1
|
Kmiec D, Kirchhoff F. Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered. J Mol Cell Biol 2024; 16:mjae005. [PMID: 38318650 PMCID: PMC11334937 DOI: 10.1093/jmcb/mjae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
2
|
Blest HTW, Redmond A, Avissar J, Barker J, Bridgeman A, Fowler G, Chauveau L, Hertzog J, Vendrell I, Fischer R, Iversen MB, Jing L, Koelle DM, Paludan SR, Kessler BM, Crump CM, Rehwinkel J. HSV-1 employs UL56 to antagonize expression and function of cGAMP channels. Cell Rep 2024; 43:114122. [PMID: 38652659 DOI: 10.1016/j.celrep.2024.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/21/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.
Collapse
Affiliation(s)
- Henry T W Blest
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Alexander Redmond
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jed Avissar
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jake Barker
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Anne Bridgeman
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Gerissa Fowler
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Lise Chauveau
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Jonny Hertzog
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus Aarhus C, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Colin M Crump
- Department of Pathology, University of Cambridge, CB2 1QP Cambridge, UK
| | - Jan Rehwinkel
- Medical Research Council Translational Immune Discovery Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS Oxford, UK.
| |
Collapse
|
3
|
Wei R, Zhang X, Wang X, Li L, Fu Y, Chen Y, Liu X, Guo C. PDCD4 restricts PRRSV replication in an eIF4A-dependent manner and is antagonized by the viral nonstructural protein 9. J Virol 2024; 98:e0006024. [PMID: 38557170 PMCID: PMC11092367 DOI: 10.1128/jvi.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.
Collapse
Affiliation(s)
- Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajie Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Prelli Bozzo C, Laliberté A, De Luna A, Pastorio C, Regensburger K, Krebs S, Graf A, Blum H, Volcic M, Sparrer KMJ, Kirchhoff F. Replication competent HIV-guided CRISPR screen identifies antiviral factors including targets of the accessory protein Nef. Nat Commun 2024; 15:3813. [PMID: 38714682 PMCID: PMC11076291 DOI: 10.1038/s41467-024-48228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Innate antiviral factors are essential for effective defense against viral pathogens. However, the identity of major restriction mechanisms remains elusive. Current approaches to discover antiviral factors usually focus on the initial steps of viral replication and are limited to a single round of infection. Here, we engineered libraries of >1500 replication-competent HIV-1 constructs each expressing a single gRNAs to target >500 cellular genes for virus-driven discovery of antiviral factors. Passaging in CD4+ T cells robustly enriched HIV-1 encoding sgRNAs against GRN, CIITA, EHMT2, CEACAM3, CC2D1B and RHOA by >50-fold. Using an HIV-1 library lacking the accessory nef gene, we identified IFI16 as a Nef target. Functional analyses in cell lines and primary CD4+ T cells support that the HIV-driven CRISPR screen identified restriction factors targeting virus entry, transcription, release and infectivity. Our HIV-guided CRISPR technique enables sensitive discovery of physiologically relevant cellular defense factors throughout the entire viral replication cycle.
Collapse
Affiliation(s)
| | - Alexandre Laliberté
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Aurora De Luna
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kerstin Regensburger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis Gene Center, LMU Munich, 81377, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis Gene Center, LMU Munich, 81377, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis Gene Center, LMU Munich, 81377, Munich, Germany
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Kishimoto N, Misumi S. From Glycolysis to Viral Defense: The Multifaceted Impact of Glycolytic Enzymes on Human Immunodeficiency Virus Type 1 Replication. Biol Pharm Bull 2024; 47:905-911. [PMID: 38692867 DOI: 10.1248/bpb.b23-00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.
Collapse
Affiliation(s)
- Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University
| |
Collapse
|
6
|
Bobkova MR. Cellular proteins as potential targets for antiretroviral therapy. Vopr Virusol 2023; 68:488-504. [PMID: 38156565 DOI: 10.36233/0507-4088-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The review article conducts an in-depth analysis of information gleaned from a comprehensive literature search across Scopus, Web of Science, and MedLine databases. The focal point of this search revolves around the identification and exploration of the mechanisms orchestrated by host cell factors in the replication cycle of the human immunodeficiency virus (HIV-1, Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1). The article delves into two primary categories of proteins, namely HIV dependence factors (such as CypA, LEDGF, TSG101) and restriction factors (including SERINС5, TRIM5α, APOBEC3G), providing illustrative examples. The current understanding of the functioning mechanisms of these proteins is elucidated, and an evaluation is presented on the potential development of drugs for treating HIV infection. These drugs aim to either inhibit or stimulate the activity of host factors, offering insights into promising avenues for future research and therapeutic advancements.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
7
|
Koma T, Doi N, Le BQ, Kondo T, Ishizue M, Tokaji C, Tsukada C, Adachi A, Nomaguchi M. Involvement of a Rarely Used Splicing SD2b Site in the Regulation of HIV-1 vif mRNA Production as Revealed by a Growth-Adaptive Mutation. Viruses 2023; 15:2424. [PMID: 38140666 PMCID: PMC10747208 DOI: 10.3390/v15122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
We have previously reported an HIV-1 mutant designated NL-Y226tac that expresses Vif at an ultra-low level, being replication-defective in high-APOBEC3G cells, such as H9. It carries a synonymous mutation within the splicing SA1 site relative to its parental clone. In order to determine whether a certain mutant(s) emerges during multi-infection cycles, we maintained H9 cells infected with a relatively low or high input of NL-Y226tac for extended time periods. Unexpectedly, we reproducibly identified a g5061a mutation in the SD2b site in the two independent long-term culture experiments that partially increases Vif expression and replication ability. Importantly, the adaptive mutation g5061a was demonstrated to enhance vif mRNA production by activation of the SA1 site mediated through increasing usage of a rarely used SD2b site. In the long-term culture initiated by a high virus input, we additionally found a Y226Fttc mutation at the original Y226tac site in SA1 that fully restores Vif expression and replication ability. As expected, the adaptive mutation Y226Fttc enhances vif mRNA production through increasing the splicing site usage of SA1. Our results here revealed the importance of the SD2b nucleotide sequence in producing vif mRNA involved in the HIV-1 adaptation and of mutual antagonism between Vif and APOBEC3 proteins in HIV-1 adaptation/evolution and survival.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Naoya Doi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Bao Quoc Le
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Tomoyuki Kondo
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Mitsuki Ishizue
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Chiaki Tokaji
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Chizuko Tsukada
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| | - Masako Nomaguchi
- Department of Microbiology, Graduate School of Medicine, Tokushima University, Tokushima 770-8503, Japan; (T.K.); (N.D.); (B.Q.L.); (T.K.)
| |
Collapse
|
8
|
Twizerimana AP, Becker D, Zhu S, Luedde T, Gohlke H, Münk C. The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1. Proc Natl Acad Sci U S A 2023; 120:e2306374120. [PMID: 37983491 PMCID: PMC10691330 DOI: 10.1073/pnas.2306374120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023] Open
Abstract
The rather few cases of humans infected by HIV-1 N, O, or P raise the question of their incomplete adaptation to humans. We hypothesized that early postentry restrictions may be relevant for the impaired spread of these HIVs. One of the best-characterized species-specific restriction factors is TRIM5α. HIV-1 M can escape human (hu) TRIM5α restriction by binding cyclophilin A (CYPA, also known as PPIA, peptidylprolyl isomerase A) to the so-called CYPA-binding loop of its capsid protein. How non-M HIV-1s interact with huTRIM5α is ill-defined. By testing full-length reporter viruses (Δ env) of HIV-1 N, O, P, and SIVgor (simian IV of gorillas), we found that in contrast to HIV-1 M, the nonpandemic HIVs and SIVgor showed restriction by huTRIM5α. Work to identify capsid residues that mediate susceptibility to huTRIM5α revealed that residue 88 in the capsid CYPA-binding loop was important for such differences. There, HIV-1 M uses alanine to resist, while non-M HIV-1s have either valine or methionine, which avail them for huTRIM5α. Capsid residue 88 determines the sensitivity to TRIM5α in an unknown way. Molecular simulations indicated that capsid residue 88 can affect trans-to-cis isomerization patterns on the capsids of the viruses we tested. These differential CYPA usages by pandemic and nonpandemic HIV-1 suggest that the enzymatic activity of CYPA on the viral core might be important for its protective function against huTRIM5α.
