1
|
De Vos T, Oatman N, Boehme L, Putteman T, Velghe I, Van Droogenbroeck Y, De Munter S, Cesnekova M, Van Nieuwerburgh F, Vandekerckhove B, Philippe J, Taghon T. <i>HES6</i>knockdown in human hematopoietic precursor cells reduces their <i>in vivo</i> engraftment potential and their capacity to differentiate into erythroid cells, B cells, T cells and plasmacytoid dendritic cells. Haematologica 2024; 109:3578-3592. [PMID: 38572564 PMCID: PMC11532694 DOI: 10.3324/haematol.2023.283432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is driven by molecular mechanisms that induce differentiation and proliferation of hematopoietic stem cells and their progeny. This involves the activity of various transcription factors, such as members of the Hairy/Enhancer of Split (HES) family, and important roles for both HES1 and HES4 have been shown in normal and malignant hematopoiesis. Here, we investigated the role of HES6 in human hematopoiesis using in vitro and in vivo models. Using bulk and single-cell RNA-sequencing data, we show that HES6 is expressed during erythroid/megakaryocyte and plasmacytoid dendritic cell development, as well as in multipotent precursors and at specific stages of T- and B-cell development following pre-B-cell receptor and pre-T-cell receptor signaling, respectively. Consistently, knockdown of HES6 in cord blood-derived hematopoietic precursors in well-defined in vitro differentiation assays resulted in reduced differentiation of human hematopoietic precursors towards megakaryocytes, erythrocytes, plasmacytoid dendritic cells, B cells and T cells. In addition, HES6 knockdown hematopoietic stem and progenitor cells displayed reduced colony-forming unit capacity in vitro and impaired potential to reconstitute hematopoiesis in vivo in a competitive transplantation assay. We demonstrate that loss of HES6 expression has an impact on cell cycle progression during erythroid differentiation and provide evidence for potential downstream target genes that affect these perturbations. Thus, our study provides new insights into the role of HES6 in human hematopoiesis.
Collapse
Affiliation(s)
- Tamara De Vos
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Nicole Oatman
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Tom Putteman
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Imke Velghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Yana Van Droogenbroeck
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Michaela Cesnekova
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Filip Van Nieuwerburgh
- Cancer Research Institute Ghent, Ghent, Belgium; Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent
| | - Jan Philippe
- Department of Diagnostic Sciences, Ghent University, Ghent
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent.
| |
Collapse
|
2
|
Xu J, Du W. HES6: an emerging player in human hematopoiesis. Haematologica 2024; 109:3466-3468. [PMID: 38721728 PMCID: PMC11532680 DOI: 10.3324/haematol.2024.285426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 11/05/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Jian Xu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15213.
| |
Collapse
|
3
|
Rive Le Gouard N, Lafond-Rive V, Jonard L, Loundon N, Achard S, Heidet L, Mosnier I, Lyonnet S, Brioude F, Serey Gaut M, Marlin S. HDR syndrome: Large cohort and systematic review. Clin Genet 2024; 106:564-573. [PMID: 38940299 DOI: 10.1111/cge.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
HDR syndrome is a rare disease characterized by hypoparathyroidism, deafness, and renal dysplasia. An autosomal dominant disease caused by heterozygous pathogenic GATA3 variants, the penetrance of each associated condition is variable. Literature reviews have provided some answers, but many questions remain, in particular what the relationship is between genotype and phenotype. The current study examines 28 patients with HDR syndrome combined with an exhaustive review of the literature. Some conditions such as hearing loss are almost always present, while others described as rare initially, do not seem to be so rare after all (genital malformations and basal ganglia calcifications). By modeling pathogenic GATA3 variants found in HDR syndrome, we found that missense variations appear to always be located in the same area (close to the two Zinc Finger domain). We describe new pathogenic GATA3 variants, of which some seem to always be associated with certain conditions. Many audiograms were studied to establish a typical audiometric profile associated with a phenotype in HDR. As mentioned in the literature, hearing function should always be assessed as early as possible and follow up of patients with HDR syndrome should include monitoring of parathyroid function and vesicoureteral reflux in order to prevent complications.
Collapse
Affiliation(s)
- Nicolas Rive Le Gouard
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- UF de Génomique Chromosomique, Département de Génétique médicale, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
| | | | - Laurence Jonard
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Natalie Loundon
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Sophie Achard
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle implants auditifs, Centre Référent Implant Cochléaire Adulte Ile de France, Centre Constitutif Maladies rares, Surdités génétiques de l'adulte, Hôpital Pitié-Salpetrière, AP-HP, Sorbonne Université, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
| | - Frederic Brioude
- Explorations Fonctionnelles Endocriniennes-Biologie Moléculaire, Hôpital des Enfants Armand Trousseau, AP-HP, Sorbonne Université, Paris, France
| | - Margaux Serey Gaut
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
4
|
Keske A, Polaki US, Matson DR. Immunohistochemical Analysis of GATA2 Expression in Endometrium and its Relationship with Hormone Receptor Expression in Benign and Premalignant Endometrial Disorders. Reprod Sci 2024:10.1007/s43032-024-01730-5. [PMID: 39443360 DOI: 10.1007/s43032-024-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The GATA gene family encodes highly conserved zinc-finger transcription factors that facilitate the development and function of multiple organ systems including the uterus. In the endometrium, GATA2 functions in a positive autoregulatory loop with the progesterone receptor (PGR) and colocalizes with PGR on chromatin to promote PGR transcriptional programs. GATA2 also has PGR-independent functions that maintain endometrial cell identity, and GATA2 transcripts reportedly are down-regulated in endometrial disorders including endometriosis. This event is accompanied by a reciprocal increase in GATA6. Here, we applied custom anti-GATA2 monoclonal antibodies and performed GATA2 immunohistochemistry (IHC) on patient endometrial tissues corresponding to proliferative, secretory, inactive, and hormone-treated endometrium, as well as endometriosis and endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (EAH/EIN). We also performed IHC for the estrogen receptor, PGR, and GATA6 in relevant groups. The results reveal a tight correlation between GATA2 and PGR expression in the glandular and stromal cells of benign endometrium. GATA2 expression is markedly reduced in stromal but not glandular cells in endometriosis and EAH/EIN. This reduction in GATA2 expression does not lead to a detectable increase in GATA6 expression in endometriosis. Although average glandular GATA2 expression was preserved in endometriosis and EAH/EIN cases, its expression was decoupled from PGR, implying that alternative pathways regulate GATA2 levels in these disorders. Our findings indicate that GATA2 dysregulation is a feature of endometriosis and EAH/EIN, and support a model whereby loss of stromal GATA2 in these disorders contributes to their progesterone insensitivity.
Collapse
Affiliation(s)
- Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Usha S Polaki
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daniel R Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA.
| |
Collapse
|
5
|
Mitsutani M, Yokoyama M, Hano H, Morita A, Matsushita M, Tagami T, Moriyama K. Growth hormone is involved in GATA1 gene expression via STAT5B in human erythroleukemia and monocytic cell lines. Blood Cells Mol Dis 2024; 110:102894. [PMID: 39303396 DOI: 10.1016/j.bcmd.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
GATAs are a family of transcription factors consisting of six members. Particularly, GATA1 and GATA2 have been reported to promote the development of erythrocytes, megakaryocytes, eosinophils, and mast cells. However, little information is available on the extracellular ligands that promote GATA1 expression. We evaluated whether growth hormone (GH) is an extracellular stimulator that participates in the signal transduction of GATAs, focusing on GATA1 expression in hematopoietic cell lineages. We used a reporter assay, RT-PCR, real-time quantitative PCR, and western blotting to evaluate GH-induced expression of GATA1 and GATA2 in the human erythroleukemic cell line K562 and the non-erythroid cell line U937. GATA1 expression in these hematopoietic cell lines increased at the transcriptional and protein levels in the presence of GH, and was inhibited by a STAT5 specific inhibitor. Cells transfected with activated STAT5B showed increased expression of GATA1. We identified functional STAT5B consensus sequences as binding site-158 bp from the transcription starting site in the GATA1 promoter region. These results suggest that GH directly induces GATA1 expression via GHR/JAK/STAT5 and is related to hematopoietic cell proliferation.
