1
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
2
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Microbial oil, alone or paired with β-glucans, can control hypercholesterolemia in a zebrafish model. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159383. [PMID: 37657755 DOI: 10.1016/j.bbalip.2023.159383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Dyslipidemia is often associated with unhealthy dietary habits, and many mammalian studies have explored the mode of action of certain bioactive compounds such as β-glucans and n-3 PUFAs to understand their potential to normalize the lipid metabolism. There are only a few investigations that adopted omic approaches to unveil their combined effect on hypercholesterolemia. Zebrafish (Danio rerio) was used as a model organism to reveal the efficacy of Schizochytrium oil and β-glucans (from Euglena gracilis and Phaeodactylum tricornutum) against cholesterol-rich diet induced dyslipidemia. One of the folowing four diets was fed to a particular group of fish: a control high-cholesterol diet, a Schizochytrium oil diet or one of the two diets containing the oil and β-glucan. The plasma HDL, expression of hepatic genes linked to, among others, ferric ion binding and plasma phosphatidylcholines were higher and plasma cholesterol esters and triacylglycerols were lower in the microbial oil-fed fish compared to the fish fed high cholesterol diet. While the fish fed a mix of microbial oil and Euglena β-glucan had lower plasma triacylglycerols and expression of hepatic genes linked to PPAR signaling pathway and enriched biosynthesis of plasma unsaturated fatty acids, the fish fed microbial oil-Phaeodactylum β-glucan combination had lower abundance of triacylglycerols rich in saturated and mono-unsaturated fatty acids and cholesterol esters in the plasma.
Collapse
Affiliation(s)
- Adnan H Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
3
|
Gautier MK, Kelley CM, Lee SH, Alldred MJ, McDaid J, Mufson EJ, Stutzmann GE, Ginsberg SD. Maternal choline supplementation protects against age-associated cholinergic and GABAergic basal forebrain neuron degeneration in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. Neurobiol Dis 2023; 188:106332. [PMID: 37890559 PMCID: PMC10752300 DOI: 10.1016/j.nbd.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.
Collapse
Affiliation(s)
- Megan K Gautier
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Pathobiology and Translational Medicine Program, New York University Grossman School of Medicine, New York, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Christy M Kelley
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, AZ, USA; Institute for Future Health, Scottsdale, AZ, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - John McDaid
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Departments of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Ji X, Wu L, Marion T, Luo Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev 2023; 73:40-51. [PMID: 37419766 DOI: 10.1016/j.cytogfr.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
B cells play an important role in adaptive immunity and participate in the process of humoral immunity mainly by secreting antibodies. The entire development and differentiation process of B cells occurs in multiple microenvironments and is regulated by a variety of environmental factors and immune signals. Differentiation biases or disfunction of B cells participate in the process of many autoimmune diseases. Emerging studies report the impact of altered metabolism in B cell biology, including lipid metabolism. Here, we discuss how extracellular lipid environment and metabolites, membrane lipid-related components, and lipid synthesis and catabolism programs coordinate B cell biology and describe the crosstalk of lipid metabolic programs with signal transduction pathways and transcription factors. We conclude with a summary of therapeutic targets for B cell lipid metabolism and signaling in autoimmune diseases and discuss important future directions.
Collapse
Affiliation(s)
- Xing Ji
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Wu
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yubin Luo
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
The alteration of the expression level of neuropathy target esterase in human neuroblastoma SK-N-SH cells disrupts cellular phospholipids homeostasis. Toxicol In Vitro 2023; 86:105509. [PMID: 36336212 DOI: 10.1016/j.tiv.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Neuropathy target esterase (NTE) has been proven to act as a lysophospholipase (LysoPLA) and phospholipase B (PLB) in mammalian cells. In this study, we took human neuroblastoma SK-N-SH cells as the research object and explored the effect of NTE on phospholipid homeostasis. The results showed that phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) levels significantly increased (> 40%), while glycerophosphocholine (GPC) decreased (below 60%) after NTE gene was knockdown in the cells (NTE < 30% of control), which were prepared by gene silencing with dsRNA-NTE. However, in the NTE-overexpressed cells (NTE > 50% of control), which were prepared by expressing recombinant catalytic domain of NTE, LPC remarkably decreased (below 80%) and GPC enhanced (> 40%). Mipafox, a neuropathic organophosphorus compound (OP), significantly inhibited NTE-LysoPLA and NTE-PLB activities (> 95-99% inhibition at 50 μM), which was accompanied with a decreased GPC level (below 40%) although no change of the PC and LPC levels was observed; while paraoxon, a non-neuropathic OP, suppresses neither the activities of NTE-phospholipases nor the levels of PC, LPC, and GPC. Thus, we concluded that both the stable up- or down-regulated expression of NTE gene and the loss of NTE-LysoPLA/PLB activities disrupts phospholipid homeostasis in the cells although the inhibition of NTE activity only decreased GPC content without altering PC and LPC levels.
