailed study of the bacterial community composition was conducted by 16S rRNA-based temperature gradient gel electrophoresis (TGGE) profiling, which showed spatial and temporal stability of the species diversity of copper-exposed biofilms during biofilter operation. PCR reamplification and sequencing of 14 TGGE bands showed the prevalence of alphaproteobacteria, with most sequences (78 %) affiliated to the Sphingomonadaceae. The major cultivable colony type in plate counts of the copper-exposed biofilm was also identified as that of Sphingomonas sp. These data confirm a major role of these organisms in the composition of the Cu(II)-removing community.
Collapse
Affiliation(s)
- R Vílchez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - C Pozo
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - M A Gómez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Ingeniería Civil, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - B Rodelas
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Microbiología, Facultad de Farmacia, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - J González-López
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Microbiología, Facultad de Farmacia, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
17
|
Patel PC, Goulhen F, Boothman C, Gault AG, Charnock JM, Kalia K, Lloyd JR. Arsenate detoxification in a Pseudomonad hypertolerant to arsenic. Arch Microbiol 2006; 187:171-83. [PMID: 17160678 DOI: 10.1007/s00203-006-0182-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 09/12/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
Pseudomonas sp. strain As-1, obtained from an electroplating industrial effluent, was capable of growing aerobically in growth medium supplemented with up to 65 mM arsenate (As (V)), significantly higher concentrations than those tolerated by other reference arsenic resistant bacteria. The majority of the arsenic was detected in culture supernatants as arsenite (As (III)) and X-ray absorbance spectroscopy suggested that 30% of this cell-bound arsenic was As (V), 65% As (III) and 5% of arsenic was associated with sulphur. PCR analysis using primers designed against arsenic resistance genes of other Gram-negative bacteria confirmed the presence of an arsenic resistance operon comprising of three genes, arsR, arsB and arsC in order of predicted transcription, and consistent with a role in intracellular reduction of As (V) and efflux of As (III). In addition to this classical arsenic resistance mechanism, other biochemical responses to arsenic were implicated. Novel arsenic-binding proteins were purified from cellular fractions, while proteomic analysis of arsenic-induced cultures identified the upregulation of additional proteins not normally associated with the metabolism of arsenic. Cross-talk with a network of proteins involved in phosphate metabolism was suggested by these studies, consistent with the similarity between the phosphate and arsenate anions.
Collapse
Affiliation(s)
- Prerna C Patel
- School of Earth, Atmospheric and Environmental Sciences & Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Pcf11 and Clp1 are subunits of cleavage factor IA (CFIA), an essential polyadenylation factor in Saccahromyces cerevisiae. We have determined the structure of a ternary complex of Clp1 together with ATP and the Clp1-binding region of Pcf11. Clp1 contains three domains, a small N-terminal β sandwich domain, a C-terminal domain containing a novel α/β-fold and a central domain that binds ATP. The arrangement of the nucleotide binding site is similar to that observed in SIMIBI-class ATPase subunits found in other multisubunit macromolecular complexes. However, despite this similarity, nucleotide hydrolysis does not occur. The Pcf11 binding site is also located in the central domain where three highly conserved residues in Pcf11 mediate many of the protein–protein interactions. We propose that this conserved Clp1–Pcf11 interaction is responsible for maintaining a tight coupling between the Clp1 nucleotide binding subunit and the other components of the polyadenylation machinery. Moreover, we suggest that this complex represents a stabilized ATP bound form of Clp1 that requires the participation of other non-CFIA processing factors in order to initiate timely ATP hydrolysis during 3′ end processing.
Collapse
Affiliation(s)
| | | | - Ian A. Taylor
- To whom correspondence should be addressed. Tel: ++44 020 88162552; Fax: ++44 020 88162580;
| |
Collapse
|
19
|
Adle DJ, Sinani D, Kim H, Lee J. A cadmium-transporting P1B-type ATPase in yeast Saccharomyces cerevisiae. J Biol Chem 2006; 282:947-55. [PMID: 17107946 PMCID: PMC4100611 DOI: 10.1074/jbc.m609535200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Detoxification and homeostatic acquisition of metal ions are vital for all living organisms. We have identified PCA1 in yeast Saccharomyces cerevisiae as an overexpression suppressor of copper toxicity. PCA1 possesses signatures of a P1B-type heavy metal-transporting ATPase that is widely distributed from bacteria to humans. Copper resistance conferred by PCA1 is not dependent on catalytic activity, but it appears that a cysteine-rich region located in the N terminus sequesters copper. Unexpectedly, when compared with two independent natural isolates and an industrial S. cerevisiae strain, the PCA1 allele of the common laboratory strains we have examined possesses a missense mutation in a predicted ATP-binding residue conserved in P1B-type ATPases. Consistent with a previous report that identifies an equivalent mutation in a copper-transporting P1B-type ATPase of a Wilson disease patient, the PCA1 allele found in laboratory yeast strains is nonfunctional. Overexpression or deletion of the functional allele in yeast demonstrates that PCA1 is a cadmium efflux pump. Cadmium as well as copper and silver, but not other metals examined, dramatically increase PCA1 protein expression through post-transcriptional regulation and promote subcellular localization to the plasma membrane. Our study has revealed a novel metal detoxification mechanism in yeast mediated by a P1B-type ATPase that is unique in structure, substrate specificity, and mode of regulation.
Collapse
Affiliation(s)
| | | | | | - Jaekwon Lee
- To whom correspondence should be addressed: Dept. of Biochemistry, University of Nebraska, N210 Beadle Center, Lincoln, NE 68588–0664. Tel.: 402-472-2658;
| |
Collapse
|
20
|
Worms I, Simon DF, Hassler CS, Wilkinson KJ. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 2006; 88:1721-31. [PMID: 17049417 DOI: 10.1016/j.biochi.2006.09.008] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
An important challenge in environmental biogeochemistry is the determination of the bioavailability of toxic and essential trace compounds in natural media. For trace metals, it is now clear that chemical speciation must be taken into account when predicting bioavailability. Over the past 20 years, equilibrium models (free ion activity model (FIAM), biotic ligand model (BLM)) have been increasingly developed to describe metal bioavailability in environmental systems, despite the fact that environmental systems are always dynamic and rarely at equilibrium. In these simple (relatively successful) models, any reduction in the available, reactive species of the metal due to competition, complexation or other reactions will reduce metal bioaccumulation and thus biological effects. Recently, it has become clear that biological, physical and chemical reactions occurring in the immediate proximity of the biological surface also play an important role in controlling trace metal bioavailability through shifts in the limiting biouptake fluxes. Indeed, for microorganisms, examples of biological (transport across membrane), chemical (dissociation kinetics of metal complexes) and physical (diffusion) limitation can be demonstrated. Furthermore, the organism can employ a number of biological internalization strategies to get around limitations that are imposed on it by the physicochemistry of the medium. The use of a single transport site by several metals or the use of several transport sites by a single metal further complicates the prediction of uptake or effects using the simple chemical models. Finally, once inside the microorganism the cell is able to employ a large number of strategies including complexation, compartmentalization, efflux or the production of extracellular ligands to minimize or optimize the reactivity of the metal. The prediction of trace metal bioavailability will thus require multidisciplinary advances in our understanding of the reactions occurring at and near the biological interface. By taking into account medium constraints and biological adaptability, future bioavailability modeling will certainly become more robust.