Collapse
Affiliation(s)
- Augustin P. Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Shenglin Zhu
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich52425, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
9
|
Jiang C, Mei M, Liu Y, Hou M, Jiao J, Tan Y, Tan X. PSGL-1 is an evolutionarily conserved antiviral restriction factor. mBio 2023; 14:e0038723. [PMID: 37787515 PMCID: PMC10653843 DOI: 10.1128/mbio.00387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Studying the co-evolution between viruses and humans is important for understanding why we are what we are now as well as for developing future antiviral drugs. Here we pinned down an evolutionary arms race between retroviruses and mammalian hosts at the molecular level by identifying the antagonism between a host antiviral restriction factor PSGL-1 and viral accessory proteins. We show that this antagonism is conserved from mouse to human and from mouse retrovirus to HIV. Further studying this antagonism might provide opportunities for developing new antiviral therapies.
Collapse
Affiliation(s)
- Chao Jiang
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Miao Mei
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Ying Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Min Hou
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jun Jiao
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ya Tan
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- Chinese Institutes for Medical Research, Beijing, China
| |
Collapse
|
10
|
Zaongo SD, Chen Y. PSGL-1, a Strategic Biomarker for Pathological Conditions in HIV Infection: A Hypothesis Review. Viruses 2023; 15:2197. [PMID: 38005875 PMCID: PMC10674231 DOI: 10.3390/v15112197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) has been established to be a cell adhesion molecule that is involved in the cellular rolling mechanism and the extravasation cascade, enabling the recruitment of immune cells to sites of inflammation. In recent years, researchers have established that PSGL-1 also functions as an HIV restriction factor. PSGL-1 has been shown to inhibit the HIV reverse transcription process and inhibit the infectivity of HIV virions produced by cells expressing PSGL-1. Cumulative evidence gleaned from contemporary literature suggests that PSGL-1 expression negatively affects the functions of immune cells, particularly T-cells, which are critical participants in the defense against HIV infection. Indeed, some researchers have observed that PSGL-1 expression and signaling provokes T-cell exhaustion. Additionally, it has been established that PSGL-1 may also mediate virus capture and subsequent transfer to permissive cells. We therefore believe that, in addition to its beneficial roles, such as its function as a proinflammatory molecule and an HIV restriction factor, PSGL-1 expression during HIV infection may be disadvantageous and may potentially predict HIV disease progression. In this hypothesis review, we provide substantial discussions with respect to the possibility of using PSGL-1 to predict the potential development of particular pathological conditions commonly seen during HIV infection. Specifically, we speculate that PSGL-1 may possibly be a reliable biomarker for immunological status, inflammation/translocation, cell exhaustion, and the development of HIV-related cancers. Future investigations directed towards our hypotheses may help to evolve innovative strategies for the monitoring and/or treatment of HIV-infected individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing 400036, China;
| |
Collapse
|
11
|
Roy CN, Shu ST, Kline C, Rigatti L, Smithgall TE, Ambrose Z. Use of pediatric thymus to humanize mice for HIV-1 mucosal transmission. Sci Rep 2023; 13:17067. [PMID: 37816950 PMCID: PMC10564933 DOI: 10.1038/s41598-023-44366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Humanized mice have been used to study human immunodeficiency virus type 1 (HIV-1) transmission, pathogenesis, and treatment. The ability of pediatric thymus tissue implanted either in the leg (Leg PedThy) or under the renal capsule (Renal PedThy) with allogeneic CD34+ hematopoietic cells (HSCs) in NSG mice was evaluated for reconstitution of human immune cells and for rectal transmission of HIV-1. These mice were compared to traditional BLT mice implanted with fetal liver and thymus under the renal capsule and mice injected only with HSCs. Renal PedThy mice had similar immune reconstitution in the blood, spleen and intestine as BLT mice, while Leg PedThy mice had transient detection of immune cells, particularly CD4+ T cells and macrophages, the target cells for HIV-1 infection. Rectal transmission and replication of HIV-1 was efficient in BLT mice but lower and more variable in Renal PedThy mice. HIV-1 was poorly transmitted in HSC mice and not transmitted in Leg PedThy mice, which correlated with the frequencies of target cells in the spleen and intestine. Humanization of NSG mice with pediatric thymus was successful when implanted under the kidney capsule, but led to less efficient HIV-1 rectal transmission and replication compared to BLT mice.
Collapse
Affiliation(s)
- Chandra N Roy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Chaudhary P, Proulx J, Park IW. Ubiquitin-protein ligase E3A (UBE3A) mediation of viral infection and human diseases. Virus Res 2023; 335:199191. [PMID: 37541588 PMCID: PMC10430597 DOI: 10.1016/j.virusres.2023.199191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jessica Proulx
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
13
|
Abstract
Human and simian immunodeficiency viruses (HIVs and SIVs, respectively) encode several small proteins (Vif, Vpr, Nef, Vpu, and Vpx) that are called accessory because they are not generally required for viral replication in cell culture. However, they play complex and important roles for viral immune evasion and spread in vivo. Here, we discuss the diverse functions and the relevance of the viral protein U (Vpu) that is expressed from a bicistronic RNA during the late stage of the viral replication cycle and found only in HIV-1 and closely related SIVs. It is well established that Vpu counteracts the restriction factor tetherin, mediates degradation of the primary viral CD4 receptors, and inhibits activation of the transcription factor nuclear factor kappa B. Recent studies identified additional activities and provided new insights into the sophisticated mechanisms by which Vpu enhances and prolongs the release of fully infectious viral particles. In addition, it has been shown that Vpu prevents superinfection not only by degrading CD4 but also by modulating DNA repair mechanisms to promote degradation of nuclear viral complementary DNA in cells that are already productively infected.
Collapse
Affiliation(s)
- Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| |
Collapse
|
14
|
Wong HT, Luperchio AM, Riley S, Salamango DJ. Inhibition of ATM-directed antiviral responses by HIV-1 Vif. PLoS Pathog 2023; 19:e1011634. [PMID: 37669285 PMCID: PMC10503699 DOI: 10.1371/journal.ppat.1011634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/15/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Emerging evidence indicates that HIV-1 hijacks host DNA damage repair (DDR) pathways to facilitate multiple facets of virus replication. Canonically, HIV-1 engages proviral DDR responses through the accessory protein Vpr, which induces constitutive activation of DDR kinases ATM and ATR. However, in response to prolonged DDR signaling, ATM directly induces pro-inflammatory NF-κB signaling and activates multiple members of the TRIM family of antiviral restriction factors, several of which have been previously implicated in antagonizing retroviral and lentiviral replication. Here, we demonstrate that the HIV-1 accessory protein Vif blocks ATM-directed DNA repair processes, activation of NF-κB signaling responses, and TRIM protein phosphorylation. Vif function in ATM antagonism occurs in clinical isolates and in common HIV-1 Group M subtypes/clades circulating globally. Pharmacologic and functional studies combine to suggest that Vif blocks Vpr-directed activation of ATM but not ATR, signifying that HIV-1 utilizes discrete strategies to fine-tune DDR responses that promote virus replication while simultaneously inhibiting immune activation.
Collapse
Affiliation(s)
- Hoi Tong Wong
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adeline M. Luperchio
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Sean Riley
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
15
|
Zhu Y, Feng M, Wang B, Zheng Y, Jiang D, Zhao L, Mamun MAA, Kang H, Nie H, Zhang X, Guo N, Qin S, Wang N, Liu H, Gao Y. New insights into the non-enzymatic function of HDAC6. Biomed Pharmacother 2023; 161:114438. [PMID: 37002569 DOI: 10.1016/j.biopha.2023.114438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that contains two catalytic domains and a zinc-finger ubiquitin binding domain (ZnF-UBP) domain. The deacetylation function of HDAC6 has been extensively studied with common substrates such as α-tubulin, cortactin, and Hsp90. Apart from its deacetylase activity, HDAC6 ZnF-UBP binds to unanchored ubiquitin of specific sequences and serves as a carrier for transporting aggregated proteins. As a result, aggresomes are formed and protein degradation is facilitated by the autophagy-lysosome pathway. This HDAC6-dependent microtubule transport can be used by cells to assemble and activate inflammasomes, which play a critical role in immune regulation. Even viruses can benefit from the carrier of HDAC6 to assist in uncoating their surfaces during their infection cycle. However, HDAC6 is also capable of blocking virus invasion and replication in a non-enzymatic manner. Given these non-enzymatic functions, HDAC6 is closely associated with various diseases, including neurodegeneration, inflammasome-associated diseases, cancer, and viral infections. Small molecule inhibitors targeting the ubiquitin binding pocket of HDAC6 have been investigated. In this review, we focus on mechanisms in non-enzymatic functions of HDAC6 and discuss the rationality and prospects of therapeutic strategies by intervening the activation of HDAC6 ZnF-UBP in concrete diseases.