Collapse
|
6
|
Shanks HRC, Onuska KM, Barupal DK, Schmitz TW. Serum unsaturated phosphatidylcholines predict longitudinal basal forebrain degeneration in Alzheimer's disease. Brain Commun 2022; 4:fcac318. [PMID: 37064049 PMCID: PMC10103184 DOI: 10.1093/braincomms/fcac318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Basal forebrain cholinergic neurons are among the first cell types affected by Alzheimer's disease pathology, but the cause of their early vulnerability is unknown. The lipid phosphatidylcholine is an essential component of the cell membrane, and phosphatidylcholine levels have been shown to be abnormal in the blood and brain of Alzheimer's disease patients. We hypothesized that disease-related changes in phosphatidylcholine metabolism may disproportionately affect basal forebrain cholinergic neurons due to their extremely large size, plasticity in adulthood and unique reliance on phosphatidylcholine for acetylcholine synthesis. To test this hypothesis, we examined whether serum phosphatidylcholine levels predicted longitudinal basal forebrain degeneration in Alzheimer's disease. All data were collected by the Alzheimer's Disease Neuroimaging Initiative. Participants were divided into a normal CSF group (controls; n = 77) and an abnormal CSF group (preclinical and clinical Alzheimer's disease; n = 236) based on their CSF ratios of phosphorylated tau and amyloid beta at baseline. Groups were age-matched (t = 0.89, P > 0.1). Serum lipidomics data collected at baseline were clustered by chemical similarity, and enrichment analyses were used to determine whether serum levels of any lipid clusters differed between the normal and abnormal CSF groups. In a subset of patients with longitudinal structural MRI (normal CSF n = 62, abnormal CSF n = 161), two timepoints of MRI data were used to calculate grey matter annual percent change for each participant. Multivariate partial least squares analyses tested for relationships between neuroimaging and lipidomics data which are moderated by CSF pathology. Our clustering analyses produced 23 serum lipid clusters. Of these clusters, six were altered in the abnormal CSF group, including a cluster of unsaturated phosphatidylcholines. In the subset of participants with longitudinal structural MRI data, a priori nucleus basalis of Meynert partial least squares analyses detected a relationship between unsaturated phosphatidylcholines and degeneration in the nucleus basalis which is moderated by Alzheimer's disease CSF pathology (P = 0.0008). Whole-brain grey matter partial least squares analyses of all 23 lipid clusters revealed that only unsaturated phosphatidylcholines and unsaturated acylcarnitines exhibited an Alzheimer's disease-dependent relationship with longitudinal degeneration (P = 0.0022 and P = 0.0018, respectively). Only the unsaturated phosphatidylcholines predicted basal forebrain degeneration in the whole-brain analyses. Overall, this study provides in vivo evidence for a selective relationship between phosphatidylcholine and basal forebrain degeneration in human Alzheimer's disease, highlighting the importance of phosphatidylcholine to basal forebrain grey matter integrity.
Collapse
Affiliation(s)
- Hayley R C Shanks
- Schulich School of Medicine and Dentistry, University of Western
Ontario, London, Ontario, Canada N6A 3K7
| | - Kate M Onuska
- Schulich School of Medicine and Dentistry, University of Western
Ontario, London, Ontario, Canada N6A 3K7
| | - Dinesh K Barupal
- Department of Environmental Medicine and Public Health, Icahn School of
Medicine at Mount Sinai, New York 10029-6574,
USA
| | - Taylor W Schmitz
- Schulich School of Medicine and Dentistry, University of Western
Ontario, London, Ontario, Canada N6A 3K7
- Lawson Health Research Institute, St. Joseph’s Hospital,
London, Ontario N6A 4V2, Canada
- Robarts Research Institute, Western University,
London, Ontario N6A 5B7, Canada
- Western Institute for Neuroscience, Western University,
London, Ontario N6A 3K7, Canada
| | | | | |
Collapse
|
7
|
Biosynthetic Mechanisms and Biological Significance of Glycerol Phosphate-Containing Glycan in Mammals. Molecules 2021; 26:molecules26216675. [PMID: 34771084 PMCID: PMC8587909 DOI: 10.3390/molecules26216675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown. In this review, we provide an overview of this new discovery of GroP-containing glycan in mammals and then outline the recent progress in elucidating the biosynthetic mechanisms of GroP-containing glycans on α-DG. In addition, we discuss the potential biological role of GroP modification along with the challenges and prospects for further research. The progress in this newly identified glycan modification will provide insights into the phylogenetic implications of glycan.
Collapse
|
8
|
Ajith A, Mondal S, Chattopadhyay S, Kumar A, Sthanikam Y, Chacko AG, Prabhu K, Chacko G, Vanjare HA, Rajesh RV, Banerjee S. Mass Spectrometry Imaging Deciphers Dysregulated Lipid Metabolism in the Human Hippocampus Affected by Temporal Lobe Epilepsy. ACS Chem Neurosci 2021; 12:4187-4194. [PMID: 34657435 DOI: 10.1021/acschemneuro.1c00587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most prevalent form of human epilepsy, often accompanied by neurodegeneration in the hippocampus. Like other neurological diseases, TLE is expected to disrupt lipid homeostasis. However, the lipid architecture of the human TLE brain is relatively understudied, and the molecular mechanism of epileptogenesis is poorly understood. We performed desorption electrospray ionization mass spectrometry imaging of 39 fresh frozen surgical specimens of the human hippocampus to investigate lipid profiles in TLE with hippocampal sclerosis (n = 14) and control (non-TLE; n = 25) groups. In contrast to several previous studies on animal models of epilepsy, we report reduced expression of various important lipids, notably phosphatidylcholine (PC) and phosphatidylethanolamine (PE), in the human TLE hippocampus. In addition, metabolic pathway analysis suggested the possible dysregulation of the Kennedy pathway in TLE, resulting in striking reductions of PC and PE levels. This revelation opens up opportunities to further investigate the associated molecular mechanisms and possible therapeutic targets for TLE.