Collapse
Affiliation(s)
- I Worms
- CABE (Analytical and Biophysical Environmental Chemistry), University of Geneva, 30, quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
21
|
Lin YF, Walmsley AR, Rosen BP. An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A 2006; 103:15617-22. [PMID: 17030823 PMCID: PMC1622871 DOI: 10.1073/pnas.0603974103] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental arsenic is a world-wide health issue, making it imperative for us to understand mechanisms of metalloid uptake and detoxification. The predominant intracellular form is the highly mephitic arsenite, which is detoxified by removal from cytosol. What prevents arsenite toxicity as it diffuses through cytosol to efflux systems? Although intracellular copper is regulated by metallochaperones, no chaperones involved in conferring resistance to other metals have been identified. In this article, we report identification of an arsenic chaperone, ArsD, encoded by the arsRDABC operon of Escherichia coli. ArsD transfers trivalent metalloids to ArsA, the catalytic subunit of an As(III)/Sb(III) efflux pump. Interaction with ArsD increases the affinity of ArsA for arsenite, thus increasing its ATPase activity at lower concentrations of arsenite and enhancing the rate of arsenite extrusion. Cells are consequently resistant to environmental concentrations of arsenic. This report of an arsenic chaperone suggests that cells regulate the intracellular concentration of arsenite to prevent toxicity.
Collapse
Affiliation(s)
- Yung-Feng Lin
- *Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Adrian R. Walmsley
- Centre for Infectious Diseases, School of Biological and Biomedical Sciences, Durham University, Stockton-on-Tees TS17 6BH, United Kingdom
- To whom correspondence may be addressed at:
Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Stockton-on-Tees TS17 6BH, United Kingdom. E-mail:
| | - Barry P. Rosen
- *Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
- To whom correspondence may be addressed at:
Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201. E-mail:
| |
Collapse
|
22
|
Rice WJ, Kovalishin A, Stokes DL. Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus. Biochem Biophys Res Commun 2006; 348:124-31. [PMID: 16876128 DOI: 10.1016/j.bbrc.2006.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/04/2006] [Indexed: 11/28/2022]
Abstract
CopA from the extreme thermophile Archaeoglobus fulgidus is a P-type ATPase that transports Cu(+) and Ag(+) and has individual metal-binding domains (MBDs) at both N- and C-termini. We expressed and purified full-length CopA as well as constructs with MBDs deleted either individually or collectively. Cu(+) and Ag(+)-dependent ATPase assays showed that full-length CopA had submicromolar affinity for both ions, but was inhibited by concentrations above 1muM. Deletion of both MBDs had no effect on affinity but resulted in loss of this inhibition. Individual deletions implicated the N-terminal MBD in causing the inhibition at concentrations >1muM. Rates of phosphoenzyme decay indicated that neither the dephosphorylation step, nor the E1P-E2P equilibrium accounted for this inhibition, suggesting the involvement of a different catalytic step. Alternative hypotheses are discussed by which the N-terminal MBD could influence the catalytic activity of CopA.
Collapse
Affiliation(s)
- William J Rice
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
23
|
|
24
|
Borrelly GPM, Rondet SAM, Tottey S, Robinson NJ. Chimeras of P-type ATPases and their transcriptional regulators: contributions of a cytosolic amino-terminal domain to metal specificity. Mol Microbiol 2004; 53:217-27. [PMID: 15225316 DOI: 10.1111/j.1365-2958.2004.04106.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Zn(2+)-responsive repressor ZiaR and Co(2+)-responsive activator CoaR modulate production of P(1)-type Zn(2+)- (ZiaA) and Co(2+)- (CoaT) ATPases respectively. What dictates metal selectivity? We show that Delta ziaDeltacoa double mutants had similar Zn(2+) resistance to Deltazia single mutants and similar Co(2+) resistance to Deltacoa single mutants. Controlling either ziaA or coaT with opposing regulators restored no resistance to metals sensed by the regulators, but coincident replacement of the deduced cytosolic amino-terminal domain CoaT(N) with ZiaA(N) (in ziaR-(p) ziaA-ziaA(N)coaT) conferred Zn(2+) resistance to DeltaziaDeltacoa, Zn(2+) content was lowered and residual Co(2+) resistance lost. Metal-dependent molar absorptivity under anaerobic conditions revealed that purified ZiaA(N) binds Co(2+) in a pseudotetrahedral two-thiol site, and Co(2+) was displaced by Zn(2+). Thus, the amino-terminal domain of ZiaA inverts the metals exported by zinc-regulated CoaT from Co(2+) to Zn(2+), and this correlates simplistically with metal-binding preferences; K(ZiaAN) Zn(2+) tighter than Co(2+). However, Zn(2+) did not bleach Cu(+)-ZiaA(N), and only Cu(+) co-migrated with ZiaA(N) after competitive binding versus Zn(2+). Bacterial two-hybrid assays that detected interaction between the Cu(+)-metallochaperone Atx1 and the amino-terminal domain of Cu(+)-transporter PacS(N) detected no interaction with the analogous, deduced, ferredoxin-fold subdomain of ZiaA(N). Provided that there is no freely exchangeable cytosolic Cu(+), restricted contact with the Cu(+)-metallochaperone can impose a barrier impairing the formation of otherwise favoured Cu(+)-ZiaA(N) complexes.
