1
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
2
|
Krakowczyk M, Bragoszewski P. Monitoring retro-translocation of proteins from the mitochondrial intermembrane space. Methods Enzymol 2024; 707:173-208. [PMID: 39488374 DOI: 10.1016/bs.mie.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondria play multiple essential roles in eukaryotic cells. To perform their functions, mitochondria require an adequate supply of externally produced proteins and an intact two-membrane structure. The structure of mitochondrial membranes separates these organelles from their cytosolic environment, with proteins that make up the mitochondrial proteome either being embedded into or enveloped by these membranes. From the experimental point of view, the structural properties of mitochondria contribute to the relative ease of isolating these organelles from other cellular components. The ability to isolate intact mitochondria and analyze them in a well-controlled environment opens up the possibility of tracking any proteins that enter or escape the membrane-formed enclosure. This chapter discusses assays that monitor the movement of proteins out of mitochondria through intact membranes. These protocols provide insight into the mechanisms behind mitochondrial protein quality control. It was discovered that the retro-translocation of IMS proteins regulates the protein content of this specific sub-compartment of the organelle. Additionally, proteins can move out of the mitochondria to resolve failed import events. Assays based on isolated mitochondria precisely tackle such intricate 'dance' of proteins crossing mitochondrial membranes during import and export, maintaining the dynamics of the organellar proteome.
Collapse
Affiliation(s)
- Magda Krakowczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bragoszewski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2022; 289:6994-7013. [PMID: 34918460 DOI: 10.1111/febs.16323] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Electron transport chain (ETC) dysfunction is a common feature of mitochondrial diseases and induces severe cellular stresses, including mitochondrial membrane potential (Δψm ) reduction, mitochondrial matrix acidification, metabolic derangements and proteostatic stresses. Extensive studies of ETC dysfunction in yeast, Caenorhabditis elegans, cultured cells and mouse models have revealed multiple mitochondrial stress response pathways. Here, we summarise the current understanding of the triggers, sensors, signalling mechanisms and the functional outcomes of mitochondrial stress responses in different species. We highlight Δψm reduction as a major trigger of stress responses in different species, but the responses are species-specific and the outcomes are context-dependent. ETC dysfunction elicits a mitochondrial unfolded protein response (UPRmt ) to repair damaged mitochondria in C. elegans, and activates a global adaptive programme to maintain Δψm in yeast. Yeast and C. elegans responses are remarkably similar at the downstream responses, although they are activated by different signalling mechanisms. UPRmt generally protects ETC-defective worms, but its constitutive activation is toxic for wildtype worms and worms carrying mutant mtDNA. In contrast to lower organisms, ETC dysfunction in mammals mainly activates a mitochondrial integrated stress response (ISRmt ) to reprogramme metabolism and a PINK1-Parkin mitophagy pathway to degrade damaged mitochondria. Accumulating in vivo results suggest that the ATF4 branch of ISRmt exacerbates metabolic derangements to accelerate mitochondrial disease progression. The in vivo roles of mitophagy in mitochondrial diseases are also context-dependent. These results thus reveal the common and unique aspects of mitochondrial stress responses in different species and highlight their multifaceted roles in mitochondrial diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Verma AK, Sharma A, Subramaniyam N, Gandhi CR. Augmenter of liver regeneration: Mitochondrial function and steatohepatitis. J Hepatol 2022; 77:1410-1421. [PMID: 35777586 DOI: 10.1016/j.jhep.2022.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022]
Abstract
Augmenter of liver regeneration (ALR), a ubiquitous fundamental life protein, is expressed more abundantly in the liver than other organs. Expression of ALR is highest in hepatocytes, which also constitutively secrete it. ALR gene transcription is regulated by NRF2, FOXA2, SP1, HNF4α, EGR-1 and AP1/AP4. ALR's FAD-linked sulfhydryl oxidase activity is essential for protein folding in the mitochondrial intermembrane space. ALR's functions also include cytochrome c reductase and protein Fe/S maturation activities. ALR depletion from hepatocytes leads to increased oxidative stress, impaired ATP synthesis and apoptosis/necrosis. Loss of ALR's functions due to homozygous mutation causes severe mitochondrial defects and congenital progressive multiorgan failure, suggesting that individuals with one functional ALR allele might be susceptible to disorders involving compromised mitochondrial function. Genetic ablation of ALR from hepatocytes induces structural and functional mitochondrial abnormalities, dysregulation of lipid homeostasis and development of steatohepatitis. High-fat diet-fed ALR-deficient mice develop non-alcoholic steatohepatitis (NASH) and fibrosis, while hepatic and serum levels of ALR are lower than normal in human NASH and NASH-cirrhosis. Thus, ALR deficiency may be a critical predisposing factor in the pathogenesis and progression of NASH.
Collapse
Affiliation(s)
- Alok Kumar Verma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Akanksha Sharma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA
| | - Nithyananthan Subramaniyam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Cincinnati VA Medical Center, Cincinnati, Ohio, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
5
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
6
|
Carugo O. Survey of the Intermolecular Disulfide Bonds Observed in Protein Crystal Structures Deposited in the Protein Data Bank. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070986. [PMID: 35888076 PMCID: PMC9323673 DOI: 10.3390/life12070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
About 5% of the disulfide bonds (DBs) observed in the Protein Data Bank bridge two protein chains. Several of their features were comprehensively analyzed, resulting in a structural atlas of the intermolecular DBs. The analysis was performed on a very large set of data extracted from the Protein Data Bank, according to the RaSPDB procedure. It was observed that the two chains tend to have different sequences and belong to the same structural class. Intermolecular DBs tend to be more solvent accessible and less distorted from the most stable conformation than intermolecular DBs while showing similar B-factors. They tend to occur in beta strands and in mainly-beta structures. These and other data should prove useful in protein modelling and design.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
- Italy & Max Perutz Labs, Department of Structural and Computational Biology, University of Vienna, 1010 Wien, Austria
| |
Collapse
|
7
|
West JD. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells. Chem Res Toxicol 2022; 35:1676-1689. [PMID: 35771680 DOI: 10.1021/acs.chemrestox.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.