Collapse
Affiliation(s)
- Akhila Ajith
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Sutirtha Chattopadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Yeswanth Sthanikam
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Ari George Chacko
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | - Krishna Prabhu
- Department of Neurological Sciences, Christian Medical College, Vellore 632004, India
| | - Geeta Chacko
- Department of General Pathology, Christian Medical College, Vellore 632004, India
| | | | | | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
9
|
Rashkovan M, Albero R, Gianni F, Perez-Duran P, Miller HI, Mackey AL, Paietta EM, Tallman MS, Rowe JM, Litzow MR, Wiernik PH, Luger S, Sulis ML, Soni RK, Ferrando AA. Intracellular cholesterol pools regulate oncogenic signaling and epigenetic circuitries in Early T-cell Precursor Acute Lymphoblastic Leukemia. Cancer Discov 2021; 12:856-871. [PMID: 34711640 DOI: 10.1158/2159-8290.cd-21-0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Early T-cell acute lymphoblastic leukemia (ETP-ALL) is an aggressive hematologic malignancy associated with early relapse and poor prognosis that is genetically, immunophenotypically and transcriptionally distinct from more mature T-cell acute lymphoblastic (T-ALL) tumors. Here, we leveraged global metabolomic and transcriptomic profiling of primary ETP and T-ALL leukemia samples to identify specific metabolic circuitries differentially active in this high-risk leukemia group. ETP-ALLs showed increased biosynthesis of phospholipids and sphingolipids, and were specifically sensitive to inhibition of 3-hydroxy-3-methylglutaryl-CoA Reductase (HMGCR), the rate-limiting enzyme in the mevalonate pathway. Mechanistically, inhibition of cholesterol synthesis inhibited oncogenic AKT1 signaling and suppressed MYC expression via loss of chromatin accessibility at a leukemia stem cell-specific long range MYC enhancer. In all, these results identify the mevalonate pathway as a druggable novel vulnerability in high-risk ETP-ALL cells and uncover an unanticipated critical role for cholesterol biosynthesis in signal transduction and epigenetic circuitries driving leukemia cell growth and survival.
Collapse
Affiliation(s)
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University Medical Center
| | - Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center
| | | | - Hannah I Miller
- Institute for Cancer Genetics, Columbia University Medical Center
| | - Adam L Mackey
- Institute for Cancer Genetics, Columbia University Medical Center
| | - Elisabeth M Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine
| | - Martin S Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Medical Center and Technion
| | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic
| | | | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania
| | | | - Rajesh K Soni
- Proteomics Core Facility, Columbia University Medical Center
| | | |
Collapse
|
10
|
Iorio E, Podo F, Leach MO, Koutcher J, Blankenberg FG, Norfray JF. A novel roadmap connecting the 1H-MRS total choline resonance to all hallmarks of cancer following targeted therapy. Eur Radiol Exp 2021; 5:5. [PMID: 33447887 PMCID: PMC7809082 DOI: 10.1186/s41747-020-00192-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022] Open
Abstract
This review describes a cellular adaptive stress signalling roadmap connecting the 1H magnetic resonance spectroscopy (MRS) total choline peak at 3.2 ppm (tCho) to cancer response after targeted therapy (TT). Recent research on cell signalling, tCho metabolism, and TT of cancer has been retrospectively re-examined. Signalling research describes how the unfolded protein response (UPR), a major stress signalling network, transduces, regulates, and rewires the total membrane turnover in different cancer hallmarks after a TT stress. In particular, the UPR signalling maintains or increases total membrane turnover in all pro-survival hallmarks, whilst dramatically decreases turnover during apoptosis, a pro-death hallmark. Recent research depicts the TT-induced stress as a crucial event responsible for interrupting UPR pro-survival pathways, leading to an UPR-mediated cell death. The 1H-MRS tCho resonance represents the total mobile precursors and products during the enzymatic modification of phosphatidylcholine membrane abundance. The tCho profile represents a biomarker that noninvasively monitors TT-induced enzymatic changes in total membrane turnover in a wide variety of existing and new anticancer treatments targeting specific layers of the UPR signalling network. Our overview strongly suggests further evaluating and validating the 1H-MRS tCho peak as a powerful noninvasive imaging biomarker of cancer response in TT clinical trials.
