1
|
Ebeid TA, Tůmová E, Ketta M, Chodová D. Recent advances in the role of feed restriction in poultry productivity: part II- carcass characteristics, meat quality, muscle fibre properties, and breast meat myopathies. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Tarek A. Ebeid
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eva Tůmová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Mohamed Ketta
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Darina Chodová
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Miao LH, Remø SC, Espe M, Philip AJP, Hamre K, Fjelldal PG, Skjærven K, Holen E, Vikeså V, Sissener NH. Dietary plant oil supplemented with arachidonic acid and eicosapentaenoic acid affects the fatty acid composition and eicosanoid metabolism of Atlantic salmon (Salmo salar L.) during smoltification. FISH & SHELLFISH IMMUNOLOGY 2022; 123:194-206. [PMID: 35227881 DOI: 10.1016/j.fsi.2022.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
This study sought to investigate whether a "natural diet" (mimicking the fatty acid composition of freshwater aquatic insects eaten by salmon parr) during the freshwater (FW) life stage of pre-smolt Atlantic salmon (Salmo salar L.) affected red blood cells and gill fatty acid composition as well as eicosanoid metabolism in gill during smolting at different temperatures. Before being transferred to seawater (SW), salmon parr were fed with a modified (MO) diet containing vegetable oils (rapeseed, palm, and linseed oils) supplemented with eicosapentaenoic acid (EPA) and arachidonic acid (ARA) to completely replace the fish oil (FO). Fatty acid composition in red blood cells and gill tissues was determined before SW transfer and six weeks after. Additionally, the expression of genes associated with eicosanoid metabolism and Na+/K+-ATPase (NKA) activity in salmon gill was examined at different temperatures before SW transfer and 24 h after. The results showed the changes in fatty acid composition, including sum monounsaturated fatty acids (MUFAs), docosahexaenoic acid (DHA), ARA, EPA, and sum n-6 polyunsaturated fatty acids (n-6 PUFA) in both red blood cells and gill tissues at the FW stage were consistent with the fatty acid profiles of the supplied MO and FO fish diets; however sum EPA and DHA composition exhibited opposite trends to those of the FO diet. The proportion of ARA, EPA, and n-6 PUFA increased, whereas sum MUFAs and DHA decreased in the red blood cells and gill tissues of MO-fed fish compared to those fed with the FO diet at FW stage. Additionally, 5-lipoxygenase-activating protein (Flap) expression was downregulated in MO-fed fish prior to SW transfer. During the process of SW transfer at different temperatures, the MO diet remarkably suppressed NKAα1a expression in MO-fed fish both at 12 and 16 °C. The MO diet also upregulated phospholipase A2 group IV (PLA2g4) expression in gills at 8, 12, and 16 °C, but suppressed phospholipase A2 group VI (PLA2g6) expression in gills at 12 °C compared to FO-fed fish at 12 °C and MO-fed fish at 8 °C. The MO diet also upregulated Cyclooxygenase 2 (Cox-2) expression at 8 °C compared to FO-fed fish and increased Arachidonate 5-lipoxygenase (5-Lox) expression in MO-fed fish at 16 °C compared to both FO-fed fish at 16 °C and MO-fed fish at 8 °C. Our study also determined that both SW transfer water temperatures and diets during the FW period jointly influenced the mRNA expression of PLA2g4, PLA2g6, and Lpl, whereas 5-Lox was more sensitive to dietary changes. In conclusion, the MO diet affected the fatty acid composition in gill and in red blood cells. When transferred to SW, dietary ARA supplementation could promote the bioavailability for eicosanoid synthesis in gill mainly via PLA2g4 activation, and potentially inhibit the stress and inflammatory response caused by different water temperatures through dietary EPA supplementation.
Collapse
Affiliation(s)
- L H Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 East Shanshui Road, Wuxi Jiangsu, 214081, PR China; Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway.
| | - S C Remø
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - M Espe
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - A J P Philip
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - K Hamre
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - P G Fjelldal
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - K Skjærven
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - E Holen
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - V Vikeså
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway; Skretting ARC (Aquaculture Research Centre), Sjøhagen 3, 4016, Stavanger, Norway
| | - N H Sissener
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
3
|
Bogo MA, Pabis JS, Bonchoski AB, Santos DCD, Pinto TJF, Simões MA, Silva JC, Pabis FC. Cardiomyopathy and cardiac function in fetuses and newborns of diabetic mothers. J Pediatr (Rio J) 2021; 97:520-524. [PMID: 33176166 PMCID: PMC9432014 DOI: 10.1016/j.jped.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To evaluate cardiac function and structural changes in children of diabetic mothers in the fetal and neonatal period using Doppler-echocardiographic data. METHOD A prospective, descriptive observational study conducted in a private and tertiary care service for high-risk pregnant women. It included 48 children of mothers with gestational diabetes mellitus (GDM) considered clinically compensated during pregnancy, with a single fetus and absence of malformations. Myocardial thickness, shortening fraction, left ventricular (LVMPI) and right ventricular (RVMPI) myocardial performance index, and mitral and tricuspid valve E/A ratio were evaluated in 96 echocardiographic exams with Doppler. RESULTS The hypertrophic cardiomyopathy was 29% vs 6% p = 0.006 in the prenatal and postnatal periods respectively. The shortening fraction was 0% vs 6% p = 0.242 in the fetuses and newborns respectively. The myocardial performance index of the right ventricle was 12% vs 54% p ≤ 0.001, and on the left ventricle 27% vs 60% p = 0.001 in the prenatal and postnatal periods respectively. The ratio of mitral valve E/A waves was 6% vs 50% p ≤ 0.001 and the ratio of tricuspid valve E/A waves was 0% vs 27% p ≤ 0.001 in the fetuses and newborns respectively. CONCLUSION A decrease in the rate of myocardial hypertrophy and changes in cardiac function parameters were observed in the fetal and neonatal periods.
Collapse
Affiliation(s)
- Maria Augusta Bogo
- Universidade da Região de Joinville (UNIVILLE), Departamento de Medicina, Joinville, SC, Brazil.
| | - Julia S Pabis
- Universidade da Região de Joinville (UNIVILLE), Departamento de Medicina, Joinville, SC, Brazil
| | - Ana B Bonchoski
- Universidade da Região de Joinville (UNIVILLE), Departamento de Medicina, Joinville, SC, Brazil
| | - Dercília C Dos Santos
- Universidade da Região de Joinville (UNIVILLE), Departamento de Medicina, Joinville, SC, Brazil
| | - Tainá J F Pinto
- Universidade da Região de Joinville (UNIVILLE), Departamento de Medicina, Joinville, SC, Brazil
| | | | - Jean C Silva
- Universidade Federal de São Paulo (UNIFESP), Ciências Médicas, São Paulo, SP, Brazil; Universidade da Região de Joinville (UNIVILLE), Darcy Vargas Maternity, Departamento de Medicina, Joinville, SC, Brazil
| | - Francisco C Pabis
- Universidade da Região de Joinville (UNIVILLE), Departamento de Medicina, Joinville, SC, Brazil
| |
Collapse
|
4
|
Effect of Postnatal Nutritional Environment Due to Maternal Diabetes on Beta Cell Mass Programming and Glucose Intolerance Risk in Male and Female Offspring. Biomolecules 2021; 11:biom11020179. [PMID: 33525575 PMCID: PMC7911592 DOI: 10.3390/biom11020179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Besides the fetal period, the suckling period is a critical time window in determining long-term metabolic health. We undertook the present study to elucidate the impact of a diabetic suckling environment alone or associated with an in utero diabetic environment on beta cell mass development and the risk of diabetes in the offspring in the long term. To that end, we have compared two experimental settings. In setting 1, we used Wistar (W) rat newborns resulting from W ovocytes (oW) transferred into diabetic GK rat mothers (pGK). These oW/pGK neonates were then suckled by diabetic GK foster mothers (oW/pGK/sGK model) and compared to oW/pW neonates suckled by normal W foster mothers (oW/pW/sW model). In setting 2, normal W rat newborns were suckled by diabetic GK rat foster mothers (nW/sGK model) or normal W foster mothers (nW/sW model). Our data revealed that the extent of metabolic disorders in term of glucose intolerance and beta cell mass are similar between rats which have been exposed to maternal diabetes both pre- and postnatally (oW/pGK/sGK model) and those which have been exposed only during postnatal life (nW/sW model). In other words, being nurtured by diabetic GK mothers from birth to weaning was sufficient to significantly alter the beta cell mass, glucose-induced insulin secretion and glucose homeostasis of offspring. No synergistic deleterious effects of pre-and postnatal exposure was observed in our setting.