Collapse
Affiliation(s)
- Yuanzai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengkai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dandan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Haiqian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shangshang Qin
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
16
|
Britan-Rosich Y, Ma J, Kotler E, Hassan F, Botvinnik A, Smith Y, Moshel O, Nasereddin A, Sharma G, Pikarsky E, Ross S, Kotler M. APOBEC3G protects the genome of human cultured cells and mice from radiation-induced damage. FEBS J 2023; 290:1822-1839. [PMID: 36325681 PMCID: PMC10079569 DOI: 10.1111/febs.16673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Cytosine deaminases AID/APOBEC proteins act as potent nucleic acid editors, playing important roles in innate and adaptive immunity. However, the mutagenic effects of some of these proteins compromise genomic integrity and may promote tumorigenesis. Here, we demonstrate that human APOBEC3G (A3G), in addition to its role in innate immunity, promotes repair of double-strand breaks (DSBs) in vitro and in vivo. Transgenic mice expressing A3G successfully survived lethal irradiation, whereas wild-type controls quickly succumbed to radiation syndrome. Mass spectrometric analyses identified the differential upregulation of a plethora of proteins involved in DSB repair pathways in A3G-expressing cells early following irradiation to facilitate repair. Importantly, we find that A3G not only accelerates DSB repair but also promotes deamination-dependent error-free rejoining. These findings have two implications: (a) strategies aimed at inhibiting A3G may improve the efficacy of genotoxic therapies used to cure malignant tumours; and (b) enhancing A3G activity may reduce acute radiation syndrome in individuals exposed to ionizing radiation.
Collapse
Affiliation(s)
- Yelena Britan-Rosich
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jing Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, USA
| | - Eran Kotler
- Department of Genetics, Stanford University School of Medicine, Ca, USA
| | - Faizan Hassan
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Alexander Botvinnik
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Nasereddin
- Core Research Facility of the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gunjan Sharma
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Susan Ross
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, USA
| | - Moshe Kotler
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
17
|
Chand K, Barman MK, Ghosh P, Mitra D. DNAJB8 facilitates autophagic-lysosomal degradation of viral Vif protein and restricts HIV-1 virion infectivity by rescuing APOBEC3G expression in host cells. FASEB J 2023; 37:e22793. [PMID: 36723955 DOI: 10.1096/fj.202201738r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV-1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV-1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV-1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV-1 virions. DNAJB8 seems to direct Vif protein for autophagic-lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif-mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV-1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV-1 to replicate and produce more infective progeny virion particles.
Collapse
Affiliation(s)
- Kailash Chand
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | | | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
18
|
Mohammadzadeh N, Zhang N, Branton WG, Zghidi-Abouzid O, Cohen EA, Gelman BB, Estaquier J, Kong L, Power C. The HIV Restriction Factor Profile in the Brain Is Associated with the Clinical Status and Viral Quantities. Viruses 2023; 15:316. [PMID: 36851531 PMCID: PMC9962287 DOI: 10.3390/v15020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
HIV-encoded DNA, RNA and proteins persist in the brain despite effective antiretroviral therapy (ART), with undetectable plasma and cerebrospinal fluid viral RNA levels, often in association with neurocognitive impairments. Although the determinants of HIV persistence have garnered attention, the expression and regulation of antiretroviral host restriction factors (RFs) in the brain for HIV and SIV remain unknown. We investigated the transcriptomic profile of antiretroviral RF genes by RNA-sequencing with confirmation by qRT-PCR in the cerebral cortex of people who are uninfected (HIV[-]), those who are HIV-infected without pre-mortem brain disease (HIV[+]), those who are HIV-infected with neurocognitive disorders (HIV[+]/HAND) and those with neurocognitive disorders with encephalitis (HIV[+]/HIVE). We observed significant increases in RF expression in the brains of HIV[+]/HIVE in association with the brain viral load. Machine learning techniques identified MAN1B1 as a key gene that distinguished the HIV[+] group from the HIV[+] groups with HAND. Analyses of SIV-associated RFs in brains from SIV-infected Chinese rhesus macaques with different ART regimens revealed diminished RF expression among ART-exposed SIV-infected animals, although ART interruption resulted in an induced expression of several RF genes including OAS3, RNASEL, MX2 and MAN1B1. Thus, the brain displays a distinct expression profile of RFs that is associated with the neurological status as well as the brain viral burden. Moreover, ART interruption can influence the brain's RF profile, which might contribute to disease outcomes.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Na Zhang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - William G. Branton
- Department of Medicine (Neurology) University of Alberta, 6-11 Heritage Medical Research Centre, Edmonton, AB T6G 2R3, Canada
| | - Ouafa Zghidi-Abouzid
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Eric A. Cohen
- Institut de Recherches Cliniques de Montreal and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Medicine (Neurology) University of Alberta, 6-11 Heritage Medical Research Centre, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
19
|
Auerbach AA, Becker JT, Moraes SN, Moghadasi SA, Duda JM, Salamango DJ, Harris RS. Ancestral APOBEC3B Nuclear Localization Is Maintained in Humans and Apes and Altered in Most Other Old World Primate Species. mSphere 2022; 7:e0045122. [PMID: 36374108 PMCID: PMC9769932 DOI: 10.1128/msphere.00451-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
APOBEC3B is an innate immune effector enzyme capable of introducing mutations in viral genomes through DNA cytosine-to-uracil editing. Recent studies have shown that gamma-herpesviruses, such as Epstein-Barr virus (EBV), have evolved a potent APOBEC3B neutralization mechanism to protect lytic viral DNA replication intermediates in the nuclear compartment. APOBEC3B is additionally unique as the only human DNA deaminase family member that is constitutively nuclear. Nuclear localization has therefore been inferred to be essential for innate antiviral function. Here, we combine evolutionary, molecular, and cell biology approaches to address whether nuclear localization is a conserved feature of APOBEC3B in primates. Despite the relatively recent emergence of APOBEC3B approximately 30 to 40 million years ago (MYA) in Old World primates by genetic recombination (after the split from the New World monkey lineage 40 to 50 MYA), we find that the hallmark nuclear localization of APOBEC3B shows variability. For instance, although human and several nonhuman primate APOBEC3B enzymes are predominantly nuclear, rhesus macaque and other Old World primate APOBEC3B proteins are clearly cytoplasmic or cell wide. A series of human/rhesus macaque chimeras and mutants combined to map localization determinants to the N-terminal half of the protein with residues 15, 19, and 24 proving critical. Ancestral APOBEC3B reconstructed from present-day primate species also shows strong nuclear localization. Together, these results indicate that the ancestral nuclear localization of APOBEC3B is maintained in present-day human and ape proteins, but nuclear localization is not conserved in all Old World monkey species despite a need for antiviral functions in the nuclear compartment. IMPORTANCE APOBEC3 enzymes are single-stranded DNA cytosine-to-uracil deaminases with beneficial roles in antiviral immunity and detrimental roles in cancer mutagenesis. Regarding viral infection, all seven human APOBEC3 enzymes have overlapping roles in restricting virus types that require DNA for replication, including EBV, HIV, human papillomavirus (HPV), and human T-cell leukemia virus (HTLV). Regarding cancer, at least two APOBEC3 enzymes, APOBEC3B and APOBEC3A, are prominent sources of mutation capable of influencing clinical outcomes. Here, we combine evolutionary, molecular, and cell biology approaches to characterize primate APOBEC3B enzymes. We show that nuclear localization is an ancestral property of APOBEC3B that is maintained in present-day human and ape enzymes, but not conserved in other nonhuman primates. This partial mechanistic conservation indicates that APOBEC3B is important for limiting the replication of DNA-based viruses in the nuclear compartment. Understanding these pathogen-host interactions may contribute to the development of future antiviral and antitumor therapies.