Collapse
Affiliation(s)
- Gilles P M Borrelly
- Cell and Molecular Biosciences, Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
25
|
Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 2004; 52:182-202. [PMID: 15518875 DOI: 10.1016/j.plasmid.2004.06.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Indexed: 11/25/2022]
Abstract
Horizontal transfer of resistance determinants amongst bacteria can be achieved by conjugative plasmid DNA elements. We have determined the complete 274,762 bp sequence of the incompatibility group H (IncH) plasmid R478, originally isolated from the Gram negative opportunistic pathogen Serratia marcescens. This self-transferable extrachromosomal genetic element contains 295 predicted genes, of which 144 are highly similar to coding sequences of IncH plasmids R27 and pHCM1. The regions of similarity among these three IncH plasmids principally encode core plasmid determinants (i.e., replication, partitioning and stability, and conjugative transfer) and we conducted a comparative analysis to define the minimal IncHI plasmid backbone determinants. No resistance determinants are included in the backbone and most of the sequences unique to R478 were contained in a large contiguous region between the two transfer regions. These findings indicate that plasmid evolution occurs through gene acquisition/loss predominantly in regions outside of the core determinants. Furthermore, a modular evolution for R478 was signified by the presence of gene neighbors or operons that were highly related to sequences from a wide range of chromosomal, transposon, and plasmid elements. The conjugative transfer regions are most similar to sequences encoded on SXT, Rts1, pCAR1, R391, and pRS241d. The dual partitioning modules encoded on R478 resemble numerous sequences; including pMT1, pCTX-M3, pCP301, P1, P7, and pB171. R478 also codes for resistance to tetracycline (Tn10), chloramphenicol (cat), kanamycin (aphA), mercury (similar to Tn21), silver (similar to pMG101), copper (similar to pRJ1004), arsenic (similar to pYV), and tellurite (two separate regions similar to IncHI2 ter determinants and IncP kla determinants). Other R478-encoded sequences are related to Tn7, IS26, tus, mucAB, and hok, where the latter is surrounded by insLKJ, and could potentially be involved in post-segregation killing. The similarity to a diverse set of bacterial sequences highlights the ability of horizontally transferable DNA elements to acquire and disseminate genetic traits through the bacterial gene pool.
Collapse
Affiliation(s)
- Matthew W Gilmour
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alta., Canada T6G 2R3
| | | | | | | | | |
Collapse
|
26
|
Okkeri J, Laakkonen L, Haltia T. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP. Biochem J 2004; 377:95-105. [PMID: 14510639 PMCID: PMC1223847 DOI: 10.1042/bj20030740] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 09/05/2003] [Accepted: 09/26/2003] [Indexed: 11/17/2022]
Abstract
In P-type ATPases, the nucleotide-binding (N) domain is located in the middle of the sequence which folds into the phosphorylation (P) domain. The N domain of ZntA, a Zn2+-translocating P-type ATPase from Escherichia coli, is approx. 13% identical with the N domain of sarcoplasmic reticulum Ca2+-ATPase. None of the Ca2+-ATPase residues involved in binding of ATP are found in ZntA. However, the sequence G503SGIEAQV in the N domain of ZntA resembles the motif GxGxxG, which forms part of the ATP-binding site in protein kinases. This motif is also found in Wilson disease protein where several disease mutations cluster in it. In the present work, we have made a set of disease mutation analogues, including the mutants G503S (Gly503-->Ser), G505R and A508F of ZntA. At low [ATP], these mutant ATPases are poorly phosphorylated. The phosphorylation defect of the mutants G503S and G505R can, however, be partially (G503S) or fully (G505R) compensated for by using a higher [ATP], suggesting that these mutations lower the affinity for ATP. In all three mutant ATPases, phosphorylation by P(i) has become less sensitive to the presence of ATP, also consistent with the proposal that the Gly503 motif plays a role in ATP binding. In order to test this hypothesis, we have modelled the N domain of ZntA using the sarcoplasmic reticulum Ca2+-ATPase structure as a template. In the model, the Gly503 motif, as well as the residues Glu470 and His475, are located in the proximity of the ATP-binding site. In conclusion, the mutagenesis data and the molecular model are consistent with the idea that the two loops carrying the residues Glu470, His475, Gly503 and Gly505 play a role in ATP binding and activation.
Collapse
Affiliation(s)
- Juha Okkeri
- Institute of Biomedical Sciences/Biochemistry, P.O. Box 63 (Biomedicum Helsinki, Haartmaninkatu 8), FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
27
|
Rentas FJ, Rao VB. Defining the bacteriophage T4 DNA packaging machine: evidence for a C-terminal DNA cleavage domain in the large terminase/packaging protein gp17. J Mol Biol 2003; 334:37-52. [PMID: 14596798 DOI: 10.1016/j.jmb.2003.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-stranded DNA packaging in bacteriophage T4 and other viruses occurs by translocation of DNA into an empty prohead by a packaging machine assembled at the portal vertex. Coordinated with this complex process is the cutting of concatemeric DNA to initiate and terminate DNA packaging and encapsidate one genome-length viral DNA. The catalytic site responsible for cutting, and the mechanisms by which cutting is precisely coordinated with DNA translocation remained as interesting open questions. Phage T4, unlike the phages with defined ends (e.g. lambda, T3, T7), packages DNA in a strictly headful manner, and exhibits no strict sequence specificity to initiate or terminate DNA packaging. Previous evidence suggests that the large terminase protein gp17, a key component of the T4 packaging machine, possesses a non-specific DNA cutting activity. A histidine-rich metal-binding motif, H382-X(2)-H385-X(16)-C402-X(8)-H411-X(2)-H414-X(15)-H430-X(5)-H436, in the C-terminal half of gp17 is thought to be involved in the terminase cleavage. Here, exhaustive site-directed mutagenesis revealed that none of the cysteine and histidine residues other than the H436 residue is critical for function. On the other hand, a cluster of conserved residues within this region, D401, E404, G405, and D409, are found to be critical for function. Biochemical analyses showed that the D401 mutants exhibited a novel phenotype, showing a loss of in vivo DNA cutting activity but not the DNA packaging activity. The functional nature of the critical residues and their disposition in the conserved loop region between two predicted beta-strands suggest that these residues are part of a metal-coordinated catalytic site that cleaves the phosphodiester bond of DNA substrate. The data suggest that the T4 terminase consists of at least two functional domains, an N-terminal DNA-translocating ATPase domain and a C-terminal DNA-cutting domain. Although the DNA recognition mechanisms may be distinct, it appears that T4 and other phage terminases employ a common catalytic paradigm for phosphodiester bond cleavage that is used by numerous nucleases.