Collapse
Affiliation(s)
- Egidio Iorio
- High Resolution NMR Unit-Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Roma, Italy.
| | - Franca Podo
- High Resolution NMR Unit-Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Roma, Italy
| | - Martin O Leach
- MRI Unit, Royal Marsden Hospital, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Jason Koutcher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Joseph F Norfray
- Emeritus, Chicago Northside MRI Center, 2818 N. Sheridan Rd, Chicago, IL, 60657, USA
| |
Collapse
|
11
|
Liu X, Giarola V, Quan W, Song X, Bartels D. Identification and characterization of CTP:phosphocholine cytidylyltransferase CpCCT1 in the resurrection plant Craterostigma plantagineum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110698. [PMID: 33288011 DOI: 10.1016/j.plantsci.2020.110698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
Phosphatidylcholine is a major phospholipid which is shown to be involved in stress adaptation. Phosphatidylcholine increased during dehydration in Craterostigma plantagineum, and therefore we characterized CTP:phosphocholine cytidylyltransferase (CpCCT1), a key regulatory enzyme for phosphatidylcholine synthesis in plants. The CpCCT1 gene from the resurrection plant C. plantagineum was cloned and the amino acid sequence was compared with homologs from other species including yeast and rat. CCT proteins have conserved catalytic and membrane-binding domains while the N-terminal and C-terminal domains have diverged. The tissue specific expression analysis indicated that CpCCT1 is expressed in all tested tissues and it is induced by dehydration and in response to 0.5 M NaCl solutions. In plants exposed to low temperature in the dark, the CpCCT1 transcript increased after 4 h at 4 °C. CpCCT1 expression also increased during mannitol and sorbitol treatments in a concentration dependent manner. Phytohormones such as abscisic acid and indole-3-acetic acid also trigged transcript accumulation. Comparisons of transcript and protein accumulations for different treatments (except for dehydration) suggest transcriptional and translational control mechanisms. Analysis of promoter activity and polysome occupancy suggest that CpCCT1 gene expression is mainly under translational regulation during dehydration.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Wenli Quan
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Pati S, Ingram LM, Sun MK, Wagner JJ, Cummings BS. Localization and expression of CTP: Phosphocholine cytidylyltransferase in rat brain following cocaine exposure. J Chem Neuroanat 2018; 96:1-6. [PMID: 30366030 DOI: 10.1016/j.jchemneu.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/25/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022]
Abstract
Phosphatidylcholine (PC) is a primary phospholipid and major source of secondary lipid messengers and also serves as a biosynthetic precursor for other membrane phospholipids. Phosphocholine cytidylyltransferase (CCT) is the rate-limiting enzyme responsible for catalyzing the formation of PC. Changes in CCT activity have been associated with lipid dysregulation across various neurological disorders. Additionally, intermediates in PC synthesis, such as CDP-choline, have been suggested to attenuate drug craving during cocaine addiction. Recent work from our group demonstrated that cocaine exposure and conditioning alter the level of PC in the brain, specifically in the cerebellum and hippocampus. The present study examines the role of CCT expression in the brain and determines the effect of cocaine exposure on CCT expression. Immunohistochemical analysis (IHC) was performed to assess region-specific expression of CCT, including both of its isoforms; alpha (CCTα) and beta (CCTβ). IHC did not detect any staining of CCTα throughout the rat brain. In contrast, CCTβ expression was detected in the Purkinje cells of the cerebellum with decreases in expression following cocaine exposure. Collectively, these data demonstrate the region- and cell-specific localization of CCTα and CCTβ in the rat brain, as well as the altered expression of CCTβ in the cerebellum following cocaine exposure.
Collapse
Affiliation(s)
- Sumitra Pati
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens GA, 30602, United States
| | - Lishann M Ingram
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens GA, 30602, United States
| | - Min K Sun
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens GA, 30602, United States
| | - John J Wagner
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens GA, 30602, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens GA, 30602, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
13
|
Craddock CP, Adams N, Kroon JT, Bryant FM, Hussey PJ, Kurup S, Eastmond PJ. Cyclin-dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing phosphatidic acid phosphohydrolase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:3-14. [PMID: 27595588 PMCID: PMC5299491 DOI: 10.1111/tpj.13321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 05/21/2023]
Abstract
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.
Collapse
Affiliation(s)
- Christian P. Craddock
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
- Present address: Center for Plant Cell BiologyDepartment of Botany and Plant SciencesUniversity of CaliforniaRiverside92521USA
| | - Nicolette Adams
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
- Present address: Centre for Proteomic and Genomic ResearchUpper LevelSt Peter's MallCorner Anzio and Main Road ObservatoryCape Town7925South Africa
| | - Johan T.M. Kroon
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Fiona M. Bryant
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
- Present address: School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Patrick J. Hussey
- School of Biological and Biomedical SciencesDurham UniversityDurhamDH1 3LEUK
| | - Smita Kurup
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Peter J. Eastmond
- Department of Plant Biology and Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
14
|
Segerer G, Hadamek K, Zundler M, Fekete A, Seifried A, Mueller MJ, Koentgen F, Gessler M, Jeanclos E, Gohla A. An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation. Sci Rep 2016; 6:35160. [PMID: 27731369 PMCID: PMC5059750 DOI: 10.1038/srep35160] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive PgpD34N mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation.