Collapse
Affiliation(s)
- Ashley A Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Jordan T Becker
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Sofia N Moraes
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Seyed Arad Moghadasi
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Jolene M Duda
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
| | - Daniel J Salamango
- Institute for Molecular Virology, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesotagrid.17635.36 - Twin Cities, Minneapolis, Minnesota, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
20
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
21
|
A Novel, Fully Spliced, Accessory Gene in Equine Lentivirus with Distinct Rev-Responsive Element. J Virol 2022; 96:e0098622. [PMID: 36069548 PMCID: PMC9517694 DOI: 10.1128/jvi.00986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function. The transcript mat was fully spliced and comprised parts of the coding regions of MA and TM. Interestingly, the expression of Mat depended on Rev and the chromosome region maintenance 1 (CRM1) pathway. Rev could specifically bind to Mat mRNA to promote its nuclear export. We further identified that the first exon of Mat mRNA, which was located within the Gag-encoding region, acted as an unreported RRE. Altogether, we identified a novel fully spliced transcript mat with an unusual RRE, which interacted with Rev for nuclear export through the CRM1 pathway. These findings updated the EIAV genome structure, highlighted the diversification of posttranscriptional regulation patterns in EIAV, and may help to expand the understanding of gene transcription and expression of lentivirus. IMPORTANCE In lentiviruses, the nuclear export of viral transcripts is an important step in controlling viral gene expression. Generally, the unspliced and incompletely spliced transcripts are exported via the CRM1-dependent export pathway in a process mediated by the viral Rev protein by binding to the Rev-responsive element (RRE) located within the Env-coding region. However, the completely spliced transcripts are exported via an endogenous cellular pathway, which was Rev independent. Here, we identified a novel fully spliced transcript from EIAV and demonstrated that it encoded a viral protein, termed Mat. Interestingly, we determined that the expression of Mat depended on Rev and identified that the first exon of Mat mRNA could specifically bind to Rev and be exported to the cytoplasm, which suggested that the first exon of Mat mRNA was a second RRE of EIAV. These findings provided important insights into the Rev-dependent nuclear export of completely spliced transcripts in lentiviruses.
Collapse
|
22
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
23
|
A functional map of HIV-host interactions in primary human T cells. Nat Commun 2022; 13:1752. [PMID: 35365639 PMCID: PMC8976027 DOI: 10.1038/s41467-022-29346-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.
Collapse
|
24
|
van Heuvel Y, Schatz S, Rosengarten JF, Stitz J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins (Basel) 2022; 14:toxins14020138. [PMID: 35202165 PMCID: PMC8876946 DOI: 10.3390/toxins14020138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Different mechanisms mediate the toxicity of RNA. Genomic retroviral mRNA hijacks infected host cell factors to enable virus replication. The viral genomic RNA of the human immunodeficiency virus (HIV) encompasses nine genes encoding in less than 10 kb all proteins needed for replication in susceptible host cells. To do so, the genomic RNA undergoes complex alternative splicing to facilitate the synthesis of the structural, accessory, and regulatory proteins. However, HIV strongly relies on the host cell machinery recruiting cellular factors to complete its replication cycle. Antiretroviral therapy (ART) targets different steps in the cycle, preventing disease progression to the acquired immunodeficiency syndrome (AIDS). The comprehension of the host immune system interaction with the virus has fostered the development of a variety of vaccine platforms. Despite encouraging provisional results in vaccine trials, no effective vaccine has been developed, yet. However, novel promising vaccine platforms are currently under investigation.
Collapse
Affiliation(s)
- Yasemin van Heuvel
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Stefanie Schatz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jamila Franca Rosengarten
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
| | - Jörn Stitz
- Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln—University of Applied Sciences, Chempark Leverkusen, Kaiser-Wilhelm-Allee, 51368 Leverkusen, Germany; (Y.v.H.); (S.S.); (J.F.R.)
- Correspondence:
| |
Collapse
|
25
|
Gaba A, Hix MA, Suhail S, Flath B, Boysan B, Williams DR, Pelletier T, Emerman M, Morcos F, Cisneros GA, Chelico L. Divergence in Dimerization and Activity of Primate APOBEC3C. J Mol Biol 2021; 433:167306. [PMID: 34666043 PMCID: PMC9202443 DOI: 10.1016/j.jmb.2021.167306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022]
Abstract
The APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (−)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and we determined that Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1. Biochemical, virological, and coevolutionary analyses combined with molecular dynamics simulations showed that the key amino acids needed to promote rhA3C antiviral activity, 44, 45, and 144, also promoted dimerization and changes to the dynamics of loop 1, near the enzyme active site. Although forced evolution of rhA3C resulted in a similar dimer interface with hominid A3C, the key amino acid contacts were different. Overall, our results determine the basis for why rhA3C is less active than human A3C and establish the amino acid network for dimerization and increased activity. Based on identification of the key amino acids determining Old World Monkey antiviral activity we predict that other Old World Monkey A3Cs did not impart anti-lentiviral activity, despite fixation of a key residue needed for hominid A3C activity. Overall, the coevolutionary analysis of the A3C dimerization interface presented also provides a basis from which to analyze dimerization interfaces of other A3 family members.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada. https://twitter.com/optimist1023
| | - Mark A Hix
- Department of Chemistry, University of North Texas, Denton, TX, USA. https://twitter.com/markahix
| | - Sana Suhail
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA. https://twitter.com/sakuraa_329
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Brock Boysan
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Danielle R Williams
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. https://twitter.com/dani_renee_
| | - Tomas Pelletier
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. https://twitter.com/memerman
| | - Faruck Morcos
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA. https://twitter.com/MorcosLab
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX, USA. https://twitter.com/CisnerosRes
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
26
|
Asaoka M, Patnaik SK, Ishikawa T, Takabe K. Different members of the APOBEC3 family of DNA mutators have opposing associations with the landscape of breast cancer. Am J Cancer Res 2021; 11:5111-5125. [PMID: 34765315 PMCID: PMC8569370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023] Open
Abstract
APOBEC enzymes are strong mutagenic factors. In breast cancer, expression of APOBEC3B is increased and associated with mutation load and poor outcome. Other APOBEC3s can also mutate DNA but their clinical significance in breast cancer and its underpinnings have not been comprehensively studied. In our examination of 1,091 breast carcinoma cases, high expression of APOBEC3A or APOBEC3B genes was associated with greater tumor burden of mutations and other genomic aberrations. Expression of none of the five APOBEC3C-H genes had any correlation with these features, including T[C-T/G]W mutations, but their high expression levels indicated a robust anti-cancer immune response within tumors, with elevated CD8+ T cell abundance, T cell receptor diversity, and immune cytolytic activity. Concordantly, survival analyses of this and two other cohorts with > 3,000 patients each showed favorable prognostic benefit of high APOBEC3C-H expression for both cancer progression and mortality. A detrimental prognostic value was observed for APOBEC3A and APOBEC3B. Single-cell data revealed cancer epithelial and stromal immune cells as major sources of APOBEC3B and APOBEC3C-H expression in tumors, respectively. These observations on opposing associations with breast cancer of different APOBEC3s highlight the contrasting roles of these enzymes, promoting cancer through mutagenesis while antagonizing it through immune response.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer CenterBuffalo, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York, USA
- Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Surgery, Yokohama City UniversityYokohama, Japan
| |
Collapse
|
27
|
Koma T, Doi N, Takemoto M, Watanabe K, Yamamoto H, Nakashima S, Adachi A, Nomaguchi M. The Expression Level of HIV-1 Vif Is Optimized by Nucleotide Changes in the Genomic SA1D2prox Region during the Viral Adaptation Process. Viruses 2021; 13:2079. [PMID: 34696508 PMCID: PMC8537775 DOI: 10.3390/v13102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
HIV-1 Vif plays an essential role in viral replication by antagonizing anti-viral cellular restriction factors, a family of APOBEC3 proteins. We have previously shown that naturally-occurring single-nucleotide mutations in the SA1D2prox region, which surrounds the splicing acceptor 1 and splicing donor 2 sites of the HIV-1 genome, dramatically alter the Vif expression level, resulting in variants with low or excessive Vif expression. In this study, we investigated how these HIV-1 variants with poor replication ability adapt and evolve under the pressure of APOBEC3 proteins. Adapted clones obtained through adaptation experiments exhibited an altered replication ability and Vif expression level compared to each parental clone. While various mutations were present throughout the viral genome, all replication-competent adapted clones with altered Vif expression levels were found to bear them within SA1D2prox, without exception. Indeed, the mutations identified within SA1D2prox were responsible for changes in the Vif expression levels and altered the splicing pattern. Moreover, for samples collected from HIV-1-infected patients, we showed that the nucleotide sequences of SA1D2prox can be chronologically changed and concomitantly affect the Vif expression levels. Taken together, these results demonstrated the importance of the SA1D2prox nucleotide sequence for modulating the Vif expression level during HIV-1 replication and adaptation.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Mai Takemoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Kyosuke Watanabe