Collapse
|
5
|
Defour M, Hooiveld GJEJ, van Weeghel M, Kersten S. Probing metabolic memory in the hepatic response to fasting. Physiol Genomics 2020; 52:602-617. [PMID: 33074794 DOI: 10.1152/physiolgenomics.00117.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissues may respond differently to a particular stimulus if they have been previously exposed to that same stimulus. Here, we tested the hypothesis that a strong metabolic stimulus such as fasting may influence the hepatic response to a subsequent fast and thus elicit a memory effect. Overnight fasting in mice significantly increased plasma free fatty acids, glycerol, β-hydroxybutyrate, and liver triglycerides, and decreased plasma glucose, plasma triglycerides, and liver glycogen levels. In addition, fasting dramatically changed the liver transcriptome, upregulating genes involved in gluconeogenesis and in uptake, oxidation, storage, and mobilization of fatty acids, and downregulating genes involved in fatty acid synthesis, fatty acid elongation/desaturation, and cholesterol synthesis. Fasting also markedly impacted the liver metabolome, causing a decrease in the levels of numerous amino acids, glycolytic-intermediates, TCA cycle intermediates, and nucleotides. However, these fasting-induced changes were unaffected by two previous overnight fasts. Also, no significant effect was observed of prior fasting on glucose tolerance. Finally, analysis of the effect of fasting on the transcriptome in hepatocyte humanized mouse livers indicated modest similarity in gene regulation in mouse and human liver cells. In general, genes involved in metabolic pathways were upregulated or downregulated to a lesser extent in human liver cells than in mouse liver cells. In conclusion, we found that previous exposure to fasting in mice did not influence the hepatic response to a subsequent fast, arguing against the concept of metabolic memory in the liver. Our data provide a useful resource for the study of liver metabolism during fasting.
Collapse
Affiliation(s)
- Merel Defour
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Insulin sensitivity in male sheep born to ewes treated with testosterone during pregnancy. J Dev Orig Health Dis 2020; 12:456-464. [PMID: 32662387 DOI: 10.1017/s2040174420000665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In animal models, exposure to excess testosterone during gestation induces polycystic ovary syndrome (PCOS)-like reproductive and metabolic traits in female offspring, suggesting that the hyperandrogenemic intrauterine environment may have a role in the etiology of PCOS. Additionally, few studies have also addressed metabolic and reproductive outcomes in male offspring. In the present study, the intravenous glucose tolerance test (IGTT) was used to assess the insulin-glucose homeostasis at various ages during sexual development in male sheep born to testosterone-treated ewes. To further analyze the programming effect of testosterone on insulin-glucose homeostasis, indexes of insulin sensitivity were assessed in orchidectomized post-pubertal males born to testosterone-treated ewes (Torq-males) and orchidectomized post-puberal controls (Corq-males) before and 48 h after a testosterone injection. There was no difference in insulin sensitivity indexes between males born to testosterone-treated ewes (T-males) and control males born to control ewes (C-males) at 5, 10, 20 and 30 weeks of age, representing the infantile, early and late pre-pubertal, and early post-pubertal stage of sexual development, respectively. In orchidectomized males, basal levels of insulin and glucose were not different between both groups before and after the testosterone injection; however, Torq-males released more insulin before and after T challenge during the first 20 min of the test. Despite this, plasma glucose concentrations were not different in both groups during IVGTT, resulting in an insulin sensitivity index composite similar between groups. We concluded that the effect of prenatal exposure to excess testosterone may reprogram the pancreatic β-cells insulin release in ovine males, with effects more evident in castrated males versus intact males.
Collapse
|
7
|
Hu X, Go YM, Jones DP. Omics Integration for Mitochondria Systems Biology. Antioxid Redox Signal 2020; 32:853-872. [PMID: 31891667 PMCID: PMC7074923 DOI: 10.1089/ars.2019.8006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Significance: Elucidation of the central importance of mitophagy in homeostasis of cells and organisms emphasizes that mitochondrial functions extend far beyond short-term needs for energy production. In mitochondria systems biology, the mitochondrial genome, proteome, and metabolome operate as a functional network in coordination of cell activities. Organization occurs through subnetworks that are interconnected by membrane potential, transport activities, allosteric and cooperative interactions, redox signaling mechanisms, rheostatic control by post-translational modifications, and metal ion homeostasis. These subnetworks enable use of varied energy precursors, defense against environmental stressors, and macromolecular rewiring to titrate energy production, biosynthesis, and detoxification according to cell-specific needs. Rewiring mechanisms, termed mitochondrial reprogramming, enhance fitness to respond to metabolic resources and challenges from the environment. Maladaptive responses can cause cell death. Maladaptive rewiring can cause disease. In cancer, adaptive rewiring can interfere with effective treatment. Recent Advances: Many recent advances have been facilitated by the development of new omics tools, which create opportunities to use data-driven analysis of omics data to address these complex adaptive and maladaptive mechanisms of mitochondrial reprogramming in human disease. Critical Issues: Application of omics integration to model systems reveals a critical role for metal ion homeostasis broadly impacting mitochondrial reprogramming. Importantly, data show that trans-omics associations are more robust and biologically relevant than single omics associations. Future Directions: Application of omics integration to mitophagy research creates new opportunities to link the complex, interactive functions of mitochondrial form and function in mitochondria systems biology.
Collapse
Affiliation(s)
- Xin Hu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
Lage LPA, Weissman D, Serusier M, Putrino SM, Baron F, Guyonvarch A, Tournat M, Nunes AJP, Panserat S. Long-term impact of a 4-day feed restriction at the protozoea stage on metabolic gene expressions of whiteleg shrimp ( Litopenaeus vannamei). PeerJ 2020; 8:e8715. [PMID: 32219024 PMCID: PMC7087488 DOI: 10.7717/peerj.8715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/10/2020] [Indexed: 02/02/2023] Open
Abstract
Based on the "nutritional programming" concept, we evaluated the long-term effects of an early four-day caloric restriction (40% reduction in feed allowance compared to a normal feeding level) at the protozoea stage in whiteleg shrimp. We analyzed long-term programming of shrimp by studying metabolism at the molecular level, through RT-qPCR of key biomarkers (involved in intermediary metabolism and digestion). The mRNA levels (extracted from the whole body) were analyzed after the stimulus and after the rearing period, at 20 and 35 days, respectively. At the end of the experimental period, shrimp growth performance was evaluated. There was no difference between normal feed allowance (CTL) and feed-restricted shrimp (RES) for performance parameters (survival, final body weight and the number of post-larvae g-1 or PL g-1). The stimulus directly affected the mRNA levels for only two genes, i.e., preamylase and lvglut 2 which were expressed at higher levels in feed-restricted shrimp. In the long-term, higher levels of mRNAs for enzymes coding for glycolysis and ATP synthesis were also detected. This suggests a possible long-term modification of the metabolism that is linked to the stimulus at the protozoea stage. Overall, further studies are needed to improve nutritional programming in shrimp.
Collapse
Affiliation(s)
- Luis Paulo A. Lage
- INRAE, Université de Pau et des Pays de l’Adour, E2S UPPA, NuMeA, St-Pee-sur-Nivelle, France
- LABOMAR Instituto de Ciências do Mar / LANOA Laboratório de Nutrição de Organismos Aquáticos, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Mélanie Serusier
- INRAE, Université de Pau et des Pays de l’Adour, E2S UPPA, NuMeA, St-Pee-sur-Nivelle, France
| | | | | | | | | | - Alberto Jorge Pinto Nunes
- LABOMAR Instituto de Ciências do Mar / LANOA Laboratório de Nutrição de Organismos Aquáticos, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Stephane Panserat
- INRAE, Université de Pau et des Pays de l’Adour, E2S UPPA, NuMeA, St-Pee-sur-Nivelle, France
| |
Collapse
|
9
|
Marousez L, Lesage J, Eberlé D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019; 11:E2966. [PMID: 31817318 PMCID: PMC6950532 DOI: 10.3390/nu11122966] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Despite constant research and public policy efforts, the obesity epidemic continues to be a major public health threat, and new approaches are urgently needed. It has been shown that nutrient imbalance in early life, from conception to infancy, influences later obesity risk, suggesting that obesity could result from "developmental programming". In this review, we evaluate the possibility that early postnatal nutrition programs obesity risk via epigenetic mechanisms, especially DNA methylation, focusing on four main topics: (1) the dynamics of epigenetic processes in key metabolic organs during the early postnatal period; (2) the epigenetic effects of alterations in early postnatal nutrition in animal models or breastfeeding in humans; (3) current limitations and remaining outstanding questions in the field of epigenetic programming; (4) candidate pathways by which early postnatal nutrition could epigenetically program adult body weight set point. A particular focus will be given to the potential roles of breast milk fatty acids, neonatal metabolic and hormonal milieu, and gut microbiota. Understanding the mechanisms by which early postnatal nutrition can promote lifelong metabolic modifications is essential to design adequate recommendations and interventions to "de-program" the obesity epidemic.
