1
|
Goriounova AS, Flori Sassano M, Wrennall JA, Tarran R. ELD607 specifically traffics Orai1 to the lysosome leading to inhibition of store operated calcium entry. Cell Calcium 2024; 123:102945. [PMID: 39191091 DOI: 10.1016/j.ceca.2024.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Orai1 is a plasma membrane Ca2+ channel involved in store operated calcium entry (SOCE). SOCE can regulate cell growth, exocytosis, gene expression and inflammation. We previously found that short palate lung and nasal epithelial clone 1's (SPLUNC1) sixth α-helix (α6) bound Orai1 to inhibit SOCE. SPLUNC1 was not proteolytically stable, so we developed ELD607, an 11 amino acid peptide based on SPLUNC1's α6 region which was more stable and more potent than SPLUNC1/α6. Here, we studied ELD607's mechanism of action. We overexpressed either Orai1-HA or Orai1-YFP in HEK293T cells to probe ELD607-Orai1 interactions by confocal microscopy. We also measured changes in Fluo-4 fluorescence in a multiplate reader as a marker of cytoplasmic Ca2+ levels. ELD607 internalized Orai1 independently of STIM1. Both 15 min and 3 h exposure to ELD607 similarly depleted Orai1 in the plasma membrane. However, 3 h exposure to ELD607 yielded greater inhibition of SOCE. ELD607 continued to colocalize with Orai1 after internalization and this process was dependent on the presence of the ubiquitin ligase NEDD4.2. Similarly, ELD607 increased the colocalization between Orai1 and ubiquitin. ELD607 also increased the colocalization between Orai1 and Rab5 and 7, but not Rab11, suggesting that Orai1 trafficked through early and late but not recycling endosomes. Finally, ELD607 caused Orai1, but not Orai2, Orai3, or STIM1 to traffic to lysosomes. We conclude that ELD607 rapidly binds to Orai1 and works in an identical fashion as full length SPLUNC1 by internalizing Orai1 and sending it to lysosomes, leading to a decrease in SOCE.
Collapse
Affiliation(s)
- Alexandra S Goriounova
- Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - M Flori Sassano
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA.
| |
Collapse
|
2
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Ahmad S, Wrennall JA, Goriounova AS, Sekhri M, Iskarpatyoti JA, Ghosh A, Abdelwahab SH, Voeller A, Rai M, Mahida RY, Krajewski K, Ignar DM, Greenbaum A, Moran TP, Tilley SL, Thickett DR, Sassano MF, Tarran R. Specific Inhibition of Orai1-mediated Calcium Signalling Resolves Inflammation and Clears Bacteria in an Acute Respiratory Distress Syndrome Model. Am J Respir Crit Care Med 2024; 209:703-715. [PMID: 37972349 PMCID: PMC10945054 DOI: 10.1164/rccm.202308-1393oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Saira Ahmad
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | - Mani Rai
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Rahul Y. Mahida
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Timothy P. Moran
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen L. Tilley
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David R. Thickett
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
| | - M. Flori Sassano
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Liu X, Zheng T, Jiang Y, Wang L, Zhang Y, Liang Q, Chen Y. Molecular Mechanism Analysis of STIM1 Thermal Sensation. Cells 2023; 12:2613. [PMID: 37998348 PMCID: PMC10670385 DOI: 10.3390/cells12222613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
STIM1 has been identified as a new warm sensor, but the exact molecular mechanism remains unclear. In this study, a variety of mutants of STIM1, Orai1 and Orai3 were generated. The single-cell calcium imaging and confocal analysis were used to evaluate the thermal sensitivity of the resulting STIM mutants and the interaction between STIM1 and Orai mutants in response to temperature. Our results suggested that the CC1-SOAR of STIM1 was a direct activation domain of temperature, leading to subsequent STIM1 activation, and the transmembrane (TM) region and K domain but not EF-SAM were needed for this process. Furthermore, both the TM and SOAR domains exhibited similarities and differences between STIM1-mediated thermal sensation and store-operated calcium entry (SOCE), and the key sites of Orai1 showed similar roles in these two responses. Additionally, the TM23 (comprising TM2, loop2, and TM3) region of Orai1 was identified as the key domain determining the STIM1/Orai1 thermal response pattern, while the temperature reactive mode of STIM1/Orai3 seemed to result from a combined effect of Orai3. These findings provide important support for the specific molecular mechanism of STIM1-induced thermal response, as well as the interaction mechanism of STIM1 with Orai1 and Orai3 after being activated by temperature.
Collapse
Affiliation(s)
- Xiaoling Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Tianyuan Zheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Yan Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Lei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Yuchen Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Qiyu Liang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102401, China; (T.Z.); (L.W.); (Y.Z.); (Q.L.)
| | - Yuejie Chen
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Goriounova AS, Gilmore RC, Wrennall JA, Tarran R. Super resolution microscopy analysis reveals increased Orai1 activity in asthma and cystic fibrosis lungs. J Cyst Fibros 2023; 22:161-171. [PMID: 35961837 PMCID: PMC9982747 DOI: 10.1016/j.jcf.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
QUESTION In diseases such as asthma and cystic fibrosis (CF), the immune response is dysregulated and the lung is chronically inflamed. Orai1 activation is required for the initiation and persistence of inflammation. However, Orai1 expression in the lung is poorly understood. We therefore tested the hypothesis that Orai1 expression was upregulated in asthmatic and CF lungs. MATERIALS AND METHODS We used LungMAP to analyze single-cell RNAseq data of Orai1 and stromal interaction molecule 1 (STIM1) expression in normal human lungs. We then performed RNAscope analysis and immunostaining on lung sections from normal, asthma, and CF donors. We imaged sections by confocal and super resolution microscopy, and analyzed Orai1 and STIM1 expression in different pulmonary cell types. RESULTS Orai1 was broadly-expressed, but expression was greatest in immune cells. At mRNA and protein levels, there were no consistent trends in expression levels between the three phenotypes. Orai1 must interact with STIM1 in order to activate and conduct Ca2+. We therefore used STIM1/Orai1 co-localization as a marker of Orai1 activity. Using this approach, we found significantly increased co-localization between these proteins in epithelia, interstitial and luminal immune cells, but not alveoli, from asthma and CF lungs. Orai1 also aggregates as part of its activation process. Using super resolution microscopy, we also found significantly increased Orai1 aggregation in immune cells from asthmatic and CF lungs. CONCLUSION We found evidence that Orai1 was more active in asthma and CF than normal lungs. These data suggest that Orai1 is a relevant target for reducing pulmonary inflammation.
Collapse
Affiliation(s)
| | | | - Joe A Wrennall
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Tiffner A, Hopl V, Derler I. CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development. Cancers (Basel) 2022; 15:101. [PMID: 36612099 PMCID: PMC9817886 DOI: 10.3390/cancers15010101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer represents a major health burden worldwide. Several molecular targets have been discovered alongside treatments with positive clinical outcomes. However, the reoccurrence of cancer due to therapy resistance remains the primary cause of mortality. Endeavors in pinpointing new markers as molecular targets in cancer therapy are highly desired. The significance of the co-regulation of Ca2+-permeating and Ca2+-regulated ion channels in cancer cell development, proliferation, and migration make them promising molecular targets in cancer therapy. In particular, the co-regulation of the Orai1 and SK3 channels has been well-studied in breast and colon cancer cells, where it finally leads to an invasion-metastasis cascade. Nevertheless, many questions remain unanswered, such as which key molecular components determine and regulate their interplay. To provide a solid foundation for a better understanding of this ion channel co-regulation in cancer, we first shed light on the physiological role of Ca2+ and how this ion is linked to carcinogenesis. Then, we highlight the structure/function relationship of Orai1 and SK3, both individually and in concert, their role in the development of different types of cancer, and aspects that are not yet known in this context.