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Hideki Yamamoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Satoshi Nakashima
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| |
Collapse
|
28
|
Zaongo SD, Liu Y, Harypursat V, Song F, Xia H, Ma P, Chen Y. P-Selectin Glycoprotein Ligand 1: A Potential HIV-1 Therapeutic Target. Front Immunol 2021; 12:710121. [PMID: 34434194 PMCID: PMC8380821 DOI: 10.3389/fimmu.2021.710121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Antiretroviral therapy (ART), which is a life-long therapeutic option, remains the only currently effective clinical method to treat HIV-1 infection. However, ART may be toxic to vital organs including the liver, brain, heart, and kidneys, and may result in systemic complications. In this context, to consider HIV-1 restriction factors from the innate immune system to explore novel HIV therapeutics is likely to be a promising investigative strategy. In light of this, P-selectin glycoprotein ligand 1 (PSGL-1) has recently become the object of close scrutiny as a recognized cell adhesion molecule, and has become a major focus of academic study, as researchers believe that PSGL-1 may represent a novel area of interest in the research inquiry into the field of immune checkpoint inhibition. In this article, we review PSGL-1's structure and functions during infection and/or inflammation. We also outline a comprehensive review of its role and potential therapeutic utility during HIV-1 infection as published in contemporary academic literature.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.,Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yanqiu Liu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Huan Xia
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
29
|
Pagani I, Poli G, Vicenzi E. TRIM22. A Multitasking Antiviral Factor. Cells 2021; 10:cells10081864. [PMID: 34440633 PMCID: PMC8391480 DOI: 10.3390/cells10081864] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy;
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy;
- Correspondence:
| |
Collapse
|
30
|
Coelacanth SERINC2 Inhibits HIV-1 Infectivity and Is Counteracted by Envelope Glycoprotein from Foamy Virus. J Virol 2021; 95:e0022921. [PMID: 33883219 PMCID: PMC8316019 DOI: 10.1128/jvi.00229-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SERINC5 restricts nef-defective HIV-1 by affecting early steps of the virus life cycle. Distantly related retroviruses with a wide host range encode virulent factors in response to challenge by SERINC5. However, the evolutionary origins of this antiretroviral activity, its prevalence among the paralogs, and its ability to target retroviruses remain understudied. In agreement with previous studies, we found that four human SERINC paralogs inhibit nef-defective HIV-1, with SERINC2 being an exception. Here, we demonstrate that this lack of activity in human SERINC2 is associated with its post-whole-genome duplication (post-WGD) divergence, as evidenced by the ability of pre-WGD orthologs from Saccharomyces cerevisiae and flies and a post-WGD-proximate SERINC2 from coelacanths to inhibit the virus. Intriguingly, Nef is unable to counter coelacanth SERINC2, indicating that such activity was directed toward other retroviruses found in coelacanths (like foamy viruses). However, foamy virus-derived vectors are intrinsically resistant to the action of SERINC2, and we show that the foamy virus envelope confers this resistance by affecting its steady-state levels. Our study highlights an ancient origin of antiretroviral activity in SERINCs and a hitherto-unknown interaction with a foamy virus. IMPORTANCESERINC5 constitutes a critical barrier to the propagation of retroviruses, as highlighted by parallel emergence of anti-SERINC5 activities among distant retroviral lineages. Therefore, understanding the origin and evolution of these host factors will provide key information about virus-host relationships that can be exploited for future drug development. Here, we show that SERINC5-mediated nef-defective HIV-1 infection inhibition is evolutionarily conserved. SERINC2 from coelacanth restricts HIV-1, and it was functionally adapted to target foamy viruses. Our findings provide insights into the evolutionary origin of antiretroviral activity in the SERINC gene family and uncover the role of SERINCs in shaping the long-term conflicts between retroviruses and their hosts.
Collapse
|
31
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
32
|
Abstract
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
33
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|
34
|
Abstract
Exogenous retroviruses are RNA viruses that require reverse transcription for their replication. Among these viruses, human immunodeficiency virus (HIV) is infectious to humans and causes the development of acquired immune deficiency syndrome (AIDS). There are also endogenous retroelements that require reverse transcription for their retrotransposition, among which the type 1 long interspersed element (LINE-1) is the only type of retroelement that can replicate autonomously. It was once believed that retroviruses like HIV and retroelements like LINE-1 share similarities in processes such as reverse transcription and integration. Accordingly, many HIV suppressors are also potent LINE-1 inhibitors. However, in many cases, one suppressor uses two or more distinct mechanisms to repress HIV and LINE-1. In this review, we discuss some of these suppressors, focusing on their alternative mechanisms opposing the replication of HIV and LINE-1. Based on the differences in HIV and LINE-1 activity, the subcellular localization of these suppressors, and the impact of LINE-1 retrotransposition on human cells, we propose possible reasons for the inhibition of HIV and LINE-1 through different pathways by these suppressors, with the hope of accelerating future studies in associated research fields.
Collapse
Affiliation(s)
- Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
36
|
Kim ET, Dybas JM, Kulej K, Reyes ED, Price AM, Akhtar LN, Orr A, Garcia BA, Boutell C, Weitzman MD. Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nat Microbiol 2021; 6:234-245. [PMID: 33432153 PMCID: PMC7856100 DOI: 10.1038/s41564-020-00826-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Intrinsic antiviral host factors confer cellular defence by limiting virus replication and are often counteracted by viral countermeasures. We reasoned that host factors that inhibit viral gene expression could be identified by determining proteins bound to viral DNA (vDNA) in the absence of key viral antagonists. Herpes simplex virus 1 (HSV-1) expresses E3 ubiquitin-protein ligase ICP0 (ICP0), which functions as an E3 ubiquitin ligase required to promote infection. Cellular substrates of ICP0 have been discovered as host barriers to infection but the mechanisms for inhibition of viral gene expression are not fully understood. To identify restriction factors antagonized by ICP0, we compared proteomes associated with vDNA during HSV-1 infection with wild-type virus and a mutant lacking functional ICP0 (ΔICP0). We identified the cellular protein Schlafen family member 5 (SLFN5) as an ICP0 target that binds vDNA during HSV-1 ΔICP0 infection. We demonstrated that ICP0 mediates ubiquitination of SLFN5, which leads to its proteasomal degradation. In the absence of ICP0, SLFN5 binds vDNA to repress HSV-1 transcription by limiting accessibility of RNA polymerase II to viral promoters. These results highlight how comparative proteomics of proteins associated with viral genomes can identify host restriction factors and reveal that viral countermeasures can overcome SLFN antiviral activity.
Collapse
Affiliation(s)
- Eui Tae Kim
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Microbiology and Immunology, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Joseph M. Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D. Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander M. Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisa N. Akhtar
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Division of Infectious Diseases, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Pennsylvania, USA
| | - Ann Orr
- MRC-University of Glasgow Center for Virus Research, Glasgow, Scotland, United Kingdom
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chris Boutell
- MRC-University of Glasgow Center for Virus Research, Glasgow, Scotland, United Kingdom
| | - Matthew D. Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Epigenetics Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: All correspondence and request for materials should be addressed to Matthew D. Weitzman (, )
| |
Collapse
|
37
|
Sauter D, Kirchhoff F. Evolutionary conflicts and adverse effects of antiviral factors. eLife 2021; 10:e65243. [PMID: 33450175 PMCID: PMC7811402 DOI: 10.7554/elife.65243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human cells are equipped with a plethora of antiviral proteins protecting them against invading viral pathogens. In contrast to apoptotic or pyroptotic cell death, which serves as ultima ratio to combat viral infections, these cell-intrinsic restriction factors may prevent or at least slow down viral spread while allowing the host cell to survive. Nevertheless, their antiviral activity may also have detrimental effects on the host. While the molecular mechanisms underlying the antiviral activity of restriction factors are frequently well investigated, potential undesired effects of their antiviral functions on the host cell are hardly explored. With a focus on antiretroviral proteins, we summarize in this review how individual restriction factors may exert adverse effects as trade-off for efficient defense against attacking pathogens.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital TübingenTübingenGermany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
| |
Collapse
|
38
|
Emerging Role of PYHIN Proteins as Antiviral Restriction Factors. Viruses 2020; 12:v12121464. [PMID: 33353088 PMCID: PMC7767131 DOI: 10.3390/v12121464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Innate immune sensors and restriction factors are cellular proteins that synergize to build an effective first line of defense against viral infections. Innate sensors are usually constitutively expressed and capable of detecting pathogen-associated molecular patterns (PAMPs) via specific pattern recognition receptors (PRRs) to stimulate the immune response. Restriction factors are frequently upregulated by interferons (IFNs) and may inhibit viral pathogens at essentially any stage of their replication cycle. Members of the Pyrin and hematopoietic interferon-inducible nuclear (HIN) domain (PYHIN) family have initially been recognized as important sensors of foreign nucleic acids and activators of the inflammasome and the IFN response. Accumulating evidence shows, however, that at least three of the four members of the human PYHIN family restrict viral pathogens independently of viral sensing and innate immune activation. In this review, we provide an overview on the role of human PYHIN proteins in the innate antiviral immune defense and on viral countermeasures.