Collapse
Affiliation(s)
- Francisco J Rentas
- Department of Biology, The Catholic University of America, 103 McCort Ward Hall, 620 Michigan Ave., N.E. Washington, DC 20064, USA
| | | |
Collapse
|
28
|
Cánovas D, Cases I, de Lorenzo V. Heavy metal tolerance and metal homeostasis inPseudomonas putidaas revealed by complete genome analysis. Environ Microbiol 2003; 5:1242-56. [PMID: 14641571 DOI: 10.1111/j.1462-2920.2003.00463.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genome of Pseudomonas putida KT2440 encodes an unexpected capacity to tolerate heavy metals and metalloids. The availability of the complete chromosomal sequence allowed the categorization of 61 open reading frames likely to be involved in metal tolerance or homeostasis, plus seven more possibly involved in metal resistance mechanisms. Some systems appeared to be duplicated. These might perform redundant functions or be involved in tolerance to different metals. In total, P. putida was found to bear two systems for arsenic (arsRBCH), one for chromate (chrA), four to six systems for divalent cations (two cadA and two to four czc chemiosmotic antiporters), two systems for monovalent cations: pacS, cusCBA (plus one cryptic silP gene containing a frameshift mutation), two operons for Cu chelation (copAB), one metallothionein for metal(loid) binding, one system for Te/Se methylation (tpmT) and four ABC transporters for the uptake of essential Zn, Mn, Mo and Ni (one nikABCDE, two znuACB and one mobABC). Some of the metal-related clusters are located in gene islands with atypical genome signatures. The predicted capacity of P. putida to endure exposure to heavy metals is discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- David Cánovas
- Centro Nacional de Biotecnología--CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
29
|
Cobbett CS, Hussain D, Haydon MJ. Structural and functional relationships between type 1 B heavy metal-transporting P-type ATPases in Arabidopsis. THE NEW PHYTOLOGIST 2003; 159:315-321. [PMID: 33873367 DOI: 10.1046/j.1469-8137.2003.00785.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arabidopsis is remarkable for having eight members of the type 1B heavy metal-transporting P-type ATPase subfamily. Sequence analyses indicate that four, two of which may be targeted to plastids, are related to known Cu(I) transporters and contain N-terminal metal-binding site (MBS) motifs similar to those identified in other organisms. The remaining four are more closely related to known divalent cation transporters of prokaryotes. Three of these form a closely related group and are believed to be Zn(II) transporters. These contain a predicted N-terminal MBS that is a variant of those found in Cu transporters in addition to extended C-terminal regions that contain likely metal-binding sequences. Our current limited knowledge of the physiological roles of these transporters is reviewed and their evolutionary relationships are explored, including an hypothesis that some, particularly the putative divalent cation transporters, are derived from horizontal gene transfer events.
Collapse
Affiliation(s)
| | - Dawar Hussain
- Department of Genetics, University of Melbourne, Australia 3010
| | | |
Collapse
|
30
|
Hou Z, Mitra B. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. J Biol Chem 2003; 278:28455-61. [PMID: 12746428 DOI: 10.1074/jbc.m301415200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZntA from Escherichia coli is a P-type ATPase that confers resistance to Pb(II), Zn(II), and Cd(II) in vivo. We had previously shown that purified ZntA shows ATP hydrolysis activity with the metal ions Pb(II), Zn(II), and Cd(II). In this study, we utilized the acylphosphate formation activity of ZntA to further investigate the substrate specificity of ZntA. The site of phosphorylation was Asp-436, as expected from sequence alignments. We show that in addition to Pb(II), Zn(II), and Cd(II), ZntA is active with Ni(II), Co(II), and Cu(II), but not with Cu(I) and Ag(I). Thus, ZntA is specific for a broad range of divalent soft metal ions. The activities with Ni(II), Co(II), and Cu(II) are extremely low; the activities with these non-physiological substrates are 10-20-fold lower compared with the values obtained with Pb(II), Zn(II), and Cd(II). Similar results were obtained with DeltaN-ZntA, a ZntA derivative lacking the amino-terminal metal binding domain. By characterizing the acylphosphate formation reaction in ZntA in detail, we show that a step prior to enzyme phosphorylation, most likely the metal ion binding step, is the slow step in the reaction mechanism in ZntA. The low activities with Ni(II), Co(II), and Cu(II) are because of a further decrease in the rate of binding of these metal ions. Thus, metal ion selectivity in ZntA and possibly other P1-type ATPases is based on the charge and the ligand preference of particular metal ions but not on their size.
Collapse
Affiliation(s)
- Zhanjun Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
31
|
Shetty RS, Deo SK, Shah P, Sun Y, Rosen BP, Daunert S. Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 2003; 376:11-7. [PMID: 12734613 DOI: 10.1007/s00216-003-1862-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 02/06/2003] [Accepted: 02/06/2003] [Indexed: 10/20/2022]
Abstract
Whole-cell-based sensing systems that respond to cadmium and lead ions have been designed and developed using genetically engineered bacteria. These systems take advantage of the ability of certain bacteria to survive in environments polluted with cadmium and lead ions. The bacteria used in this investigation have been genetically engineered to produce reporter proteins in response to the toxic ions. This was achieved by modifying a strain of Escherichia colito harbor plasmids pYSC1 and pYS2/pYSG1. In these dual-plasmid-based sensing systems, the expression of the reporters beta-galactosidase and red-shifted green fluorescent protein (rs-GFP) was controlled by CadC, the regulatory protein of the cad operon. Regulation of the expression of the reporter proteins is related to the amount of cadmium and lead ions employed to induce the bacteria. The bacterial sensing systems were found to respond to cadmium, lead, and zinc ions, and had no significant response to nickel, copper, manganese, and cobalt.
Collapse
Affiliation(s)
- Ranjit S Shetty
- Department of Chemistry, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lolkema JS, Slotboom DJ. Classification of 29 families of secondary transport proteins into a single structural class using hydropathy profile analysis. J Mol Biol 2003; 327:901-9. [PMID: 12662917 DOI: 10.1016/s0022-2836(03)00214-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A classification scheme for membrane proteins is proposed that clusters families of proteins into structural classes based on hydropathy profile analysis. The averaged hydropathy profiles of protein families are taken as fingerprints of the 3D structure of the proteins and, therefore, are able to detect more distant evolutionary relationships than amino acid sequences. A procedure was developed in which hydropathy profile analysis is used initially as a filter in a BLAST search of the NCBI protein database. The strength of the procedure is demonstrated by the classification of 29 families of secondary transporters into a single structural class, termed ST[3]. An exhaustive search of the database revealed that the 29 families contain 568 unique sequences. The proteins are predominantly from prokaryotic origin and most of the characterized transporters in ST[3] transport organic and inorganic anions and a smaller number are Na(+)/H(+) antiporters. All modes of energy coupling (symport, antiport, uniport) are found in structural class ST[3]. The relevance of the classification for structure/function prediction of uncharacterised transporters in the class is discussed.