Collapse
Affiliation(s)
- Adéla Tiffner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
7
|
Tao Y, Mallet RT, Mathis KW, Ma R. Store-operated Ca 2+ channel signaling: Novel mechanism for podocyte injury in kidney disease. Exp Biol Med (Maywood) 2022; 248:425-433. [PMID: 36533574 DOI: 10.1177/15353702221139187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies over the last decade have markedly broadened our understanding of store-operated Ca2+ channels (SOCs) and their roles in kidney diseases and podocyte dysfunction. Podocytes are terminally differentiated glomerular visceral epithelial cells which are tightly attached to the glomerular capillary basement membrane. Podocytes and their unique foot processes (pedicels) constitute the outer layer of the glomerular filtration membrane and the final barrier preventing filtration of albumin and other plasma proteins. Diabetic nephropathy and other renal diseases are associated with podocyte injury and proteinuria. Recent evidence demonstrates a pivotal role of store-operated Ca2+ entry (SOCE) in maintaining structural and functional integrity of podocytes. This article reviews the current knowledge of SOCE and its contributions to podocyte physiology. Recent studies of the contributions of SOC dysfunction to podocyte injury in both cell culture and animal models are discussed, including work in our laboratory. Several downstream signaling pathways mediating SOC function in podocytes also are examined. Understanding the pivotal roles of SOC in podocyte health and disease is essential, as SOCE-activated signaling pathways are potential treatment targets for podocyte injury-related kidney diseases.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
8
|
Tao Y, Chaudhari S, Shotorbani PY, Ding Y, Chen Z, Kasetti R, Zode G, Ma R. Enhanced Orai1-mediated store-operated Ca 2+ channel/calpain signaling contributes to high glucose-induced podocyte injury. J Biol Chem 2022; 298:101990. [PMID: 35490782 PMCID: PMC9136128 DOI: 10.1016/j.jbc.2022.101990] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/09/2023] Open
Abstract
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)-induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Yanfeng Ding
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Zhenglan Chen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ramesh Kasetti
- The North Texas Eye Research Institute and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Gulab Zode
- The North Texas Eye Research Institute and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|
9
|
Wrennall JA, Ahmad S, Worthington EN, Wu T, Goriounova AS, Voeller AS, Stewart IE, Ghosh A, Krajewski K, Tilley SL, Hickey AJ, Sassano MF, Tarran R. A SPLUNC1 Peptidomimetic Inhibits Orai1 and Reduces Inflammation in a Murine Allergic Asthma Model. Am J Respir Cell Mol Biol 2022; 66:271-282. [PMID: 34807800 PMCID: PMC8937239 DOI: 10.1165/rcmb.2020-0452oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Orai1 is a plasma membrane Ca2+ channel that mediates store-operated Ca2+ entry (SOCE) and regulates inflammation. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is an asthma gene modifier that inhibits Orai1 and SOCE via its C-terminal α6 region. SPLUNC1 levels are diminished in asthma patient airways. Thus, we hypothesized that inhaled α6 peptidomimetics could inhibit Orai1 and reduce airway inflammation in a murine asthma model. To evaluate α6-Orai1 interactions, we used fluorescent assays to measure Ca2+ signaling, Förster resonance energy transfer, fluorescent recovery after photobleaching, immunostaining, total internal reflection microscopy, and Western blotting. To test whether α6 peptidomimetics inhibited SOCE and decreased inflammation in vivo, wild-type and SPLUNC1-/- mice were exposed to house dust mite (HDM) extract with or without α6 peptide. We also performed nebulization, jet milling, and scanning electron microscopy to evaluate α6 for inhalation. SPLUNC1-/- mice had an exaggerated response to HDM. In BAL-derived immune cells, Orai1 levels increased after HDM exposure in SPLUNC1-/- but not wild-type mice. Inhaled α6 reduced Orai1 levels in mice regardless of genotype. In HDM-exposed mice, α6 dose-dependently reduced eosinophilia and neutrophilia. In vitro, α6 inhibited SOCE in multiple immune cell types, and α6 could be nebulized or jet milled without loss of function. These data suggest that α6 peptidomimetics may be a novel, effective antiinflammatory therapy for patients with asthma.
Collapse
Affiliation(s)
| | | | | | - Tongde Wu
- Department of Cell Biology and Physiology
| | | | | | - Ian E. Stewart
- Center for Engineered Systems, Research Triangle Institute International, Research Triangle Park, North Carolina
| | | | | | - Steven L. Tilley
- Division of Pulmonology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Anthony J. Hickey
- Center for Engineered Systems, Research Triangle Institute International, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
10
|
Johnson J, Blackman R, Gross S, Soboloff J. Control of STIM and Orai function by post-translational modifications. Cell Calcium 2022; 103:102544. [PMID: 35151050 PMCID: PMC8960353 DOI: 10.1016/j.ceca.2022.102544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Store-operated calcium entry (SOCE) is mediated by the endoplasmic reticulum (ER) Ca2+ sensors stromal interaction molecules (STIM1 and STIM2) and the plasma membrane Orai (Orai1, Orai2, Orai3) Ca2+ channels. Although primarily regulated by ER Ca2+ content, there have been numerous studies over the last 15 years demonstrating that all 5 proteins are also regulated through post-translational modification (PTM). Focusing primarily on phosphorylation, glycosylation and redox modification, this review focuses on how PTMs modulate the key events in SOCE; Ca2+ sensing, STIM translocation, Orai interaction and/or Orai1 activation.
Collapse
|
11
|
Affiliation(s)
- Ross Vlahos
- RMIT University, School of Health and Biomedical Sciences, Bundoora, Victoria, Australia;
| |
Collapse
|
12
|
Rychkov GY, Zhou FH, Adams MK, Brierley SM, Ma L, Barritt GJ. Orai1- and Orai2-, but not Orai3-mediated I CRAC is regulated by intracellular pH. J Physiol 2021; 600:623-643. [PMID: 34877682 DOI: 10.1113/jp282502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three Orai (Orai1, Orai2, and Orai3) and two stromal interaction molecule (STIM1 and STIM2) mammalian protein homologues constitute major components of the store-operated Ca2+ entry mechanism. When co-expressed with STIM1, Orai1, Orai2 and Orai3 form highly selective Ca2+ channels with properties of Ca2+ release-activated Ca2+ (CRAC) channels. Despite the high level of homology between Orai proteins, CRAC channels formed by different Orai isoforms have distinctive properties, particularly with regards to Ca2+ -dependent inactivation, inhibition/potentiation by 2-aminoethyl diphenylborinate and sensitivity to reactive oxygen species. This study characterises and compares the regulation of Orai1, Orai2- and Orai3-mediated CRAC current (ICRAC ) by intracellular pH (pHi ). Using whole-cell patch clamping of HEK293T cells heterologously expressing Orai and STIM1, we show that ICRAC formed by each Orai homologue has a unique sensitivity to changes in pHi . Orai1-mediated ICRAC exhibits a strong dependence on pHi of both current amplitude and the kinetics of Ca2+ -dependent inactivation. In contrast, Orai2 amplitude, but not kinetics, depends on pHi , whereas Orai3 shows no dependence on pHi at all. Investigation of different Orai1-Orai3 chimeras suggests that pHi dependence of Orai1 resides in both the N-terminus and intracellular loop 2, and may also involve pH-dependent interactions with STIM1. KEY POINTS: It has been shown previously that Orai1/stromal interaction molecule 1 (STIM1)-mediated Ca2+ release-activated Ca2+ current (ICRAC ) is inhibited by intracellular acidification and potentiated by intracellular alkalinisation. The present study reveals that CRAC channels formed by each of the Orai homologues Orai1, Orai2 and Orai3 has a unique sensitivity to changes in intracellular pH (pHi ). The amplitude of Orai2 current is affected by the changes in pHi similarly to the amplitude of Orai1. However, unlike Orai1, fast Ca2+ -dependent inactivation of Orai2 is unaffected by acidic pHi . In contrast to both Orai1 and Orai2, Orai3 is not sensitive to pHi changes. Domain swapping between Orai1 and Orai3 identified the N-terminus and intracellular loop 2 as the molecular structures responsible for Orai1 regulation by pHi . Reduction of ICRAC dependence on pHi seen in a STIM1-independent Orai1 mutant suggested that some parts of STIM1 are also involved in ICRAC modulation by pHi .
Collapse
Affiliation(s)
- Grigori Y Rychkov
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Fiona H Zhou
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Melissa K Adams
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
| | - Linlin Ma
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Greg J Barritt
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
13
|
Sudarikova A, Vasileva V, Sultanova R, Ilatovskaya D. Recent advances in understanding ion transport mechanisms in polycystic kidney disease. Clin Sci (Lond) 2021; 135:2521-2540. [PMID: 34751394 PMCID: PMC8589009 DOI: 10.1042/cs20210370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
This review focuses on the most recent advances in the understanding of the electrolyte transport-related mechanisms important for the development of severe inherited renal disorders, autosomal dominant (AD) and recessive (AR) forms of polycystic kidney disease (PKD). We provide here a basic overview of the origins and clinical aspects of ARPKD and ADPKD and discuss the implications of electrolyte transport in cystogenesis. Special attention is devoted to intracellular calcium handling by the cystic cells, with a focus on polycystins and fibrocystin, as well as other calcium level regulators, such as transient receptor potential vanilloid type 4 (TRPV4) channels, ciliary machinery, and purinergic receptor remodeling. Sodium transport is reviewed with a focus on the epithelial sodium channel (ENaC), and the role of chloride-dependent fluid secretion in cystic fluid accumulation is discussed. In addition, we highlight the emerging promising concepts in the field, such as potassium transport, and suggest some new avenues for research related to electrolyte handling.