Collapse
Affiliation(s)
- Gabriela Segerer
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Kerstin Hadamek
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Matthias Zundler
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Agnes Fekete
- Institute of Pharmaceutical Biology, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Annegrit Seifried
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Martin J Mueller
- Institute of Pharmaceutical Biology, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Frank Koentgen
- Ozgene Pty Ltd, PO Box 1128, Bentley DC, WA 6983, Australia
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Strasse 6, D-97080 Würzburg, Germany
| | - Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| |
Collapse
|
15
|
Phosphatidylcholine as a metabolic cue for determining B cell fate and function. Cell Immunol 2016; 310:78-88. [PMID: 27502364 DOI: 10.1016/j.cellimm.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023]
Abstract
In activated B cells, increased production of phosphatidylcholine (PtdCho), the most abundant cellular phospholipid, is handled primarily by the CDP-choline pathway. B cell-specific deletion of CTP:phosphocholine cytidylyltransferase α (CCTα), the rate-limiting enzyme in the CDP-choline pathway, led to augmented IgM secretion and reduced IgG production, suggesting that PtdCho synthesis is required for germinal center reactions. To specifically assess whether PtdCho influences B cell fate during germinal center responses, we examined immune responses in mice whereby PtdCho synthesis is disrupted in B cells that have undergone class switch recombination to IgG1 (referred to as either Cγ1wt/wt, Cγ1Cre/wt or Cγ1Cre/Cre based on Cre copy number). Serum IgG1 was markedly reduced in naïve Cγ1Cre/wt and Cγ1Cre/Cre mice, while levels of IgM and other IgG subclasses were similar between Cγ1Cre/wt and Cγ1wt/wt control mice. Serum IgG2b titers were notably reduced and IgG3 titers were increased in Cγ1Cre/Cre mice compared with controls. Following immunization with T cell-dependent antigen NP-KLH, control mice generated high titer IgG anti-NP while IgG anti-NP titers were markedly reduced in both immunized Cγ1Cre/wt and Cγ1Cre/Cre mice. Correspondingly, the frequency of NP-specific IgG antibody-secreting cells was also reduced in spleens and bone marrow of Cγ1Cre/wt and Cγ. 1Cre/Cre mice compared to control mice. Interestingly, though antigen-specific IgM B cells were comparable between Cγ1Cre/wt, Cγ1Cre/Cre and control mice, the frequency and number of IgG1 NP-specific B cells was reduced only in Cγ1Cre/Cre mice. These data indicate that PtdCho is required for the generation of both germinal center-derived B cells and antibody-secreting cells. Further, the reduction in class-switched ASC but not B cells in Cγ1Cre/wt mice suggests that ASC have a greater demand for PtdCho compared to germinal center B cells.
Collapse
|
16
|
Brault JP, Friesen JA. Characterization of cytidylyltransferase enzyme activity through high performance liquid chromatography. Anal Biochem 2016; 510:26-32. [PMID: 27443959 DOI: 10.1016/j.ab.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022]
Abstract
The cytidylyltransferases are a family of enzymes that utilize cytidine 5'-triphosphate (CTP) to synthesize molecules that are typically precursors to membrane phospholipids. The most extensively studied cytidylyltransferase is CTP:phosphocholine cytidylyltransferase (CCT), which catalyzes conversion of phosphocholine and CTP to cytidine diphosphocholine (CDP-choline), a step critical for synthesis of the membrane phospholipid phosphatidylcholine (PC). The current method used to determine catalytic activity of CCT measures production of radiolabeled CDP-choline from (14)C-labeled phosphocholine. The goal of this research was to develop a CCT enzyme assay that employed separation of non-radioactive CDP-choline from CTP. A C18 reverse phase column with a mobile phase of 0.1 M ammonium bicarbonate (98%) and acetonitrile (2%) (pH 7.4) resulted in separation of solutions of the substrate CTP from the product CDP-choline. A previously characterized truncated version of rat CCTα (denoted CCTα236) was used to test the HPLC enzyme assay by measuring CDP-choline product formation. The Vmax for CCTα236 was 3850 nmol/min/mg and K0.5 values for CTP and phosphocholine were 4.07 mM and 2.49 mM, respectively. The HPLC method was applied to glycerol 3-phosphate cytidylyltransferase (GCT) and CTP:2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase synthetase (CMS), members of the cytidylyltransferase family that produce CDP-glycerol and CDP-methylerythritol, respectively.
Collapse
Affiliation(s)
- James P Brault
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Jon A Friesen
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
17
|
Participation of prostaglandin D2 in the mobilization of the nuclear-localized CTP:phosphocholine cytidylyltransferase alpha in renal epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:513-23. [PMID: 27032756 DOI: 10.1016/j.bbalip.2016.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 01/24/2023]
Abstract
Phosphatidylcholine (PC) is the main constituent of mammalian cell membranes. Consequently, preservation of membrane PC content and composition - PC homeostasis - is crucial to maintain cellular life. PC biosynthetic pathway is generally controlled by CTP:phosphocholine cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCTα is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum redistribution. However, most of the enzyme is located inside the nuclei. Here, we demonstrate that CCTα is the most abundant isoform in renal collecting duct cells, and its redistribution is dependent on endogenous prostaglandins. Previously we have demonstrated that PC synthesis was inhibited by indomethacin (Indo) treatment, and this effect was reverted by exogenous PGD(2). In this work we found that Indo induced CCTα distribution into intranuclear Lamin A/C foci. Exogenous PGD(2) reverted this effect by inducing CCTα redistribution to nuclear envelope, suggesting that PGD(2) maintains PC synthesis by CCTα mobilization. Interestingly, we found that the effect of PGD(2) was dependent on ERK1/2 activation. In conclusion, our previous observations and the present results lead us to suggest that papillary cells possess the ability to maintain their structural integrity through the synthesis of their own survival molecule, PGD(2), by modulating CCTα intracellular location.