Collapse
Affiliation(s)
- Juke S Lolkema
- Molecular Microbiology, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands.
| | | |
Collapse
|
33
|
Radford DS, Kihlken MA, Borrelly GPM, Harwood CR, Le Brun NE, Cavet JS. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 2003; 220:105-12. [PMID: 12644235 DOI: 10.1016/s0378-1097(03)00095-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The structure of the hypothetical copper-metallochaperone CopZ from Bacillus subtilis and its predicted partner CopA have been studied but their respective contributions to copper export, -import, -sequestration and -supply are unknown. DeltacopA was hypersensitive to copper and contained more copper atoms cell(-1) than wild-type. Expression from the copA operator-promoter increased in elevated copper (not other metals), consistent with a role in copper export. A bacterial two-hybrid assay revealed in vivo interaction between CopZ and the N-terminal domain of CopA but not that of a related transporter, YvgW, involved in cadmium-resistance. Activity of copper-requiring cytochrome caa(3) oxidase was retained in deltacopZ and deltacopA. DeltacopZ was only slightly copper-hypersensitive but deltacopZ/deltacopA was more sensitive than deltacopA, implying some action of CopZ that is independent of CopA. Significantly, deltacopZ contained fewer copper atoms cell(-1) than wild-type under these conditions. CopZ makes a net contribution to copper sequestration and/or recycling exceeding any donation to CopA for export.
Collapse
Affiliation(s)
- David S Radford
- School of Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
34
|
Fan B, Rosen BP. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 2002; 277:46987-92. [PMID: 12351646 DOI: 10.1074/jbc.m208490200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli CopA is a copper ion-translocating P-type ATPase that confers copper resistance. CopA formed a phosphorylated intermediate with [gamma-(32)P]ATP. Phosphorylation was inhibited by vanadate and sensitive to KOH and hydroxylamine, consistent with acylphosphate formation on conserved Asp-523. Phosphorylation required a monovalent cation, either Cu(I) or Ag(I). Divalent cations Cu(II), Zn(II), or Co(II) could not substitute, signifying that the substrate of this copper-translocating P-type ATPase is Cu(I) and not Cu(II). CopA purified from dodecylmaltoside-solubilized membranes similarly exhibited Cu(I)/Ag(I)-stimulated ATPase activity, with a K(m) for ATP of 0.5 mm. CopA has two N-terminal Cys(X)(2)Cys sequences, Gly-Leu-Ser-Cys(14)-Gly-His-Cys(17), and Gly-Met-Ser-Cys(110)-Ala-Ser-Cys(113), and a Cys(479)-Pro-Cys(481) motif in membrane-spanning segment six. The requirement of these cysteine residues was investigated by the effect of mutations and deletions. Mutants with substitutions of the N-terminal cysteines or deletion of the first Cys-(X)(2)-Cys motif formed acylphosphate intermediates. From the copper dependence of phosphoenzyme formation, the mutants appear to have 2-3 fold higher affinity for Cu(I) than wild type CopA. In contrast, substitutions in Cys(479) or Cys(481) resulted in loss of copper resistance, transport and phosphoenzyme formation. These results imply that the cysteine residues of the Cys-Pro-Cys motif (but not the N-terminal cysteine residues) are required for CopA function.
Collapse
Affiliation(s)
- Bin Fan
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
35
|
Rosen BP. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:689-93. [PMID: 12443926 DOI: 10.1016/s1095-6433(02)00201-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transition metals, heavy metals and metalloids are usually toxic in excess, but a number of transition metals are essential trace elements. In all cells there are mechanisms for metal ion homeostasis that frequently involve a balance between uptake and efflux systems. This review will briefly describe ATP-coupled resistance pumps. ZntA and CadA are bacterial P-type ATPases that confers resistance to Zn(II), Cd(II) and Pb(II). Homologous copper pumps include the Menkes and Wilson disease proteins and CopA, an Escherichia coli pump that confers resistance to Cu(I). For resistance to arsenicals and antimonials there are several different families of transporters. In E. coli the ArsAB ATPase is a novel system that confers resistance to As(III) and Sb(III). Eukaryotic arsenic resistance transporters include Acr3p and Ycf1p of Saccharomyces cerevisiae. These systems provide resistance to arsenite [As(III)]. Arsenate [As(V)] detoxification involves reduction of As(V) to As(III), a process catalyzed by arsenate reductase enzymes. There are three families of arsenate reductases, two found in bacterial systems and a third identified in S. cerevisiae.
Collapse
Affiliation(s)
- Barry P Rosen
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
36
|
Mukhopadhyay R, Rosen BP, Phung LT, Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 2002; 26:311-25. [PMID: 12165430 DOI: 10.1111/j.1574-6976.2002.tb00617.x] [Citation(s) in RCA: 386] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Arsenic compounds have been abundant at near toxic levels in the environment since the origin of life. In response, microbes have evolved mechanisms for arsenic resistance and enzymes that oxidize As(III) to As(V) or reduce As(V) to As(III). Formation and degradation of organoarsenicals, for example methylarsenic compounds, occur. There is a global arsenic geocycle, where microbial metabolism and mobilization (or immobilization) are important processes. Recent progress in studies of the ars operon (conferring resistance to As(III) and As(V)) in many bacterial types (and related systems in Archaea and yeast) and new understanding of arsenite oxidation and arsenate reduction by respiratory-chain-linked enzyme complexes has been substantial. The DNA sequencing and protein crystal structures have established the convergent evolution of three classes of arsenate reductases (that is classes of arsenate reductases are not of common evolutionary origin). Proposed reaction mechanisms in each case involve three cysteine thiols and S-As bond intermediates, so convergent evolution to similar mechanisms has taken place.
Collapse
Affiliation(s)
- Rita Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The ars operon of plasmid R773 encodes an As(III)/Sb(III) extrusion pump. The catalytic subunit, the ArsA ATPase, has two homologous halves, A1 and A2, each with a consensus nucleotide-binding sequence. ATP hydrolysis is slow in the absence of metalloid and is accelerated by metalloid binding. ArsA M446W has a single tryptophan adjacent to the A2 nucleotide-binding site. Tryptophan fluorescence increased upon addition of ATP, ADP, or a nonhydrolyzable ATP analogue. Mg(2+) and Sb(III) produced rapid quenching of fluorescence with ADP, no quenching with a nonhydrolyzable analogue, and slow quenching with ATP. The results suggest that slow quenching with ATP reflects hydrolysis of ATP to ADP in the A2 nucleotide-binding site. In an A2 nucleotide-binding site mutant, nucleotides had no effect. In contrast, in an A1 nucleotide-binding mutant, nucleotides still increased fluorescence, but there was no quenching with Mg(2+) and Sb(III). This suggests that the A2 site hydrolyzes ATP only when Sb(III) or As(III) is present and when the A1 nucleotide-binding domain is functional. These results support previous hypotheses in which only the A1 nucleotide-binding domain hydrolyzes ATP in the absence of activator (unisite catalysis), and both the A1 and A2 sites hydrolyze ATP when activated (multisite catalysis).