Collapse
Affiliation(s)
| | | | - Regina F. Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | | |
Collapse
|
14
|
Shipman JG, Onyenwoke RU, Sivaraman V. Calcium-Dependent Pulmonary Inflammation and Pharmacological Interventions and Mediators. BIOLOGY 2021; 10:1053. [PMID: 34681152 PMCID: PMC8533358 DOI: 10.3390/biology10101053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Pulmonary diseases present a significant burden worldwide and lead to severe morbidity and mortality. Lung inflammation caused by interactions with either viruses, bacteria or fungi is a prominent characteristic of many pulmonary diseases. Tobacco smoke and E-cig use ("vaping") are considered major risk factors in the development of pulmonary disease as well as worsening disease prognosis. However, at present, relatively little is known about the mechanistic actions by which smoking and vaping may worsen the disease. One theory suggests that long-term vaping leads to Ca2+ signaling dysregulation. Ca2+ is an important secondary messenger in signal transduction. Cellular Ca2+ concentrations are mediated by a complex series of pumps, channels, transporters and exchangers that are responsible for triggering various intracellular processes such as cell death, proliferation and secretion. In this review, we provide a detailed understating of the complex series of components that mediate Ca2+ signaling and how their dysfunction may result in pulmonary disease. Furthermore, we summarize the recent literature investigating the negative effects of smoking and vaping on pulmonary disease, cell toxicity and Ca2+ signaling. Finally, we summarize Ca2+-mediated pharmacological interventions that could potentially lead to novel treatments for pulmonary diseases.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Rob U. Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA;
| |
Collapse
|
15
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
16
|
Nomura A, Yokoe S, Tomoda K, Nakagawa T, Martin-Romero FJ, Asahi M. Fluctuation in O-GlcNAcylation inactivates STIM1 to reduce store-operated calcium ion entry via down-regulation of Ser 621 phosphorylation. J Biol Chem 2020; 295:17071-17082. [PMID: 33023909 PMCID: PMC7863906 DOI: 10.1074/jbc.ra120.014271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 WT (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621A-HEK and STIM1-KO-T626A-HEK cells was lower than that in STIM1-KO-WT-HEK cells because of reduced phosphorylation at Ser621 Treatment with the O-GlcNAcase inhibitor Thiamet G or O-GlcNAc transferase (OGT) transfection, which increases O-GlcNAcylation, reduced SOCE activity, whereas treatment with the OGT inhibitor ST045849 or siOGT transfection, which decreases O-GlcNAcylation, also reduced SOCE activity. Decrease in SOCE activity due to increase and decrease in O-GlcNAcylation was attributable to reduced phosphorylation at Ser621 These data suggest that both decrease in O-GlcNAcylation at Thr626 and increase in O-GlcNAcylation at Ser621 in STIM1 lead to impairment of SOCE activity through decrease in Ser621 phosphorylation. Targeting STIM1 O-GlcNAcylation could provide a promising treatment option for the related diseases, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Atsuo Nomura
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kiichiro Tomoda
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Francisco Javier Martin-Romero
- Department of Biochemistry and Molecular Biology, School of Life Sciences and Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan.
| |
Collapse
|
17
|
Ghosh A, Beyazcicek O, Davis ES, Onyenwoke RU, Tarran R. Cellular effects of nicotine salt-containing e-liquids. J Appl Toxicol 2020; 41:493-505. [PMID: 33034066 DOI: 10.1002/jat.4060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022]
Abstract
"Pod-based" e-cigarettes such as JUUL are currently the most prevalent electronic nicotine delivery systems (ENDS) in the United States. JUUL-type ENDS utilize nicotine salts protonated with benzoic acid rather than freebase nicotine. However, limited information is available on the cellular effects of these products. Cytoplasmic Ca2+ is a universal second messenger that controls many cellular functions including cell growth and cell death. Of note, dysregulation of cell Ca2+ homeostasis has been linked with several disease processes including autoimmune disease and several types of cancer. We exposed HEK293T cells and THP-1 macrophage-like cells to different JUUL e-liquids. We evaluated their effects on cellular viability and Ca2+ signaling by measuring fluorescence from calcein-AM/propidium iodide and Fluo-4, respectively. E-liquid autofluorescence was used to look for e-liquid permeation into cells. To identify the mechanisms behind the Ca2+ responses, different inhibitors of Ca2+ channels and phospholipase C signaling were used. JUUL e-liquids caused significant cytotoxic effects, with "Mint" flavor being the most cytotoxic. The Mint flavored e-liquid also caused a significant elevation in cytoplasmic Ca2+ . Using autofluorescence, the permeation of JUUL e-liquids into live cells was confirmed, indicating that intracellular organelles are directly exposed to e-liquids. Further studies identified the endoplasmic reticulum as being the source of e-liquid-induced changes in cytoplasmic Ca2+ . Nicotine salt-based e-liquids cause cytotoxicity and elevate cytoplasmic Ca2+ , indicating that they can exert biological effects beyond what would be expected with nicotine alone. These effects are flavor-dependent, and we propose that flavored e-liquids be reassessed for potential lung toxicity.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ozge Beyazcicek
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eric S Davis
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Knockout of stim2a Increases Calcium Oscillations in Neurons and Induces Hyperactive-Like Phenotype in Zebrafish Larvae. Int J Mol Sci 2020; 21:ijms21176198. [PMID: 32867296 PMCID: PMC7503814 DOI: 10.3390/ijms21176198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Stromal interaction molecule (STIM) proteins play a crucial role in store-operated calcium entry (SOCE) as endoplasmic reticulum Ca2+ sensors. In neurons, STIM2 was shown to have distinct functions from STIM1. However, its role in brain activity and behavior was not fully elucidated. The present study analyzed behavior in zebrafish (Danio rerio) that lacked stim2a. The mutant animals had no morphological abnormalities and were fertile. RNA-sequencing revealed alterations of the expression of transcription factor genes and several members of the calcium toolkit. Neuronal Ca2+ activity was measured in vivo in neurons that expressed the GCaMP5G sensor. Optic tectum neurons in stim2a-/- fish had more frequent Ca2+ signal oscillations compared with neurons in wildtype (WT) fish. We detected an increase in activity during the visual-motor response test, an increase in thigmotaxis in the open field test, and the disruption of phototaxis in the dark/light preference test in stim2a-/- mutants compared with WT. Both groups of animals reacted to glutamate and pentylenetetrazol with an increase in activity during the visual-motor response test, with no major differences between groups. Altogether, our results suggest that the hyperactive-like phenotype of stim2a-/- mutant zebrafish is caused by the dysregulation of Ca2+ homeostasis and signaling.
Collapse
|
19
|
Kahlfuss S, Kaufmann U, Concepcion AR, Noyer L, Raphael D, Vaeth M, Yang J, Pancholi P, Maus M, Muller J, Kozhaya L, Khodadadi-Jamayran A, Sun Z, Shaw P, Unutmaz D, Stathopulos PB, Feist C, Cameron SB, Turvey SE, Feske S. STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of non-pathogenic Th17 cells. EMBO Mol Med 2020; 12:e11592. [PMID: 32609955 PMCID: PMC7411566 DOI: 10.15252/emmm.201911592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Immunity to fungal infections is mediated by cells of the innate and adaptive immune system including Th17 cells. Ca2+ influx in immune cells is regulated by stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. We here identify patients with a novel mutation in STIM1 (p.L374P) that abolished Ca2+ influx and resulted in increased susceptibility to fungal and other infections. In mice, deletion of STIM1 in all immune cells enhanced susceptibility to mucosal C. albicans infection, whereas T cell‐specific deletion of STIM1 impaired immunity to systemic C. albicans infection. STIM1 deletion impaired the production of Th17 cytokines essential for antifungal immunity and compromised the expression of genes in several metabolic pathways including Foxo and HIF1α signaling that regulate glycolysis and oxidative phosphorylation (OXPHOS). Our study further revealed distinct roles of STIM1 in regulating transcription and metabolic programs in non‐pathogenic Th17 cells compared to pathogenic, proinflammatory Th17 cells, a finding that may potentially be exploited for the treatment of Th17 cell‐mediated inflammatory diseases.
Collapse
Affiliation(s)
- Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jun Yang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Priya Pancholi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Mate Maus
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - James Muller
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Patrick Shaw
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cori Feist
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Scott B Cameron
- Division of Allergy and Clinical Immunology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Division of Allergy and Clinical Immunology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Gulyás G, Sohn M, Kim YJ, Várnai P, Balla T. ORP3 phosphorylation regulates phosphatidylinositol 4-phosphate and Ca 2+ dynamics at plasma membrane-ER contact sites. J Cell Sci 2020; 133:jcs.237388. [PMID: 32041906 DOI: 10.1242/jcs.237388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) mediate non-vesicular lipid transfer between intracellular membranes. Phosphoinositide (PI) gradients play important roles in the ability of OSBP and some ORPs to transfer cholesterol and phosphatidylserine between the endoplasmic reticulum (ER) and other organelle membranes. Here, we show that plasma membrane (PM) association of ORP3 (also known as OSBPL3), a poorly characterized ORP family member, is triggered by protein kinase C (PKC) activation, especially when combined with Ca2+ increases, and is determined by both PI(4,5)P 2 and PI4P After activation, ORP3 efficiently extracts PI4P and to a lesser extent phosphatidic acid from the PM, and slightly increases PM cholesterol levels. Full activation of ORP3 resulted in decreased PM PI4P levels and inhibited Ca2+ entry via the store-operated Ca2+ entry pathway. The C-terminal region of ORP3 that follows the strictly defined lipid transfer domain was found to be critical for the proper localization and function of the protein.