Collapse
Affiliation(s)
- Mana Mitsutani
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Mei Yokoyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Hiromi Hano
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Aoi Morita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan.
| |
Collapse
|
6
|
Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol 2024; 137:104252. [PMID: 38876253 PMCID: PMC11381147 DOI: 10.1016/j.exphem.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
7
|
Gioacchino E, Zhang W, Koyunlar C, Zink J, de Looper H, Gussinklo KJ, Hoogenboezem R, Bosch D, Bindels E, Touw IP, de Pater E. GATA2 heterozygosity causes an epigenetic feedback mechanism resulting in myeloid and erythroid dysplasia. Br J Haematol 2024; 205:580-593. [PMID: 38887897 DOI: 10.1111/bjh.19585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The transcription factor GATA2 has a pivotal role in haematopoiesis. Heterozygous germline GATA2 mutations result in a syndrome characterized by immunodeficiency, bone marrow failure and predispositions to myelodysplastic syndrome (MDS) and acute myeloid leukaemia. Clinical symptoms in these patients are diverse and mechanisms driving GATA2-related phenotypes are largely unknown. To explore the impact of GATA2 haploinsufficiency on haematopoiesis, we generated a zebrafish model carrying a heterozygous mutation of gata2b (gata2b+/-), an orthologue of GATA2. Morphological analysis revealed myeloid and erythroid dysplasia in gata2b+/- kidney marrow. Because Gata2b could affect both transcription and chromatin accessibility during lineage differentiation, this was assessed by single-cell (sc) RNA-seq and single-nucleus (sn) ATAC-seq. Sn-ATAC-seq showed that the co-accessibility between the transcription start site (TSS) and a -3.5-4.1 kb putative enhancer was more robust in gata2b+/- zebrafish HSPCs compared to wild type, increasing gata2b expression and resulting in higher genome-wide Gata2b motif use in HSPCs. As a result of increased accessibility of the gata2b locus, gata2b+/- chromatin was also more accessible during lineage differentiation. scRNA-seq data revealed myeloid differentiation defects, that is, impaired cell cycle progression, reduced expression of cebpa and cebpb and increased signatures of ribosome biogenesis. These data also revealed a differentiation delay in erythroid progenitors, aberrant proliferative signatures and down-regulation of Gata1a, a master regulator of erythropoiesis, which worsened with age. These findings suggest that cell-intrinsic compensatory mechanisms, needed to obtain normal levels of Gata2b in heterozygous HSPCs to maintain their integrity, result in aberrant lineage differentiation, thereby representing a critical step in the predisposition to MDS.
Collapse
Affiliation(s)
- Emanuele Gioacchino
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wei Zhang
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cansu Koyunlar
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joke Zink
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hans de Looper
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Kirsten J Gussinklo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Dennis Bosch
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ivo P Touw
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Emma de Pater
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Abunimye DA, Okafor IM, Okorowo H, Obeagu EI. The role of GATA family transcriptional factors in haematological malignancies: A review. Medicine (Baltimore) 2024; 103:e37487. [PMID: 38518015 PMCID: PMC10956995 DOI: 10.1097/md.0000000000037487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.
Collapse
Affiliation(s)
- Dennis Akongfe Abunimye
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Ifeyinwa Maryanne Okafor
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Henshew Okorowo
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | | |
Collapse
|
9
|
Lyu J, Ni M, Weiss MJ, Xu J. Metabolic regulation of erythrocyte development and disorders. Exp Hematol 2024; 131:104153. [PMID: 38237718 PMCID: PMC10939827 DOI: 10.1016/j.exphem.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
The formation of new red blood cells (RBC) (erythropoiesis) has served as a paradigm for understanding cellular differentiation and developmental control of gene expression. The metabolic regulation of this complex, coordinated process remains poorly understood. Each step of erythropoiesis, including lineage specification of hematopoietic stem cells, proliferation, differentiation, and terminal maturation into highly specialized oxygen-carrying cells, has unique metabolic requirements. Developing erythrocytes in mammals are also characterized by unique metabolic events such as loss of mitochondria with switch to glycolysis, ejection of nucleus and organelles, high-level heme and hemoglobin synthesis, and antioxidant requirement to protect hemoglobin molecules. Genetic defects in metabolic enzymes, including pyruvate kinase and glucose-6-phosphate dehydrogenase, cause common erythrocyte disorders, whereas other inherited disorders such as sickle cell disease and β-thalassemia display metabolic abnormalities associated with disease pathophysiology. Here we describe recent discoveries on the metabolic control of RBC formation and function, highlight emerging concepts in understanding the erythroid metabolome, and discuss potential therapeutic benefits of targeting metabolism for RBC disorders.
Collapse
Affiliation(s)
- Junhua Lyu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Min Ni
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jian Xu
- Center of Excellence for Leukemia Studies, Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| |
Collapse
|
10
|
Robbins DJ, Pavletich TS, Patil AT, Pahopos D, Lasarev M, Polaki US, Gahvari ZJ, Bresnick EH, Matson DR. Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia. Blood Adv 2024; 8:80-92. [PMID: 38029365 PMCID: PMC10787255 DOI: 10.1182/bloodadvances.2023011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
ABSTRACT GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.
Collapse
Affiliation(s)
- Daniel J. Robbins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Tatiana S. Pavletich
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Apoorva T. Patil
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Demetra Pahopos
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Usha S. Polaki
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Emery H. Bresnick
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| | - Daniel R. Matson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
11
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
12
|
Li H, Rahman MA, Ruesch M, Eisele CD, Anderson EM, Wright PW, Cao J, Ratnayake S, Chen Q, Yan C, Meerzaman D, Abraham RS, Freud AG, Anderson SK. Abundant binary promoter switches in lineage-determining transcription factors indicate a digital component of cell fate determination. Cell Rep 2023; 42:113454. [PMID: 37976160 PMCID: PMC10842785 DOI: 10.1016/j.celrep.2023.113454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Previous studies of the murine Ly49 and human KIR gene clusters implicated competing sense and antisense promoters in the control of variegated gene expression. In the current study, an examination of transcription factor genes defines an abundance of convergent and divergent sense/antisense promoter pairs, suggesting that competing promoters may control cell fate determination. Differentiation of CD34+ hematopoietic progenitors in vitro shows that cells with GATA1 antisense transcription have enhanced GATA2 transcription and a mast cell phenotype, whereas cells with GATA2 antisense transcription have increased GATA1 transcripts and an erythroblast phenotype. Detailed analyses of the AHR and RORC genes demonstrate the ability of competing promoters to act as binary switches and the association of antisense transcription with an immature/progenitor cell phenotype. These data indicate that alternative cell fates generated by promoter competition in lineage-determining transcription factors contribute to the programming of cell differentiation.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Md Ahasanur Rahman
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Ruesch
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Erik M Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Paul W Wright
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennie Cao
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Shashikala Ratnayake
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chunhua Yan
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Cancer Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43210, USA; Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
13
|
Subramanian S, Thoms JAI, Huang Y, Cornejo-Páramo P, Koch FC, Jacquelin S, Shen S, Song E, Joshi S, Brownlee C, Woll PS, Chacon-Fajardo D, Beck D, Curtis DJ, Yehson K, Antonenas V, O'Brien T, Trickett A, Powell JA, Lewis ID, Pitson SM, Gandhi MK, Lane SW, Vafaee F, Wong ES, Göttgens B, Alinejad-Rokny H, Wong JWH, Pimanda JE. Genome-wide transcription factor-binding maps reveal cell-specific changes in the regulatory architecture of human HSPCs. Blood 2023; 142:1448-1462. [PMID: 37595278 PMCID: PMC10651876 DOI: 10.1182/blood.2023021120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type-specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.