Collapse
Affiliation(s)
- Tongqing Zhou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
38
|
Sun Y, Wong MD, Rosen BP. Both metal binding sites in the homodimer are required for metalloregulation by the CadC repressor. Mol Microbiol 2002; 44:1323-9. [PMID: 12068812 DOI: 10.1046/j.1365-2958.2002.02961.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cadCA operon of plasmid pI258, which confers resistance to the soft metals Cd(II), Pb(II) and Zn(II), is regulated by CadC, a metal-responsive transcriptional repressor. CadC is a 27.6 kDa homodimer composed of two 122-residue monomers. Three cysteine residues, Cys-7, Cys-58 and Cys-60, have been shown to be required for sensing soft metals. Thus, the repressor has two potential inducer binding sites, one on each monomer. However, it is not known whether both binding sites are required for derepression or whether binding of metal to a single site would result in transcript. In this study, heterodimers were purified in which one binding site was wild type and the other had substitutions of the cysteine residues. The wild type-mutant heterodimers retained the ability to bind to cad operator/promoter DNA but did not dissociate from the DNA upon addition of soft metal ions. The results indicate that both subunits in the dimer must have functional metal binding sites for metal sensing to lead to derepression
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, 540 E Canfield Avenue, Detroit, MI 482091, USA
| | | | | |
Collapse
|
39
|
Tsai KJ, Lin YF, Wong MD, Yang HHC, Fu HL, Rosen BP. Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J Bioenerg Biomembr 2002; 34:147-56. [PMID: 12171064 DOI: 10.1023/a:1016085301323] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmid p1258 carries the cadA gene that confers resistance to cadmium, lead, and zinc. CadA catalyzes ATP-dependent cadmium efflux from cells of Staphylococcus aureus. It is a member of the superfamily of P-type ATPases and belongs to the subfamily of soft metal ion pumps. In this study the membrane topology of this P-type ATPase was determined by constructing fusions with the topological reporter genes phoA or lacZ. A series of 44 C-terminal truncated CadAs were fused with one or the other reporter gene, and the activity of each chimeric protein was determined. In addition, the location of the first transmembrane segment was determined by immunoblot analysis. The results are consistent with the p1258 CadA ATPase having eight transmembrane segments. The first 109 residues is a cytosolic domain that includes the Cys(X)2Cys motif that distinguishes soft metal ion-translocating P-type ATPases from their hard metal ion-translocating homologues. Another feature of soft metal ion P-type ATPases is the CysProCys motif, which is found in the sixth transmembrane segment of CadA. The phosphorylation site and ATP binding domain conserved in all P-type ATPases are situated within the large cytoplasmic loop between the sixth and seventh transmembrane segments.
Collapse
Affiliation(s)
- Kan-Jen Tsai
- School of Medical Technology, Chung Shan Medical University, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
DiDonato M, Zhang J, Que L, Sarkar B. Zinc binding to the NH2-terminal domain of the Wilson disease copper-transporting ATPase: implications for in vivo metal ion-mediated regulation of ATPase activity. J Biol Chem 2002; 277:13409-14. [PMID: 11823463 DOI: 10.1074/jbc.m111649200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in the Wilson disease copper transporting, P-type ATPase lead to the accumulation of toxic levels of copper in the liver, brain, and kidney causing extensive tissue damage and eventual death. The NH(2)-terminal domain ( approximately 70 kDa), which contains six copies of the heavy metal-associated repeat GMT/HCXXC, is also able to bind zinc. We have used circular dichroism (CD) and x-ray absorption spectroscopy (XAS) to characterize zinc binding to the NH(2)-terminal metal-binding domain. These studies have revealed that zinc is able to bind to this domain with a stoichiometry of 6:1, and upon binding, induces conformational changes in the NH(2)-terminal domain. These conformational changes are completely different from those previously observed for copper binding to the domain and lead to an overall loss of secondary structure in the domain. The XAS spectra indicate that zinc is ligated primarily by nitrogen atoms and therefore has low affinity for the heavy metal-associated repeats where copper has been shown to bind. The differences between zinc and copper binding may serve as the basis for the metal-ion mediated regulation of the ATPase in vivo.
Collapse
Affiliation(s)
- Michael DiDonato
- Department of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
41
|
Kerr ID. Structure and association of ATP-binding cassette transporter nucleotide-binding domains. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:47-64. [PMID: 11988180 DOI: 10.1016/s0304-4157(01)00008-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette transporters are responsible for the uptake and efflux of a multitude of substances across both eukaryotic and prokaryotic membranes. Members of this family of proteins are involved in diverse physiological processes including antigen presentation, drug efflux from cancer cells, bacterial nutrient uptake and cystic fibrosis. In order to understand more completely the role of these multidomain transporters an integrated approach combining structural, pharmacological and biochemical methods is being adopted. Recent structural data have been obtained on the cytoplasmic, nucleotide-binding domains of prokaryotic ABC transporters. This review evaluates both these data and the conflicting implications they have for domain communication in ABC transporters. Areas of biochemical research that attempt to resolve these conflicts will be discussed.
Collapse
Affiliation(s)
- Ian D Kerr
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Level 4, John Radcliffe Hospital, OX3 9DS, UK.
| |
Collapse
|
42
|
Tottey S, Rondet SAM, Borrelly GPM, Robinson PJ, Rich PR, Robinson NJ. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 2002; 277:5490-7. [PMID: 11739376 DOI: 10.1074/jbc.m105857200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A bacterial two-hybrid assay revealed interaction between a protein now designated bacterial Atx1 and amino-terminal domains of copper-transporting ATPases CtaA (cellular import) and PacS (thylakoid import) but not the related zinc (ZiaA) or cobalt (CoaT) transporters from the same organism (Synechocystis PCC 6803). The specificity of metallochaperone interactions coincides with metal specificity. After reconstitution in a N(2) atmosphere, bacterial Atx1 bound 1 mol of copper mol(-1), and apoPacS(N) acquired copper from copper-Atx1. Copper was displaced from Atx1 by p-(hydroxymercuri)phenylsulfonate, indicative of thiol ligands, and two cysteine residues were obligatory for two-hybrid interaction with PacS(N). This organism contains compartments (thylakoids) where the copper proteins plastocyanin and cytochrome oxidase reside. In copper super-supplemented mutants, photooxidation of cytochrome c(6) was greater in Deltaatx1DeltactaA than in DeltactaA, showing that Atx1 contributes to efficient switching from iron in cytochrome c(6) to copper in plastocyanin for photosynthetic electron transport. Cytochrome oxidase activity was also less in membranes purified from low [copper]-grown Deltaatx1 or DeltapacS, compared with wild-type, but the double mutant Deltaatx1DeltapacS was non-additive, consistent with Atx1 acting via PacS. Conversely, activity in Deltaatx1DeltactaA was less than in either respective single mutant, revealing that Atx1 can function without the major copper importer and consistent with a role in recycling endogenous copper.