Collapse
Affiliation(s)
- Gergő Gulyás
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Huang L, Ma R, Lin T, Chaudhari S, Shotorbani PY, Yang L, Wu P. Glucagon-like peptide-1 receptor pathway inhibits extracellular matrix production by mesangial cells through store-operated Ca 2+ channel. Exp Biol Med (Maywood) 2019; 244:1193-1201. [PMID: 31510798 DOI: 10.1177/1535370219876531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glomerular mesangial cell is the major source of mesangial matrix. Our previous study demonstrated that store-operated Ca2+ channel signaling suppressed extracellular matrix protein production by mesangial cells. Recent studies demonstrated that glucagon-like peptide-1 receptor (GLP-1R) pathway had renoprotective effects. However, the underlying mechanism(s) remains unclear. The present study was aimed to determine if activation of GLP-1R decreased extracellular matrix protein production by mesangial cells through upregulation of store-operated Ca2+ function. Experiments were conducted in cultured human mesangial cells. Liraglutide and exendin 9–39 were used to activate and inhibit GLP-1R, respectively. Store-operated Ca2+ function was estimated by evaluating the SOC-mediated Ca2+ entry (SOCE). We found that liraglutide treatment reduced high glucose-stimulated production of fibronectin and collagen IV. The inhibitory effects of liraglutide were not observed in the presence of exendin 9–39. Exendin-4, another GLP-1R agonist also blunted high glucose-stimulated fibronectin and collagen IV production. Treatment of human mesangial cells with liraglutide for 24 h significantly attenuated the high glucose-induced reduction of Orai1 protein. Consistently, Ca2+ imaging experiments showed that the inhibition of high glucose on SOCE was significantly attenuated by liraglutide. However, in the presence of exendin 9–39, liraglutide failed to reverse the high glucose effect. Furthermore, liraglutide effects on fibronectin and collagen IV protein abundance were significantly attenuated by GSK-7975A, a selective blocker of store-operated Ca2+. Taken together, our findings suggest that GLP-1R signaling inhibited high glucose-induced extracellular matrix protein production in mesangial cells by restoring store-operated Ca2+ function. Impact statement Diabetic kidney disease continues to be a major challenge to health care system in the world. There are no known therapies currently available that can cure the disease. The present study provided compelling evidence that activation of GLP-1R inhibited extracellular matrix protein production by glomerular mesangial cells. We further showed that the beneficial effect of GLP-1R was attributed to upregulation of store-operated Ca2+ channel function. Therefore, we identified a novel mechanism contributing to the renal protective effects of GLP-1R pathway. Activation of GLP-1R pathway and/or store-operated Ca2+ channel signaling in MCs could be an option for patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tingting Lin
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Parisa Y Shotorbani
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Liyong Yang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| | - Peiwen Wu
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| |
Collapse
|
22
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
23
|
Dong H, Zhang Y, Song R, Xu J, Yuan Y, Liu J, Li J, Zheng S, Liu T, Lu B, Wang Y, Klein ML. Toward a Model for Activation of Orai Channel. iScience 2019; 16:356-367. [PMID: 31207498 PMCID: PMC6579751 DOI: 10.1016/j.isci.2019.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
Store-operated calcium release-activated calcium (CRAC) channels mediate a variety of cellular signaling functions. The CRAC channel pore-forming protein, Orai1, is a hexamer arranged with 3-fold symmetry. Despite its importance in moving Ca2+ ions into cells, a detailed mechanistic understanding of Orai1 activation is lacking. Herein, a working model is proposed for the putative open state of Orai from Drosophila melanogaster (dOrai), which involves a “twist-to-open” gating mechanism. The proposed model is supported by energetic, structural, and experimental evidence. Fluorescent imaging demonstrates that each subunit on the intracellular side of the pore is inherently strongly cross-linked, which is important for coupling to STIM1, the pore activator, and graded activation of the Orai1 channel. The proposed model thus paves the way for understanding key aspects of calcium signaling at a molecular level. Mechanical coupling within the calcium channel pore is critical for its activation Molecular modeling could disclose gating mechanism of ion channels at atomic level The predicted open-state structure of the pore was further confirmed by experiments
Collapse
Affiliation(s)
- Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China; Institute for Brain Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| | - Yiming Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ruiheng Song
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jingjie Xu
- State Key Laboratory of Scientific and Engineering Computing, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yigao Yuan
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jindou Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Tiantian Liu
- State Key Laboratory of Scientific and Engineering Computing, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, People's Republic of China
| | - Benzhuo Lu
- State Key Laboratory of Scientific and Engineering Computing, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China.
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
24
|
Heine M, Heck J, Ciuraszkiewicz A, Bikbaev A. Dynamic compartmentalization of calcium channel signalling in neurons. Neuropharmacology 2019; 169:107556. [PMID: 30851307 DOI: 10.1016/j.neuropharm.2019.02.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Calcium fluxes through the neuronal membrane are strictly limited in time due to biophysical properties of voltage-gated and ligand-activated ion channels and receptors. Being embedded into the crowded dynamic environment of biological membranes, Ca2+-permeable receptors and channels undergo perpetual spatial rearrangement, which enables their temporary association and formation of transient signalling complexes. Thus, efficient calcium-mediated signal transduction requires mechanisms to support very precise spatiotemporal alignment of the calcium source and Ca2+-binding lipids and proteins in a highly dynamic environment. The mobility of calcium channels and calcium-sensing proteins themselves can be considered as a physiologically meaningful variable that affects calcium-mediated signalling in neurons. In this review, we will focus on voltage-gated calcium channels (VGCCs) and activity-induced relocation of stromal interaction molecules (STIMs) in the endoplasmic reticulum (ER) to show that particularly in time ranges between milliseconds to minutes, dynamic rearrangement of calcium conducting channels and sensor molecules is of physiological relevance. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Martin Heine
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39106, Germany; RG Functional Neurobiology, Institute for Development Biology and Neurobiology, Johannes Gutenberg University Mainz, Germany.
| | - Jennifer Heck
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| | - Anna Ciuraszkiewicz
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39106, Germany
| | - Arthur Bikbaev
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| |
Collapse
|
25
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Ma G, Zheng S, Ke Y, Zhou L, He L, Huang Y, Wang Y, Zhou Y. Molecular Determinants for STIM1 Activation During Store- Operated Ca2+ Entry. Curr Mol Med 2018; 17:60-69. [PMID: 28231751 DOI: 10.2174/1566524017666170220103731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND STIM/ORAI-mediated store-operated Ca2+ entry (SOCE) mediates a myriad of Ca2+-dependent cellular activities in mammals. Genetic defects in STIM1/ORAI1 lead to devastating severe combined immunodeficiency; whereas gain-offunction mutations in STIM1/ORAI1 are intimately associated with tubular aggregate myopathy. At molecular level, a decrease in the Ca2+ concentrations within the lumen of endoplasmic reticulum (ER) initiates multimerization of the STIM1 luminal domain to switch on the STIM1 cytoplasmic domain to engage and gate ORAI channels, thereby leading to the ultimate Ca2+ influx from the extracellular space into the cytosol. Despite tremendous progress made in dissecting functional STIM1-ORAI1 coupling, the activation mechanism of SOCE remains to be fully characterized. OBJECTIVE AND METHODS Building upon a robust fluorescence resonance energy transfer assay designed to monitor STIM1 intramolecular autoinhibition, we aimed to systematically dissect the molecular determinants required for the activation and oligomerization of STIM1. RESULTS Here we showed that truncation of the STIM1 luminal domain predisposes STIM1 to adopt a more active conformation. Replacement of the single transmembrane (TM) domain of STIM1 by a more rigid dimerized TM domain of glycophorin A abolished STIM1 activation. But this adverse effect could be partially reversed by disrupting the TM dimerization interface. Moreover, our study revealed regions that are important for the optimal assembly of hetero-oligomers composed of full-length STIM1 with its minimal STIM1-ORAI activating region, SOAR. CONCLUSIONS Our study clarifies the roles of major STIM1 functional domains in maintaining a quiescent configuration of STIM1 to prevent preactivation of SOCE.
Collapse
Affiliation(s)
- G Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - S Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875. China
| | - Y Ke
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - L Zhou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875. China
| | - L He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - Y Huang
- Center for Epigenetic and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030. United States
| | - Y Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030. United States
| | - Y Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030. United States
| |
Collapse
|
27
|
STIM1 and TRPV4 regulate fluid flow-induced calcium oscillation at early and late stages of osteoclast differentiation. Cell Calcium 2018; 71:45-52. [DOI: 10.1016/j.ceca.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/23/2017] [Accepted: 12/08/2017] [Indexed: 01/18/2023]
|
28
|
Mo P, Yang S. The store-operated calcium channels in cancer metastasis: from cell migration, invasion to metastatic colonization. Front Biosci (Landmark Ed) 2018; 23:1241-1256. [PMID: 28930597 DOI: 10.2741/4641] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Store-operated calcium entry (SOCE) is the predominant calcium entry mechanism in most cancer cells. SOCE is mediated by the endoplasmic reticulum calcium sensor STIMs (STIM1 and 2) and plasma membrane channel forming unit Orais (Orai 1-3). In recent years there is increasing evidence indicating that SOCE in cancer cells is dysregulated to promote cancer cell migration, invasion and metastasis. The overexpression of STIM and Orai proteins has been reported to correlate with the metastatic progression of various cancers. The hyperactive SOCE may promote metastatic dissemination and colonization by reorganizing the actin cytoskeleton, degrading the extracellular matrix and remodeling the tumor microenvironment. Here we discuss how these recent progresses provide novel insights to our understanding of tumor metastasis.