Collapse
Affiliation(s)
- Shruthi Subramanian
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Julie A. I. Thoms
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Yizhou Huang
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | | | - Forrest C. Koch
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Sylvie Shen
- Bone Marrow Transplant Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Emma Song
- Bone Marrow Transplant Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Swapna Joshi
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Chris Brownlee
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Petter S. Woll
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Diego Chacon-Fajardo
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - David J. Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Kenneth Yehson
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology, Westmead, NSW, Australia
| | - Vicki Antonenas
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology, Westmead, NSW, Australia
| | | | - Annette Trickett
- Bone Marrow Transplant Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Jason A. Powell
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Ian D. Lewis
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia
| | - Maher K. Gandhi
- Blood Cancer Research Group, Mater Research, The University of Queensland, Brisbane, QLD, Australia
| | - Steven W. Lane
- Cancer Program, QIMR Berghofer Medical Research, Brisbane, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, Australia
| | - Emily S. Wong
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John E. Pimanda
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
- Haematology Department, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
14
|
Zhou Y, Dogiparthi VR, Ray S, Schaefer MA, Harris HL, Rowley MJ, Hewitt KJ. Defining a cohort of anemia-activated cis elements reveals a mechanism promoting erythroid precursor function. Blood Adv 2023; 7:6325-6338. [PMID: 36809789 PMCID: PMC10587717 DOI: 10.1182/bloodadvances.2022009163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Acute anemia elicits broad transcriptional changes in erythroid progenitors and precursors. We previously discovered a cis-regulatory transcriptional enhancer at the sterile alpha motif domain-14 enhancer locus (S14E), defined by a CANNTG-spacer-AGATAA composite motif and occupied by GATA1 and TAL1 transcription factors, is required for survival in severe anemia. However, S14E is only 1 of dozens of anemia-activated genes containing similar motifs. In a mouse model of acute anemia, we identified populations of expanding erythroid precursors, which increased expression of genes that contain S14E-like cis elements. We reveal that several S14E-like cis elements provide important transcriptional control of newly identified anemia-inducing genes, including the Ssx-2 interacting protein (Ssx2ip). Ssx2ip expression was determined to play an important role in erythroid progenitor/precursor cell activities, cell cycle regulation, and cell proliferation. Over a weeklong course of acute anemia recovery, we observed that erythroid gene activation mediated by S14E-like cis elements occurs during a phase coincident with low hematocrit and high progenitor activities, with distinct transcriptional programs activated at earlier and later time points. Our results define a genome-wide mechanism in which S14E-like enhancers control transcriptional responses during erythroid regeneration. These findings provide a framework to understand anemia-specific transcriptional mechanisms, ineffective erythropoiesis, anemia recovery, and phenotypic variability within human populations.
Collapse
Affiliation(s)
- Yichao Zhou
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | | | - Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Meg A. Schaefer
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Hannah L. Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - M. Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Kyle J. Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
15
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
16
|
Williams RTP, King DC, Mastroianni IR, Hill JL, Apenes NW, Ramirez G, Miner EC, Moore A, Coleman K, Nishimura EO. Transcriptome profiling of the Caenorhabditis elegans intestine reveals that ELT-2 negatively and positively regulates intestinal gene expression within the context of a gene regulatory network. Genetics 2023; 224:iyad088. [PMID: 37183501 PMCID: PMC10411582 DOI: 10.1093/genetics/iyad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
ELT-2 is the major transcription factor (TF) required for Caenorhabditis elegans intestinal development. ELT-2 expression initiates in embryos to promote development and then persists after hatching through the larval and adult stages. Though the sites of ELT-2 binding are characterized and the transcriptional changes that result from ELT-2 depletion are known, an intestine-specific transcriptome profile spanning developmental time has been missing. We generated this dataset by performing Fluorescence Activated Cell Sorting on intestine cells at distinct developmental stages. We analyzed this dataset in conjunction with previously conducted ELT-2 studies to evaluate the role of ELT-2 in directing the intestinal gene regulatory network through development. We found that only 33% of intestine-enriched genes in the embryo were direct targets of ELT-2 but that number increased to 75% by the L3 stage. This suggests additional TFs promote intestinal transcription especially in the embryo. Furthermore, only half of ELT-2's direct target genes were dependent on ELT-2 for their proper expression levels, and an equal proportion of those responded to elt-2 depletion with over-expression as with under-expression. That is, ELT-2 can either activate or repress direct target genes. Additionally, we observed that ELT-2 repressed its own promoter, implicating new models for its autoregulation. Together, our results illustrate that ELT-2 impacts roughly 20-50% of intestine-specific genes, that ELT-2 both positively and negatively controls its direct targets, and that the current model of the intestinal regulatory network is incomplete as the factors responsible for directing the expression of many intestinal genes remain unknown.
Collapse
Affiliation(s)
- Robert T P Williams
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - David C King
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Izabella R Mastroianni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica L Hill
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Nicolai W Apenes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriela Ramirez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - E Catherine Miner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew Moore
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Karissa Coleman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Johnson KD, Jung MM, Tran VL, Bresnick EH. Interferon regulatory factor-8-dependent innate immune alarm senses GATA2 deficiency to alter hematopoietic differentiation and function. Curr Opin Hematol 2023; 30:117-123. [PMID: 37254854 PMCID: PMC10236032 DOI: 10.1097/moh.0000000000000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PURPOSE OF REVIEW Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.
Collapse
Affiliation(s)
- Kirby D Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
18
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Gupta S, Agrawal A. Dendritic cells in inborn errors of immunity. Front Immunol 2023; 14:1080129. [PMID: 36756122 PMCID: PMC9899832 DOI: 10.3389/fimmu.2023.1080129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Dendritic cells (DCs) are crucial cells for initiating and maintaining immune response. They play critical role in homeostasis, inflammation, and autoimmunity. A number of molecules regulate their functions including synapse formation, migration, immunity, and induction of tolerance. A number of IEI are characterized by mutations in genes encoding several of these molecules resulting in immunodeficiency, inflammation, and autoimmunity in IEI. Currently, there are 465 Inborn errors of immunity (IEI) that have been grouped in 10 different categories. However, comprehensive studies of DCs have been reported in only few IEI. Here we have reviewed biology of DCs in IEI classified according to recently published IUIS classification. We have reviewed DCs in selected IEI in each group category and discussed in depth changes in DCs where significant data are available regarding role of DCs in clinical and immunological manifestations. These include severe immunodeficiency diseases, antibody deficiencies, combined immunodeficiency with associated and syndromic features, especially disorders of synapse formation, and disorders of immune regulation.
Collapse
Affiliation(s)
- Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, CA, United States
| | | |
Collapse
|
20
|
Elucidation of the Role of FAM210B in Mitochondrial Metabolism and Erythropoiesis. Mol Cell Biol 2022; 42:e0014322. [PMID: 36374104 PMCID: PMC9753634 DOI: 10.1128/mcb.00143-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitochondria play essential and specific roles during erythroid differentiation. Recently, FAM210B, encoding a mitochondrial inner membrane protein, has been identified as a novel target of GATA-1, as well as an erythropoietin-inducible gene. While FAM210B protein is involved in regulate mitochondrial metabolism and heme biosynthesis, its detailed function remains unknown. Here, we generated both knockout and knockdown of endogenous FAM210B in human induced pluripotent stem-derived erythroid progenitor (HiDEP) cells using CRISPR/Cas9 methodology. Intriguingly, erythroid differentiation was more pronounced in the FAM210B-depleted cells, and this resulted in increased frequency of orthochromatic erythroblasts and decreased frequencies of basophilic/polychromatic erythroblasts. Comprehensive metabolite analysis and functional analysis indicated that oxygen consumption rates and the NAD (NAD+)/NADH ratio were significantly decreased, while lactate production was significantly increased in FAM210B deletion HiDEP cells, indicating involvement of FAM210B in mitochondrial energy metabolism in erythroblasts. Finally, we purified FAM210B-interacting protein from K562 cells that stably expressed His/biotin-tagged FAM210B. Mass spectrometry analysis of the His/biotin-purified material indicated interactions with multiple subunits of mitochondrial ATP synthases, such as subunit alpha (ATP5A) and beta (ATP5B). Our results suggested that FAM210B contributes prominently to erythroid differentiation by regulating mitochondrial energy metabolism. Our results provide insights into the pathophysiology of dysregulated hematopoiesis.
Collapse
|
21
|
Targeting CSC-related transcription factors by E3 ubiquitin ligases for cancer therapy. Semin Cancer Biol 2022; 87:84-97. [PMID: 36371028 DOI: 10.1016/j.semcancer.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Evidence has revealed that transcription factors play essential roles in regulation of multiple cellular processes, including cell proliferation, metastasis, EMT, cancer stem cells and chemoresistance. Dysregulated expression levels of transcription factors contribute to tumorigenesis and malignant progression. The expression of transcription factors is tightly governed by several signaling pathways, noncoding RNAs and E3 ubiquitin ligases. Cancer stem cells (CSCs) have been validated in regulation of tumor metastasis, reoccurrence and chemoresistance in human cancer. Transcription factors have been verified to participate in regulation of CSC formation, including Oct4, SOX2, KLF4, c-Myc, Nanog, GATA, SALL4, Bmi-1, OLIG2, POU3F2 and FOX proteins. In this review article, we will describe the critical role of CSC-related transcription factors. We will further discuss which E3 ligases regulate the degradation of these CSC-related transcription factors and their underlying mechanisms. We also mentioned the functions and mechanisms of EMT-associated transcription factors such as ZEB1, ZEB2, Snail, Slug, Twist1 and Twist2. Furthermore, we highlight the therapeutic potential via targeting E3 ubiquitin ligases for modulation of these transcription factors.