Collapse
|
18
|
Craddock CP, Adams N, Bryant FM, Kurup S, Eastmond PJ. PHOSPHATIDIC ACID PHOSPHOHYDROLASE Regulates Phosphatidylcholine Biosynthesis in Arabidopsis by Phosphatidic Acid-Mediated Activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE Activity. THE PLANT CELL 2015; 27:1251-64. [PMID: 25862304 PMCID: PMC4558698 DOI: 10.1105/tpc.15.00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/19/2015] [Indexed: 05/04/2023]
Abstract
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.
Collapse
Affiliation(s)
- Christian P Craddock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nicolette Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Fiona M Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Smita Kurup
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
19
|
Botha AM, van Eck L, Burger NFV, Swanevelder ZH. Near-isogenic lines of Triticum aestivum with distinct modes of resistance exhibit dissimilar transcriptional regulation during Diuraphis noxia feeding. Biol Open 2014; 3:1116-26. [PMID: 25361582 PMCID: PMC4232770 DOI: 10.1242/bio.201410280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/09/2014] [Indexed: 01/04/2023] Open
Abstract
Russian wheat aphid (Diuraphis noxia, Kurdjumov) feeding on susceptible Triticum aestivum L. leads to leaf rolling, chlorosis and plant death - symptoms not present in resistant lines. Although the effects of several D. noxia (Dn) resistance genes are known, none have been isolated or characterized. Wheat varieties expressing different Dn genes exhibit distinct modes of D. noxia resistance, such as antibiosis (Dn1), tolerance (Dn2), and antixenosis (Dn5). However, the mechanism whereby feeding aphids are perceived, and how subsequent transcriptional responses are partitioned into resistance categories, remains unclear. Here we report on downstream events in near-isogenic wheat lines containing different Dn genes after D. noxia biotype SA1 feeding. Transcripts involved in stress, signal transduction, photosynthesis, metabolism and gene regulation were differentially regulated during D. noxia feeding. Expression analyses using RT-qPCR and RNA hybridization, as well as enzyme activity profiling, provide evidence that the timing and intensity of pathways induced are critical in the development of particular modes of resistance. Pathways involved include the generation of kinase signalling cascades that lead to a sustained oxidative burst, and a hypersensitive response that is active during antibiosis. Tolerance is a passive resistance mechanism that acts through repair or de novo synthesis of photosystem proteins. Results further suggest that ethylene-mediated pathways are possibly involved in generating volatile compounds and cell wall fortification during the antixenosic response.
Collapse
Affiliation(s)
- Anna-Maria Botha
- Department of Genetics, Stellenbosch University, Stellenbosch 7601, South Africa
| | - Leon van Eck
- Department of Genetics, Stellenbosch University, Stellenbosch 7601, South Africa University of Minnesota, Saint Paul, Minneapolis, MN 55455-0213, USA
| | - N Francois V Burger
- Department of Genetics, Stellenbosch University, Stellenbosch 7601, South Africa
| | | |
Collapse
|
20
|
Inazu M. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm Drug Dispos 2014; 35:431-49. [PMID: 24532461 DOI: 10.1002/bdd.1892] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/13/2022]
Abstract
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Masato Inazu
- Institute of Medical Science, Department of Molecular Preventive Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
21
|
Pilon M, Svensk E. PAQR-2 may be a regulator of membrane fluidity during cold adaptation. WORM 2013; 2:e27123. [PMID: 24744984 DOI: 10.4161/worm.27123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
PAQR-2 is a C. elegans homolog of the mammalian adiponectin receptors. We have recently shown that PAQR-2 is essential for the ability of C. elegans to grow at its lower temperature range, i.e., 15 °C, and that the likely role of PAQR-2 during cold adaptation is to regulate membrane fluidity by promoting fatty acid desaturation. Here we present a summary of this work, with an emphasis on placing our C. elegans findings in the context of mammalian biology.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology; University of Gothenburg; Medicinaregatan 9C; Gothenburg, Sweden
| | - Emma Svensk
- Department of Chemistry and Molecular Biology; University of Gothenburg; Medicinaregatan 9C; Gothenburg, Sweden
| |
Collapse
|
22
|
Expression of phosphatidylcholine biosynthetic enzymes during early embryogenesis in the amphibian Bufo arenarum. ZYGOTE 2013; 23:257-65. [PMID: 24229731 DOI: 10.1017/s096719941300052x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.