Collapse
Affiliation(s)
- James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
8
|
Usey MM, Huet D. Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion. J Eukaryot Microbiol 2022; 69:e12906. [PMID: 35315174 PMCID: PMC9490983 DOI: 10.1111/jeu.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a member of the apicomplexan phylum, a group of single-celled eukaryotic parasites that cause significant human morbidity and mortality around the world. T. gondii harbors two organelles of endosymbiotic origin: a non-photosynthetic plastid, known as the apicoplast, and a single mitochondrion derived from the ancient engulfment of an α-proteobacterium. Due to excitement surrounding the novelty of the apicoplast, the T. gondii mitochondrion was, to a certain extent, overlooked for about two decades. However, recent work has illustrated that the mitochondrion is an essential hub of apicomplexan-specific biology. Development of novel techniques, such as cryo-electron microscopy, complexome profiling, and next-generation sequencing have led to a renaissance in mitochondrial studies. This review will cover what is currently known about key features of the T. gondii mitochondrion, ranging from its genome to protein import machinery and biochemical pathways. Particular focus will be given to mitochondrial features that diverge significantly from the mammalian host, along with discussion of this important organelle as a drug target.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA,Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Diego Huet
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA,Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
9
|
Maity S, Chakrabarti O. Mitochondrial protein import as a quality control sensor. Biol Cell 2021; 113:375-400. [PMID: 33870508 DOI: 10.1111/boc.202100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, 700064, India.,Homi Bhabha National Institute, India
| |
Collapse
|
10
|
Liu S, Liu S, He B, Li L, Li L, Wang J, Cai T, Chen S, Jiang H. OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential. EMBO Rep 2021; 22:e51606. [PMID: 33655635 DOI: 10.15252/embr.202051606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
Collapse
Affiliation(s)
- Siqi Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Shanshan Liu
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Baiyu He
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Biological Sciences, China Agriculture University, Beijing, China
| | - Lanlan Li
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.,College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Ryan ÉB, Yan J, Miller N, Dayanidhi S, Ma YC, Deng HX, Siddique T. Early death of ALS-linked CHCHD10-R15L transgenic mice with central nervous system, skeletal muscle, and cardiac pathology. iScience 2021; 24:102061. [PMID: 33659869 PMCID: PMC7890413 DOI: 10.1016/j.isci.2021.102061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/27/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.
Collapse
Affiliation(s)
- Éanna B. Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Nimrod Miller
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongchao C. Ma
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
CHCHD4 (MIA40) and the mitochondrial disulfide relay system. Biochem Soc Trans 2021; 49:17-27. [PMID: 33599699 PMCID: PMC7925007 DOI: 10.1042/bst20190232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria are pivotal for normal cellular physiology, as they perform a crucial role in diverse cellular functions and processes, including respiration and the regulation of bioenergetic and biosynthetic pathways, as well as regulating cellular signalling and transcriptional networks. In this way, mitochondria are central to the cell's homeostatic machinery, and as such mitochondrial dysfunction underlies the pathology of a diverse range of diseases including mitochondrial disease and cancer. Mitochondrial import pathways and targeting mechanisms provide the means to transport into mitochondria the hundreds of nuclear-encoded mitochondrial proteins that are critical for the organelle's many functions. One such import pathway is the highly evolutionarily conserved disulfide relay system (DRS) within the mitochondrial intermembrane space (IMS), whereby proteins undergo a form of oxidation-dependent protein import. A central component of the DRS is the oxidoreductase coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein 4 (CHCHD4, also known as MIA40), the human homologue of yeast Mia40. Here, we summarise the recent advances made to our understanding of the role of CHCHD4 and the DRS in physiology and disease, with a specific focus on the emerging importance of CHCHD4 in regulating the cellular response to low oxygen (hypoxia) and metabolism in cancer.
Collapse
|
13
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Reina S, Pittalà MGG, Guarino F, Messina A, De Pinto V, Foti S, Saletti R. Cysteine Oxidations in Mitochondrial Membrane Proteins: The Case of VDAC Isoforms in Mammals. Front Cell Dev Biol 2020; 8:397. [PMID: 32582695 PMCID: PMC7287182 DOI: 10.3389/fcell.2020.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cysteine residues are reactive amino acids that can undergo several modifications driven by redox reagents. Mitochondria are the source of an abundant production of radical species, and it is surprising that such a large availability of highly reactive chemicals is compatible with viable and active organelles, needed for the cell functions. In this work, we review the results highlighting the modifications of cysteines in the most abundant proteins of the outer mitochondrial membrane (OMM), that is, the voltage-dependent anion selective channel (VDAC) isoforms. This interesting protein family carries several cysteines exposed to the oxidative intermembrane space (IMS). Through mass spectrometry (MS) analysis, cysteine posttranslational modifications (PTMs) were precisely determined, and it was discovered that such cysteines can be subject to several oxidization degrees, ranging from the disulfide bridge to the most oxidized, the sulfonic acid, one. The large spectra of VDAC cysteine oxidations, which is unique for OMM proteins, indicate that they have both a regulative function and a buffering capacity able to counteract excess of mitochondrial reactive oxygen species (ROS) load. The consequence of these peculiar cysteine PTMs is discussed.
Collapse
Affiliation(s)
- Simona Reina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Maria Gaetana Giovanna Pittalà
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Francesca Guarino
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Schneider A. Evolution of mitochondrial protein import – lessons from trypanosomes. Biol Chem 2020; 401:663-676. [DOI: 10.1515/hsz-2019-0444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail inSaccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoanTrypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
16
|
Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Res 2019; 18:4969682. [PMID: 29788060 DOI: 10.1093/femsyr/foy040] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.