Collapse
|
22
|
Arsenic impairs the lineage commitment of hematopoietic progenitor cells through the attenuation of GATA-2 DNA binding activity. Toxicol Appl Pharmacol 2022; 452:116193. [PMID: 35961411 DOI: 10.1016/j.taap.2022.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Arsenic exposure produces significant hematotoxicity in vitro and in vivo. Our previous work shows that arsenic (in the form of arsenite, AsIII) interacts with the zinc finger domains of GATA-1, inhibiting the function of this critical transcription factor, and resulting in the suppression of erythropoiesis. In addition to GATA-1, GATA-2 also plays a key role in the regulation of hematopoiesis. GATA-1 and GATA-2 have similar zinc finger domains (C4-type) that are structurally favorable for AsIII interactions. Taking this into consideration, we hypothesized that early stages of hematopoietic differentiation that are dependent on the function of GATA-2 may also be disrupted by AsIII exposure. We found that in vitro AsIII exposures disrupt the erythromegakaryocytic lineage commitment and differentiation of erythropoietin-stimulated primary mouse bone marrow hematopoietic progenitor cells (HPCs), producing an aberrant accumulation of cells in early stages of hematopoiesis and subsequent reduction of committed erythro-megakaryocyte progenitor cells. Arsenic significantly accumulated in the GATA-2 protein, causing the loss of zinc, and disruption of GATA-2 function, as measured by chromatin immunoprecipitation and the expression of GATA-2 responsive genes. Our results show that the attenuation of GATA-2 function is an important mechanism contributing to the aberrant lineage commitment and differentiation of early HPCs. Collectively, findings from the present study suggest that the AsIII-induced disruption of erythro-megakaryopoiesis may contribute to the onset and/or exacerbation of hematological disorders, such as anemia.
Collapse
|
23
|
Wu S, Zhou T, Tian T. A robust method for designing multistable systems by embedding bistable subsystems. NPJ Syst Biol Appl 2022; 8:10. [PMID: 35338169 PMCID: PMC8956579 DOI: 10.1038/s41540-022-00220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
Although multistability is an important dynamic property of a wide range of complex systems, it is still a challenge to develop mathematical models for realising high order multistability using realistic regulatory mechanisms. To address this issue, we propose a robust method to develop multistable mathematical models by embedding bistable models together. Using the GATA1-GATA2-PU.1 module in hematopoiesis as the test system, we first develop a tristable model based on two bistable models without any high cooperative coefficients, and then modify the tristable model based on experimentally determined mechanisms. The modified model successfully realises four stable steady states and accurately reflects a recent experimental observation showing four transcriptional states. In addition, we develop a stochastic model, and stochastic simulations successfully realise the experimental observations in single cells. These results suggest that the proposed method is a general approach to develop mathematical models for realising multistability and heterogeneity in complex systems.
Collapse
Affiliation(s)
- Siyuan Wu
- School of Mathematics, Monash University, Melbourne, VIC, Australia
| | - Tianshou Zhou
- School of Mathematics and Statistics, Sun Yet-Sen University, Guangzhou, China
| | - Tianhai Tian
- School of Mathematics, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Verachi P, Gobbo F, Martelli F, Martinelli A, Sarli G, Dunbar A, Levine RL, Hoffman R, Massucci MT, Brandolini L, Giorgio C, Allegretti M, Migliaccio AR. The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1 low Mice. Front Oncol 2022; 12:853484. [PMID: 35392239 PMCID: PMC8982152 DOI: 10.3389/fonc.2022.853484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
A major role for human (h)CXCL8 (interleukin-8) in the pathobiology of myelofibrosis (MF) has been suggested by observations indicating that MF megakaryocytes express increased levels of hCXCL8 and that plasma levels of this cytokine in MF patients are predictive of poor patient outcomes. Here, we demonstrate that, in addition to high levels of TGF-β, the megakaryocytes from the bone marrow of the Gata1 low mouse model of myelofibrosis express high levels of murine (m)CXCL1, the murine equivalent of hCXCL8, and its receptors CXCR1 and CXCR2. Treatment with the CXCR1/R2 inhibitor, Reparixin in aged-matched Gata1 low mice demonstrated reductions in bone marrow and splenic fibrosis. Of note, the levels of fibrosis detected using two independent methods (Gomori and reticulin staining) were inversely correlated with plasma levels of Reparixin. Immunostaining of marrow sections indicated that the bone marrow from the Reparixin-treated group expressed lower levels of TGF-β1 than those expressed by the bone marrow from vehicle-treated mice while the levels of mCXCL1, and expression of CXCR1 and CXCR2, were similar to that of vehicle-treated mice. Moreover, immunofluorescence analyses performed on bone marrow sections from Gata1 low mice indicated that treatment with Reparixin induced expression of GATA1 while reducing expression of collagen III in megakaryocytes. These data suggest that in Gata1low mice, Reparixin reduces fibrosis by reducing TGF-β1 and collagen III expression while increasing GATA1 in megakaryocytes. Our results provide a preclinical rationale for further evaluation of this drug alone and in combination with current JAK inhibitor therapy for the treatment of patients with myelofibrosis.
Collapse
Affiliation(s)
- Paola Verachi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | - Francesca Gobbo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Martinelli
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Santà, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrew Dunbar
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ronald Hoffman
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | | | | | - Anna Rita Migliaccio
- Center for Integrated Biomedical Research, Campus Bio-medico, Rome, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
26
|
Cao T, Lu Y, Wang Q, Qin H, Li H, Guo H, Ge M, Glass SE, Singh B, Zhang W, Dong J, Du F, Qian A, Tian Y, Wang X, Li C, Wu K, Fan D, Nie Y, Coffey RJ, Zhao X. A CGA/EGFR/GATA2 positive feedback circuit confers chemoresistance in gastric cancer. J Clin Invest 2022; 132:154074. [PMID: 35289315 PMCID: PMC8920335 DOI: 10.1172/jci154074] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
De novo and acquired resistance are major impediments to the efficacy of conventional and targeted cancer therapy. In unselected gastric cancer (GC) patients with advanced disease, trials combining chemotherapy and an anti-EGFR monoclonal antibody have been largely unsuccessful. In an effort to identify biomarkers of resistance so as to better select patients for such trials, we screened the secretome of chemotherapy-treated human GC cell lines. We found that levels of CGA, the α-subunit of glycoprotein hormones, were markedly increased in the conditioned media of chemoresistant GC cells, and CGA immunoreactivity was enhanced in GC tissues that progressed on chemotherapy. CGA levels in plasma increased in GC patients who received chemotherapy, and this increase was correlated with reduced responsiveness to chemotherapy and poor survival. Mechanistically, secreted CGA was found to bind to EGFR and activate EGFR signaling, thereby conferring a survival advantage to GC cells. N-glycosylation of CGA at Asn52 and Asn78 is required for its stability, secretion, and interaction with EGFR. GATA2 was found to activate CGA transcription, whose increase, in turn, induced the expression and phosphorylation of GATA2 in an EGFR-dependent manner, forming a positive feedback circuit that was initiated by GATA2 autoregulation upon sublethal exposure to chemotherapy. Based on this circuit, combination strategies involving anti-EGFR therapies or targeting CGA with microRNAs (miR-708-3p and miR-761) restored chemotherapy sensitivity. These findings identify a clinically actionable CGA/EGFR/GATA2 circuit and highlight CGA as a predictive biomarker and therapeutic target in chemoresistant GC.