Collapse
Affiliation(s)
- Stephen Tottey
- Department of Biochemistry and Genetics, Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Metallothionein (MT) is an important factor for cadmium resistance in mammalian cells. Most Cd-resistant cell lines thus far established have shown enhanced production of MT protein. However, the presence of high concentrations of MT, which traps cellular cadmium ions efficiently, has hindered the investigation of cadmium transport in Cd-resistant cells. Utilization of MT null mice or cultured cells derived from MT null mice is a useful way to isolate and characterize non-MT factor(s) for Cd resistance. Primary cultured cells derived from embryos of MT-I/II null mouse showed an increased sensitivity to cadmium compared with control cells. Immortalization of these cells by introducing simian virus 40 large T antigen cDNA has enabled the development of Cd-resistant MT null cells. The established Cd-resistant MT null cells exhibited a reduced accumulation of cadmium due to a decreased rate of cellular cadmium uptake. Application of the multitracer technique has demonstrated that the uptake of Mn(II) was also markedly reduced in Cd-resistant MT null cells. Kinetic and competition studies on Cd(II) and Mn(II) uptake in these cells revealed that a high-affinity transport system for Mn(II) is used, at least in part, for cellular Cd(II) uptake. Thus, the utilization of MT null cells has permitted the detection of a novel cadmium transport system.
Collapse
Affiliation(s)
- Seiichiro Himeno
- Department of Public Health and Molecular Toxicology, School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo108-8641, Japan.
| |
Collapse
|
44
|
Hou ZJ, Narindrasorasak S, Bhushan B, Sarkar B, Mitra B. Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. J Biol Chem 2001; 276:40858-63. [PMID: 11527979 DOI: 10.1074/jbc.m107455200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP7B, the Wilson disease-associated Cu(I)-transporter, and ZntA from Escherichia coli are soft metal P1-type ATPases with mutually exclusive metal ion substrates. P1-type ATPases have a distinctive amino-terminal domain containing the conserved metal-binding motif GXXCXXC. ZntA has one copy of this motif while ATP7B has six copies. The effect of interchanging the amino-terminal domains of ATP7B and ZntA was investigated. Chimeric proteins were constructed in which either the entire amino-terminal domain of ATP7B or only its sixth metal-binding motif replaced the amino-terminal domain of ZntA. Both chimeras conferred resistance to lead, zinc, and cadmium salts but not to copper salts. The purified chimeras displayed activity with lead, cadmium, zinc, and mercury, which are substrates of ZntA. There was no activity with copper or silver, which are substrates of ATP7B. The chimeras were 2-3-fold less active than ZntA. Thus, the amino-terminal domain of P1-type ATPases cannot alter the metal specificity determined by the transmembrane segment. Also, these results suggest that this domain interacts with the rest of the transporter in a metal ion-specific manner; the amino-terminal domain of ATP7B cannot replace that of ZntA in restoring full catalytic activity.
Collapse
Affiliation(s)
- Z J Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
45
|
Fung E, Bouet JY, Funnell BE. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J 2001; 20:4901-11. [PMID: 11532954 PMCID: PMC125607 DOI: 10.1093/emboj/20.17.4901] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ParA family of proteins is involved in partition of a variety of plasmid and bacterial chromosomes. P1 ParA plays two roles in partition: it acts as a repressor of the par operon and has an undefined yet indispensable role in P1 plasmid localization. We constructed seven mutations in three putative ATP-binding motifs of ParA. Three classes of phenotypes resulted, each represented by mutations in more than one motif. Three mutations created 'super-repressors', in which repressor activity was much stronger than in wild-type ParA, while the remainder damaged repressor activity. All mutations eliminated partition activities, but two showed a plasmid stability defect that was worse than that of a null mutation. Four mutant ParAs, two super-repressors and two weak repressors, were analyzed biochemically, and all exhibited damaged ATPase activity. The super-repressors bound site-specifically to the par operator sequence, and this activity was strongly stimulated by ATP and ADP. These results support the proposal that ATP binding is essential but hydrolysis is inhibitory for ParA's repressor activity and suggest that ATP hydrolysis is essential for plasmid localization.
Collapse
Affiliation(s)
| | - Jean-Yves Bouet
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
Present address: Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118 route de Narbonne, 31062 Toulouse cedex, France Corresponding author e-mail:
| | - Barbara E. Funnell
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
Present address: Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, 118 route de Narbonne, 31062 Toulouse cedex, France Corresponding author e-mail:
| |
Collapse
|
46
|
Fan B, Grass G, Rensing C, Rosen BP. Escherichia coli CopA N-terminal Cys(X)(2)Cys motifs are not required for copper resistance or transport. Biochem Biophys Res Commun 2001; 286:414-8. [PMID: 11500054 DOI: 10.1006/bbrc.2001.5367] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Escherichia coli CopA is a Cu(I)-translocating P-type ATPase that is involved in copper export and resistance. It is an orthologue of the human Menkes and Wilson disease-related proteins. Each of those two human copper pumps has six N-terminal Cys(X)(2)Cys sequences, but their function in transport is unclear. CopA has two N-terminal Cys(X)(2)Cys sequences, GLSC(14)GHC(17) and GMSC(110)ASC(113). The requirement of these cysteine motifs was investigated by mutagenesis of the codons for all four cysteine residues, singly and in combination. Cells of a copA deletion strain expressing genes for the mutant genes were nearly as resistant to copper as the wild type. In addition, everted membrane vesicles from cells expressing the mutant copA genes exhibited ATP-coupled accumulation of copper similar to that of the wild type. The results indicate that neither of two N-terminal Cys(X)(2)Cys motifs is required for either resistance or transport.