Collapse
|
39
|
Paoletti A, Allouch A, Caillet M, Saïdi H, Subra F, Nardacci R, Wu Q, Muradova Z, Voisin L, Raza SQ, Law F, Thoreau M, Dakhli H, Delelis O, Poirier-Beaudouin B, Dereuddre-Bosquet N, Le Grand R, Lambotte O, Saez-Cirion A, Pancino G, Ojcius DM, Solary E, Deutsch E, Piacentini M, Gougeon ML, Kroemer G, Perfettini JL. HIV-1 Envelope Overcomes NLRP3-Mediated Inhibition of F-Actin Polymerization for Viral Entry. Cell Rep 2020; 28:3381-3394.e7. [PMID: 31553908 DOI: 10.1016/j.celrep.2019.02.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Purinergic receptors and nucleotide-binding domain leucine-rich repeat containing (NLR) proteins have been shown to control viral infection. Here, we show that the NLR family member NLRP3 and the purinergic receptor P2Y2 constitutively interact and regulate susceptibility to HIV-1 infection. We found that NLRP3 acts as an inhibitory factor of viral entry that represses F-actin remodeling. The binding of the HIV-1 envelope to its host cell receptors (CD4, CXCR4, and/or CCR5) overcomes this restriction by stimulating P2Y2. Once activated, P2Y2 enhances its interaction with NLRP3 and stimulates the recruitment of the E3 ubiquitin ligase CBL to NLRP3, ultimately leading to NLRP3 degradation. NLRP3 degradation is permissive for PYK2 phosphorylation (PYK2Y402∗) and subsequent F-actin polymerization, which is required for the entry of HIV-1 into host cells. Taken together, our results uncover a mechanism by which HIV-1 overcomes NLRP3 restriction that appears essential for the accomplishment of the early steps of HIV-1 entry.
Collapse
Affiliation(s)
- Audrey Paoletti
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Awatef Allouch
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Marina Caillet
- Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France; INSERM U848, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Hela Saïdi
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Frédéric Subra
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, F-94230 Cachan, France
| | - Roberta Nardacci
- National Institute for Infectious Diseases "Lazzaro Spallanzani,", Via Portuense 292, 00149 Rome, Italy
| | - Qiuji Wu
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Zeinaf Muradova
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Laurent Voisin
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Syed Qasim Raza
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Frédéric Law
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Maxime Thoreau
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Haithem Dakhli
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Olivier Delelis
- CNRS UMR 8113 LBPA, Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, F-94230 Cachan, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Nathalie Dereuddre-Bosquet
- INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Fontenay-aux-Roses, France; Université Paris Sud, UMR 1184, Fontenay-aux-Roses, France; CEA, DSV/iMETI, Division of Immunology-Virology, IDMIT, Fontenay-aux-Roses, France
| | - Roger Le Grand
- INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Fontenay-aux-Roses, France; Université Paris Sud, UMR 1184, Fontenay-aux-Roses, France; CEA, DSV/iMETI, Division of Immunology-Virology, IDMIT, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Fontenay-aux-Roses, France; CEA, DSV/iMETI, Division of Immunology-Virology, IDMIT, Fontenay-aux-Roses, France; APHP, Service de Médecine Interne - Immunologie Clinique, Hôpitaux Universitaires Paris Sud, F-94270 Le Kremlin-Bicêtre, France
| | - Asier Saez-Cirion
- Unité HIV, Inflammation et Persistance, Institut Pasteur, 25 rue du Dr. Roux, F-75025 Paris, France
| | - Gianfranco Pancino
- Unité HIV, Inflammation et Persistance, Institut Pasteur, 25 rue du Dr. Roux, F-75025 Paris, France
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 155 Fifth Street, San Francisco, CA 94103, USA; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Eric Solary
- INSERM U1009, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani,", Via Portuense 292, 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata,", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, 25 rue du Dr. Roux, F-75015 Paris, France
| | - Guido Kroemer
- INSERM U848, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Metabolomics Platform, Gustave Roussy, 114 rue Edouard Vaillant, Villejuif, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Gustave Roussy, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Université Paris Sud - Paris 11, 114 rue Edouard Vaillant, F-94805 Villejuif, France; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, 155 Fifth Street, San Francisco, CA 94103, USA.
| |
Collapse
|
40
|
Tamalet C, Devaux C, Dubourg G, Colson P. Resistance to human immunodeficiency virus infection: a rare but neglected state. Ann N Y Acad Sci 2020; 1485:22-42. [PMID: 33009659 DOI: 10.1111/nyas.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
The natural history of human immunodeficiency virus (HIV) infection is well understood. In most individuals sexually exposed to HIV, the risk of becoming infected depends on the viral load and on sexual practices and gender. However, a low percentage of individuals who practice frequent unprotected sexual intercourse with HIV-infected partners remain uninfected. Although the systematic study of these individuals has made it possible to identify HIV resistance factors including protective genetic patterns, such epidemiological situations remain paradoxical and not fully understood. In vitro experiments have demonstrated that peripheral blood mononuclear cells (PBMCs) from HIV-free, unexposed blood donors are not equally susceptible to HIV infection; in addition, PBMCs from highly exposed seronegative individuals are generally resistant to infection by primary HIV clinical isolates. We review the literature on permissiveness of PBMCs from healthy blood donors and uninfected hyperexposed individuals to sustained infection and replication of HIV-1 in vitro. In addition, we focus on recent evidence indicating that the gut microbiota may either contribute to natural resistance to or delay replication of HIV infected individuals.
Collapse
Affiliation(s)
- Catherine Tamalet
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
41
|
HIV-1 Vif Triggers Cell Cycle Arrest by Degrading Cellular PPP2R5 Phospho-regulators. Cell Rep 2020; 29:1057-1065.e4. [PMID: 31665623 PMCID: PMC6903395 DOI: 10.1016/j.celrep.2019.09.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
HIV-1 Vif hijacks a cellular ubiquitin ligase complex to degrade antiviral APOBEC3 enzymes and PP2A phosphatase regulators (PPP2R5A–E). APOBEC3 counteraction is essential for viral pathogenesis. However, Vif also functions through an unknown mechanism to induce G2 cell cycle arrest. Here, deep mutagenesis is used to define the Vif surface required for PPP2R5 degradation and isolate a panel of separation-of-function mutants (PPP2R5 degradation-deficient and APOBEC3G degradation-proficient). Functional studies with Vif and PPP2R5 mutants were combined to demonstrate that PPP2R5 is, in fact, the target Vif degrades to induce G2 arrest. Pharmacologic and genetic approaches show that direct modulation of PP2A function or depletion of specific PPP2R5 proteins causes an indistinguishable arrest phenotype. Vif function in the cell cycle checkpoint is present in common HIV-1 subtypes worldwide and likely advantageous for viral pathogenesis. Salamango et al. discovered that the HIV-1 accessory protein Vif degrades several PP2A phospho-regulators to induce G2 cell cycle arrest. This activity is prevalent among diverse HIV-1 subtypes and global viral populations, suggesting that virus-induced G2 arrest is advantageous for pathogenesis.