Collapse
Affiliation(s)
| | | | - Delphine Eberlé
- University Lille, EA4489 Environnement Périnatal et Santé, Équipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, F-59000 Lille, France
| |
Collapse
|
10
|
|
11
|
Abstract
Glucose in our body is maintained within a narrow range by the humoral control and a 'lipostat' system regulated by leptin from adipose tissues, which keep our accumulated fat stores in check. Any disturbance in this delicately poised homeostasis could be disastrous as it can lead to obesity and its associated metabolic manifestations. Laboratory animals, especially rodents, have contributed to our knowledge in understanding this physiological mechanism through an array of genetic and non-genetic animals developed over the years. Two rat mutant obese models-Wistar inbred at National Institute of Nutrition (WNIN)/Ob-obese rats with normal glucose levels and WNIN/GR-Ob-obese with impaired glucose tolerance were developed in the National Centre for Laboratory Animal Sciences (Now ICMR-National Animal Resource Facility for Biomedical Research) at Hyderabad, India. These animals are unique, as, unlike the earlier models, they show all types of degenerative disorders associated with obesity, within a single system. Thus they show impairment in all the major organs of the body - liver, pancreas, kidney, bones, muscles, gonads, brain, eyes, and are sensitive to diet manipulations, have compromised immunity, often develop tumours and have reduced life span. One may argue that there are limitations to one's interpretations from animal studies to human application, but then one cannot shut one's eyes to the new lessons they have taught us in modifying our life styles.
Collapse
Affiliation(s)
- N.V. Giridharan
- ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, India
| |
Collapse
|
12
|
Rodríguez-Rodríguez P, Ramiro-Cortijo D, Reyes-Hernández CG, López de Pablo AL, González MC, Arribas SM. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front Physiol 2018; 9:602. [PMID: 29875698 PMCID: PMC5974054 DOI: 10.3389/fphys.2018.00602] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria.
Collapse
Affiliation(s)
| | - David Ramiro-Cortijo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Angel L López de Pablo
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Carmen González
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Gao T, Zhao M, Zhang L, Li J, Yu L, Lv P, Gao F, Zhou G. Effect of in ovo feeding of l-arginine on the hatchability, growth performance, gastrointestinal hormones, and jejunal digestive and absorptive capacity of posthatch broilers. J Anim Sci 2017; 95:3079-3092. [PMID: 28727112 DOI: 10.2527/jas.2016.0465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study was conducted to investigate the effects of in ovo feeding (IOF) of Arg solution on the hatchability, growth performance, gastrointestinal hormones, serum AA, activities of digestive enzymes, and mRNA expressions of sensing receptors and nutrient transporters in the jejunum of posthatch broilers. One thousand two hundred embryonated eggs with similar weight were randomly allocated to 5 groups consisting of 8 replicates of 40 eggs each. The 5 treatments were arranged as a noninjected control, a diluent-injected (0.75% NaCl solution) group, and Arg solution-injected groups with 0.5%, 1.0%, and 2.0% Arg, all dissolved in diluent. At 17.5 d of incubation, 0.6 mL of IOF solution was injected into the amniotic fluid of each egg of the injected groups. Results showed the hatchability of the 2% Arg group was lower (linear, = 0.025) than that of the other groups, and the BW of 21-d-old broilers increased (linear, = 0.008; quadratic, = 0.003) with increasing IOF concentration of Arg. The ADFI (linear, = 0.005; quadratic, = 0.001) and ADG (linear, = 0.010; quadratic, = 0.004) increased during d 1 to 21 with increasing IOF concentration of Arg. For 7- and 21-d-old broilers, the weights of digestive organs increased (linear, < 0.05) with increasing IOF concentrations of Arg; the greatest values were observed in the 1% Arg group. For 21-d-old broilers, IOF of the 1% Arg solution increased ( < 0.05) the concentrations of ghrelin and glucagon-like peptide 2; the activities of digestive enzymes, alkaline phosphatase, maltase, and sucrase in the jejunum; and the concentrations of serum AA of Val, Met, Ile, Leu, Arg, and Pro compared with those of the noninjected control and diluent-injected group. In ovo feeding of the 1% Arg solution also increased ( < 0.05) the mRNA expressions of jejunal sensing receptors of taste receptor type 1 members 1 and 3; the G protein-coupled receptor, class C, group 6, subtype A; nutrient transporters of solute carrier family 7, members 4, 6, and 7; sodium-glucose transporter 1; and fatty acid-binding protein 1. In conclusion, the 1% Arg solution was the appropriate injection level. In ovo feeding of the 1% Arg solution did not affect the hatchability but facilitated the release of gastrointestinal hormones, increasing the digestive and absorptive capacity and finally improving the growth performance of 21-d-old broilers. Therefore, IOF of the appropriate Arg solution could be an effective technology for regulating early nutrition supply and subsequent growth development in the poultry industry.
Collapse
|
14
|
Vera LM, Metochis C, Taylor JF, Clarkson M, Skjærven KH, Migaud H, Tocher DR. Early nutritional programming affects liver transcriptome in diploid and triploid Atlantic salmon, Salmo salar. BMC Genomics 2017; 18:886. [PMID: 29149845 PMCID: PMC5693578 DOI: 10.1186/s12864-017-4264-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/02/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND To ensure sustainability of aquaculture, plant-based ingredients are being used in feeds to replace marine-derived products. However, plants contain secondary metabolites which can affect food intake and nutrient utilisation of fish. The application of nutritional stimuli during early development can induce long-term changes in animal physiology. Recently, we successfully used this approach to improve the utilisation of plant-based diets in diploid and triploid Atlantic salmon. In the present study we explored the molecular mechanisms occurring in the liver of salmon when challenged with a plant-based diet in order to determine the metabolic processes affected, and the effect of ploidy. RESULTS Microarray analysis revealed that nutritional history had a major impact on the expression of genes. Key pathways of intermediary metabolism were up-regulated, including oxidative phosphorylation, pyruvate metabolism, TCA cycle, glycolysis and fatty acid metabolism. Other differentially expressed pathways affected by diet included protein processing in endoplasmic reticulum, RNA transport, endocytosis and purine metabolism. The interaction between diet and ploidy also had an effect on the hepatic transcriptome of salmon. The biological pathways with the highest number of genes affected by this interaction were related to gene transcription and translation, and cell processes such as proliferation, differentiation, communication and membrane trafficking. CONCLUSIONS The present study revealed that nutritional programming induced changes in a large number of metabolic processes in Atlantic salmon, which may be associated with the improved fish performance and nutrient utilisation demonstrated previously. In addition, differences between diploid and triploid salmon were found, supporting recent data that indicate nutritional requirements of triploid salmon may differ from those of their diploid counterparts.
Collapse
Affiliation(s)
- L. M. Vera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK94LA, Stirling, Scotland UK
| | - C. Metochis
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK94LA, Stirling, Scotland UK
| | - J. F. Taylor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK94LA, Stirling, Scotland UK
| | - M. Clarkson
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK94LA, Stirling, Scotland UK
| | - K. H. Skjærven
- National Institute of Nutrition and Seafood Research (NIFES), Nordnes, 5817 Bergen, Norway
| | - H. Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK94LA, Stirling, Scotland UK
| | - D. R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK94LA, Stirling, Scotland UK
| |
Collapse
|
15
|
Laskowski D, Båge R, Humblot P, Andersson G, Sirard MA, Sjunnesson Y. Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine day 8 blastocysts. Theriogenology 2017; 101:15-25. [DOI: 10.1016/j.theriogenology.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 06/04/2017] [Indexed: 01/07/2023]
|
16
|
Liu J, Dias K, Plagnes-Juan E, Veron V, Panserat S, Marandel L. Long-term programming effect of embryonic hypoxia exposure and high-carbohydrate diet at first feeding on glucose metabolism in juvenile rainbow trout. ACTA ACUST UNITED AC 2017; 220:3686-3694. [PMID: 28798080 DOI: 10.1242/jeb.161406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Environmental conditions experienced during early life play an important role in the long-term metabolic status of individuals. The present study investigated whether hypoxia exposure [for 24 h: 2.5 mg O2 l-1 (20% dissolved O2)] during the embryonic stage alone (hypoxic history) or combined with a 5-day high-carbohydrate (60%) diet stimulus at first feeding (HC dietary history) can affect glucose metabolism later in life, i.e. in juvenile fish. After 19 weeks of growth, we observed a decrease in final body mass in fish with an HC dietary history. Feed efficiency was significantly affected by both hypoxic and HC dietary histories. After a short challenge test (5 days) performed with a 30% carbohydrate diet in juvenile trout, our results also showed that, in trout that experienced hypoxic history, mRNA levels of gluconeogenic genes in liver and glucose transport genes in both liver and muscle were significantly increased at the juvenile stage. Besides, mRNA levels of glycolytic genes were decreased in fish with an HC dietary history. Both hypoxic and dietary histories barely affected plasma metabolites or global epigenetic modifications in juvenile fish after the challenge test. In conclusion, our results demonstrated that an acute hypoxic stimulus during early development alone or combined with a hyperglucidic stimulus at first feeding can modify growth performance and glucose metabolism at the molecular level in juvenile trout.