Collapse
Affiliation(s)
- Pingli Mo
- School of Life Sciences, Xiamen University, Xiamen, Fujian China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033,
| |
Collapse
|
29
|
Sehgal P, Szalai P, Olesen C, Praetorius HA, Nissen P, Christensen SB, Engedal N, Møller JV. Inhibition of the sarco/endoplasmic reticulum (ER) Ca 2+-ATPase by thapsigargin analogs induces cell death via ER Ca 2+ depletion and the unfolded protein response. J Biol Chem 2017; 292:19656-19673. [PMID: 28972171 DOI: 10.1074/jbc.m117.796920] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
Calcium (Ca2+) is a fundamental regulator of cell signaling and function. Thapsigargin (Tg) blocks the sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA), disrupts Ca2+ homeostasis, and causes cell death. However, the exact mechanisms whereby SERCA inhibition induces cell death are incompletely understood. Here, we report that low (0.1 μm) concentrations of Tg and Tg analogs with various long-chain substitutions at the O-8 position extensively inhibit SERCA1a-mediated Ca2+ transport. We also found that, in both prostate and breast cancer cells, exposure to Tg or Tg analogs for 1 day caused extensive drainage of the ER Ca2+ stores. This Ca2+ depletion was followed by markedly reduced cell proliferation rates and morphological changes that developed over 2-4 days and culminated in cell death. Interestingly, these changes were not accompanied by bulk increases in cytosolic Ca2+ levels. Moreover, knockdown of two key store-operated Ca2+ entry (SOCE) components, Orai1 and STIM1, did not reduce Tg cytotoxicity, indicating that SOCE and Ca2+ entry are not critical for Tg-induced cell death. However, we observed a correlation between the abilities of Tg and Tg analogs to deplete ER Ca2+ stores and their detrimental effects on cell viability. Furthermore, caspase activation and cell death were associated with a sustained unfolded protein response. We conclude that ER Ca2+ drainage and sustained unfolded protein response activation are key for initiation of apoptosis at low concentrations of Tg and Tg analogs, whereas high cytosolic Ca2+ levels and SOCE are not required.
Collapse
Affiliation(s)
- Pankaj Sehgal
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.,Biology Platform, Sunnybrook Research Institute, and Department of Biochemistry, University of Toronto, Toronto, Ontario M4N 3M5, Canada.,Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, DK-8000 Aarhus, Denmark
| | - Paula Szalai
- Centre for Molecular Medicine Norway (NCMM), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, University of Oslo, P. O. Box 1137 Blindern, 0318 Oslo, Norway
| | - Claus Olesen
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, DK-8000 Aarhus, Denmark
| | - Helle A Praetorius
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, DK-8000 Aarhus, Denmark.,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark, and
| | | | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, University of Oslo, P. O. Box 1137 Blindern, 0318 Oslo, Norway,
| | - Jesper V Møller
- From the Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark, .,Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, DK-8000 Aarhus, Denmark
| |
Collapse
|
30
|
Furukawa Y, Haruyama N, Nikaido M, Nakanishi M, Ryu N, Oh-Hora M, Kuremoto K, Yoshizaki K, Takano Y, Takahashi I. Stim1 Regulates Enamel Mineralization and Ameloblast Modulation. J Dent Res 2017; 96:1422-1429. [PMID: 28732182 DOI: 10.1177/0022034517719872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutations in the Ca2+ release-activated Ca2+ channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE) and result in ectodermal dysplasia with amelogenesis imperfecta. However, because of the limited availability of patient tissue, analyses of enamel mineralization or possible changes in ameloblast function or morphology have not been possible. Here, we generated mice with ectodermal tissue-specific deletion of Stim1 ( Stim1 cKO [conditional knockout]), Stim2 ( Stim2 cKO), and Stim1 and Stim2 ( Stim1/2 cKO) and analyzed their enamel phenotypes as compared with those of control ( Stim1/2fl/fl) animals. Ablation of Stim1 and Stim1/2 but not Stim2 expression resulted in chalky enamel and severe attrition at the incisor tips and molar cusps. Stim1 and Stim1/2 cKO, but not Stim2 cKO, demonstrated inferior enamel mineralization with impaired structural integrity, whereas the shape of the teeth and enamel thickness appeared to be normal in all animals. The gene expression levels of the enamel matrix proteins Amelx and Ambn and the enamel matrix proteases Mmp20 and Klk4 were not altered by the abrogation of SOCE in Stim1/2 cKO mice. The morphology of ameloblasts during the secretory and maturation stages was not significantly altered in either the incisors or molars of the cKO animals. However, in Stim1 and Stim1/2 cKO incisors, the alternating modulation of maturation-stage ameloblasts between the smooth- and ruffle-ended cell types continued beyond the regular cycle and extended to the areas corresponding to the zone of postmodulation ameloblasts in the teeth of control animals. These results indicate that SOCE is essential for proper enamel mineralization, in which Stim1 plays a critical role during the maturation process.
Collapse
Affiliation(s)
- Y Furukawa
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,2 Institute of Decision Science Program for Sustainable Society, Kyushu University, Fukuoka, Japan
| | - N Haruyama
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Nikaido
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Nakanishi
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - N Ryu
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Oh-Hora
- 3 Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - K Kuremoto
- 4 Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - K Yoshizaki
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Takano
- 5 Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo, Japan
| | - I Takahashi
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Korzeniowski MK, Wisniewski E, Baird B, Holowka DA, Balla T. Molecular anatomy of the early events in STIM1 activation - oligomerization or conformational change? J Cell Sci 2017; 130:2821-2832. [PMID: 28724757 DOI: 10.1242/jcs.205583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Decreased luminal endoplasmic reticulum (ER) Ca2+ concentration triggers oligomerization and clustering of the ER Ca2+ sensor STIM1 to promote its association with plasma membrane Orai1 Ca2+ channels leading to increased Ca2+ influx. A key step in STIM1 activation is the release of its SOAR domain from an intramolecular clamp formed with the STIM1 first coiled-coil (CC1) region. Using a truncated STIM1(1-343) molecule that captures or releases the isolated SOAR domain depending on luminal ER Ca2+ concentrations, we analyzed the early molecular events that control the intramolecular clamp formed between the CC1 and SOAR domains. We found that STIM1 forms constitutive dimers, and its CC1 domain can bind the SOAR domain of another STIM1 molecule in trans. Artificial oligomerization failed to liberate the SOAR domain or activate STIM1 unless the luminal Ca2+-sensing domains were removed. We propose that the release of SOAR from its CC1 interaction is controlled by changes in the orientation of the two CC1 domains in STIM1 dimers. Ca2+ unbinding in the STIM1 luminal domains initiates the conformational change allowing SOAR domain liberation and clustering, leading to Orai1 channel activation.
Collapse
Affiliation(s)
- Marek K Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Ma G, Wen S, He L, Huang Y, Wang Y, Zhou Y. Optogenetic toolkit for precise control of calcium signaling. Cell Calcium 2017; 64:36-46. [PMID: 28104276 PMCID: PMC5457325 DOI: 10.1016/j.ceca.2017.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Calcium acts as a second messenger to regulate a myriad of cell functions, ranging from short-term muscle contraction and cell motility to long-term changes in gene expression and metabolism. To study the impact of Ca2+-modulated 'ON' and 'OFF' reactions in mammalian cells, pharmacological tools and 'caged' compounds are commonly used under various experimental conditions. The use of these reagents for precise control of Ca2+ signals, nonetheless, is impeded by lack of reversibility and specificity. The recently developed optogenetic tools, particularly those built upon engineered Ca2+ release-activated Ca2+ (CRAC) channels, provide exciting opportunities to remotely and non-invasively modulate Ca2+ signaling due to their superior spatiotemporal resolution and rapid reversibility. In this review, we briefly summarize the latest advances in the development of optogenetic tools (collectively termed as 'genetically encoded Ca2+ actuators', or GECAs) that are tailored for the interrogation of Ca2+ signaling, as well as their applications in remote neuromodulation and optogenetic immunomodulation. Our goal is to provide a general guide to choosing appropriate GECAs for optical control of Ca2+ signaling in cellulo, and in parallel, to stimulate further thoughts on evolving non-opsin-based optogenetics into a fully fledged technology for the study of Ca2+-dependent activities in vivo.
Collapse
Affiliation(s)
- Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology Texas A&M University, Houston, TX 77030, USA
| | - Shufan Wen
- Center for Translational Cancer Research, Institute of Biosciences and Technology Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine Texas A&M University, Temple, TX 76504, USA, USA.
| |
Collapse
|
33
|
Wu P, Ren Y, Ma Y, Wang Y, Jiang H, Chaudhari S, Davis ME, Zuckerman JE, Ma R. Negative regulation of Smad1 pathway and collagen IV expression by store-operated Ca 2+ entry in glomerular mesangial cells. Am J Physiol Renal Physiol 2017; 312:F1090-F1100. [PMID: 28298362 DOI: 10.1152/ajprenal.00642.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Collagen IV (Col IV) is a major component of expanded glomerular extracellular matrix in diabetic nephropathy and Smad1 is a key molecule regulating Col IV expression in mesangial cells (MCs). The present study was conducted to determine if Smad1 pathway and Col IV protein abundance were regulated by store-operated Ca2+ entry (SOCE). In cultured human MCs, pharmacological inhibition of SOCE significantly increased the total amount of Smad1 protein. Activation of SOCE blunted high-glucose-increased Smad1 protein content. Treatment of human MCs with ANG II at 1 µM for 15 min, high glucose for 3 days, or TGF-β1 at 5 ng/ml for 30 min increased the level of phosphorylated Smad1. However, the phosphorylation of Smad1 by those stimuli was significantly attenuated by activation of SOCE. Knocking down Smad1 reduced, but expressing Smad1 increased, the amount of Col IV protein. Furthermore, activation of SOCE significantly attenuated high-glucose-induced Col IV protein production, and blockade of SOCE substantially increased the abundance of Col IV. To further verify those in vitro findings, we downregulated SOCE specifically in MCs in mice using small-interfering RNA (siRNA) against Orai1 (the channel protein mediating SOCE) delivered by the targeted nanoparticle delivery system. Immunohistochemical examinations showed that expression of both Smad1 and Col IV proteins was significantly greater in the glomeruli with positively transfected Orai1 siRNA compared with the glomeruli from the mice without Orai1 siRNA treatment. Taken together, our results indicate that SOCE negatively regulates the Smad1 signaling pathway and inhibits Col IV protein production in MCs.