Collapse
|
42
|
Hix MA, Wong L, Flath B, Chelico L, Cisneros GA. Single-nucleotide polymorphism of the DNA cytosine deaminase APOBEC3H haplotype I leads to enzyme destabilization and correlates with lung cancer. NAR Cancer 2020; 2:zcaa023. [PMID: 32984821 PMCID: PMC7503452 DOI: 10.1093/narcan/zcaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
A number of APOBEC family DNA cytosine deaminases can induce mutations in tumor cells. APOBEC3H haplotype I is one of the deaminases that has been proposed to cause mutations in lung cancer. Here, we confirmed that APOBEC3H haplotype I can cause uracil-induced DNA damage in lung cancer cells that results in γH2AX foci. Interestingly, the database of cancer biomarkers in DNA repair genes (DNArCdb) identified a single-nucleotide polymorphism (rs139298) of APOBEC3H haplotype I that is involved in lung cancer. While we thought this may increase the activity of APOBEC3H haplotype I, instead we found through computational modeling and cell-based experiments that this single-nucleotide polymorphism causes the destabilization of APOBEC3H Haplotype I. Computational analysis suggests that the resulting K121E change affects the structure of APOBEC3H leading to active site disruption and destabilization of the RNA-mediated dimer interface. A K117E mutation in a K121E background stabilized the APOBEC3H haplotype I, thus enabling biochemical study. Subsequent analysis showed that K121E affected catalytic activity, single-stranded DNA binding and oligomerization on single-stranded DNA. The destabilization of a DNA mutator associated with lung cancer supports the model that too much APOBEC3-induced mutation could result in immune recognition or death of tumor cells.
Collapse
Affiliation(s)
- Mark A Hix
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| | - Lai Wong
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| |
Collapse
|
43
|
Li W, Zhang Z, Zhang L, Li H, Fan S, Zhu E, Fan J, Li Z, Chen W, Yi L, Ding H, Chen J, Zhao M. Antiviral Role of Serine Incorporator 5 (SERINC5) Proteins in Classical Swine Fever Virus Infection. Front Microbiol 2020; 11:580233. [PMID: 33013817 PMCID: PMC7498654 DOI: 10.3389/fmicb.2020.580233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Serine incorporator 5 (SERINC5), a multipass transmembrane protein, protects cells from viral infections. The mechanism by which SERINC5 protects against classical swine fever virus (CSFV) infection is unknown. In this study, overexpression of SERINC5 in PK-15 and 3D4/2 cells significantly inhibited the growth of CSFV, whereas SERINC5 silencing enhanced CSFV growth. Additionally, CSFV infection reduced SERINC5 production in cells and tissues. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and analyze protein and peptide molecules that potentially interact with SERINC5. A total of 33 cellular protein candidates were identified. Next, SERINC5 was shown to interact with melanoma differentiation-associated protein 5 (MDA5) by yeast two-hybrid, protein co-localization and co-immunoprecipitation assays. Furthermore, SERINC5 enhanced MDA5-mediated type I interferon (IFN) signaling in a dose-dependent manner. Our results suggest that the anti-CSFV effect of SERINC5 is dependent on the activation of the type I IFN, which may function along with MDA5. The inhibitory effect of SERINC5 on CSFV was disappeared when the endogenous expression of MDA5 was silenced using siRNA, suggesting that SERINC5 exerts an anti-CSFV effect in an MDA5-dependent manner. Our study demonstrated a novel link between SERINC5 and MDA5 in the inhibition of CSFV replication via the type I IFN signaling pathway.
Collapse
Affiliation(s)
- Wenhui Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liangliang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Li
- Shandong Qianxi Agriculture & Animal Husbandry Development Co., Ltd., Zaozhuang, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Erpeng Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
44
|
Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 2020; 21:137-150. [PMID: 32782357 PMCID: PMC7418297 DOI: 10.1038/s41577-020-0391-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.
Collapse
|
45
|
Liu Y, Song Y, Zhang S, Diao M, Huang S, Li S, Tan X. PSGL-1 inhibits HIV-1 infection by restricting actin dynamics and sequestering HIV envelope proteins. Cell Discov 2020; 6:53. [PMID: 32802403 PMCID: PMC7400672 DOI: 10.1038/s41421-020-0184-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
PSGL-1 has recently been identified as an HIV restriction factor that inhibits HIV DNA synthesis and more potently, virion infectivity. But the underlying mechanisms of these inhibitions are unknown. Here we show that PSGL-1 directly binds to cellular actin filaments (F-actin) to restrict actin dynamics, which leads to inhibition of HIV DNA synthesis. PSGL-1 is incorporated into nascent virions and restricts actin dynamics in the virions, which partially accounts for the inhibition of virion infectivity. More potently, PSGL-1 inhibits incorporation of Env proteins into nascent virions, causing a loss of envelope spikes on the virions as shown by Cryo-electron microscopy and super-resolution imaging. This loss is associated with a profound defect in viral entry. Mechanistically, PSGL-1 binds gp41 and sequesters gp41 at the plasma membrane, explaining the inhibition of Env incorporation in nascent virions. PSGL-1’s dual anti-HIV mechanisms represent novel strategies of human cells to defend against HIV infection.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yutong Song
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
de Azevedo SSD, Ribeiro-Alves M, Côrtes FH, Delatorre E, Spangenberg L, Naya H, Seito LN, Hoagland B, Grinsztejn B, Veloso VG, Morgado MG, Souza TML, Bello G. Increased expression of CDKN1A/p21 in HIV-1 controllers is correlated with upregulation of ZC3H12A/MCPIP1. Retrovirology 2020; 17:18. [PMID: 32615986 PMCID: PMC7333275 DOI: 10.1186/s12977-020-00522-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Some multifunctional cellular proteins, as the monocyte chemotactic protein-induced protein 1 (ZC3H12A/MCPIP1) and the cyclin-dependent kinase inhibitor CDKN1A/p21, are able to modulate the cellular susceptibility to the human immunodeficiency virus type 1 (HIV-1). Several studies showed that CDKN1A/p21 is expressed at high levels ex vivo in cells from individuals who naturally control HIV-1 replication (HIC) and a recent study supports a coordinate regulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in a model of renal carcinoma cells. Here, we explored the potential associations between mRNA expression of ZC3H12A/MCPIP1 and CDKN1A/p21 in HIC sustaining undetectable (elite controllers-EC) or low (viremic controllers-VC) viral loads. RESULTS We found a selective upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in PBMC from HIC compared with both ART-suppressed and HIV-negative control groups (P≤ 0.02) and higher MCPIP1 and p21 proteins levels in HIC than in HIV-1 negative subjects. There was a moderate positive correlation (r ≥ 0.57; P ≤ 0.014) between expressions of both transcripts in HIC and in HIC combined with control groups. We found positive correlations between the mRNA level of CDKN1A/p21 with activated CD4+ T cells levels in HIC (r ≥ 0.53; P ≤ 0.017) and between the mRNA levels of both CDKN1A/p21 (r = 0.74; P = 0.005) and ZC3H12A/MCPIP1 (r = 0.58; P = 0.040) with plasmatic levels of sCD14 in EC. Reanalysis of published transcriptomic data confirmed the positive association between ZC3H12A/MCPIP1 and CDKN1A/p21 mRNA levels in CD4+ T cells and monocytes from disparate cohorts of HIC and other HIV-positive control groups. CONCLUSIONS These data show for the first time the simultaneous upregulation of ZC3H12A/MCPIP1 and CDKN1A/p21 transcripts in the setting of natural suppression of HIV-1 replication in vivo and the positive correlation of the expression of these cellular factors in disparate cohorts of HIV-positive individuals. The existence of a common regulatory pathway connecting ZC3H12A/MCPIP1 and CDKN1A/p21 could have a synergistic effect on HIV-1 replication control and pharmacological manipulation of these multifunctional host factors may open novel therapeutic perspectives to prevent HIV-1 replication and disease progression.