Collapse
Affiliation(s)
- Tianyu Cao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qi Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hongwei Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Minghui Ge
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wenyao Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Feng Du
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Airong Qian
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Cunxi Li
- Beijing Institute of Human Reproduction and Genetics Medicine, Beijing, China.,Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Monte ER, Leubolt G, Windisch R, Kerbs P, Dutta S, Sippenauer T, Istvánffy R, Oostendorp RAJ, Chen-Wichmann L, Herold T, Cusan M, Schotta G, Wichmann C, Greif PA. Specific effects of somatic GATA2 zinc finger mutations on erythroid differentiation. Exp Hematol 2022; 108:26-35. [PMID: 35181392 DOI: 10.1016/j.exphem.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
GATA2 Zinc-Finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points towards different mechanisms of leukemogenesis depending on the affected ZF domain. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA-binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift towards granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V but not A318T or G320D caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.
Collapse
Affiliation(s)
- Enric Redondo Monte
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Georg Leubolt
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Sayantanee Dutta
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Theresa Sippenauer
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Rouzanna Istvánffy
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Robert A J Oostendorp
- Technical University of Munich, Department of Internal Medicine III, Munich, Germany
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Monica Cusan
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Gunnar Schotta
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany.
| |
Collapse
|
28
|
Kaochar S, Rusin A, Foley C, Rajapakshe K, Robertson M, Skapura D, Mason C, Berman De Ruiz K, Tyryshkin AM, Deng J, Shin JN, Fiskus W, Dong J, Huang S, Navone NM, Davis CM, Ehli EA, Coarfa C, Mitsiades N. Inhibition of GATA2 in prostate cancer by a clinically available small molecule. Endocr Relat Cancer 2021; 29:15-31. [PMID: 34636746 PMCID: PMC8634153 DOI: 10.1530/erc-21-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022]
Abstract
Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and is linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity and proliferation assays, global gene expression analysis, RT-qPCR, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell-cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair, and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.
Collapse
Affiliation(s)
- Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Correspondence should be addressed to S Kaochar or N Mitsiades: or
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher Foley
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kimal Rajapakshe
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew Robertson
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Darlene Skapura
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cammy Mason
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Jenny Deng
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jin Na Shin
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Warren Fiskus
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jianrong Dong
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Shixia Huang
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, Texas, USA
| | - Nora M Navone
- Division of Cancer Medicine, Department of Genitourinary Medical Oncology, The University of Texas Anderson Cancer Center, Houston, Texas, USA
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicholas Mitsiades
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Correspondence should be addressed to S Kaochar or N Mitsiades: or
| |
Collapse
|
29
|
Martelli F, Verachi P, Zingariello M, Mazzarini M, Vannucchi AM, Lonetti A, Bacci B, Sarli G, Migliaccio AR. hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1 low Mutation in Mice. Front Genet 2021; 12:720552. [PMID: 34707640 PMCID: PMC8542976 DOI: 10.3389/fgene.2021.720552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
The phenotype of mice carrying the Gata1low mutation that decreases expression of Gata1 in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of hGATA1 driven by a μLCR/β-globin promoter to rescue the phenotype induced by the Gata1low mutation in mice. Double hGATA1/Gata1low/0 mice were viable at birth with hematocrits greater than those of their Gata1low/0 littermates but platelet counts remained lower than normal. hGATA1 mRNA was expressed by progenitor and erythroid cells from double mutant mice but not by megakaryocytes analyzed in parallel. The erythroid cells from hGATA1/Gata1low/0 mice expressed greater levels of GATA1 protein and of α- and β-globin mRNA than cells from Gata1low/0 littermates and a reduced number of them was in apoptosis. By contrast, hGATA1/Gata1low/0 megakaryocytes expressed barely detectable levels of GATA1 and their expression of acetylcholinesterase, Von Willebrand factor and platelet factor 4 as well as their morphology remained altered. In comparison with Gata1+/0 littermates, Gata1low/0 mice contained significantly lower total and progenitor cell numbers in bone marrow while the number of these cells in spleen was greater than normal. The presence of hGATA1 greatly increased the total cell number in the bone marrow of Gata1low/0 mice and, although did not affect the total cell number of the spleen which remained greater than normal, it reduced the frequency of progenitor cells in this organ. The ability of hGATA1 to rescue the hematopoietic functions of the bone marrow of the double mutants was confirmed by the observation that these mice survive well splenectomy and did not develop myelofibrosis with age. These results indicate that hGATA1 under the control of µLCR/β-globin promoter is expressed in adult progenitors and erythroid cells but not in megakaryocytes rescuing the erythroid but not the megakaryocyte defect induced by the Gata1low/0 mutation.
Collapse
Affiliation(s)
- Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, Center of Research and Innovation of Myeloproliferative neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, New York, NY, United States.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
30
|
Yan B, Yang J, Kim MY, Luo H, Cesari N, Yang T, Strouboulis J, Zhang J, Hardison R, Huang S, Qiu Y. HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Res 2021; 49:9783-9798. [PMID: 34450641 PMCID: PMC8464053 DOI: 10.1093/nar/gkab737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1. However, HDAC1/2 can directly bind and deacetylate GATA-1. Two arginine residues within the GATA-1 linker region mediates direct interaction with HDAC1. The arginine to alanine mutation (2RA) blocks GATA-1 deacetylation and fails to induce erythroid differentiation. Gene expression profiling and ChIP-seq analysis further demonstrate the importance of GATA-1 deacetylation for gene activation and chromatin recruitment. GATA-12RA knock-in (KI) mice suffer mild anemia and thrombocytopenia with accumulation of immature erythrocytes and megakaryocytes in bone marrow and spleen. Single cell RNA-seq analysis of Lin- cKit+ (LK) cells further reveal a profound change in cell subpopulations and signature gene expression patterns in HSC, myeloid progenitors, and erythroid/megakaryocyte clusters in KI mice. Thus, GATA-1 deacetylation and its interaction with HDAC1 modulates GATA-1 chromatin binding and transcriptional activity that control erythroid/megakaryocyte commitment and differentiation.
Collapse
Affiliation(s)
- Bowen Yan
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Jennifer Yang
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Min Young Kim
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - Huacheng Luo
- Department of Pediatrics, Hershey, PA 17033, USA
| | | | - Tao Yang
- Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA
| | - John Strouboulis
- Comprehensive Cancer Center, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE5 9NU, UK
| | - Jiwang Zhang
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ross Hardison
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Suming Huang
- Department of Pediatrics, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Yi Qiu
- To whom correspondence should be addressed. Tel: +1 717 531 0003 (Ext 321489); Fax: +1 717 531 7667;
| |
Collapse
|
31
|
Human GATA2 mutations and hematologic disease: how many paths to pathogenesis? Blood Adv 2021; 4:4584-4592. [PMID: 32960960 DOI: 10.1182/bloodadvances.2020002953] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023] Open
Abstract
The surge of human genetic information, enabled by increasingly facile and economically feasible genomic technologies, has accelerated discoveries on the relationship of germline genetic variation to hematologic diseases. For example, germline variation in GATA2, encoding a vital transcriptional regulator of multilineage hematopoiesis, creates a predisposition to bone marrow failure and acute myeloid leukemia termed GATA2 deficiency syndrome. More than 300 GATA2 variants representing missense, truncating, and noncoding enhancer mutations have been documented. Although these variants can diminish GATA2 expression and/or function, the functional ramifications of many variants are unknown. Studies using genetic rescue and knockin mouse systems have established that GATA2 mutations differentially affect molecular processes in distinct target genes and within a single target cell. Considering that target genes for a transcription factor can differ in sensitivity to altered levels of the factor, and transcriptional mechanisms are often cell type specific, the context-dependent consequences of GATA2 mutations in experimental systems portend the complex phenotypes and interindividual variation of GATA2 deficiency syndrome. This review documents GATA2 human genetics and the state of efforts to traverse from physiological insights to pathogenic mechanisms.
Collapse
|
32
|
Insight of fetal to adult hemoglobin switch: Genetic modulators and therapeutic targets. Blood Rev 2021; 49:100823. [PMID: 33726930 DOI: 10.1016/j.blre.2021.100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023]
Abstract
The clinical heterogeneity of β-hemoglobinopathies is so variable that it prompted the researchers to identify the genetic modulators of these diseases. Though the primary modulator is the type of β-globin mutation which affects the degree of β-globin chain synthesis, the co-inheritance of α-thalassemia and the fetal hemoglobin (HbF) levels also act as potent secondary genetic modifiers. As elevated HbF levels ameliorate the severity of hemoglobinopathies, in this review, the genetic modulators lying within and outside the β-globin gene cluster with their plausible role in governing the HbF levels have been summarised, which in future may act as potential therapeutic targets.