Collapse
Affiliation(s)
- Peiwen Wu
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, Peoples Republic of China
| | - Yuezhong Ren
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yuhong Ma
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yanxia Wang
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Hui Jiang
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,The First Affiliated Hospital to Anhui University of Traditional Chinese Medicine, Hefei, China; and
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | - Rong Ma
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas;
| |
Collapse
|
34
|
Denda S, Takei K, Kumamoto J, Goto M, Denda M. Expression level of Orai3 correlates with aging-related changes in mechanical stimulation-induced calcium signalling in keratinocytes. Exp Dermatol 2017; 26:276-278. [DOI: 10.1111/exd.13175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Sumiko Denda
- Shiseido Global Innovation Center; Yokohama Japan
- Japan Science and Technology Agency; CREST; Kawaguchi Japan
| | - Kentaro Takei
- Japan Science and Technology Agency; CREST; Kawaguchi Japan
- Research Institute for Electronic Science; Hokkaido University; Sapporo Japan
| | - Junichi Kumamoto
- Japan Science and Technology Agency; CREST; Kawaguchi Japan
- Research Institute for Electronic Science; Hokkaido University; Sapporo Japan
| | - Makiko Goto
- Shiseido Global Innovation Center; Yokohama Japan
- Japan Science and Technology Agency; CREST; Kawaguchi Japan
| | - Mitsuhiro Denda
- Shiseido Global Innovation Center; Yokohama Japan
- Japan Science and Technology Agency; CREST; Kawaguchi Japan
| |
Collapse
|
35
|
Fleming DS, Koltes JE, Markey AD, Schmidt CJ, Ashwell CM, Rothschild MF, Persia ME, Reecy JM, Lamont SJ. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics 2016; 17:407. [PMID: 27230772 PMCID: PMC4882793 DOI: 10.1186/s12864-016-2711-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Background Indigenous populations of animals have developed unique adaptations to their local environments, which may include factors such as response to thermal stress, drought, pathogens and suboptimal nutrition. The survival and subsequent evolution within these local environments can be the result of both natural and artificial selection driving the acquisition of favorable traits, which over time leave genomic signatures in a population. This study’s goals are to characterize genomic diversity and identify selection signatures in chickens from equatorial Africa to identify genomic regions that may confer adaptive advantages of these ecotypes to their environments. Results Indigenous chickens from Uganda (n = 72) and Rwanda (n = 100), plus Kuroilers (n = 24, an Indian breed imported to Africa), were genotyped using the Axiom® 600 k Chicken Genotyping Array. Indigenous ecotypes were defined based upon location of sampling within Africa. The results revealed the presence of admixture among the Ugandan, Rwandan, and Kuroiler populations. Genes within runs of homozygosity consensus regions are linked to gene ontology (GO) terms related to lipid metabolism, immune functions and stress-mediated responses (FDR < 0.15). The genes within regions of signatures of selection are enriched for GO terms related to health and oxidative stress processes. Key genes in these regions had anti-oxidant, apoptosis, and inflammation functions. Conclusions The study suggests that these populations have alleles under selective pressure from their environment, which may aid in adaptation to harsh environments. The correspondence in gene ontology terms connected to stress-mediated processes across the populations could be related to the similarity of environments or an artifact of the detected admixture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2711-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - J E Koltes
- Iowa State University, Ames, IA, USA.,University of Arkansas, Fayetteville, AR, USA
| | | | | | - C M Ashwell
- North Carolina State University, Raleigh, NC, USA
| | | | - M E Persia
- Virginia Polytechnic University, Blacksburg, VA, USA
| | - J M Reecy
- Iowa State University, Ames, IA, USA
| | | |
Collapse
|
36
|
Abstract
Store-operated Ca(2+) entry (SOCE) is mediated by the store-operated Ca(2+) channel (SOC) that opens upon depletion of internal Ca(2+) stores following activation of G protein-coupled receptors or receptor tyrosine kinases. Over the past two decades, the physiological and pathological relevance of SOCE has been extensively studied. Recently, accumulating evidence suggests associations of altered SOCE with diabetic complications. This review focuses on the implication of SOCE as it pertains to various complications resulting from diabetes. We summarize recent findings by us and others on the involvement of abnormal SOCE in the development of diabetic complications, such as diabetic nephropathy and diabetic vasculopathy. The underlying mechanisms that mediate the diabetes-associated alterations of SOCE are also discussed. The SOCE pathway may be considered as a potential therapeutic target for diabetes-associated diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth 76107, TX, USA
| | - Rong Ma
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth 76107, TX, USA
| |
Collapse
|
37
|
Hertel F, Mo GCH, Duwé S, Dedecker P, Zhang J. RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells. Cell Rep 2015; 14:390-400. [PMID: 26748717 DOI: 10.1016/j.celrep.2015.12.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/04/2015] [Accepted: 12/06/2015] [Indexed: 11/27/2022] Open
Abstract
It has become increasingly clear that protein-protein interactions (PPIs) are compartmentalized in nanoscale domains that define the biochemical architecture of the cell. Despite tremendous advances in super-resolution imaging, strategies to observe PPIs at sufficient resolution to discern their organization are just emerging. Here we describe a strategy in which PPIs induce reconstitution of fluorescent proteins (FPs) that are capable of exhibiting single-molecule fluctuations suitable for stochastic optical fluctuation imaging (SOFI). Subsequently, spatial maps of these interactions can be resolved in super-resolution in living cells. Using this strategy, termed reconstituted fluorescence-based SOFI (refSOFI), we investigated the interaction between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the pore-forming channel subunit ORAI1, a crucial process in store-operated Ca(2+) entry (SOCE). Stimulating SOCE does not appear to change the size of existing STIM1/ORAI1 interaction puncta at the ER-plasma membrane junctions, but results in an apparent increase in the number of interaction puncta.
Collapse
Affiliation(s)
- Fabian Hertel
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gary C H Mo
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sam Duwé
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Miao L, Wei D, Zhang Y, Liu J, Lu S, Zhang A, Huang S. Effects of stromal interaction molecule 1 or Orai1 overexpression on the associated proteins and permeability of podocytes. Nephrology (Carlton) 2015; 21:959-967. [PMID: 26715123 DOI: 10.1111/nep.12691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/21/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
AIM The present study was conducted to determine whether two important signalling molecules of store-operated channel (SOC), stromal interaction molecule 1 (STIM1) and Orai1, were involved in glomerular podocyte injury. We explored the effects of STIM1/Orai1 overexpression on podocyte associated proteins and cell permeability. METHODS The expression of STIM1 and Orai1 were examined in the renal cortex of adriamycin-induced nephropathy mice by real-time RT-PCR. The recombinant plasmid of STIM1/Orai1, identified by restriction enzyme digestion and PCR, was transfected into MPC5 cells via lipofectamine 2000. The transfecting efficiency was observed by a fluorescence microscope. RT-PCR and Western blotting were used to evaluate the expression levels of STIM1, Orai 1 and some podocyte-associated molecules in the transfected MPC5 cells. In addition, we examined the diffusion of FITC-dextran across the podocyte monolayer to investigate whether STIM1/Orai1 overexpression could affect cell permeability. RESULTS We found that the mRNA levels of STIM1 and Orai1 were increased in adriamycin-induced nephropathy mice. STIM1/Orai1 overexpression significantly decreased the expression of podocin and CD2-associated protein (CD2AP), whereas it increased the expression of α-actinin-4. The permeability was significantly increased in the STIM1/Orai1 overexpression group. CONCLUSION Our findings suggested that STIM1/Orai1 overexpression could affect the cell permeability and the expression of partial podocyte-associated proteins, which may ultimately result in podocyte injury.
Collapse
Affiliation(s)
- Li Miao
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Lianyungang Clinical School of Nanjing Medical University, Lianyungang, China
| | - Dongyue Wei
- Lianyungang Clinical School of Nanjing Medical University, Lianyungang, China
| | - Yuanyuan Zhang
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jiansheng Liu
- Lianyungang Clinical School of Nanjing Medical University, Lianyungang, China
| | - Siguang Lu
- Lianyungang Clinical School of Nanjing Medical University, Lianyungang, China
| | - Aihua Zhang
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Xie J, Pan H, Yao J, Zhou Y, Han W. SOCE and cancer: Recent progress and new perspectives. Int J Cancer 2015; 138:2067-77. [PMID: 26355642 PMCID: PMC4764496 DOI: 10.1002/ijc.29840] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
Ca2+ acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store‐operated Ca2+ entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca2+ stores triggers activation of the endoplasmic reticulum (ER)‐resident Ca2+ sensor protein STIM to gate and open the ORAI Ca2+ channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
| | - Weidong Han
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Wang Y, Chaudhari S, Ren Y, Ma R. Impairment of hepatic nuclear factor-4α binding to the Stim1 promoter contributes to high glucose-induced upregulation of STIM1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol 2015; 308:F1135-45. [PMID: 25786776 PMCID: PMC4437002 DOI: 10.1152/ajprenal.00563.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/16/2015] [Indexed: 11/22/2022] Open
Abstract
The present study was carried out to investigate if hepatic nuclear factor (HNF)4α contributed to the high glucose-induced increase in stromal interacting molecule (STIM)1 protein abundance in glomerular mesangial cells (MCs). Western blot and immunofluorescence experiments showed HNF4α expression in MCs. Knockdown of HNF4α using a small interfering RNA approach significantly increased mRNA expression levels of both STIM1 and Orai1 and protein expression levels of STIM1 in cultured human MCs. Consistently, overexpression of HNF4α reduced expressed STIM1 protein expression in human embryonic kidney-293 cells. Furthermore, high glucose treatment did not significantly change the abundance of HNF4α protein in MCs but significantly attenuated HNF4α binding activity to the Stim1 promoter. Moreover, knockdown of HNF4α significantly augmented store-operated Ca(2+) entry, which is known to be gated by STIM1 and has recently been found to be antifibrotic in MCs. In agreement with those results, knockdown of HNF4α significantly attenuated the fibrotic response of high glucose. These results suggest that HNF4α negatively regulates STIM1 transcription in MCs. High glucose increases STIM1 expression levels by impairing HNF4α binding activity to the Stim1 promoter, which subsequently releases Stim1 transcription from HNF4α repression. Since the STIM1-gated store-operated Ca(2+) entry pathway in MCs has an antifibrotic effect, inhibition of HNF4α in MCs might be a potential therapeutic option for diabetic kidney disease.