Collapse
Affiliation(s)
- B Fan
- Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
47
|
Zhou T, Radaev S, Rosen BP, Gatti DL. Conformational changes in four regions of the Escherichia coli ArsA ATPase link ATP hydrolysis to ion translocation. J Biol Chem 2001; 276:30414-22. [PMID: 11395509 DOI: 10.1074/jbc.m103671200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structures of ArsA with ATP, AMP-PNP, or ADP.AlF(3) bound at the A2 nucleotide binding site were determined. Binding of different nucleotides modifies the coordination sphere of Mg(2+). In particular, the changes elicited by ADP.AlF(3) provide insights into the mechanism of ATP hydrolysis. In-line attack by water onto the gamma-phosphate of ATP would be followed first by formation of a trigonal intermediate and then by breaking of the scissile bond between the beta- and gamma-phosphates. Motions of amino acid side chains at the A2 nucleotide binding site during ATP binding and hydrolysis propagate at a distance, producing conformational changes in four different regions of the protein corresponding to helices H4-H5, helices H9-H10, helices H13-H15, and to the S1-H2-S2 region. These elements are extensions of, respectively, the Switch I and Switch II regions, the A-loop (a small loop near the nucleotide adenine moiety), and the P-loop. Based on the observed conformational changes, it is proposed that ArsA functions as a reciprocating engine that hydrolyzes 2 mol of ATP per each cycle of ion translocation across the membrane.
Collapse
Affiliation(s)
- T Zhou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Michigan 48201, USA
| | | | | | | |
Collapse
|
48
|
Légaré D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 2001; 276:26301-7. [PMID: 11306588 DOI: 10.1074/jbc.m102351200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Leishmania ATP-binding cassette (ABC) transporter PGPA is involved in metal resistance (arsenicals and antimony), although the exact mechanism by which PGPA confers resistance to antimony, the first line drug against Leishmania, is unknown. The results of co-transfection experiments, transport assays, and the use of inhibitors suggest that PGPA recognizes metals conjugated to glutathione or trypanothione, a glutathione-spermidine conjugate present in Leishmania. The HA epitope tag of the influenza hemagglutinin as well as the green fluorescent protein were fused at the COOH terminus of PGPA. Immunofluorescence, confocal, and electron microscopy studies of the fully functional tagged molecules clearly indicated that PGPA is localized in membranes that are close to the flagellar pocket, the site of endocytosis and exocytosis in this parasite. Subcellular fractionation of Leishmania tarentolae PGPAHA transfectants was performed to further characterize this ABC transporter. The basal PGPA ATPase activity was determined to be 115 nmol/mg/min. Transport experiments using radioactive arsenite-glutathione conjugates clearly showed that PGPA recognizes and actively transports thiol-metal conjugates. Overall, the results are consistent with PGPA being an intracellular ABC transporter that confers arsenite and antimonite resistance by sequestration of the metal-thiol conjugates.
Collapse
Affiliation(s)
- D Légaré
- Centre de Recherche en Infectiologie du Centre Hospitalier de l'Université Laval, 2705 boulevard Laurier Ste-Foy, Québec G1V 4G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mitra B, Sharma R. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 2001; 40:7694-9. [PMID: 11412123 DOI: 10.1021/bi010576g] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soft metal-translocating P1-type ATPases have a distinctive amino-terminal domain that contains one to six copies of the conserved metal-binding motif, GXXCXXC. ZntA from Escherichia coli, a Pb(II)-, Zn(II)-, and Cd(II)-transporting ATPase, has an approximately 120 residue amino-terminal domain with one copy of the GXXCXXC motif as well as four additional cysteine residues. The function of this domain was investigated by constructing a mutant of ZntA lacking the first approximately 100 residues. The mutant, DeltaN-ZntA, was able to confer resistance to Pb(II), Zn(II), and Cd(II) salts, in a manner similar to ZntA. The soft metal dependent ATP hydrolysis activity of purified DeltaN-ZntA was characterized. Purified DeltaN-ZntA and ZntA were both inactivated by oxidation. The K(m) for MgATP was unchanged for DeltaN-ZntA relative to ZntA. DeltaN-ZntA displayed the same metal ion specificity as ZntA. Thiolates increased the activities of both ZntA and DeltaN-ZntA. The V(max) values for DeltaN-ZntA were approximately 3-fold lower than for ZntA for all three metal ions. Thus, the amino-terminal domain is not essential for the function of ZntA or for conferring specificity toward particular soft metals. Its function may be to increase the overall catalytic rate by increasing the rate of metal ion binding to the transporter. Residues involved in the ATP-dependent soft metal ion-translocating mechanism as well as those responsible for recognition of specific metal ions must be part of the core structure of the P1-type ATPases.
Collapse
Affiliation(s)
- B Mitra
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
50
|
Tottey S, Rich PR, Rondet SA, Robinson NJ. Two Menkes-type atpases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem 2001; 276:19999-20004. [PMID: 11264284 DOI: 10.1074/jbc.m011243200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synechocystis PCC 6803 contains four genes encoding polypeptides with sequence features of CPx-type ATPases, two of which are now designated pacS and ctaA. We show that CtaA and PacS (but not the related transporters, ZiaA or CoaT) facilitate switching to the use of copper (in plastocyanin) as an alternative to iron (in cytochrome c(6)) for the carriage of electrons within the thylakoid lumen. Disruption of pacS reduced copper tolerance but enhanced silver tolerance, and pacS-mediated restoration of copper tolerance was used to select transformants. Disruption of ctaA caused no change in copper tolerance but reduced the amount of copper cell(-1). In cultures supplemented with 0.2 microm copper, photooxidation of cytochrome c(6) (PetJ) was depressed in wild-type cells but remained elevated in both Synechocystis PCC 6803(ctaA) and Synechocystis PCC 6803(pacS). Conversely, plastocyanin transcripts (petE) were less abundant in both mutants at this [copper]. Synechocystis PCC 6803(ctaA) and Synechocystis PCC 6803(pacS) showed increased iron dependence with impaired growth in deferoxamine mesylate (iron chelator)-containing media. Double mutants also deficient in cytochrome c(6), Synechocystis PCC 6803(petJ,ctaA) and Synechocystis PCC 6803(petJ,pacS), were viable, but the former had increased copper dependence with severely impaired growth in the presence of bathocuproinedisulfonic acid (copper chelator). Analogous transporters are likely to supply copper to plastocyanin in chloroplasts.
Collapse
Affiliation(s)
- S Tottey
- Biochemistry and Genetics, Medical School, University of Newcastle, NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|