Collapse
Affiliation(s)
- Jingwei Liu
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Karine Dias
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Vincent Veron
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRA, Université de Pau et des pays de l'Adour, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
17
|
Newman T, Jhinku N, Meier M, Horsfield J. Dietary Intake Influences Adult Fertility and Offspring Fitness in Zebrafish. PLoS One 2016; 11:e0166394. [PMID: 27870856 PMCID: PMC5117665 DOI: 10.1371/journal.pone.0166394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/27/2016] [Indexed: 01/30/2023] Open
Abstract
The burden of malnutrition, including both over- and undernutrition, is a major public health concern. Here we used a zebrafish model of diet-induced obesity to analyze the impact of dietary intake on fertility and the phenotype of the next generation. Over an eight-week period, one group received 60 mg of food each day (60 mg arm), while another received 5 mg (5 mg arm). At the end of the diet, the body mass index of the 60 mg arm was 1.5 fold greater than the 5 mg arm. The intervention also had a marked impact on fertility; breeding success and egg production in the 60 mg arm were increased 2.1- and 6.2-fold compared to the 5 mg arm, respectively. Transcriptome analysis of eggs revealed that transcripts involved in metabolic biological processes differed according to dietary intake. The progeny from the differentially fed fish were more likely to survive when the parents had access to more food. An intergenerational crossover study revealed that while parental diet did not influence weight gain in the offspring, the progeny of well-fed parents had increased levels of physical activity when exposed again to high nutrient availability. We conclude that dietary intake has an important influence on fertility and the subsequent fitness of offspring, even prior to breeding.
Collapse
Affiliation(s)
- Trent Newman
- Department of Pathology, Dunedin School of Medicine, PO Box 913, University of Otago, Dunedin, 9054, New Zealand
| | - Noel Jhinku
- Department of Pathology, Dunedin School of Medicine, PO Box 913, University of Otago, Dunedin, 9054, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, PO Box 913, University of Otago, Dunedin, 9054, New Zealand
- Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | - Julia Horsfield
- Department of Pathology, Dunedin School of Medicine, PO Box 913, University of Otago, Dunedin, 9054, New Zealand
- Gravida: National Centre for Growth and Development, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:189-199. [PMID: 27475301 DOI: 10.1016/j.cbpa.2016.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles.
Collapse
Affiliation(s)
- Filipa Rocha
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Lda, Area Empresarial de Marim, Lote C. 8700-221 Olhão, Portugal
| | - Inge Geurden
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Maria Teresa Dinis
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Stephane Panserat
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sofia Engrola
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
19
|
Bollwein H, Janett F, Kaske M. Impact of nutritional programming on the growth, health, and sexual development of bull calves. Domest Anim Endocrinol 2016; 56 Suppl:S180-90. [PMID: 27345315 DOI: 10.1016/j.domaniend.2016.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/19/2022]
Abstract
The growth, health, and reproductive performance of bull calves are important prerequisites for a successful cattle breeding program. Therefore, several attempts have been made to improve these parameters via nutritional programming. Although an increase in energy uptake during the postweaning period (7-8 mo of age) of the calves leads to a faster growing rate, it has no positive effects on sexual development. In contrast, a high-nutrition diet during the prepubertal period (8-20 wk of age) reduced the age at puberty of the bulls and increased the size and/or weight of the testis and the epididymal sperm reserves. This faster sexual development is associated with an increased transient LH peak, which seems to be mediated by an increase in serum IGF-I concentrations. However, the exact mechanisms responsible for the interaction between nutrition and the subsequent development of the calves are not clear. The sexual development of bull calves depends not only on the nutrition of the calves after birth but also on the feed intake of their mothers during pregnancy. In contrast to the effects of the feed intake of the bull calves, a high-nutrition diet fed to the mother during the first trimester has negative effects on the reproductive performance of their offspring. In conclusion, it has been clearly demonstrated that growth, health, and reproductive performance can be improved by nutritional programming, but further studies are necessary to obtain a better understanding about the mechanisms responsible for this phenomenon.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich.
| | - F Janett
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich
| | - M Kaske
- Clinic of Reproductive Medicine, Vetsuisse-Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich
| |
Collapse
|
20
|
Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 2016; 17:449. [PMID: 27296167 PMCID: PMC4907080 DOI: 10.1186/s12864-016-2804-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. Results Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. Conclusions This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2804-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Mathilde Dupont-Nivet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jerome Montfort
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Aurelie Le Cam
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Francoise Medale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Sadasivam J Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France.
| |
Collapse
|
21
|
Laskowski D, Sjunnesson Y, Humblot P, Andersson G, Gustafsson H, Båge R. The functional role of insulin in fertility and embryonic development-What can we learn from the bovine model? Theriogenology 2016; 86:457-64. [PMID: 27177960 DOI: 10.1016/j.theriogenology.2016.04.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/22/2015] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
Insulin is a key metabolic hormone that plays a crucial role in regulating energy homeostasis in the body. In addition, insulin-dependent signaling has important functions in reproduction and early embryo development. As metabolism and reproduction are closely linked, metabolic challenges may be the source of reproductive disorders and decreased fertility. This is known for the dairy cow and for other species including the human. Although metabolic disorders in the dairy cow often derive from a failure to adapt to a high milk production, the situation in the human is often linked to emerging conditions and associated diseases in our modern society such as obesity and diabetes, where an excess energy intake causes decreased fertility in women. Both energy excess and energy deficit are associated with a deviation of insulin concentrations in serum and follicular fluid from normal levels. Although many studies have shown that extreme variation in energy supply can negatively influence early embryo development by inducing changes in circulating concentrations of several metabolites or hormones like insulin, several in vitro culture media are still supplemented with insulin in high concentrations. In this review, direct and indirect effects of insulin on fertility will be described. Differences between the in vivo and in vitro situations will also be discussed.
Collapse
Affiliation(s)
- D Laskowski
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Y Sjunnesson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - P Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - G Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - H Gustafsson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - R Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
Marandel L, Véron V, Surget A, Plagnes-Juan É, Panserat S. Glucose metabolism ontogenesis in rainbow trout (Oncorhynchus mykiss) in the light of the recently sequenced genome: new tools for intermediary metabolism programming. ACTA ACUST UNITED AC 2016; 219:734-43. [PMID: 26747908 DOI: 10.1242/jeb.134304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss), a carnivorous fish species, displays a 'glucose-intolerant' phenotype when fed a high-carbohydrate diet. The importance of carbohydrate metabolism during embryogenesis and the timing of establishing this later phenotype are currently unclear. In addition, the mechanisms underlying the poor ability of carnivorous fish to use dietary carbohydrates as a major energy substrate are not well understood. It has recently been shown in trout that duplicated genes involved in glucose metabolism may participate in establishing the glucose-intolerant phenotype. The aim of this study was therefore to provide new understanding of glucose metabolism during ontogenesis and nutritional transition, taking into consideration the complexity of the trout genome. Trout were sampled at several stages of development from fertilization to hatching, and alevins were then fed a non-carbohydrate or a high-carbohydrate diet during first feeding. mRNA levels of all glucose metabolism-related genes increased in embryos during the setting up of the primitive liver. After the first meal, genes rapidly displayed expression patterns equivalent to those observed in the livers of juveniles. g6pcb2.a (a glucose 6-phosphatase-encoding gene) was up-regulated in alevins fed a high-carbohydrate diet, mimicking the expression pattern of gck genes. The g6pcb2.a gene may contribute to the non-inhibition of the last step of gluconeogenesis and thus to establishing the glucose-intolerant phenotype in trout fed a high-carbohydrate diet as early as first feeding. This information is crucial for nutritional programming investigations as it suggests that first feeding would be too late to programme glucose metabolism in the long term.
Collapse
Affiliation(s)
- Lucie Marandel
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Vincent Véron
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Anne Surget
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Élisabeth Plagnes-Juan
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle F-64310, France
| |
Collapse
|
23
|
Gestational dietary betaine supplementation suppresses hepatic expression of lipogenic genes in neonatal piglets through epigenetic and glucocorticoid receptor-dependent mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:41-50. [PMID: 26494244 DOI: 10.1016/j.bbalip.2015.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/21/2015] [Accepted: 10/11/2015] [Indexed: 01/04/2023]
Abstract
Methyl donors play critical roles in nutritional programming through epigenetic regulation of gene expression. Here we fed gestational sows with control or betaine-supplemented diets (3g/kg) throughout the pregnancy to explore the effects of maternal methyl-donor nutrient on neonatal expression of hepatic lipogenic genes. Betaine-exposed piglets demonstrated significantly lower liver triglyceride content associated with down-regulated hepatic expression of lipogenic genes acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD) and sterol regulatory element-binding protein-1c. Moreover, s-adenosyl methionine to s-adenosyl homocysteine ratio was elevated in the liver of betaine-exposed piglets, which was accompanied by DNA hypermethylation on FAS and SCD gene promoters and more enriched repression histone mark H3K27me3 on SCD gene promoter. Furthermore, glucocorticoid receptor (GR) binding to SCD gene promoter was diminished along with reduced serum cortisol and liver GR protein content in betaine-exposed piglets. GR-mediated SCD gene regulation was confirmed in HepG2 cells in vitro. Dexamethasone (Dex) drastically increased the luciferase activity of porcine SCD promoter, while the deletion of GR response element on SCD promoter significantly attenuated Dex-mediated SCD transactivation. In addition, miR-let-7e, miR-1285 and miR-124a, which respectively target porcine SCD, ACC and GR, were significantly up-regulated in the liver of betaine-exposed piglets, being in accordance with decreased protein content of these three genes. Taken together, our results suggest that maternal dietary betaine supplementation during gestation attenuates hepatic lipogenesis in neonatal piglets via epigenetic and GR-mediated mechanisms.