Collapse
Affiliation(s)
- Yanxia Wang
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Yuezhong Ren
- Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Rong Ma
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
41
|
Wu P, Wang Y, Davis ME, Zuckerman JE, Chaudhari S, Begg M, Ma R. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression. J Am Soc Nephrol 2015; 26:2691-702. [PMID: 25788524 DOI: 10.1681/asn.2014090853] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/22/2014] [Indexed: 11/03/2022] Open
Abstract
Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanxia Wang
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Jonathan E Zuckerman
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Malcolm Begg
- Respiratory Therapy Area Unit, Medicines Research Center, GlaxoSmithKline, Stevenage, United Kingdom
| | - Rong Ma
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas;
| |
Collapse
|
42
|
Kim TJ, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang N, Ha T, Jakobsson E, Sun J, Wang Y. Distinct mechanisms regulating mechanical force-induced Ca²⁺ signals at the plasma membrane and the ER in human MSCs. eLife 2015; 4:e04876. [PMID: 25667984 PMCID: PMC4337650 DOI: 10.7554/elife.04876] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022] Open
Abstract
It is unclear that how subcellular organelles respond to external mechanical stimuli. Here, we investigated the molecular mechanisms by which mechanical force regulates Ca2+ signaling at endoplasmic reticulum (ER) in human mesenchymal stem cells. Without extracellular Ca2+, ER Ca2+ release is the source of intracellular Ca2+ oscillations induced by laser-tweezer-traction at the plasma membrane, providing a model to study how mechanical stimuli can be transmitted deep inside the cell body. This ER Ca2+ release upon mechanical stimulation is mediated not only by the mechanical support of cytoskeleton and actomyosin contractility, but also by mechanosensitive Ca2+ permeable channels on the plasma membrane, specifically TRPM7. However, Ca2+ influx at the plasma membrane via mechanosensitive Ca2+ permeable channels is only mediated by the passive cytoskeletal structure but not active actomyosin contractility. Thus, active actomyosin contractility is essential for the response of ER to the external mechanical stimuli, distinct from the mechanical regulation at the plasma membrane. DOI:http://dx.doi.org/10.7554/eLife.04876.001 Cells receive many signals from their environment, for example, when they are compressed or pulled about by neighboring cells. Information about these ‘mechanical stimuli’ can be transmitted within the cell to trigger changes in gene expression and cell behavior. When a cell receives a mechanical stimulus, it can activate the release of calcium ions from storage compartments within the cell, including from a compartment called the endoplasmic reticulum. Calcium ions can also enter the cell from outside via channels located in the membrane that surrounds the cell (the plasma membrane). Kim et al. investigated how mechanical forces are transmitted in a type of human cell called mesenchymal stem cells using optical tweezers to apply a gentle force to the outside of a cell. These tweezers use a laser to attract tiny objects, in this case a bead attached to proteins in the cell's outer membrane. The cell's response to this mechanical stimulation was measured using a sensor protein that fluoresces a different color when it binds to calcium ions. With this set-up, Kim et al. found that mesenchymal stem cells are able to transmit mechanical forces to different depths within the cell. The forces can travel deep to trigger the release of calcium ions from the endoplasmic reticulum. This process involves a network of protein fibers that criss-cross to support the structure of a cell—called the cytoskeleton—and also requires proteins that are associated with the cytoskeleton to contract. However, calcium ion entry through the plasma membrane due to a mechanical force does not require these contractile proteins—only the cytoskeleton is involved. These results demonstrate that the transmission of mechanical signals to different depths within mesenchymal stem cells involves different components. Future work should shed light on how these mechanical signals control gene expression and the development of mesenchymal stem cells. DOI:http://dx.doi.org/10.7554/eLife.04876.002
Collapse
Affiliation(s)
- Tae-Jin Kim
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Chirlmin Joo
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Jihye Seong
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Reza Vafabakhsh
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, United States
| | - Michael W Berns
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, United States
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Boulder, United States
| | - Ning Wang
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Taekjip Ha
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Jie Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, United States
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, United States
| |
Collapse
|
43
|
Hendron E, Wang X, Zhou Y, Cai X, Goto JI, Mikoshiba K, Baba Y, Kurosaki T, Wang Y, Gill DL. Potent functional uncoupling between STIM1 and Orai1 by dimeric 2-aminodiphenyl borinate analogs. Cell Calcium 2014; 56:482-92. [PMID: 25459299 DOI: 10.1016/j.ceca.2014.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
The coupling of ER Ca(2+)-sensing STIM proteins and PM Orai Ca(2+) entry channels generates "store-operated" Ca(2+) signals crucial in controlling responses in many cell types. The dimeric derivative of 2-aminoethoxydiphenyl borinate (2-APB), DPB162-AE, blocks functional coupling between STIM1 and Orai1 with an IC50 (200 nM) 100-fold lower than 2-APB. Unlike 2-APB, DPB162-AE does not affect L-type or TRPC channels or Ca(2+) pumps at maximal STIM1-Orai1 blocking levels. DPB162-AE blocks STIM1-induced Orai1 or Orai2, but does not block Orai3 or STIM2-mediated effects. We narrowed the DPB162-AE site of action to the STIM-Orai activating region (SOAR) of STIM1. DPB162-AE does not prevent the SOAR-Orai1 interaction but potently blocks SOAR-mediated Orai1 channel activation, yet its action is not as an Orai1 channel pore blocker. Using the SOAR-F394H mutant which prevents both physical and functional coupling to Orai1, we reveal DPB162-AE rapidly restores SOAR-Orai binding but only slowly restores Orai1 channel-mediated Ca(2+) entry. With the same SOAR mutant, 2-APB induces rapid physical and functional coupling to Orai1, but channel activation is transient. We infer that the actions of both 2-APB and DPB162-AE are directed toward the STIM1-Orai1 coupling interface. Compared to 2-APB, DPB162-AE is a much more potent and specific STIM1/Orai1 functional uncoupler. DPB162-AE provides an important pharmacological tool and a useful mechanistic probe for the function and coupling between STIM1 and Orai1 channels.
Collapse
Affiliation(s)
- Eunan Hendron
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Xizhuo Wang
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States; Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Xiangyu Cai
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jun-ichi Goto
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
44
|
Thompson MA, Prakash YS, Pabelick CM. Arachidonate-regulated Ca(2+) influx in human airway smooth muscle. Am J Respir Cell Mol Biol 2014; 51:68-76. [PMID: 24471656 DOI: 10.1165/rcmb.2013-0144oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasma membrane Ca(2+) influx, especially store-operated Ca(2+) entry triggered by sarcoplasmic reticulum (SR) Ca(2+) release, is a key component of intracellular calcium concentration ([Ca(2+)]i) regulation in airway smooth muscle (ASM). Agonist-induced Ca(2+) oscillations in ASM that involve both influx and SR mechanisms have been previously demonstrated. In nonexcitable cells, [Ca(2+)]i oscillations involve Ca(2+) influx via arachidonic acid (AA) -stimulated channels, which show similarities to store-operated Ca(2+) entry, although their molecular identity remains undetermined. Little is known about AA-regulated Ca(2+) channels or their regulation in ASM. In enzymatically dissociated human ASM cells loaded with the Ca(2+) indicator, fura-2, AA (1-10 μM) triggered [Ca(2+)]i oscillations that were inhibited by removal of extracellular Ca(2+). Other fatty acids, such as the diacylglycerol analog, 1-oleoyl-2-acetyl-SN-glycerol, oleic acid, and palmitic acid (10 μM each), failed to elicit similar [Ca(2+)]i responses. Preincubation with LaCl3 (1 μM or 1 mM) inhibited AA-induced oscillations. Inhibition of receptor-operated channels (SKF96,365 [10 μM]), lipoxygenase (zileuton [10 μM]), or cyclooxygenase (indomethacin [10 μM]) did not affect oscillation parameters. Inhibition of SR Ca(2+) release (ryanodine [10 μM] or inositol 1,4,5-trisphosphate receptor inhibitor, xestospongin C [1 μM]) decreased [Ca(2+)]i oscillation frequency and amplitude. Small interfering RNA against caveolin-1, stromal interaction molecule 1, or Orai3 (20 nM each) reduced the frequency and amplitude of AA-induced [Ca(2+)]i oscillations. In ASM cells derived from individuals with asthma, AA increased oscillation amplitude, but not frequency. These results are highly suggestive of a novel AA-mediated Ca(2+)-regulatory mechanism in human ASM, reminiscent of agonist-induced oscillations. Given the role of AA in ASM intracellular signaling, especially with inflammation, AA-regulated Ca(2+) channels could potentially contribute to increased [Ca(2+)]i in diseases such asthma.