Collapse
Affiliation(s)
- Carl Malina
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christer Larsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
17
|
Paczia N, Becker-Kettern J, Conrotte JF, Cifuente JO, Guerin ME, Linster CL. 3-Phosphoglycerate Transhydrogenation Instead of Dehydrogenation Alleviates the Redox State Dependency of Yeast de Novo l-Serine Synthesis. Biochemistry 2019; 58:259-275. [PMID: 30668112 DOI: 10.1021/acs.biochem.8b00990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic mechanism of 3-phosphoglycerate to 3-phosphohydroxypyruvate oxidation, which forms the first step of the main conserved de novo serine synthesis pathway, has been revisited recently in certain microorganisms. While this step is classically considered to be catalyzed by an NAD-dependent dehydrogenase (e.g., PHGDH in mammals), evidence has shown that in Pseudomonas, Escherichia coli, and Saccharomyces cerevisiae, the PHGDH homologues act as transhydrogenases. As such, they use α-ketoglutarate, rather than NAD+, as the final electron acceptor, thereby producing D-2-hydroxyglutarate in addition to 3-phosphohydroxypyruvate during 3-phosphoglycerate oxidation. Here, we provide a detailed biochemical and sequence-structure relationship characterization of the yeast PHGDH homologues, encoded by the paralogous SER3 and SER33 genes, in comparison to the human and other PHGDH enzymes. Using in vitro assays with purified recombinant enzymes as well as in vivo growth phenotyping and metabolome analyses of yeast strains engineered to depend on either Ser3, Ser33, or human PHGDH for serine synthesis, we confirmed that both yeast enzymes act as transhydrogenases, while the human enzyme is a dehydrogenase. In addition, we show that the yeast paralogs differ from the human enzyme in their sensitivity to inhibition by serine as well as hydrated NADH derivatives. Importantly, our in vivo data support the idea that a 3PGA transhydrogenase instead of dehydrogenase activity confers a growth advantage under conditions where the NAD+:NADH ratio is low. The results will help to elucidate why different species evolved different reaction mechanisms to carry out a widely conserved metabolic step in central carbon metabolism.
Collapse
Affiliation(s)
- Nicole Paczia
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Julia Becker-Kettern
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Jean-François Conrotte
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| | - Javier O Cifuente
- Structural Biology Unit , CIC bioGUNE Technological Park of Bizkaia , 48160 Derio , Vizcaya , Spain
| | - Marcelo E Guerin
- Structural Biology Unit , CIC bioGUNE Technological Park of Bizkaia , 48160 Derio , Vizcaya , Spain.,IKERBASQUE , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine , University of Luxembourg , L-4367 Belvaux , Luxembourg
| |
Collapse
|
18
|
Sokol AM, Uszczynska-Ratajczak B, Collins MM, Bazala M, Topf U, Lundegaard PR, Sugunan S, Guenther S, Kuenne C, Graumann J, Chan SSL, Stainier DYR, Chacinska A. Loss of the Mia40a oxidoreductase leads to hepato-pancreatic insufficiency in zebrafish. PLoS Genet 2018; 14:e1007743. [PMID: 30457989 PMCID: PMC6245507 DOI: 10.1371/journal.pgen.1007743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases. Mitochondrial pathologies which result from mutations in the nuclear DNA remain incurable and often lead to death. As mitochondria play various roles in cellular and tissue-specific contexts, the symptoms of mitochondrial pathologies can differ between patients. Thus, diagnosis and treatment of mitochondrial disorders remain challenging. To enhance this, the generation of new models that explore and define the consequences of mitochondria insufficiencies is of central importance. Here, we present a mia40a zebrafish mutant as a model for mitochondrial dysfunction, caused by an imbalance in mitochondrial protein biogenesis. This mutant shares characteristics with existing reports on mitochondria dysfunction, and has led us to identify novel phenotypes such as enlarged mitochondrial clusters in skeletal muscles. In addition, our transcriptomics and proteomics data contribute important findings to the existing knowledge on how faulty mitochondria impinge on vertebrate development in molecular, tissue and organ specific contexts.
Collapse
Affiliation(s)
- Anna M. Sokol
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail: (AMS); (AC)
| | | | - Michelle M. Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michal Bazala
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ulrike Topf
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sreedevi Sugunan
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- * E-mail: (AMS); (AC)
| |
Collapse
|
19
|
Habich M, Salscheider SL, Riemer J. Cysteine residues in mitochondrial intermembrane space proteins: more than just import. Br J Pharmacol 2018; 176:514-531. [PMID: 30129023 DOI: 10.1111/bph.14480] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The intermembrane space (IMS) is a very small mitochondrial sub-compartment with critical relevance for many cellular processes. IMS proteins fulfil important functions in transport of proteins, lipids, metabolites and metal ions, in signalling, in metabolism and in defining the mitochondrial ultrastructure. Our understanding of the IMS proteome has become increasingly refined although we still lack information on the identity and function of many of its proteins. One characteristic of many IMS proteins are conserved cysteines. Different post-translational modifications of these cysteine residues can have critical roles in protein function, localization and/or stability. The close localization to different ROS-producing enzyme systems, a dedicated machinery for oxidative protein folding, and a unique equipment with antioxidative systems, render the careful balancing of the redox and modification states of the cysteine residues, a major challenge in the IMS. In this review, we discuss different functions of human IMS proteins, the involvement of cysteine residues in these functions, the consequences of cysteine modifications and the consequences of cysteine mutations or defects in the machinery for disulfide bond formation in terms of human health. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Markus Habich
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Silja Lucia Salscheider
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute of Biochemistry, Redox Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Matic S, Muders V, Meisinger C. Tuning the mitochondrial protein import machinery by reversible phosphorylation: from metabolic switches to cell cycle regulation. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Vögtle FN, Brändl B, Larson A, Pendziwiat M, Friederich MW, White SM, Basinger A, Kücükköse C, Muhle H, Jähn JA, Keminer O, Helbig KL, Delto CF, Myketin L, Mossmann D, Burger N, Miyake N, Burnett A, van Baalen A, Lovell MA, Matsumoto N, Walsh M, Yu HC, Shinde DN, Stephani U, Van Hove JLK, Müller FJ, Helbig I. Mutations in PMPCB Encoding the Catalytic Subunit of the Mitochondrial Presequence Protease Cause Neurodegeneration in Early Childhood. Am J Hum Genet 2018; 102:557-573. [PMID: 29576218 PMCID: PMC5985287 DOI: 10.1016/j.ajhg.2018.02.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.