Collapse
|
24
|
Geurden I, Mennigen J, Plagnes-Juan E, Veron V, Cerezo T, Mazurais D, Zambonino-Infante J, Gatesoupe J, Skiba-Cassy S, Panserat S. High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. ACTA ACUST UNITED AC 2015; 217:3396-406. [PMID: 25274323 DOI: 10.1242/jeb.106062] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on the concept of nutritional programming in mammals, we tested whether an acute hyperglucidic-hypoproteic stimulus during first feeding could induce long-term changes in nutrient metabolism in rainbow trout. Trout alevins received during the five first days of exogenous feeding either a hyperglucidic (40% gelatinized starch + 20% glucose) and hypoproteic (20%) diet (VLP diet) or a high-protein (60%) glucose-free diet (HP diet, control). Following a common 105-day period on a commercial diet, both groups were then challenged (65 days) with a carbohydrate-rich diet (28%). Short- and long-term effects of the early stimuli were evaluated in terms of metabolic marker gene expressions and intestinal microbiota as initial gut colonisation is essential for regulating the development of the digestive system. In whole alevins (short term), diet VLP relative to HP rapidly increased gene expressions of glycolytic enzymes, while those involved in gluconeogenesis and amino acid catabolism decreased. However, none of these genes showed persistent molecular adaptation in the liver of challenged juveniles (long term). By contrast, muscle of challenged juveniles subjected previously to the VLP stimulus displayed downregulated expression of markers of glycolysis and glucose transport (not seen in the short term). These fish also had higher plasma glucose (9 h postprandial), suggesting impaired glucose homeostasis induced by the early stimulus. The early stimulus did not modify the expression of the analysed metabolism-related microRNAs, but had short- and long-term effects on intestinal fungi (not bacteria) profiles. In summary, our data show that a short hyperglucidic-hypoproteic stimulus during early life may have a long-term influence on muscle glucose metabolism and intestinal microbiota in trout.
Collapse
Affiliation(s)
- I Geurden
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - J Mennigen
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - E Plagnes-Juan
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - V Veron
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - T Cerezo
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - D Mazurais
- IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - J Zambonino-Infante
- IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - J Gatesoupe
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France IFREMER, Laboratoire d'Adaptation, Reproduction et Nutrition des Poissons (ARN), UMR 6539 LEMAR (Laboratoire des Sciences de l'Environnement Marin), Technopôle Brest-Iroise, BP 10070, 29280 Plouzané, France
| | - S Skiba-Cassy
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - S Panserat
- INRA, UR1067 Nutrition Metabolism and Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
25
|
Sadeghimahalli F, Karbaschi R, Zardooz H, Khodagholi F, Rostamkhani F. Effect of early life stress on pancreatic isolated islets' insulin secretion in young adult male rats subjected to chronic stress. Endocrine 2015; 48:493-503. [PMID: 25030548 DOI: 10.1007/s12020-014-0337-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/10/2014] [Indexed: 01/12/2023]
Abstract
Early stressful experiences may predispose organisms to certain disorders, including those of metabolic defects. This study aimed to explore the effects of early life stress on pancreatic insulin secretion and glucose transporter 2 (GLUT2) protein levels in stressed young adult male rats. Foot shock stress was induced in early life (at 2 weeks of age) and/or in young adulthood (at 8-10 weeks of age) for five consecutive days. Blood samples were taken before and after stress exposure in young adult rats. At the end of the experiment, glucose tolerance, isolated islets' insulin secretion, and pancreatic amounts of GLUT2 protein were measured. Our results show that early life stress has no effect on basal plasma corticosterone levels and adrenal weight, either alone or combined with young adulthood stress, but that early life + young adulthood stress could prevent weight gain, and cause an increase in basal plasma glucose and insulin. The homeostasis model assessment of insulin resistance index did not increase, when the rats were subjected to early life stress alone, but increased when combined with young adulthood stress. Moreover, glucose tolerance was impaired by the combination of early life + young adult stress. There was a decrease in islet's insulin secretion in rats subjected to early life stress in response to 5.6 mM glucose concentration, but an increase with a concentration of 16.7 mM glucose. However, in rats subjected to early life + young adulthood stress, islet's insulin secretion increased in response to both the levels of glucose concentrations. GLUT2 protein levels decreased in response to early life stress and early life + young adulthood stress, but there was a greater decrease in the early life stress group. In conclusion, perhaps early life stress sensitizes the body to stressors later in life, making it more susceptible to metabolic syndrome only when the two are in combination.
Collapse
Affiliation(s)
- Forouzan Sadeghimahalli
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
26
|
Maghbooli Z, Hossein-nezhad A, Larijani B, Amini M, Keshtkar A. Global DNA methylation as a possible biomarker for diabetic retinopathy. Diabetes Metab Res Rev 2015; 31:183-9. [PMID: 25069700 DOI: 10.1002/dmrr.2584] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/26/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND We evaluated whether global levels of DNA methylation status were associated with retinopathy as well as providing a predictive role of DNA methylation in developing retinopathy in a case-control study of 168 patients with type 2 diabetes. METHODS The 5-methylcytosine content was assessed by reversed-phase high-pressure liquid chromatography of peripheral blood leukocytes to determine an individual's global DNA methylation status in the two groups, either with or without retinopathy. RESULTS The global DNA methylation levels were significantly higher in diabetic retinopathy patients compared with those in non-retinopathy patients (4.90 ± 0.12 vs. 4.22 ± 0.13, respectively; p = 0.001). There was a significant increasing trend in global DNA methylation levels in terms of progressing retinopathy (without retinopathy, 4.22 ± 0.13; non-proliferative diabetic retinopathy, 4.62 ± 0.17; proliferative diabetic retinopathy, 5.07 ± 0.21) (p = 0.006). Additionally, global DNA methylation independent of retinopathy risk factors, which include dyslipidaemia, hypertension, hyperglycaemia and duration of diabetes, was a predictive factor for retinopathy (OR = 1.53, p = 0.015). CONCLUSIONS Global DNA methylation is modulated during or possibly before the primary stage of diabetes. This observation verifies the metabolic memory effect of hyperglycaemia in early stage of an aetiological process that leads to type 2 diabetes and its associated complications.
Collapse
Affiliation(s)
- Zhila Maghbooli
- Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
27
|
Telomere length in the two extremes of abnormal fetal growth and the programming effect of maternal arterial hypertension. Sci Rep 2015; 5:7869. [PMID: 25598199 PMCID: PMC5379006 DOI: 10.1038/srep07869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
We tested the hypothesis that leukocyte telomere length (LTL) is associated with birth weight in both extremes of abnormal fetal growth: small (SGA) and large for gestational age newborns (LGA). Clinical and laboratory variables of the mothers and the neonates were explored; 45 newborns with appropriate weight for gestational age (AGA), 12 SGA and 12 LGA were included. Whether the differences might be explained by variation in OBFC1 (rs9419958) and CTC1 (rs3027234) genes associated with LTL was determined. A significant association between birth weight and LTL was observed; LTL was significantly shorter in LGA newborns (1.01 ± 0.12) compared with SGA (1.73 ± 0.19) p < 0.005, mean ± SE. Maternal (Spearman R = −0.6, p = 0.03) and neonatal LTL (R = −0.25, p = 0.03) were significantly and inversely correlated with maternal history of arterial hypertension in previous gestations. Neonatal LTL was not significantly associated with either rs9419950 or rs3027234, suggesting that the association between neonatal LTL and birth weight is not influenced by genetic variation in genes that modify the interindividual LTL. In conclusion, telomere biology seems to be modulated by abnormal fetal growth; modifications in telomere length might be programmed by an adverse environment in utero.