Collapse
|
33
|
Xu P, Scott DC, Xu B, Yao Y, Feng R, Cheng L, Mayberry K, Wang YD, Bi W, Palmer LE, King MT, Wang H, Li Y, Fan Y, Alpi AF, Li C, Peng J, Papizan J, Pruett-Miller SM, Spallek R, Bassermann F, Cheng Y, Schulman BA, Weiss MJ. FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood 2021; 137:155-167. [PMID: 33156908 PMCID: PMC7820877 DOI: 10.1182/blood.2020007809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks at their promoters. In FBXO11-/- erythroblasts, these gene promoters bind BAHD1 and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2, and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at many developmentally poised bivalent genes during erythropoiesis.
Collapse
Affiliation(s)
| | | | - Beisi Xu
- Department of Computational Biology
| | | | | | | | | | | | | | | | | | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Junmin Peng
- Department of Structural Biology
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN
- Department of Development Neurobiology
| | | | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, and
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN; and
| | - Ria Spallek
- Department of Medicine III and
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III and
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Yong Cheng
- Department of Hematology
- Department of Computational Biology
| | - Brenda A Schulman
- Department of Structural Biology
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
34
|
Lin KH, Chiang JC, Chen WM, Ho YH, Yao CL, Lee H. Transcriptional regulation of lysophosphatidic acid receptors 2 and 3 regulates myeloid commitment of hematopoietic stem cells. Am J Physiol Cell Physiol 2021; 320:C509-C519. [PMID: 33406026 DOI: 10.1152/ajpcell.00506.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) is one of the lipids identified to be involved in stem cell differentiation. It exerts various functions through activation of G protein-coupled lysophosphatidic acid receptors (LPARs). In previous studies, we have demonstrated that activation of LPA receptor 3 (LPA3) promotes erythropoiesis of human hematopoietic stem cells (HSCs) and zebrafish using molecular and pharmacological approaches. Our results show that treatment with lysophosphatidic acid receptor 2 (LPA2) agonist suppressed erythropoiesis, whereas activation of LPA3 by 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted it, both in vitro and in vivo. Furthermore, we have demonstrated the inhibitory role of LPA3 during megakaryopoiesis. However, the mechanism underlying these observations remains elusive. In the present study, we suggest that the expression pattern of LPARs may be correlated with the transcriptional factors GATA-1 and GATA-2 at different stages of myeloid progenitors. We determined that manipulation of GATA factors affected the expression levels of LPA2 and LPA3 in K562 leukemia cells. Using luciferase assays, we demonstrate that the promoter regions of LPAR2 and LPAR3 genes were regulated by these GATA factors in HEK293T cells. Mutation of GATA-binding sites in these regions abrogated luciferase activity, suggesting that LPA2 and LPA3 are regulated by GATA factors. Moreover, physical interaction between GATA factors and the promoter region of LPAR genes was verified in K562 cells using chromatin immunoprecipitation (ChIP) studies. Taken together, our results suggest that balance between LPA2 and LPA3 expression, which may be determined by GATA factors, is a regulatory switch for lineage commitment in myeloid progenitors. The expression-level balance of LPA receptor subtypes represents a novel mechanism regulating erythropoiesis and megakaryopoiesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei-Min Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.,Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
35
|
Rothenberg EV, Göttgens B. How haematopoiesis research became a fertile ground for regulatory network biology as pioneered by Eric Davidson. Curr Opin Hematol 2021; 28:1-10. [PMID: 33229891 PMCID: PMC7755131 DOI: 10.1097/moh.0000000000000628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This historical perspective reviews how work of Eric H. Davidson was a catalyst and exemplar for explaining haematopoietic cell fate determination through gene regulation. RECENT FINDINGS Researchers studying blood and immune cells pioneered many of the early mechanistic investigations of mammalian gene regulatory processes. These efforts included the characterization of complex gene regulatory sequences exemplified by the globin and T-cell/B-cell receptor gene loci, as well as the identification of many key regulatory transcription factors through the fine mapping of chromosome translocation breakpoints in leukaemia patients. As the repertoire of known regulators expanded, assembly into gene regulatory network models became increasingly important, not only to account for the truism that regulatory genes do not function in isolation but also to devise new ways of extracting biologically meaningful insights from even more complex information. Here we explore how Eric H. Davidson's pioneering studies of gene regulatory network control in nonvertebrate model organisms have had an important and lasting impact on research into blood and immune cell development. SUMMARY The intellectual framework developed by Davidson continues to contribute to haematopoietic research, and his insistence on demonstrating logic and causality still challenges the frontier of research today.
Collapse
Affiliation(s)
- Ellen V. Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| |
Collapse
|
36
|
Wang H, Cui B, Sun H, Zhang F, Rao J, Wang R, Zhao S, Shen S, Liu Y. Aberrant GATA2 Activation in Pediatric B-Cell Acute Lymphoblastic Leukemia. Front Pediatr 2021; 9:795529. [PMID: 35087776 PMCID: PMC8787225 DOI: 10.3389/fped.2021.795529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Wang D, Uyemura B, Hashemi E, Bjorgaard S, Riese M, Verbsky J, Thakar MS, Malarkannan S. Role of GATA2 in Human NK Cell Development. Crit Rev Immunol 2021; 41:21-33. [PMID: 34348000 PMCID: PMC11536496 DOI: 10.1615/critrevimmunol.2021037643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural killer (NK) cells are major innate lymphocytes. NK cells do not require prior antigen exposure to mediate antitumor cytotoxicity or proinflammatory cytokine production. Since they use only nonclonotypic receptors, they possess high clinical value in treatment against a broad spectrum of malignancies. Irrespective of this potential, however, the transcriptional regulation that governs human NK cell development remains far from fully defined. Various environmental cues initiate a complex network of transcription factors (TFs) during their early development, one of which is GATA2, a master regulator that drives the commitment of common lymphoid progenitors (CLPs) into immature NK progenitors (NKPs). GATA2 forms a core heptad complex with six other TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to mediate its transcriptional regulation in various cell types. Patients with GATA2 haploinsufficiency specifically lose CD56bright NK cells, with or without a reduced number of CD56dlm NK cells. Here, we review the recent progress in understanding GATA2 and its role in human NK cell development and functions.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
| | - Bradley Uyemura
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
| | - Stacey Bjorgaard
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
| | - Matthew Riese
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| | - Monica S. Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
38
|
Zwifelhofer NM, Cai X, Liao R, Mao B, Conn DJ, Mehta C, Keles S, Xia Y, Bresnick EH. GATA factor-regulated solute carrier ensemble reveals a nucleoside transporter-dependent differentiation mechanism. PLoS Genet 2020; 16:e1009286. [PMID: 33370779 PMCID: PMC7793295 DOI: 10.1371/journal.pgen.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Developmental-regulatory networks often include large gene families encoding mechanistically-related proteins like G-protein-coupled receptors, zinc finger transcription factors and solute carrier (SLC) transporters. In principle, a common mechanism may confer expression of multiple members integral to a developmental process, or diverse mechanisms may be deployed. Using genetic complementation and enhancer-mutant systems, we analyzed the 456 member SLC family that establishes the small molecule constitution of cells. This analysis identified SLC gene cohorts regulated by GATA1 and/or GATA2 during erythroid differentiation. As >50 SLC genes shared GATA factor regulation, a common mechanism established multiple members of this family. These genes included Slc29a1 encoding an equilibrative nucleoside transporter (Slc29a1/ENT1) that utilizes adenosine as a preferred substrate. Slc29a1 promoted erythroblast survival and differentiation ex vivo. Targeted ablation of murine Slc29a1 in erythroblasts attenuated erythropoiesis and erythrocyte regeneration in response to acute anemia. Our results reveal a GATA factor-regulated SLC ensemble, with a nucleoside transporter component that promotes erythropoiesis and prevents anemia, and establish a mechanistic link between GATA factor and adenosine mechanisms. We propose that integration of the GATA factor-adenosine circuit with other components of the GATA factor-regulated SLC ensemble establishes the small molecule repertoire required for progenitor cells to efficiently generate erythrocytes. GATA transcription factors endow blood stem and progenitor cells with activities to produce progeny that transport oxygen to protect cells and tissues, evade pathogens and control physiological processes. GATA factors regulate hundreds of genes, and the actions of these genes mediate important biological functions. While the genes have been documented, many questions remain regarding how the “network” components mediate biological functions. The networks include members of large gene families, and the relationships between the regulation and function of individual family members is not well understood. Analyzing datasets from genetic complementation and enhancer mutant systems revealed that GATA factors regulate an ensemble of membrane transporters termed solute carrier proteins (SLCs), which dictate the small molecule composition of cells. Genetic analyses with Slc29a1, which transports adenosine, revealed its function to promote erythrocyte development, and Slc29a1 attenuated anemia in a mouse model. This study revealed the importance of SLC transporters in GATA factor networks. We propose that the GATA factor-adenosine circuit integrates with other SLCs to establish/maintain the small molecule constitution of progenitor cells as a new mechanism to control blood cell development.