Collapse
|
23
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 621] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
24
|
Acosta-Rodríguez VA, Márquez S, Salvador GA, Pasquaré SJ, Gorné LD, Garbarino-Pico E, Giusto NM, Guido ME. Daily rhythms of glycerophospholipid synthesis in fibroblast cultures involve differential enzyme contributions. J Lipid Res 2013; 54:1798-811. [PMID: 23641021 DOI: 10.1194/jlr.m034264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks regulate the temporal organization of several biochemical processes, including lipid metabolism, and their disruption leads to severe metabolic disorders. Immortalized cell lines acting as circadian clocks display daily variations in [(32)P]phospholipid labeling; however, the regulation of glycerophospholipid (GPL) synthesis by internal clocks remains unknown. Here we found that arrested NIH 3T3 cells synchronized with a 2 h-serum shock exhibited temporal oscillations in a) the labeling of total [(3)H] GPLs, with lowest levels around 28 and 56 h, and b) the activity of GPL-synthesizing and GPL-remodeling enzymes, such as phosphatidate phosphohydrolase 1 (PAP-1) and lysophospholipid acyltransferases (LPLAT), respectively, with antiphase profiles. In addition, we investigated the temporal regulation of phosphatidylcholine (PC) biosynthesis. PC is mainly synthesized through the Kennedy pathway with choline kinase (ChoK) and CTP:phosphocholine cytidylyltranferase (CCT) as key regulatory enzymes. We observed that the PC labeling exhibited daily changes, with the lowest levels every ~28 h, that were accompanied by brief increases in CCT activity and the oscillation in ChoK mRNA expression and activity. Results demonstrate that the metabolisms of GPLs and particularly of PC in synchronized fibroblasts are subject to a complex temporal control involving concerted changes in the expression and/or activities of specific synthesizing enzymes.
Collapse
Affiliation(s)
- Victoria A Acosta-Rodríguez
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Siniossoglou S. Phospholipid metabolism and nuclear function: Roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:575-81. [DOI: 10.1016/j.bbalip.2012.09.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 01/22/2023]
|
26
|
Brewer JW. Phospholipids: "greasing the wheels" of humoral immunity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:642-51. [PMID: 23051607 PMCID: PMC3562403 DOI: 10.1016/j.bbalip.2012.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/14/2022]
Abstract
Phospholipids are major structural components of all cellular membranes. In addition, certain phospholipids execute regulatory activities that affect cell behavior, function and fate in critically important physiological settings. The influence of phospholipids is especially obvious in the adaptive immune system, where these macromolecules mediate both intrinsic and extrinsic effects on B and T lymphocytes. This review article highlights the action of lysophospholipid sphingosine-1-phosphate as a lymphocyte chemoattractant, the function of phosphatidylinositol phosphates as signaling conduits in lymphocytes and the role of phospholipids as raw materials for membrane assembly and organelle biogenesis in activated B lymphocytes. Special emphasis is placed on the means by which these three processes push humoral immune responses forward. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Joseph W Brewer
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 5851 USA Drive North Mobile, AL 36688, USA.
| |
Collapse
|
27
|
Arsenault DJ, Yoo BH, Rosen KV, Ridgway ND. ras-Induced up-regulation of CTP:phosphocholine cytidylyltransferase α contributes to malignant transformation of intestinal epithelial cells. J Biol Chem 2012; 288:633-43. [PMID: 23155050 DOI: 10.1074/jbc.m112.347682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cancer cells have enhanced lipogenic capacity characterized by increased synthesis of fatty acids and complex lipids, including phosphatidylcholine (PC). As the rate-limiting enzyme in the CDP-choline pathway for PC synthesis, CTP:phosphocholine cytidylyltransferase α (CCTα) is implicated in the provision of membranes and bioactive lipids necessary of cell proliferation. In this study, we assessed the role of CCTα in malignant intestinal epithelial cells transformed with activated H-ras (IEC-ras). Three IEC-ras clones had significant up-regulation CCTα expression, but PC synthesis and in vitro activity of CCTα were similar to control IEC. RNA interference of CCTα in adherent IEC-ras did not affect PC synthesis, confirming that the enzyme was relatively inactive. However, CCTα silencing in ras-transformed IEC reduced anchorage-independent growth, a criterion for malignant transformation, as well as tumorigenicity in mice. Relative to their adherent counterparts, detached IEC-ras had increased PC synthesis that was attenuated by inducible CCTα silencing. Detachment of IEC-ras was accompanied by increased CCTα phosphorylation and cytosolic enzyme activity. We conclude that the expanded pool of CCTα in IEC-ras is activated by detachment. This provides the increased PC biosynthetic capacity that contributes to malignant transformation of intestinal epithelial cells when detached from the extracellular matrix.
Collapse
Affiliation(s)
- Daniel J Arsenault
- Atlantic Research Centre, Department of Pediatrics and Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | |
Collapse
|
28
|
Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:612-25. [PMID: 23026158 DOI: 10.1016/j.bbalip.2012.09.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/16/2022]
Abstract
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Medicine, Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
29
|
Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:523-32. [PMID: 23010477 DOI: 10.1016/j.bbalip.2012.09.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell- and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
30
|
Awwad HM, Geisel J, Obeid R. The role of choline in prostate cancer. Clin Biochem 2012; 45:1548-53. [PMID: 22921309 DOI: 10.1016/j.clinbiochem.2012.08.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 01/18/2023]
Abstract
Choline is an essential nutrient that is necessary for cell membrane synthesis and phospholipid metabolism and functions as an important methyl donor. Multiple roles for choline in cancer development have been suggested. Choline can affect DNA methylation and lead to a disruption of DNA repair. It can also modify cell signaling that is mediated by intermediary phospholipid metabolites, and it can support the synthesis of cell membranes and thus support cell proliferation. A higher intake or status of choline in plasma and tissues has been related to higher cancer risks. Prostate cancer shows elevated levels of choline uptake and levels of certain choline metabolites. Choline metabolites can be used as potential prognostic biomarkers for the management of prostate cancer patients. Targeting certain enzymes, which are related to choline metabolism, provides promising therapeutic opportunities for tumor growth arrest. This review summarizes the potential role of choline metabolism in cancer, especially in prostate cancer.