Collapse
|
28
|
|
29
|
Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, Kaushik SJ, Panserat S, Médale F. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS One 2013; 8:e83162. [PMID: 24386155 PMCID: PMC3873907 DOI: 10.1371/journal.pone.0083162] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/30/2013] [Indexed: 01/02/2023] Open
Abstract
Sustainable aquaculture, which entails proportional replacement of fish-based feed sources by plant-based ingredients, is impeded by the poor growth response frequently seen in fish fed high levels of plant ingredients. This study explores the potential to improve, by means of early nutritional exposure, the growth of fish fed plant-based feed. Rainbow trout swim-up fry were fed for 3 weeks either a plant-based diet (diet V, V-fish) or a diet containing fishmeal and fish oil as protein and fat source (diet M, M-fish). After this 3-wk nutritional history period, all V- or M-fish received diet M for a 7-month intermediate growth phase. Both groups were then challenged by feeding diet V for 25 days during which voluntary feed intake, growth, and nutrient utilisation were monitored (V-challenge). Three isogenic rainbow trout lines were used for evaluating possible family effects. The results of the V-challenge showed a 42% higher growth rate (P = 0.002) and 30% higher feed intake (P = 0.005) in fish of nutritional history V compared to M (averaged over the three families). Besides the effects on feed intake, V-fish utilized diet V more efficiently than M-fish, as reflected by the on average 18% higher feed efficiency (P = 0.003). We noted a significant family effect for the above parameters (P<0.001), but the nutritional history effect was consistent for all three families (no interaction effect, P>0.05). In summary, our study shows that an early short-term exposure of rainbow trout fry to a plant-based diet improves acceptance and utilization of the same diet when given at later life stages. This positive response is encouraging as a potential strategy to improve the use of plant-based feed in fish, of interest in the field of fish farming and animal nutrition in general. Future work needs to determine the persistency of this positive early feeding effect and the underlying mechanisms.
Collapse
Affiliation(s)
- Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
- * E-mail:
| | - Peter Borchert
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences (WIAS), Wageningen University, Wageningen, The Netherlands
| | | | - Johan W. Schrama
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | | | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sadasivam J. Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| |
Collapse
|
30
|
Rocha F, Dias J, Engrola S, Gavaia P, Geurden I, Dinis MT, Panserat S. Glucose overload in yolk has little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish (Danio rerio). ACTA ACUST UNITED AC 2013; 217:1139-49. [PMID: 24363414 DOI: 10.1242/jeb.095463] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Some fish show a low metabolic ability to use dietary carbohydrates. The use of early nutritional stimuli to program metabolic pathways in fish is ill defined. Therefore, studies were undertaken with zebrafish to assess the effect of high glucose levels during the embryonic stage as a lifelong modulator of genes involved in carbohydrate metabolism. Genes related to carbohydrate metabolism were expressed at low levels at 0.2 and 1 day post-fertilization (dpf). However, from 4 dpf onwards there was a significant increase on expression of all genes, suggesting that all analysed pathways were active. By microinjection, we successfully enriched zebrafish egg yolk with glucose (a 43-fold increase of basal levels). Acute effects of glucose injection on gene expression were assessed in larvae up to 10 dpf, and the programming concept was evaluated in juveniles (41 dpf) challenged with a hyperglucidic diet. At 4 dpf, larvae from glucose-enriched eggs showed a downregulation of several genes related to glycolysis, glycogenolysis, lipogenesis and carbohydrate digestion in comparison with control (saline-injected) embryos. This inhibitory regulation was suppressed after 10 dpf. At the juvenile stage, and upon switching from a low to a high digestible carbohydrate diet, early glucose enrichment had no significant effect on most analysed genes. However, these same fish showed altered expression of the genes for cytosolic phosphoenolpyruvate carboxykinase, sodium-dependent glucose cotransporter 1 and glycogen synthase, suggesting changes to the glucose storage capacity in muscle and glucose production and transport in viscera. Overall, supplementation of egg yolk with high glucose levels had little effect on the long-term modulation of carbohydrate metabolic genes in zebrafish.
Collapse
Affiliation(s)
- Filipa Rocha
- CCMAR/CIMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu Z, Lim CY, Su MYF, Soh SLY, Shui G, Wenk MR, Grove KL, Radda GK, Han W, Xiao X. Neonatal overnutrition in mice exacerbates high-fat diet-induced metabolic perturbations. J Endocrinol 2013; 219:131-43. [PMID: 23959078 DOI: 10.1530/joe-13-0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO-HFD) mice. In addition, HFD-induced upregulation of pro-inflammatory cytokines was exaggerated in CPO-HFD mice. Consistent with greater inflammation, CPO-HFD mice showed more severe macrophage infiltration than HFD-fed CTR (CTR-HFD) mice. Furthermore, when compared with CTR-HFD mice, CPO-HFD mice exhibited reduced levels of several lipogenic enzymes in WAT and excess intramyocellular lipid accumulation. These data indicate that neonatal overnutrition accelerates the development of insulin resistance and exacerbates HFD-induced metabolic defects, possibly by worsening HFD-induced inflammatory response and impaired lipid metabolism.
Collapse
Affiliation(s)
- Zhiguo Liu
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, People's Republic of China Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119275, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Programming effects of high-carbohydrate feeding of larvae on adult glucose metabolism in zebrafish, Danio rerio. Br J Nutr 2013; 111:808-18. [PMID: 24112146 DOI: 10.1017/s0007114513003243] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to determine the potential long-term metabolic effects of early nutritional programming on carbohydrate utilisation in adult zebrafish (Danio rerio). High-carbohydrate diets were fed to fish during four ontogenetic stages: from the first-feeding stage to the end of the yolk-sac larval stage; from the first-feeding stage to 2 d after yolk-sac exhaustion; after yolk-sac exhaustion for 3 or 5 d. The carbohydrate stimuli significantly increased the body weight of the first-feeding groups in the short term. The expression of genes was differentially regulated by the early dietary intervention. The high-carbohydrate diets resulted in decreased plasma glucose levels in the adult fish. The mRNA levels and enzyme activities of glucokinase, pyruvate kinase, α-amylase and sodium-dependent glucose co-transporter 1 were up-regulated in the first-feeding groups. There was no significant change in the mRNA levels of glucose-6-phosphatase (G6Pase) in any experimental group, and the activity of G6Pase enzyme in the FF-5 (first feeding to 2 d after yolk-sac exhaustion) group was significantly different from that of the other groups. The expression of phosphoenolpyruvate carboxykinase gene in all the groups was significantly decreased. In the examined early programming range, growth performance was not affected. Taken together, data reported herein indicate that the period ranging from the polyculture to the external feeding stage is an important window for potential modification of the long-term physiological functions. In conclusion, the present study demonstrates that it is possible to permanently modify carbohydrate digestion, transport and metabolism of adult zebrafish through early nutritional programming.
Collapse
|
33
|
Guo XY, Fang YJ, Wu LY. Early Diet Dilution with 40% Rice Hull Induces Lower Body Fat and Lipid Metabolic Programming in Peking Ducks. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.3.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: same metabolic phenotype, different developmental pathways? J Nutr Metab 2013; 2013:517384. [PMID: 23762542 PMCID: PMC3666195 DOI: 10.1155/2013/517384] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/08/2013] [Accepted: 04/20/2013] [Indexed: 12/22/2022] Open
Abstract
Objective. Offspring born to mothers either fed an obesogenic diet throughout their life or restricted to pregnancy and lactation demonstrate obesity, hyperinsulinemia, and hyperleptinemia, irrespective of their postweaning diet. We examined whether timing of a maternal obesogenic diet results in differential regulation of pancreatic adipoinsular and inflammatory signaling pathways in offspring. Methods. Female Wistar rats were randomized into 3 groups: (1) control (CONT): fed a control diet preconceptionally and during pregnancy and lactation; (2) maternal high fat (MHF): fed an HF diet throughout their life and during pregnancy and lactation; (3) pregnancy and lactation HF (PLHF): fed a control diet throughout life until mating, then HF diet during pregnancy and lactation. Male offspring were fed the control diet postweaning. Plasma and pancreatic tissue were collected, and mRNA concentrations of key factors regulating adipoinsular axis signaling were determined. Results. MHF and PLHF offspring exhibited increased adiposity and were hyperinsulinemic and hyperleptinemic compared to CONT. Despite a similar anthropometric phenotype, MHF and PLHF offspring exhibited distinctly different expression for key pancreatic genes, dependent upon maternal preconceptional nutritional background. Conclusions. These data suggest that despite using differential signaling pathways, obesity in offspring may be an adaptive outcome of early life exposure to HF during critical developmental windows.
Collapse
|
35
|
Roth J, Qiang X, Marbán SL, Redelt H, Lowell BC. The Obesity Pandemic: Where Have We Been and Where Are We Going? ACTA ACUST UNITED AC 2012; 12 Suppl 2:88S-101S. [PMID: 15601956 DOI: 10.1038/oby.2004.273] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity, a new pandemic, is associated with an increased risk of death, morbidity, and accelerated aging. The multiple therapeutic modalities used to promote weight loss are outlined with caution, especially for patients who are very young or old. Except for very rare single gene defects, the inheritance of obesity is complex and still poorly understood, despite active investigations. Recent advances that have shed light on the pathophysiology of obesity are the recognition that 1) excess fat is deposited in liver, muscle, and pancreatic islets; 2) fat tissue secretes a large number of active signaling molecules including leptin, adiponectin, and resistin, as well as free fatty acids; and 3) activated macrophages colonize the adipose tissue. Other candidates for key roles in the causes and consequences of obesity include 1) metabolic programming, where food acts as a developmental regulator; 2) the constellation of defects known as the "metabolic syndrome;" 3) cortisol overproduction in the adipose tissue; and especially, 4) insulin resistance. The possible etiologies of insulin resistance include cytokine excess, elevated free fatty acids, and hyperinsulinemia itself, as with transgenic overproduction of insulin in mice.