Collapse
Affiliation(s)
- Nicole M. Zwifelhofer
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
| | - Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Bin Mao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Conn
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas McGovern Medical School at Houston, Houston, Texas, United States of America
- * E-mail: (YX); (EHB)
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail: (YX); (EHB)
| |
Collapse
|
39
|
Karayel Ö, Xu P, Bludau I, Velan Bhoopalan S, Yao Y, Ana Rita FC, Santos A, Schulman BA, Alpi AF, Weiss MJ, Mann M. Integrative proteomics reveals principles of dynamic phosphosignaling networks in human erythropoiesis. Mol Syst Biol 2020; 16:e9813. [PMID: 33259127 PMCID: PMC7706838 DOI: 10.15252/msb.20209813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Human erythropoiesis is an exquisitely controlled multistep developmental process, and its dysregulation leads to numerous human diseases. Transcriptome and epigenome studies provided insights into system-wide regulation, but we currently lack a global mechanistic view on the dynamics of proteome and post-translational regulation coordinating erythroid maturation. We established a mass spectrometry (MS)-based proteomics workflow to quantify and dynamically track 7,400 proteins and 27,000 phosphorylation sites of five distinct maturation stages of in vitro reconstituted erythropoiesis of CD34+ HSPCs. Our data reveal developmental regulation through drastic proteome remodeling across stages of erythroid maturation encompassing most protein classes. This includes various orchestrated changes in solute carriers indicating adjustments to altered metabolic requirements. To define the distinct proteome of each maturation stage, we developed a computational deconvolution approach which revealed stage-specific marker proteins. The dynamic phosphoproteomes combined with a kinome-targeted CRISPR/Cas9 screen uncovered coordinated networks of erythropoietic kinases and pinpointed downregulation of c-Kit/MAPK signaling axis as key driver of maturation. Our system-wide view establishes the functional dynamic of complex phosphosignaling networks and regulation through proteome remodeling in erythropoiesis.
Collapse
Affiliation(s)
- Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Isabell Bludau
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Yu Yao
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Freitas Colaco Ana Rita
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of HematologySt. Jude Children’s Research HospitalMemphisTNUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
40
|
Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21228460. [PMID: 33187090 PMCID: PMC7696854 DOI: 10.3390/ijms21228460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in transcriptional regulation in eukaryotic cells. Class I deacetylase HDAC1/2 often associates with repressor complexes, such as Sin3 (Switch Independent 3), NuRD (Nucleosome remodeling and deacetylase) and CoREST (Corepressor of RE1 silencing transcription factor) complexes. It has been shown that HDAC1 interacts with and modulates all essential transcription factors for erythropoiesis. During erythropoiesis, histone deacetylase activity is dramatically reduced. Consistently, inhibition of HDAC activity promotes erythroid differentiation. The reduction of HDAC activity not only results in the activation of transcription activators such as GATA-1 (GATA-binding factor 1), TAL1 (TAL BHLH Transcription Factor 1) and KLF1 (Krüpple-like factor 1), but also represses transcription repressors such as PU.1 (Putative oncogene Spi-1). The reduction of histone deacetylase activity is mainly through HDAC1 acetylation that attenuates HDAC1 activity and trans-repress HDAC2 activity through dimerization with HDAC1. Therefore, the acetylation of HDAC1 can convert the corepressor complex to an activator complex for gene activation. HDAC1 also can deacetylate non-histone proteins that play a role on erythropoiesis, therefore adds another layer of gene regulation through HDAC1. Clinically, it has been shown HDACi can reactivate fetal globin in adult erythroid cells. This review will cover the up to date research on the role of HDAC1 in modulating key transcription factors for erythropoiesis and its clinical relevance.
Collapse
|
41
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Blood disease-causing and -suppressing transcriptional enhancers: general principles and GATA2 mechanisms. Blood Adv 2020; 3:2045-2056. [PMID: 31289032 DOI: 10.1182/bloodadvances.2019000378] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
Intensive scrutiny of human genomes has unveiled considerable genetic variation in coding and noncoding regions. In cancers, including those of the hematopoietic system, genomic instability amplifies the complexity and functional consequences of variation. Although elucidating how variation impacts the protein-coding sequence is highly tractable, deciphering the functional consequences of variation in noncoding regions (genome reading), including potential transcriptional-regulatory sequences, remains challenging. A crux of this problem is the sheer abundance of gene-regulatory sequence motifs (cis elements) mediating protein-DNA interactions that are intermixed in the genome with thousands of look-alike sequences lacking the capacity to mediate functional interactions with proteins in vivo. Furthermore, transcriptional enhancers harbor clustered cis elements, and how altering a single cis element within a cluster impacts enhancer function is unpredictable. Strategies to discover functional enhancers have been innovated, and human genetics can provide vital clues to achieve this goal. Germline or acquired mutations in functionally critical (essential) enhancers, for example at the GATA2 locus encoding a master regulator of hematopoiesis, have been linked to human pathologies. Given the human interindividual genetic variation and complex genetic landscapes of hematologic malignancies, enhancer corruption, creation, and expropriation by new genes may not be exceedingly rare mechanisms underlying disease predisposition and etiology. Paradigms arising from dissecting essential enhancer mechanisms can guide genome-reading strategies to advance fundamental knowledge and precision medicine applications. In this review, we provide our perspective of general principles governing the function of blood disease-linked enhancers and GATA2-centric mechanisms.