Collapse
|
45
|
Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J, Begg M, Ma R. High glucose and diabetes enhanced store-operated Ca(2+) entry and increased expression of its signaling proteins in mesangial cells. Am J Physiol Renal Physiol 2014; 306:F1069-80. [PMID: 24623143 DOI: 10.1152/ajprenal.00463.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was conducted to determine whether and how store-operated Ca(2+) entry (SOCE) in glomerular mesangial cells (MCs) was altered by high glucose (HG) and diabetes. Human MCs were treated with either normal glucose or HG for different time periods. Cyclopiazonic acid-induced SOCE was significantly greater in the MCs with 7-day HG treatment and the response was completely abolished by GSK-7975A, a selective inhibitor of store-operated Ca(2+) channels. Similarly, the inositol 1,4,5-trisphosphate-induced store-operated Ca(2+) currents were significantly enhanced in the MCs treated with HG for 7 days, and the enhanced response was abolished by both GSK-7975A and La(3+). In contrast, receptor-operated Ca(2+) entry in MCs was significantly reduced by HG treatment. Western blotting showed that HG increased the expression levels of STIM1 and Orai1 in cultured MCs. A significant HG effect occurred at a concentration as low as 10 mM, but required a minimum of 7 days. The HG effect in cultured MCs was recapitulated in renal glomeruli/cortex of both type I and II diabetic rats. Furthermore, quantitative real-time RT-PCR revealed that a 6-day HG treatment significantly increased the mRNA expression level of STIM1. However, the expressions of STIM2 and Orai1 transcripts were not affected by HG. Taken together, these results suggest that HG/diabetes enhanced SOCE in MCs by increasing STIM1/Orai1 protein expressions. HG upregulates STIM1 by promoting its transcription but increases Orai1 protein through a posttranscriptional mechanism.
Collapse
Affiliation(s)
- Sarika Chaudhari
- 3500 Camp Bowie Blvd., Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, Fort Worth, TX 76107.
| | | | | | | | | | | | | |
Collapse
|
46
|
Pore waters regulate ion permeation in a calcium release-activated calcium channel. Proc Natl Acad Sci U S A 2013; 110:17332-7. [PMID: 24101457 DOI: 10.1073/pnas.1316969110] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The recent crystal structure of Orai, the pore unit of a calcium release-activated calcium (CRAC) channel, is used as the starting point for molecular dynamics and free-energy calculations designed to probe this channel's conduction properties. In free molecular dynamics simulations, cations localize preferentially at the extracellular channel entrance near the ring of Glu residues identified in the crystal structure, whereas anions localize in the basic intracellular half of the pore. To begin to understand ion permeation, the potential of mean force (PMF) was calculated for displacing a single Na(+) ion along the pore of the CRAC channel. The computed PMF indicates that the central hydrophobic region provides the major hindrance for ion diffusion along the permeation pathway, thereby illustrating the nonconducting nature of the crystal structure conformation. Strikingly, further PMF calculations demonstrate that the mutation V174A decreases the free energy barrier for conduction, rendering the channel effectively open. This seemingly dramatic effect of mutating a nonpolar residue for a smaller nonpolar residue in the pore hydrophobic region suggests an important role for the latter in conduction. Indeed, our computations show that even without significant channel-gating motions, a subtle change in the number of pore waters is sufficient to reshape the local electrostatic field and modulate the energetics of conduction, a result that rationalizes recent experimental findings. The present work suggests the activation mechanism for the wild-type CRAC channel is likely regulated by the number of pore waters and hence pore hydration governs the conductance.
Collapse
|
47
|
Yang B, Yang C, Wang P, Li J, Huang H, Ji Q, Liu J, Liu Z. Food allergen--induced mast cell degranulation is dependent on PI3K-mediated reactive oxygen species production and upregulation of store-operated calcium channel subunits. Scand J Immunol 2013; 78:35-43. [PMID: 23672459 DOI: 10.1111/sji.12062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 04/08/2013] [Indexed: 12/18/2022]
Abstract
The importance of Ca(2+) influx via store-operated calcium channels (SOCs) leading to mast cell degranulation is well known in allergic disease. However, the underlying mechanisms are not fully understood. With food-allergic rat model, the morphology of degranulated mast cell was analysed by toluidine blue stain and electron microscope. Ca(2+) influx via SOCs was checked by Ca(2+) imaging confocal microscope. Furthermore, the mRNA and protein expression of SOCs subunits were investigated using qPCR and Western blot. We found that ovalbumin (OVA) challenge significantly increased the levels of Th2 cytokines and OVA-specific IgE in allergic animals. Parallel to mast cell activation, the levels of histamine in serum and supernatant of rat peritoneal lavage solution were remarkably increased after OVA treatment. Moreover, the Ca(2+) entry through SOCs evoked by thapsigargin was increased in OVA-challenged group. The mRNA and protein expressions of SOC subunits, stromal interaction molecule 1 (STIM1) and Orail (calcium-release-activated calcium channel protein 1), were dramatically elevated under food-allergic condition. Administration of Ebselen, a scavenger of reactive oxygen species (ROS), significantly attenuated OVA sensitization-induced intracellular Ca(2+) rise and upregulation of SOCs subunit expressions. Intriguingly, pretreatment with PI3K-specific inhibitor (Wortmannin) partially abolished the production of ROS and subsequent elevation of SOCs activity and their subunit expressions. Taken together, these results imply that enhancement of SOC-mediated Ca(2+) influx induces mast cell activation, contributing to the pathogenesis of OVA-stimulated food allergy. PI3K-dependent ROS generation involves in modulating the activity of SOCs by increasing the expressions of their subunit.
Collapse
Affiliation(s)
- B Yang
- State key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shen Zhen University, Shen Zhen, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dubois C, Vanden Abeele F, Sehgal P, Olesen C, Junker S, Christensen SB, Prevarskaya N, Møller JV. Differential effects of thapsigargin analogues on apoptosis of prostate cancer cells: complex regulation by intracellular calcium. FEBS J 2013; 280:5430-40. [PMID: 23927406 DOI: 10.1111/febs.12475] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 01/28/2023]
Abstract
The inhibition of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) by thapsigargin (Tg) and Tg-type analogues is considered to trigger cell death by activation of apoptotic pathways. Some of these analogues may be useful as antineoplastic agents after appropriate targeting as peptide conjugated prodrugs to cancer cells. With this in mind, this study evaluates the effect on LNCaP androgen-sensitive cancer cells of thapsigargin substituted with 12-aminododecanoyl linkers and Leu (Leu-8ADT), aspartate (Asp-8ADT) or Boc-8ADT. Our results show that both Leu-8ADT and Asp-8ADT result in rapid ER calcium depletion and an influx of calcium across the plasma membrane by activation of store-operated calcium entry. By contrast, ER Ca(2+) depletion by Boc-8ADT is a very slow process that does not perceptibly increase cytosolic Ca(2+) and activate store-operated calcium entry, because the inhibition of SERCA with this compound is very slow. Nevertheless, we find that Boc-8ADT is a more efficient inducer of apoptosis than both Tg and Leu-8ADT. Compared with Tg and the other analogues, apoptosis induced by Asp-8ADT is very modest, although this compound also activates store-operated calcium entry and at high concentrations (1 μm) causes severe morphological changes, reflecting decreased cell viability. We conclude that many factors need to be considered for optimization of these compounds in antineoplastic drug design. Among these ER stress induced by Ca(2+) endoplasmic reticulum mobilization seems particularly important, whereas the early cytosolic increase of Ca(2+) concentration preceding the executive phase of apoptosis appears to be of no, or little, consequence for a subsequent apoptotic effect.
Collapse
Affiliation(s)
- Charlotte Dubois
- Inserm U1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, France; Center for Membrane Pumps in Cells and Diseases, Danish Research Foundation, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
50
|
Kim YJ, Hernandez MLG, Balla T. Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends Cell Biol 2013; 23:270-8. [PMID: 23489878 PMCID: PMC3665726 DOI: 10.1016/j.tcb.2013.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 11/22/2022]
Abstract
The highly dynamic membranous network of eukaryotic cells allows spatial organization of biochemical reactions to suit the complex metabolic needs of the cell. The unique lipid composition of organelle membranes in the face of dynamic membrane activities assumes that lipid gradients are constantly generated and maintained. Important advances have been made in identifying specialized membrane compartments and lipid transfer mechanisms that are critical for generating and maintaining lipid gradients. Remarkably, one class of minor phospholipids--the phosphoinositides--is emerging as important regulators of these processes. Here, we summarize several lines of research that have led to our current understanding of the connection between phosphoinositides and the transport of structural lipids and offer some thoughts on general principles possibly governing these processes.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Maria-Luisa Guzman Hernandez
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|