Collapse
Affiliation(s)
- F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany.
| | - Björn Brändl
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel 24105, Germany
| | - Austin Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Manuela Pendziwiat
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Alice Basinger
- Cook Children's Physician Network, Department of Genetics, Fort Worth, TX 76102, USA
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany; Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Hiltrud Muhle
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Johanna A Jähn
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Oliver Keminer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME, ScreeningPort, Hamburg 22525, Germany
| | - Katherine L Helbig
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carolyn F Delto
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Dirk Mossmann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Nils Burger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg 79104, Germany
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Audrey Burnett
- Cook Children's Physician Network, Department of Genetics, Fort Worth, TX 76102, USA
| | - Andreas van Baalen
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Mark A Lovell
- Department of Pathology, University of Colorado, Aurora, CO 80045, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Maie Walsh
- Adult Genetic Medicine, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
| | - Hung-Chun Yu
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Deepali N Shinde
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Ulrich Stephani
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Franz-Josef Müller
- Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel 24105, Germany; Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Ingo Helbig
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel, Kiel 24105, Germany; Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Yang Z, Kang DH, Lee H, Shin J, Yan W, Rathore B, Kim HR, Kim SJ, Singh H, Liu L, Qu J, Kang C, Kim JS. A Fluorescent Probe for Stimulated Emission Depletion Super-Resolution Imaging of Vicinal-Dithiol-Proteins on Mitochondrial Membrane. Bioconjug Chem 2018; 29:1446-1453. [PMID: 29570268 DOI: 10.1021/acs.bioconjchem.8b00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Dong Hoon Kang
- Asan Medical Center, College of Medicine, University of Ulsan, Seoul 138-736, Korea
| | - Hoyeon Lee
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Jinwoo Shin
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bhowmira Rathore
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hye-Ri Kim
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Seo Jin Kim
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Hardev Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do 17104, Korea
| | - Jong Seung Kim
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
23
|
Majeran W, Le Caer JP, Ponnala L, Meinnel T, Giglione C. Targeted Profiling of Arabidopsis thaliana Subproteomes Illuminates Co- and Posttranslationally N-Terminal Myristoylated Proteins. THE PLANT CELL 2018; 30:543-562. [PMID: 29453228 PMCID: PMC5894833 DOI: 10.1105/tpc.17.00523] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 05/05/2023]
Abstract
N-terminal myristoylation, a major eukaryotic protein lipid modification, is difficult to detect in vivo and challenging to predict in silico. We developed a proteomics strategy involving subfractionation of cellular membranes, combined with separation of hydrophobic peptides by mass spectrometry-coupled liquid chromatography to identify the Arabidopsis thaliana myristoylated proteome. This approach identified a starting pool of 8837 proteins in all analyzed cellular fractions, comprising 32% of the Arabidopsis proteome. Of these, 906 proteins contain an N-terminal Gly at position 2, a prerequisite for myristoylation, and 214 belong to the predicted myristoylome (comprising 51% of the predicted myristoylome of 421 proteins). We further show direct evidence of myristoylation in 72 proteins; 18 of these myristoylated proteins were not previously predicted. We found one myristoylation site downstream of a predicted initiation codon, indicating that posttranslational myristoylation occurs in plants. Over half of the identified proteins could be quantified and assigned to a subcellular compartment. Hierarchical clustering of protein accumulation combined with myristoylation and S-acylation data revealed that N-terminal double acylation influences redirection to the plasma membrane. In a few cases, MYR function extended beyond simple membrane association. This study identified hundreds of N-acylated proteins for which lipid modifications could control protein localization and expand protein function.
Collapse
Affiliation(s)
- Wojciech Majeran
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Jean-Pierre Le Caer
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
24
|
Ebersoll S, Musunda B, Schmenger T, Dirdjaja N, Bonilla M, Manta B, Ulrich K, Comini MA, Krauth-Siegel RL. A glutaredoxin in the mitochondrial intermembrane space has stage-specific functions in the thermo-tolerance and proliferation of African trypanosomes. Redox Biol 2018; 15:532-547. [PMID: 29413965 PMCID: PMC5975080 DOI: 10.1016/j.redox.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei glutaredoxin 2 (Grx2) is a dithiol glutaredoxin that is specifically located in the mitochondrial intermembrane space. Bloodstream form parasites lacking Grx2 or both, Grx2 and the cytosolic Grx1, are viable in vitro and infectious to mice suggesting that neither oxidoreductase is needed for survival or infectivity to mammals. A 37 °C to 39 °C shift changes the cellular redox milieu of bloodstream cells to more oxidizing conditions and induces a significantly stronger growth arrest in wildtype parasites compared to the mutant cells. Grx2-deficient cells ectopically expressing the wildtype form of Grx2 with its C31QFC34 active site, but not the C34S mutant, regain the sensitivity of the parental strain, indicating that the physiological role of Grx2 requires both active site cysteines. In the procyclic insect stage of the parasite, Grx2 is essential. Both alleles can be replaced if procyclic cells ectopically express authentic or C34S, but not C31S/C34S Grx2, pointing to a redox role that relies on a monothiol mechanism. RNA-interference against Grx2 causes a virtually irreversible proliferation defect. The cells adopt an elongated morphology but do not show any significant alteration in the cell cycle. The growth retardation is attenuated by high glucose concentrations. Under these conditions, procyclic cells obtain ATP by substrate level phosphorylation suggesting that Grx2 might regulate a respiratory chain component. Bloodstream T. brucei lacking glutaredoxin 2 are fully viable in vitro and in vivo. A temperature rise shifts the cellular redox state to more oxidizing conditions. Glutaredoxin 2-deficiency confers bloodstream cells with thermo-tolerance. The insect stage requires redox-active glutaredoxin 2 for viability and morphology.