Collapse
Affiliation(s)
- Suwellen S. D. de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda H. Côrtes
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Lucia Spangenberg
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Informática y Ciencias de la Computación, Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Leonardo N. Seito
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos–Farmanguinhos FIOCRUZ, Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G. Veloso
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas-INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| | - Thiago Moreno L. Souza
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), FIOCRUZ, Center for Technological Development in Health-CDTS, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21045-900 Brazil
| |
Collapse
|
47
|
Nchioua R, Bosso M, Kmiec D, Kirchhoff F. Cellular Factors Targeting HIV-1 Transcription and Viral RNA Transcripts. Viruses 2020; 12:v12050495. [PMID: 32365692 PMCID: PMC7290996 DOI: 10.3390/v12050495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are structurally and functionally diverse cellular proteins that constitute a first line of defense against viral pathogens. Exceptions exist, but typically these proteins are upregulated by interferons (IFNs), target viral components, and are rapidly evolving due to the continuous virus–host arms race. Restriction factors may target HIV replication at essentially each step of the retroviral replication cycle, and the suppression of viral transcription and the degradation of viral RNA transcripts are emerging as major innate immune defense mechanisms. Recent data show that some antiviral factors, such as the tripartite motif-containing protein 22 (TRIM22) and the γ-IFN-inducible protein 16 (IFI16), do not target HIV-1 itself but limit the availability of the cellular transcription factor specificity protein 1 (Sp1), which is critical for effective viral gene expression. In addition, several RNA-interacting cellular factors including RNAse L, the NEDD4-binding protein 1 (N4BP1), and the zinc finger antiviral protein (ZAP) have been identified as important immune effectors against HIV-1 that may be involved in the maintenance of the latent viral reservoirs, representing the major obstacle against viral elimination and cure. Here, we review recent findings on specific cellular antiviral factors targeting HIV-1 transcription or viral RNA transcripts and discuss their potential role in viral latency.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.N.); (M.B.)
| | - Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.N.); (M.B.)
| | - Dorota Kmiec
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.N.); (M.B.)
- Correspondence: ; Tel.: +49-731-5006-5150
| |
Collapse
|
48
|
Lubow J, Virgilio MC, Merlino M, Collins DR, Mashiba M, Peterson BG, Lukic Z, Painter MM, Gomez-Rivera F, Terry V, Zimmerman G, Collins KL. Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. eLife 2020; 9:e51035. [PMID: 32119644 PMCID: PMC7051176 DOI: 10.7554/elife.51035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
HIV-1 Vpr is necessary for maximal HIV infection and spread in macrophages. Evolutionary conservation of Vpr suggests an important yet poorly understood role for macrophages in HIV pathogenesis. Vpr counteracts a previously unknown macrophage-specific restriction factor that targets and reduces the expression of HIV Env. Here, we report that the macrophage mannose receptor (MR), is a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway and dramatically reduce MR expression. Silencing MR or deleting mannose residues on Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we also show that disrupting interactions between Env and MR reduces initial infection of macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that hijacks a host mannose-MR response system to facilitate infection while evading MR's normal role, which is to trap and destroy mannose-expressing pathogens.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Maria C Virgilio
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
| | - Madeline Merlino
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - David R Collins
- Department of Microbiology and Immunology, University of MichiganAnn ArborUnited States
| | - Michael Mashiba
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Brian G Peterson
- Department of Biological ChemistryUniversity of MichiganAnn ArborUnited States
| | - Zana Lukic
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Mark M Painter
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | | | - Valeri Terry
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Gretchen Zimmerman
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of MichiganAnn ArborUnited States
- Department of Internal Medicine, University of MichiganAnn ArborUnited States
- Graduate Program in Immunology, University of MichiganAnn ArborUnited States
| |
Collapse
|
49
|
Rashamuse TJ, Njengele Z, Coyanis EM, Sayed Y, Mosebi S, Bode ML. Design, synthesis and biological evaluation of novel 2-(5-aryl-1H-imidazol-1-yl) derivatives as potential inhibitors of the HIV-1 Vpu and host BST-2 protein interaction. Eur J Med Chem 2020; 190:112111. [PMID: 32058240 DOI: 10.1016/j.ejmech.2020.112111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Novel ethyl 2-(5-aryl-1H-imidazol-1-yl)-acetates 17 and propionates 18, together with their acetic acid 19 and acetohydrazide 20 derivatives, were designed and synthesized using TosMIC chemistry. Biological evaluation of these newly synthesized scaffolds in the HIV-1 Vpu- Host BST-2 ELISA assay identified seven hits (17a, 17b, 17c, 17g, 18a, 20f and 20g) with greater than 50% inhibitory activity. These hits were validated in the HIV-1 Vpu- Host BST-2 AlphaScreen™ and six of the seven compounds were found to have comparable percentage inhibitory activities to those of the ELISA assay. Compounds 17b and 20g, with consistent percentage inhibitory activities across the two assays, had IC50 values of 11.6 ± 1.1 μM and 17.6 ± 0.9 μM in a dose response AlphaScreen™ assay. In a cell-based HIV-1 antiviral assay, compound 17b exhibited an EC50 = 6.3 ± 0.7 μM at non-toxic concentrations (CC50 = 184.5 ± 0.8 μM), whereas compound 20g displayed antiviral activity roughly equivalent to its toxicity (CC50 = 159.5 ± 0.9 μM). This data suggests that compound 17b, active in both cell-based and biochemical assays, provides a good starting point for the design of possible lead compounds for prevention of HIV-1 Vpu and host BST-2 protein binding in new anti-HIV therapeutics.
Collapse
Affiliation(s)
- Thompho J Rashamuse
- Centre for Metal-based Drug Discovery, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, 2125, South Africa; Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa
| | - Zikhona Njengele
- Centre for Metal-based Drug Discovery, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, 2125, South Africa; Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - E Mabel Coyanis
- Centre for Metal-based Drug Discovery, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, 2125, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, South Africa.
| |
Collapse
|
50
|
Vpu of a Simian Immunodeficiency Virus Isolated from Greater Spot-Nosed Monkey Antagonizes Human BST-2 via Two AxxxxxxxW Motifs. J Virol 2020; 94:JVI.01669-19. [PMID: 31666374 DOI: 10.1128/jvi.01669-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023] Open
Abstract
BST-2/CD317/tetherin is a host transmembrane protein that potently inhibits human immunodeficiency virus type 1 (HIV-1) virion release by tethering the nascent virions to the plasma membrane. Viral protein U (Vpu) is an accessory protein encoded by HIV-1 as well as by some simian immunodeficiency viruses (SIVs) infecting wild chimpanzees, gorillas, or monkeys (SIVcpz, SIVgor, or SIVgsn/SIVmon/SIVmus, respectively). HIV-1 Vpu directly binds to and downregulates human BST-2. The antagonism is highly species specific because the amino acid sequences of BST-2 are different among animal species. Here, we show that Vpu proteins from several SIVcpz, SIVgsn, SIVmon, or SIVmus isolates fail to antagonize human BST-2. Only Vpu from an SIVgsn isolate (SIVgsn-99CM71 [SIVgsn71]) was able to antagonize human BST-2 as well as BST-2 of its natural host, greater spot-nosed monkey (GSN). This SIVgsn Vpu interacted with human BST-2, downregulated cell surface human BST-2 expression, and facilitated HIV-1 virion release in the presence of human BST-2. While the unique 14AxxxxxxxW22 motif in the transmembrane domain of HIV-1NL4-3Vpu was reported to be important for antagonizing human BST-2, we show here that two AxxxxxxxW motifs (A22W30 and A25W33) exist in SIVgsn71 Vpu. Only the A22W30 motif was needed for SIVgsn71 Vpu to antagonize GSN BST-2, suggesting that the mechanism of this antagonism resembles that of HIV-1NL4-3 Vpu against human BST-2. Interestingly, SIVgsn71 Vpu requires two AxxxxxxxW (A22W30 and A25W33) motifs to antagonize human BST-2, suggesting an as-yet-undefined way that SIVgsn71 Vpu works against human BST-2. These results imply an evolutionary impact of primate BST-2 on lentiviral Vpu.IMPORTANCE Genetic alterations conferring a selective advantage in protecting from life-threating pathogens are maintained during evolution. In fact, the amino acid sequences of BST-2 differ among primate animals and their susceptibility to viral proteins is species specific, suggesting that such genetic diversity has arisen through the evolutionarily controlled balance between the host and pathogens. The M (main) group of HIV-1 is thought to be derived from SIVcpz, which utilizes Nef, but not Vpu, to antagonize chimpanzee BST-2. SIVcpz Nef is, however, unable to antagonize human BST-2, and Vpu was consequently chosen again as an antagonist against human BST-2 in the context of HIV-1. Studies on how Vpu lost and acquired this ability, together with the distinct mechanisms by which SIVgsn71 Vpu binds to and downregulates human or GSN BST-2, may help to explain the evolution of this lentiviral protein as a result of host-pathogen interactions.
Collapse
|