Collapse
Affiliation(s)
- Jesse Roth
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | |
Collapse
|
36
|
Flamm EG. Neonatal animal testing paradigms and their suitability for testing infant formula. Toxicol Mech Methods 2012; 23:57-67. [DOI: 10.3109/15376516.2012.725108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Long term metabolic impact of high protein neonatal feeding: a preliminary study in male rat pups born with a low birth weight. Clin Nutr 2012; 31:741-8. [PMID: 22414774 DOI: 10.1016/j.clnu.2012.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Nutrition received in early life may impact adult health. The aim of the study was to determine whether high protein feeding in neonatal period would have long term metabolic effects in an animal model of low birth weight infants. METHODS Male rat pups born from dams receiving a low protein diet during gestation were separated from their mothers, and equipped with gastrostomy tubes to receive as their sole feeding a milk formula of either adequate protein (AP; n = 14; 8.7 g protein/dL; total energy: 155 kcal/100 g), or high protein content (HP; n = 14; 13.0 g protein/dL; total energy: 171 kcal/100 g) between the 7th (D7) and 21st day (D21) of life. Rats were then weaned to standard chow until sacrificed at adulthood. RESULTS At D18, HP feeding was associated with higher estimated rates of protein turnover (p = 0.007) and synthesis (p = 0.051), as assessed using l-[U-(13)C]valine infusion. HP milk feeding in early life was associated with an increase in weight gain from puberty through adulthood, along with an increase in food intake, serum insulin (179 ± 58 vs. 55 ± 7 pmol/L; means ± SE), pancreatic β-cell number, plasma triglycerides (95 ± 8 vs. 73 ± 9 mg/dL), serum leptin (9.7 ± 1.0 vs. 5.5 ± 1.2 ng/mL), mesenteric fat mass, and adipocyte size. CONCLUSIONS In an animal model of low birth weight infants, high protein neonatal feeding may have a lasting effect on fat and glucose metabolism, potentially leading to "metabolic syndrome" in adulthood.
Collapse
|
38
|
Accelerated growth rate induced by neonatal high-protein milk formula is not supported by increased tissue protein synthesis in low-birth-weight piglets. J Nutr Metab 2012; 2012:545341. [PMID: 22315674 PMCID: PMC3270429 DOI: 10.1155/2012/545341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/26/2011] [Accepted: 10/13/2011] [Indexed: 12/19/2022] Open
Abstract
Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass.
Collapse
|
39
|
McKenney RL, Short DK. Tipping the balance: the pathophysiology of obesity and type 2 diabetes mellitus. Surg Clin North Am 2012; 91:1139-48, vii. [PMID: 22054144 DOI: 10.1016/j.suc.2011.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Obesity plays a major role in the development of type 2 diabetes mellitus, and it has long been accepted that weight loss plays a significant role in diabetes therapy. This weight loss has traditionally been accomplished through lifestyle changes including diet and exercise. What has only more recently gained acceptance is that bariatric surgery may have a role to play in diabetes therapy as well. This article discusses the pathophysiology of type 2 diabetes mellitus and obesity and provides a basic understanding of these diseases, which forms the basis for understanding the importance of weight loss in their treatment.
Collapse
Affiliation(s)
- Rachel L McKenney
- Department of Internal Medicine, Gundersen Lutheran Medical Foundation, 1836 South Avenue, La Crosse, WI 54601, USA.
| | | |
Collapse
|
40
|
Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:105076. [PMID: 22110471 PMCID: PMC3202114 DOI: 10.1155/2011/105076] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/13/2022]
Abstract
A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission.
Collapse
|
41
|
Hochberg Z, Feil R, Constancia M, Fraga M, Junien C, Carel JC, Boileau P, Le Bouc Y, Deal CL, Lillycrop K, Scharfmann R, Sheppard A, Skinner M, Szyf M, Waterland RA, Waxman DJ, Whitelaw E, Ong K, Albertsson-Wikland K. Child health, developmental plasticity, and epigenetic programming. Endocr Rev 2011; 32:159-224. [PMID: 20971919 PMCID: PMC3365792 DOI: 10.1210/er.2009-0039] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs.
Collapse
Affiliation(s)
- Z Hochberg
- Rambam Medical Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Coupé B, Delamaire E, Hoebler C, Grit I, Even P, Fromentin G, Darmaun D, Parnet P. Hypothalamus integrity and appetite regulation in low birth weight rats reared artificially on a high-protein milk formula. J Nutr Biochem 2010; 22:956-63. [PMID: 21167701 DOI: 10.1016/j.jnutbio.2010.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 06/20/2010] [Accepted: 08/05/2010] [Indexed: 01/02/2023]
Abstract
High-protein (HP) milk formulas are routinely used in infants born with a low birth weight (LBW) to enhance growth and ensure a better verbal IQ development. Indirect evidence points to a link between an HP intake during early life and the prevalence of obesity in later life. We hypothesized that HP milk supplementation to LBW pups during early postnatal life would impact hypothalamic appetite neuronal pathways development with consequences, at adulthood, on energy homeostasis regulation. Rat pups born with a LBW were equipped with gastrostomy tubes on the fifth day of life. They received a milk formula with either normal protein (NP, 8.7 g protein/dl) or high protein content (HP; 13.0 g protein/dl) and were subsequently weaned to a standard, solid diet at postnatal day 21. Rats that had been fed HP content milk gained more weight at adulthood associated with an increase of plasma insulin, leptin and triglycerides concentrations compared to NP rats. Screening performed on hypothalamus in development from the two groups of rats identified higher gene expression for cell proliferation and neurotrophin markers in HP rats. Despite these molecular differences, appetite neuronal projections emanating from the arcuate nucleus did not differ between the groups. Concerning feeding behavior at adulthood, rats that had been fed HP or NP milk exhibited differences in the satiety period, resting postprandial duration and nocturnal meal pattern. The consequences of HP milk supplementation after LBW will be discussed in regard to neural development and metabolic anomalies.
Collapse
Affiliation(s)
- Bérengère Coupé
- INRA, Laboratoire de Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes atlantique, CHU Hôtel Dieu, place Alexis Ricordeau, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ling B, Aziz C, Wojnarowicz C, Olkowski A, Alcorn J. Timing and Duration of Drug Exposure Affects Outcomes of a Drug-Nutrient Interaction During Ontogeny. Pharmaceutics 2010; 2:321-338. [PMID: 27721360 PMCID: PMC3967141 DOI: 10.3390/pharmaceutics2040321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 11/16/2022] Open
Abstract
Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine) on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg) twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20). Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn) mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age.
Collapse
Affiliation(s)
- Binbing Ling
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, S7N5C9, Canada
| | - Caroline Aziz
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Chris Wojnarowicz
- Department of Veterinary Pathology, Prairie Diagnostic Services, 52 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Andrew Olkowski
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive Saskatoon, SK, S7N 5A8, Canada
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, S7N5C9, Canada.
| |
Collapse
|
44
|
Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA. The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS One 2010; 5:e11015. [PMID: 20574519 PMCID: PMC2888576 DOI: 10.1371/journal.pone.0011015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 05/14/2010] [Indexed: 01/11/2023] Open
Abstract
While the phenomenon linking the early nutritional environment to disease susceptibility exists in many mammalian species, the underlying mechanisms are unknown. We hypothesized that nutritional programming is a variable quantitative state of gene expression, fixed by the state of energy balance in the neonate, that waxes and wanes in the adult animal in response to changes in energy balance. We tested this hypothesis with an experiment, based upon global gene expression, to identify networks of genes in which expression patterns in inguinal fat of mice have been altered by the nutritional environment during early post-natal development. The effects of over- and under-nutrition on adiposity and gene expression phenotypes were assessed at 5, 10, 21 days of age and in adult C57Bl/6J mice fed chow followed by high fat diet for 8 weeks. Under-nutrition severely suppressed plasma insulin and leptin during lactation and diet-induced obesity in adult mice, whereas over-nourished mice were phenotypically indistinguishable from those on a control diet. Food intake was not affected by under- or over-nutrition. Microarray gene expression data revealed a major class of genes encoding proteins of the caveolae and cytoskeleton, including Cav1, Cav2, Ptrf (Cavin1), Ldlr, Vldlr and Mest, that were highly associated with adipose tissue expansion in 10 day-old mice during the dynamic phase of inguinal fat development and in adult animals exposed to an obesogenic environment. In conclusion gene expression profiles, fat mass and adipocyte size in 10 day old mice predicted similar phenotypes in adult mice with variable diet-induced obesity. These results are supported by phenotypes of KO mice and suggest that when an animal enters a state of positive energy balance adipose tissue expansion is initiated by coordinate changes in mRNA levels for proteins required for modulating the structure of the caveolae to maximize the capacity of the adipocyte for lipid storage.