Collapse
Affiliation(s)
- Samantha Ebersoll
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Blessing Musunda
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Torsten Schmenger
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Natalie Dirdjaja
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mariana Bonilla
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Bruno Manta
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - Kathrin Ulrich
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400, Montevideo, Uruguay
| | - R Luise Krauth-Siegel
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Vygodina TV, Mukhaleva E, Azarkina NV, Konstantinov AA. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:982-990. [DOI: 10.1016/j.bbabio.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
|
26
|
Abstract
All known eukaryotes require copper for their development and survival. The essentiality of copper reflects its widespread use as a co-factor in conserved enzymes that catalyze biochemical reactions critical to energy production, free radical detoxification, collagen deposition, neurotransmitter biosynthesis and iron homeostasis. However, the prioritized use of copper poses an organism with a considerable challenge because, in its unbound form, copper can potentiate free radical production and displace iron-sulphur clusters to disrupt protein function. Protective mechanisms therefore evolved to mitigate this challenge and tightly regulate the acquisition, trafficking and storage of copper such that the metal ion is rarely found in its free form in the cell. Findings by a number of groups over the last ten years emphasize that this regulatory framework forms the foundation of a system that is capable of monitoring copper status and reprioritizing copper usage at both the cellular and systemic levels of organization. While the identification of relevant molecular mechanisms and signaling pathways has proven to be difficult and remains a barrier to our full understanding of the regulation of copper homeostasis, mounting evidence points to the mitochondrion as a pivotal hub in this regard in both healthy and diseased states. Here, we review our current understanding of copper handling pathways contained within the organelle and consider plausible mechanisms that may serve to functionally couple their activity to that of other cellular copper handling machinery to maintain copper homeostasis.
Collapse
Affiliation(s)
- Zakery N. Baker
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| |
Collapse
|
27
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
28
|
Schorr S, van der Laan M. Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell Dev Biol 2017; 76:191-200. [PMID: 28923515 DOI: 10.1016/j.semcdb.2017.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
Abstract
Mitochondria are complex double-membrane-bound organelles of eukaryotic cells that function as energy-converting powerhouses, metabolic factories and signaling centers. The outer membrane controls the exchange of material and information with other cellular compartments. The inner membrane provides an extended, highly folded surface for selective transport and energy-coupling reactions. It can be divided into an inner boundary membrane and tubular or lamellar cristae membranes that accommodate the oxidative phosphorylation units. Outer membrane, inner boundary membrane and cristae come together at crista junctions, where the mitochondrial contact site and cristae organizing system (MICOS) acts as a membrane-shaping and -connecting scaffold. This peculiar architecture is of pivotal importance for multiple mitochondrial functions. Many elaborate studies in the past years have shed light on the subunit composition and organization of MICOS. In this review article, we summarize these insights and then move on to discuss exciting recent discoveries on the integrative functions of MICOS. Multi-faceted connections to other major players of mitochondrial biogenesis and physiology, like the protein import machineries, the oxidative phosphorylation system, carrier proteins and phospholipid biosynthesis enzymes, are currently emerging. Therefore, we propose that MICOS acts as a central hub in mitochondrial membrane architecture and functionality.
Collapse
Affiliation(s)
- Stefan Schorr
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, School of Medicine, 66421, Homburg, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Saarland University, School of Medicine, 66421, Homburg, Germany.
| |
Collapse
|
29
|
Neal SE, Dabir DV, Wijaya J, Boon C, Koehler CM. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space. Mol Biol Cell 2017; 28:2773-2785. [PMID: 28814504 PMCID: PMC5638582 DOI: 10.1091/mbc.e16-10-0712] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 11/18/2022] Open
Abstract
Osm1 transfers electrons from fumarate to succinate and functions with Mia40 and Erv1 in the redox-regulated import pathway for proteins that form disulfide bonds in the mitochondrial intermembrane space. Expression of Osm1 and cytochrome c is reciprocally regulated, indicating that the cell has strategies to coordinate expression of terminal electron acceptors. Prokaryotes have aerobic and anaerobic electron acceptors for oxidative folding of periplasmic proteins. The mitochondrial intermembrane space has an analogous pathway with the oxidoreductase Mia40 and sulfhydryl oxidase Erv1, termed the mitochondrial intermembrane space assembly (MIA) pathway. The aerobic electron acceptors include oxygen and cytochrome c, but an acceptor that can function under anaerobic conditions has not been identified. Here we show that the fumarate reductase Osm1, which facilitates electron transfer from fumarate to succinate, fills this gap as a new electron acceptor. In addition to microsomes, Osm1 localizes to the mitochondrial intermembrane space and assembles with Erv1 in a complex. In reconstitution studies with reduced Tim13, Mia40, and Erv1, the addition of Osm1 and fumarate completes the disulfide exchange pathway that results in Tim13 oxidation. From in vitro import assays, mitochondria lacking Osm1 display decreased import of MIA substrates, Cmc1 and Tim10. Comparative reconstitution assays support that the Osm1/fumarate couple accepts electrons with similar efficiency to cytochrome c and that the cell has strategies to coordinate expression of the terminal electron acceptors. Thus Osm1/fumarate is a new electron acceptor couple in the mitochondrial intermembrane space that seems to function in both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Sonya E Neal