Collapse
|
43
|
A Novel GATA2 Protein Reporter Mouse Reveals Hematopoietic Progenitor Cell Types. Stem Cell Reports 2020; 15:326-339. [PMID: 32649900 PMCID: PMC7419669 DOI: 10.1016/j.stemcr.2020.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The transcription factor (TF) GATA2 plays a key role in organ development and cell fate control in the central nervous, urogenital, respiratory, and reproductive systems, and in primitive and definitive hematopoiesis. Here, we generate a knockin protein reporter mouse line expressing a GATA2VENUS fusion from the endogenous Gata2 genomic locus, with correct expression and localization of GATA2VENUS in different organs. GATA2VENUS expression is heterogeneous in different hematopoietic stem and progenitor cell populations (HSPCs), identifies functionally distinct subsets, and suggests a novel monocyte and mast cell lineage bifurcation point. GATA2 levels further correlate with proliferation and lineage outcome of hematopoietic progenitors. The GATA2VENUS mouse line improves the identification of specific live cell types during embryonic and adult development and will be crucial for analyzing GATA2 protein dynamics in TF networks. A novel GATA2VENUS fusion mouse line to report GATA2 protein expression VENUS fusion does not alter GATA2 expression or disturb development or homeostasis GATA2 expression identifies functionally distinct HSPC subpopulations GATA2 expression unveils an earlier monocyte-mast cell lineage bifurcation point
Collapse
|
44
|
Ray S, Chee L, Matson DR, Palermo NY, Bresnick EH, Hewitt KJ. Sterile α-motif domain requirement for cellular signaling and survival. J Biol Chem 2020; 295:7113-7125. [PMID: 32241909 PMCID: PMC7242717 DOI: 10.1074/jbc.ra119.011895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/01/2020] [Indexed: 01/21/2023] Open
Abstract
Hundreds of sterile α-motif (SAM) domains have predicted structural similarities and are reported to bind proteins, lipids, or RNAs. However, the majority of these domains have not been analyzed functionally. Previously, we demonstrated that a SAM domain-containing protein, SAMD14, promotes SCF/proto-oncogene c-Kit (c-Kit) signaling, erythroid progenitor function, and erythrocyte regeneration. Deletion of a Samd14 enhancer (Samd14-Enh), occupied by GATA2 and SCL/TAL1 transcription factors, reduces SAMD14 expression in bone marrow and spleen and is lethal in a hemolytic anemia mouse model. To rigorously establish whether Samd14-Enh deletion reduces anemia-dependent c-Kit signaling by lowering SAMD14 levels, we developed a genetic rescue assay in murine Samd14-Enh-/- primary erythroid precursor cells. SAMD14 expression at endogenous levels rescued c-Kit signaling. The conserved SAM domain was required for SAMD14 to increase colony-forming activity, c-Kit signaling, and progenitor survival. To elucidate the molecular determinants of SAM domain function in SAMD14, we substituted its SAM domain with distinct SAM domains predicted to be structurally similar. The chimeras were less effective than SAMD14 itself in rescuing signaling, survival, and colony-forming activities. Thus, the SAMD14 SAM domain has attributes that are distinct from other SAM domains and underlie SAMD14 function as a regulator of cellular signaling and erythrocyte regeneration.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Linda Chee
- Department of Genetics, Cell Biology and Anatomy, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Daniel R Matson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Nick Y Palermo
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Kyle J Hewitt
- Department of Genetics, Cell Biology and Anatomy, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
45
|
Soukup AA, Bresnick EH. GATA2 +9.5 enhancer: from principles of hematopoiesis to genetic diagnosis in precision medicine. Curr Opin Hematol 2020; 27:163-171. [PMID: 32205587 PMCID: PMC7331797 DOI: 10.1097/moh.0000000000000576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW By establishing mechanisms that deliver oxygen to sustain cells and tissues, fight life-threatening pathogens and harness the immune system to eradicate cancer cells, hematopoietic stem and progenitor cells (HSPCs) are vital in health and disease. The cell biological framework for HSPC generation has been rigorously developed, yet recent single-cell transcriptomic analyses have unveiled permutations of the hematopoietic hierarchy that differ considerably from the traditional roadmap. Deploying mutants that disrupt specific steps in hematopoiesis constitutes a powerful strategy for deconvoluting the complex cell biology. It is striking that a single transcription factor, GATA2, is so crucial for HSPC generation and function, and therefore it is instructive to consider mechanisms governing GATA2 expression and activity. The present review focuses on an essential GATA2 enhancer (+9.5) and how +9.5 mutants inform basic and clinical/translational science. RECENT FINDINGS +9.5 is essential for HSPC generation and function during development and hematopoietic regeneration. Human +9.5 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. Qualitatively and quantitatively distinct contributions of +9.5 cis-regulatory elements confer context-dependent enhancer activity. The discovery of +9.5 and its mutant alleles spawned fundamental insights into hematopoiesis, and given its role to suppress blood disease emergence, clinical centers test for mutations in this sequence to diagnose the cause of enigmatic cytopenias. SUMMARY Multidisciplinary approaches to discover and understand cis-regulatory elements governing expression of key regulators of hematopoiesis unveil biological and mechanistic insights that provide the logic for innovating clinical applications.
Collapse
|
46
|
Interleukin-33 Signaling Controls the Development of Iron-Recycling Macrophages. Immunity 2020; 52:782-793.e5. [PMID: 32272082 PMCID: PMC7237885 DOI: 10.1016/j.immuni.2020.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022]
Abstract
Splenic red pulp macrophages (RPMs) contribute to erythrocyte homeostasis and are required for iron recycling. Heme induces the expression of SPIC transcription factor in monocyte-derived macrophages and promotes their differentiation into RPM precursors, pre-RPMs. However, the requirements for differentiation into mature RPMs remain unknown. Here, we have demonstrated that interleukin (IL)-33 associated with erythrocytes and co-cooperated with heme to promote the generation of mature RPMs through activation of the MyD88 adaptor protein and ERK1/2 kinases downstream of the IL-33 receptor, IL1RL1. IL-33- and IL1RL1-deficient mice showed defective iron recycling and increased splenic iron deposition. Gene expression and chromatin accessibility studies revealed a role for GATA transcription factors downstream of IL-33 signaling during the development of pre-RPMs that retained full potential to differentiate into RPMs. Thus, IL-33 instructs the development of RPMs as a response to physiological erythrocyte damage with important implications to iron recycling and iron homeostasis.
Collapse
|
47
|
Romano O, Petiti L, Felix T, Meneghini V, Portafax M, Antoniani C, Amendola M, Bicciato S, Peano C, Miccio A. GATA Factor-Mediated Gene Regulation in Human Erythropoiesis. iScience 2020; 23:101018. [PMID: 32283524 PMCID: PMC7155206 DOI: 10.1016/j.isci.2020.101018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 01/31/2023] Open
Abstract
Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors. GATA2/1 binding to regulatory regions and transcriptional changes during erythropoiesis GATA1 sustains KIT expression in human erythroid progenitors
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Michel Portafax
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
48
|
Lin KH, Chiang JC, Ho YH, Yao CL, Lee H. Lysophosphatidic Acid and Hematopoiesis: From Microenvironmental Effects to Intracellular Signaling. Int J Mol Sci 2020; 21:ijms21062015. [PMID: 32188052 PMCID: PMC7139687 DOI: 10.3390/ijms21062015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vertebrate hematopoiesis is a complex physiological process that is tightly regulated by intracellular signaling and extracellular microenvironment. In recent decades, breakthroughs in lineage-tracing technologies and lipidomics have revealed the existence of numerous lipid molecules in hematopoietic microenvironment. Lysophosphatidic acid (LPA), a bioactive phospholipid molecule, is one of the identified lipids that participates in hematopoiesis. LPA exhibits various physiological functions through activation of G-protein-coupled receptors. The functions of these LPARs have been widely studied in stem cells, while the roles of LPARs in hematopoietic stem cells have rarely been examined. Nonetheless, mounting evidence supports the importance of the LPA-LPAR axis in hematopoiesis. In this article, we have reviewed regulation of hematopoiesis in general and focused on the microenvironmental and intracellular effects of the LPA in hematopoiesis. Discoveries in these areas may be beneficial to our understanding of blood-related disorders, especially in the context of prevention and therapy for anemia.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Angiogenesis Research Center, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +8862-3366-2499; Fax: +8862-2363-6837
| |
Collapse
|
49
|
Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Genome Biol 2020; 21:59. [PMID: 32138752 PMCID: PMC7059722 DOI: 10.1186/s13059-020-01973-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal control of 3D genome is fundamental for gene regulation, yet it remains challenging to profile high-resolution chromatin structure at cis-regulatory elements (CREs). Using C-terminally biotinylated dCas9, endogenous biotin ligases, and pooled sgRNAs, we describe the dCas9-based CAPTURE method for multiplexed analysis of locus-specific chromatin interactions. The redesigned system allows for quantitative analysis of the spatial configuration of a few to hundreds of enhancers or promoters in a single experiment, enabling comparisons across CREs within and between gene clusters. Multiplexed analyses of the spatiotemporal configuration of erythroid super-enhancers and promoter-centric interactions reveal organizational principles of genome structure and function.
Collapse
|
50
|
Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD. Candidate silencer elements for the human and mouse genomes. Nat Commun 2020; 11:1061. [PMID: 32103011 PMCID: PMC7044160 DOI: 10.1038/s41467-020-14853-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 11/24/2022] Open
Abstract
The study of gene regulation is dominated by a focus on the control of gene activation or increase in the level of expression. Just as critical is the process of gene repression or silencing. Chromatin signatures have identified enhancers, however, genome-wide identification of silencers by computational or experimental approaches are lacking. Here, we first define uncharacterized cis-regulatory elements likely containing silencers and find that 41.5% of ~7500 tested elements show silencer activity using massively parallel reporter assay (MPRA). We trained a support vector machine classifier based on MPRA data to predict candidate silencers in over 100 human and mouse cell or tissue types. The predicted candidate silencers exhibit characteristics expected of silencers. Leveraging promoter-capture HiC data, we find that over 50% of silencers are interacting with gene promoters having very low to no expression. Our results suggest a general strategy for genome-wide identification and characterization of silencer elements. Identification of silencer elements by computational or experimental approaches in a genome-wide manner is still challenging. Here authors define uncharacterized cis-regulatory elements (CREs) in human and mouse genomes likely containing silencer elements, and test them in cells using massively parallel reporter assays to identify silencer elements that showed silencer activity.
Collapse
Affiliation(s)
- Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajay Jajodia
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Arpit Mishra
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|