Collapse
Affiliation(s)
- Leslie P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | | | | | |
Collapse
|
45
|
Mortensen ELK, Wang T, Malte H, Raubenheimer D, Mayntz D. Maternal preconceptional nutrition leads to variable fat deposition and gut dimensions of adult offspring mice (C57BL/6JBom). Int J Obes (Lond) 2010; 34:1618-24. [PMID: 20548304 DOI: 10.1038/ijo.2010.91] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Maternal nutrition during pregnancy or lactation may affect the chance of offspring becoming obese as adults, but little is known regarding the possible role of maternal nutrition before conception. In this study, we investigate how variable protein and carbohydrate content of the diet consumed before pregnancy affects fat deposition and gut dimensions of offspring mice. METHODS Eight-week-old female mice (C57BL/6JBom) were fed isocaloric low protein (8.4% protein; LP), standard protein (21.5% protein; ST) or high protein (44.2% protein; HP) diets. After 8 weeks of feeding, females were mated and fed a standard laboratory chow diet (22.5% protein) throughout periods of mating, gestation, lactation and weaning. Offspring mice were fed the same standard diet up to 46 days of age. Then offspring were killed and measures of dissected fat deposits and of the digestive system were taken. RESULTS Fat deposition of the offspring was significantly affected by preconceptional maternal nutrition and the effects differed between sexes. Male offspring deposited most fat when mothers were fed the LP diet, whereas female offspring deposited most fat when mothers were fed the ST diet. The mass and length of the digestive organs were affected by preconceptional maternal nutrition. Total gut from pyloric sphincter to anus was significantly shorter and dry mass was heavier in mice whose mothers were fed LP diets compared with offspring of mothers fed ST diets or HP diets. There was no significant effect of maternal nutrition on dry mass of the stomach or ceca. CONCLUSION Our study shows that preconceptional nutrition can have important influence on several body features of offspring in mice, including body composition and dimensions of the digestive system.
Collapse
Affiliation(s)
- E L K Mortensen
- Zoophysiology, Department of Biological Sciences, Aarhus University, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
46
|
Grayson BE, Kievit P, Smith MS, Grove KL. Critical determinants of hypothalamic appetitive neuropeptide development and expression: species considerations. Front Neuroendocrinol 2010; 31:16-31. [PMID: 19822169 PMCID: PMC2813940 DOI: 10.1016/j.yfrne.2009.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/05/2009] [Indexed: 01/21/2023]
Abstract
Over the last decade there has been a striking increase in the early onset of metabolic disease, including obesity and diabetes. The regulation of energy homeostasis is complex and involves the intricate integration of peripheral and central systems, including the hypothalamus. This review provides an overview of the development of brain circuitry involved in the regulation of energy homeostasis as well as recent findings related to the impact of both prenatal and postnatal maternal environment on the development of these circuits. There is surprising evidence that both overnutrition and undernutrition impact the development of these circuits in a similar manner as well as having similar consequences of increased obesity and diabetes later in life. There is also a special focus on relevant species differences in the development of hypothalamic circuits. A deeper understanding of the mechanisms involved in the development of brain circuitry is needed to fully understand how the nutritional and/or maternal environments impact the functional circuitry as well as the behavior and physiological outcomes.
Collapse
Affiliation(s)
- B E Grayson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
47
|
|
48
|
Enes P, Panserat S, Kaushik S, Oliva-Teles A. Nutritional regulation of hepatic glucose metabolism in fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:519-539. [PMID: 18791853 DOI: 10.1007/s10695-008-9259-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Accepted: 07/27/2008] [Indexed: 05/26/2023]
Abstract
Glucose plays a key role as energy source in the majority of mammals, but its importance in fish appears limited. Until now, the physiological basis for such apparent glucose intolerance in fish has not been fully understood. A distinct regulation of hepatic glucose utilization (glycolysis) and production (gluconeogenesis) may be advanced to explain the relative inability of fish to efficiently utilize dietary glucose. We summarize here information regarding the nutritional regulation of key enzymes involved in glycolysis (hexokinases, 6-phosphofructo-1-kinase and pyruvate kinase) and gluconeogenesis (phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and glucose-6-phosphatase) pathways as well as that of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The effect of dietary carbohydrate level and source on the activities and gene expression of the mentioned key enzymes is also discussed. Overall, data strongly suggest that the liver of most fish species is apparently capable of regulating glucose storage. The persistent high level of endogenous glucose production independent of carbohydrate intake level may lead to a putative competition between exogenous (dietary) glucose and endogenous glucose as the source of energy, which may explain the poor dietary carbohydrate utilization in fish.
Collapse
Affiliation(s)
- P Enes
- Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | | | | | | |
Collapse
|
49
|
Gemma C, Sookoian S, Alvariñas J, García SI, Quintana L, Kanevsky D, González CD, Pirola CJ. Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity (Silver Spring) 2009; 17:1032-9. [PMID: 19148128 DOI: 10.1038/oby.2008.605] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We explored peroxisome proliferator-activated receptor-gamma co-activator 1alpha gene (PPARGC1A), peroxisome proliferator-activated receptor-gamma gene (PPARG), and transcription factor A mitochondrial gene (Tfam) promoter DNA methylation in newborns between both extremes of abnormal fetal growth: Small (SGA) and large for gestational age (LGA) in relation to the mother's characteristics. We further sought for the association of rs9930506 variant at FTO gene and the promoter patterns of DNA methylation in the aforementioned genes, in relation to the offspring's birth weight. In a cross-sectional study, 88 healthy pregnant women and their babies were included. According to the offspring birth weight, there were 57 newborns with appropriate weight for gestational age (AGA), 17 SGA, and 14 LGA. After bisulphite treatment of umbilical cord genomic DNA, a real-time methylation-specific PCR was used to determine the promoter methylation status in selected CpGs. Promoter methylated DNA/unmethylated DNA ratio, expressed as mean +/- s.e., was 0.82 +/- 0.15 (45% of alleles) for PPARGC1A, and 0.0044 +/- 0.0006 (0.4% of alleles) for Tfam. PPARG promoter was almost 100% methylated in all samples. In univariate analysis, there was no association among characteristics of the newborn and gene promoter methylation. None of the maternal features were related with the status of promoter methylation, except for a positive correlation between maternal BMI and PPARGC1A promoter methylation in umbilical cord (Pearson correlation coefficient r = 0.41, P = 0.0007). Finally, FTO rs9930506 AA homozygous in the LGA group showed decreased levels of methylated PPARGC1A in comparison with AG + GG genotypes and AGA and SGA infants. In conclusion, our findings suggest a potential role of promoter PPARGC1A methylation in metabolic programming.
Collapse
Affiliation(s)
- Carolina Gemma
- Molecular Genetics and Biology of Complex Diseases Department, Institute of Medical Research, A. Lanari, University of Buenos Aires-CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
50
|
des Robert C, Li N, Caicedo R, Frost S, Lane R, Hauser N, Neu J. Metabolic effects of different protein intakes after short term undernutrition in artificially reared infant rats. Early Hum Dev 2009; 85:41-9. [PMID: 18650036 DOI: 10.1016/j.earlhumdev.2008.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/08/2008] [Accepted: 06/06/2008] [Indexed: 01/21/2023]
Abstract
BACKGROUND Early postnatal nutrition is involved in metabolic programming. Small for gestational age and premature babies commonly receive insufficient dietary protein during the neonatal period due to nutrition intolerance, whereas high protein formulas are used to achieve catch up growth. Neither the short term, nor the long term effects of such manipulation of protein intake are known. AIM We hypothesized that high or low protein intake during infancy would induce metabolic alterations both during early-life and in adulthood. METHODS Gastrostomized neonatal rat pups received either 50% (P50%), 100% (P100%), or 130% (P130%) of the normal protein content in rat milk from the 7th to the 15th day of life (D7 to D15), when they were either sacrificed or placed with mothers for the long term study. Glucose tolerance tests (GTT) were performed at D230. Long term rats were sacrificed at D250. RESULTS At D15, weight of P50% pups was lower than P100% and P130% pups. Neither liver and kidney mass, nor islet beta-cell areas were altered. Brain weight (adjusted to body weight) was higher in P50% vs. P130% (p<0.05). Insulin/glucose ratio was lower in P50% vs. P130%. Expression of GLUT4 on adipocyte cell membrane and GLUT2 in liver cytosol was significantly enhanced in P50% vs. P130%. Long term, neither GTT results nor body nor organ weights differed between groups. CONCLUSION In neonatal rats, higher protein intakes via the enteral route led to enhanced short term weight gain, insulin resistance, and modified expression of glucose transporters. However, these differences were not sustained.
Collapse
|