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045
| | - Juwina Wijaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Cennyana Boon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Carla M Koehler
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 .,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
30
|
Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol 2017; 76:142-153. [PMID: 28765093 DOI: 10.1016/j.semcdb.2017.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura F Fielden
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
31
|
Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion 2017; 33:72-83. [DOI: 10.1016/j.mito.2016.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022]
|
32
|
Uhrig RG, Labandera AM, Tang LY, Sieben NA, Goudreault M, Yeung E, Gingras AC, Samuel MA, Moorhead GBG. Activation of Mitochondrial Protein Phosphatase SLP2 by MIA40 Regulates Seed Germination. PLANT PHYSIOLOGY 2017; 173:956-969. [PMID: 27923987 PMCID: PMC5291043 DOI: 10.1104/pp.16.01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/01/2016] [Indexed: 05/08/2023]
Abstract
Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.);
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Anne-Marie Labandera
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Lay-Yin Tang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Nicolas A Sieben
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Marilyn Goudreault
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Edward Yeung
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Anne-Claude Gingras
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.);
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| |
Collapse
|
33
|
Harsman A, Schneider A. Mitochondrial protein import in trypanosomes: Expect the unexpected. Traffic 2017; 18:96-109. [PMID: 27976830 DOI: 10.1111/tra.12463] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria have many different functions, the most important one of which is oxidative phosphorylation. They originated from an endosymbiotic event between a bacterium and an archaeal host cell. It was the evolution of a protein import system that marked the boundary between the endosymbiotic ancestor of the mitochondrion and a true organelle that is under the control of the nucleus. In present day mitochondria more than 95% of all proteins are imported from the cytosol in a proces mediated by hetero-oligomeric protein complexes in the outer and inner mitochondrial membranes. In this review we compare mitochondrial protein import in the best studied model system yeast and the parasitic protozoan Trypanosoma brucei. The 2 organisms are phylogenetically only remotely related. Despite the fact that mitochondrial protein import has the same function in both species, only very few subunits of their import machineries are conserved. Moreover, while yeast has 2 inner membrane protein translocases, one specialized for presequence-containing and one for mitochondrial carrier proteins, T. brucei has a single inner membrane translocase only, that mediates import of both types of substrates. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Öhrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9:1204-1229. [DOI: 10.1039/c7mt00010c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general principle in all cells in the body is that an essential metal – here copper – is taken up at the plasma membrane, directed through cellular compartments for use in specific enzymes and pathways, stored in specific scavenging molecules if in surplus, and finally expelled from the cells.
Collapse
Affiliation(s)
- Helena Öhrvik
- Medical Biochemistry and Microbiology
- Uppsala University
- Sweden
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences
- Norway
| | | |
Collapse
|
35
|
Wasilewski M, Chojnacka K, Chacinska A. Protein trafficking at the crossroads to mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:125-137. [PMID: 27810356 DOI: 10.1016/j.bbamcr.2016.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
Mitochondria are central power stations in the cell, which additionally serve as metabolic hubs for a plethora of anabolic and catabolic processes. The sustained function of mitochondria requires the precisely controlled biogenesis and expression coordination of proteins that originate from the nuclear and mitochondrial genomes. Accuracy of targeting, transport and assembly of mitochondrial proteins is also needed to avoid deleterious effects on protein homeostasis in the cell. Checkpoints of mitochondrial protein transport can serve as signals that provide information about the functional status of the organelles. In this review, we summarize recent advances in our understanding of mitochondrial protein transport and discuss examples that involve communication with the nucleus and cytosol.
Collapse
Affiliation(s)
- Michal Wasilewski
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| | | | | |
Collapse
|
36
|
Zhuang J, Kamp WM, Li J, Liu C, Kang JG, Wang PY, Hwang PM. Forkhead Box O3A (FOXO3) and the Mitochondrial Disulfide Relay Carrier (CHCHD4) Regulate p53 Protein Nuclear Activity in Response to Exercise. J Biol Chem 2016; 291:24819-24827. [PMID: 27687729 DOI: 10.1074/jbc.m116.745737] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
Although exercise is linked with improved health, the specific molecular mechanisms underlying its various benefits require further clarification. Here we report that exercise increases the nuclear localization and activity of p53 by acutely down-regulating coiled-coil-helix-coiled-coil-helix domain 4 (CHCHD4), a carrier protein that mediates p53 import into the mitochondria. This response to exercise is lost in transgenic mice with constitutive expression of CHCHD4. Mechanistically, exercise-induced nuclear transcription factor FOXO3 binds to the CHCHD4 promoter and represses its expression, preventing the translocation of p53 to the mitochondria and thereby increasing p53 nuclear localization. The synergistic increase in nuclear p53 and FOXO3 by exercise can facilitate their known interaction in transactivating Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase that mediates adaptation to various stresses. Thus, our results reveal one mechanism by which exercise could be involved in preventing cancer and potentially other diseases associated with aging.
Collapse
Affiliation(s)
- Jie Zhuang
- From the Center for Molecular Medicine and
| | | | - Jie Li
- From the Center for Molecular Medicine and
| | - Chengyu Liu
- Transgenic Core, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
37
|
Zhou ZD, Saw WT, Tan EK. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Mol Neurobiol 2016; 54:5534-5546. [PMID: 27631878 DOI: 10.1007/s12035-016-0099-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Wuan-Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| |
Collapse
|
38
|
Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA. Atomic structure of the entire mammalian mitochondrial complex I. Nature 2016; 538:406-410. [PMID: 27595392 DOI: 10.1038/nature19794] [Citation(s) in RCA: 365] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Mitochondrial complex I (also known as NADH:ubiquinone oxidoreductase) contributes to cellular energy production by transferring electrons from NADH to ubiquinone coupled to proton translocation across the membrane. It is the largest protein assembly of the respiratory chain with a total mass of 970 kilodaltons. Here we present a nearly complete atomic structure of ovine (Ovis aries) mitochondrial complex I at 3.9 Å resolution, solved by cryo-electron microscopy with cross-linking and mass-spectrometry mapping experiments. All 14 conserved core subunits and 31 mitochondria-specific supernumerary subunits are resolved within the L-shaped molecule. The hydrophilic matrix arm comprises flavin mononucleotide and 8 iron-sulfur clusters involved in electron transfer, and the membrane arm contains 78 transmembrane helices, mostly contributed by antiporter-like subunits involved in proton translocation. Supernumerary subunits form an interlinked, stabilizing shell around the conserved core. Tightly bound lipids (including cardiolipins) further stabilize interactions between the hydrophobic subunits. Subunits with possible regulatory roles contain additional cofactors, NADPH and two phosphopantetheine molecules, which are shown to be involved in inter-subunit interactions. We observe two different conformations of the complex, which may be related to the conformationally driven coupling mechanism and to the active-deactive transition of the enzyme. Our structure provides insight into the mechanism, assembly, maturation and dysfunction of mitochondrial complex I, and allows detailed molecular analysis of disease-causing mutations.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.,MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - James A Letts
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | | | - Karol Kaszuba
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 OQH, UK
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| |
Collapse
|
39
|
Intramitochondrial phospholipid trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:81-89. [PMID: 27542541 DOI: 10.1016/j.bbalip.2016.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022]
Abstract
Mitochondrial functions and architecture rely on a defined lipid composition of their outer and inner membranes, which are characterized by a high content of non-bilayer phospholipids such as cardiolipin (CL) and phosphatidylethanolamine (PE). Mitochondrial membrane lipids are synthesized in the endoplasmic reticulum (ER) or within mitochondria from ER-derived precursor lipids, are asymmetrically distributed within mitochondria and can relocate in response to cellular stress. Maintenance of lipid homeostasis thus requires multiple lipid transport processes to be orchestrated within mitochondria. Recent findings identified members of the Ups/PRELI family as specific lipid transfer proteins in mitochondria that shuttle phospholipids between mitochondrial membranes. They cooperate with membrane organizing proteins that preserve the spatial organization of mitochondrial membranes and the formation of membrane contact sites, unravelling an intimate crosstalk of membrane lipid transport and homeostasis with the structural organization of mitochondria. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
|
40
|
The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly. Sci Rep 2016; 6:27484. [PMID: 27265872 PMCID: PMC4893733 DOI: 10.1038/srep27484] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/17/2016] [Indexed: 11/23/2022] Open
Abstract
Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains.
Collapse
|
41
|
Chatzi A, Manganas P, Tokatlidis K. Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1298-306. [PMID: 27033519 PMCID: PMC5405047 DOI: 10.1016/j.bbamcr.2016.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/05/2023]
Abstract
Mitochondria are fundamental organelles with a complex internal architecture that fulfill important diverse functions including iron–sulfur cluster assembly and cell respiration. Intense work for more than 30 years has identified the key protein import components and the pathways involved in protein targeting and assembly. More recently, oxidative folding has been discovered as one important mechanism for mitochondrial proteostasis whilst several human disorders have been linked to this pathway. We describe the molecular components of this pathway in view of their putative redox regulation and we summarize available evidence on the connections of these pathways to human disorders. Mitochondria are the cell center of iron–sulfur cluster assembly and cell respiration. The MIA pathway has recently been linked to Fe/S pathways, Ca2 + uptake and apoptosis. Mitochondria along with the ER and peroxisomes are major sources of ROS. Many diseases have been linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Phanee Manganas
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK; Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece.
| |
Collapse
|
42
|
Chatty Mitochondria: Keeping Balance in Cellular Protein Homeostasis. Trends Cell Biol 2016; 26:577-586. [PMID: 27004699 DOI: 10.1016/j.tcb.2016.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are multifunctional cellular organelles that host many biochemical pathways including oxidative phosphorylation (OXPHOS). Defective mitochondria pose a threat to cellular homeostasis and compensatory responses exist to curtail the source of stress and/or its consequences. The mitochondrial proteome comprises proteins encoded by the nuclear and mitochondrial genomes. Disturbances in protein homeostasis may originate from mistargeting of nuclear encoded mitochondrial proteins. Defective protein import and accumulation of mistargeted proteins leads to stress that triggers translation alterations and proteasomal activation. These cytosolic pathways are complementary to the mitochondrial unfolded protein response (UPRmt) that aims to increase the capacity of protein quality control mechanisms inside mitochondria. They constitute putative targets for interventions aimed at increasing the fitness, stress resistance, and longevity of cells and organisms.
Collapse
|
43
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
44
|
Mani J, Meisinger C, Schneider A. Peeping at TOMs-Diverse Entry Gates to Mitochondria Provide Insights into the Evolution of Eukaryotes. Mol Biol Evol 2015; 33:337-51. [PMID: 26474847 DOI: 10.1093/molbev/msv219] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential for eukaryotic life and more than 95% of their proteins are imported as precursors from the cytosol. The targeting signals for this posttranslational import are conserved in all eukaryotes. However, this conservation does not hold true for the protein translocase of the mitochondrial outer membrane that serves as entry gate for essentially all precursor proteins. Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were present in the last eukaryotic common ancestor. Tom7 is found in representatives of all supergroups except the Excavates. This suggests that it was added to the core of the translocase after the Excavates segregated from all other eukaryotes. A comparative analysis of the biochemically and functionally characterized outer membrane translocases of yeast, plants, and trypanosomes, which represent three eukaryotic supergroups, shows that the receptors that recognize the conserved import signals differ strongly between the different systems. They present a remarkable example of convergent evolution at the molecular level. The structural diversity of the functionally conserved import receptors therefore provides insight into the early evolutionary history of mitochondria.
Collapse
Affiliation(s)
- Jan Mani
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| |
Collapse
|
45
|
Muñoz-Gómez SA, Slamovits CH, Dacks JB, Wideman JG. The evolution of MICOS: Ancestral and derived functions and interactions. Commun Integr Biol 2015; 8:e1094593. [PMID: 27065250 PMCID: PMC4802753 DOI: 10.1080/19420889.2015.1094593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022] Open
Abstract
The MItochondrial Contact Site and Cristae Organizing System (MICOS) is required for the biogenesis and maintenance of mitochondrial cristae as well as the proper tethering of the mitochondrial inner and outer membranes. We recently demonstrated that the core components of MICOS, Mic10 and Mic60, are near-ubiquitous eukaryotic features inferred to have been present in the last eukaryote common ancestor. We also showed that Mic60 could be traced to α-proteobacteria, which suggests that mitochondrial cristae evolved from α-proteobacterial intracytoplasmic membranes. Here, we extend our evolutionary analysis to MICOS-interacting proteins (e.g., Sam50, Mia40, DNAJC11, DISC-1, QIL1, Aim24, and Cox17) and discuss the implications for both derived and ancestral functions of MICOS.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics; Department of Biochemistry and Molecular Biology; Dalhousie University ; Halifax, Nova Scotia, Canada
| | - Claudio H Slamovits
- Centre for Comparative Genomics and Evolutionary Bioinformatics; Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax, Nova Scotia, Canada; Canadian Institute for Advanced Research; Halifax, Nova Scotia, Canada
| | - Joel B Dacks
- Department of Cell Biology; Faculty of Medicine and Dentistry; University of Alberta ; Edmonton, Alberta, Canada
| | | |
Collapse
|
46
|
Harborne SPD, Ruprecht JJ, Kunji ERS. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1245-53. [PMID: 26164100 PMCID: PMC4562336 DOI: 10.1016/j.bbabio.2015.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic α-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic α-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic α-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic α-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Steven P D Harborne
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Jonathan J Ruprecht
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
47
|
The Oxidation Status of Mic19 Regulates MICOS Assembly. Mol Cell Biol 2015; 35:4222-37. [PMID: 26416881 PMCID: PMC4648825 DOI: 10.1128/mcb.00578-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023] Open
Abstract
The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function.
Collapse
|
48
|
Ozer HK, Dlouhy AC, Thornton JD, Hu J, Liu Y, Barycki JJ, Balk J, Outten CE. Cytosolic Fe-S Cluster Protein Maturation and Iron Regulation Are Independent of the Mitochondrial Erv1/Mia40 Import System. J Biol Chem 2015; 290:27829-40. [PMID: 26396185 DOI: 10.1074/jbc.m115.682179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/08/2023] Open
Abstract
The sulfhydryl oxidase Erv1 partners with the oxidoreductase Mia40 to import cysteine-rich proteins in the mitochondrial intermembrane space. In Saccharomyces cerevisiae, Erv1 has also been implicated in cytosolic Fe-S protein maturation and iron regulation. To investigate the connection between Erv1/Mia40-dependent mitochondrial protein import and cytosolic Fe-S cluster assembly, we measured Mia40 oxidation and Fe-S enzyme activities in several erv1 and mia40 mutants. Although all the erv1 and mia40 mutants exhibited defects in Mia40 oxidation, only one erv1 mutant strain (erv1-1) had significantly decreased activities of cytosolic Fe-S enzymes. Further analysis of erv1-1 revealed that it had strongly decreased glutathione (GSH) levels, caused by an additional mutation in the gene encoding the glutathione biosynthesis enzyme glutamate cysteine ligase (GSH1). To address whether Erv1 or Mia40 plays a role in iron regulation, we measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron accumulation in erv1 and mia40 strains. The only strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which is rescued with addition of GSH. Together, these results confirm that GSH is critical for cytosolic Fe-S protein biogenesis and iron regulation, whereas ruling out significant roles for Erv1 or Mia40 in these pathways.
Collapse
Affiliation(s)
- Hatice K Ozer
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Adrienne C Dlouhy
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Jeremy D Thornton
- the John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom, and
| | - Jingjing Hu
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Yilin Liu
- the Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Joseph J Barycki
- the Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Janneke Balk
- the John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom, and
| | - Caryn E Outten
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208,
| |
Collapse
|
49
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Human mitochondrial MIA40 (CHCHD4) is a component of the Fe-S cluster export machinery. Biochem J 2015; 471:231-41. [PMID: 26275620 DOI: 10.1042/bj20150012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria play an essential role in synthesis and export of iron-sulfur (Fe-S) clusters to other sections of a cell. Although the mechanism of Fe-S cluster synthesis is well elucidated, information on the identity of the proteins involved in the export pathway is limited. The present study identifies hMIA40 (human mitochondrial intermembrane space import and assembly protein 40), also known as CHCHD4 (coiled-coil-helix-coiled-coil-helix domain-containing 4), as a component of the mitochondrial Fe-S cluster export machinery. hMIA40 is an iron-binding protein with the ability to bind iron in vivo and in vitro. hMIA40 harbours CPC (Cys-Pro-Cys) motif-dependent Fe-S clusters that are sensitive to oxidation. Depletion of hMIA40 results in accumulation of iron in mitochondria concomitant with decreases in the activity and stability of Fe-S-containing cytosolic enzymes. Intriguingly, overexpression of either the mitochondrial export component or cytosolic the Fe-S cluster assembly component does not have any effect on the phenotype of hMIA40-depleted cells. Taken together, our results demonstrate an indispensable role for hMIA40 for the export of Fe-S clusters from mitochondria.
Collapse
|