Collapse
Affiliation(s)
- Hussain Mohamad Awwad
- Saarland University Hospital, Department of Clinical Chemistry and Laboratory Medicine, Building 57, 66421 Homburg/Saar, Germany.
| | | | | |
Collapse
|
31
|
Agassandian M, Chen BB, Pulijala R, Kaercher L, Glasser JR, Mallampalli RK. Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal. Mol Biol Cell 2012; 23:2755-69. [PMID: 22621903 PMCID: PMC3395663 DOI: 10.1091/mbc.e11-10-0863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/04/2012] [Accepted: 05/16/2012] [Indexed: 12/28/2022] Open
Abstract
We identified a new calmodulin kinase I (CaMKI) substrate, cytidyltransferase (CCTα), a crucial enzyme required for maintenance of cell membranes. CCTα becomes activated with translocation from the cytoplasm to the nuclear membrane, resulting in increased membrane phospholipids. Calcium-activated CCTα nuclear import is mediated by binding of its C-terminus to 14-3-3 ζ, a regulator of nuclear trafficking. Here CaMK1 phosphorylates residues within this C-terminus that signals association of CCTα with 14-3-3 ζ to initiate calcium-induced nuclear entry. CaMKI docks within the CCTα membrane-binding domain (residues 290-299), a sequence that displays similarities to a canonical nuclear export signal (NES) that also binds CRM1/exportin 1. Expression of a CFP-CCTα mutant lacking residues 290-299 in cells results in cytosolically retained enzyme. CRM1/exportin 1 was required for CCTα nuclear export, and its overexpression in cells was partially sufficient to trigger CCTα nuclear export despite calcium stimulation. An isolated CFP-290-299 peptide remained in the nucleus in the presence of leptomycin B but was able to target to the cytoplasm with farnesol. Thus CaMKI vies with CRM1/exportin 1 for access to a NES, and assembly of a CaMKI-14-3-3 ζ-CCTα complex is a key effector mechanism that drives nuclear CCTα translocation.
Collapse
Affiliation(s)
- Marianna Agassandian
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Bill B. Chen
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Roopa Pulijala
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Leah Kaercher
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Jennifer R. Glasser
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rama K. Mallampalli
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213
- Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
32
|
Su JS, Woods SM, Ronen SM. Metabolic consequences of treatment with AKT inhibitor perifosine in breast cancer cells. NMR IN BIOMEDICINE 2012; 25:379-88. [PMID: 22253088 PMCID: PMC3920667 DOI: 10.1002/nbm.1764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 05/14/2023]
Abstract
Activation of the PI3K/Akt pathway is associated with the development of numerous human cancers. As a result, many emerging therapies target this pathway. Previous studies have shown that targeting the PI3K/Akt pathway at the level of PI3K is associated with a drop in phosphocholine (PCho) and a reduction in hyperpolarized lactate production. However, the consequences of targeting downstream of PI3K at the level of Akt have not been investigated. Perifosine is an anticancer alkylphospholipid used in clinical trials. It acts by inhibiting phosphorylation of Akt and has been shown to inhibit CTP-phosphocholine cytidyltransferase (CT). The goal of this study was to identify the MRS-detectable metabolic consequences of treatment with perifosine in MCF-7 breast cancer cells. We found that perifosine treatment led to a 51 ± 5% drop in PCho from 30 ± 5 to 15 ± 1 fmol/cell and a comparable drop in de novo synthesized PCho. This was associated with a drop in choline kinase (ChoK) activity and ChoKα expression. CT inhibition could not be ruled out but likely did not contribute to the change in PCho. We also found that intracellular lactate levels decreased from 2.7 ± 0.5 to 1.5 ± 0.3 fmol/cell and extracellular lactate levels dropped by a similar extent. These findings were consistent with a drop in lactate dehydrogenase expression and associated with a drop in activity of the hypoxia inducible factor (HIF)-1α. The drops in PCho and lactate production following perifosine treatment are therefore mediated downstream of Akt by the drop in HIF-1α, which serves as the transcription factor for both ChoK and lactate dehydrogenase. The metabolic changes were confirmed in a second breast cancer cell line, MDA-MB-231. Taken together, these findings indicate that PCho and lactate can serve as noninvasive metabolic biomarkers for monitoring the effects of inhibitors that target the PI3K/Akt pathway, independent of the step that leads to inhibition of HIF-1α.
Collapse
Affiliation(s)
- Judy S Su
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
33
|
Abstract
Abnormal choline metabolism is emerging as a metabolic hallmark that is associated with oncogenesis and tumour progression. Following transformation, the modulation of enzymes that control anabolic and catabolic pathways causes increased levels of choline-containing precursors and breakdown products of membrane phospholipids. These increased levels are associated with proliferation, and recent studies emphasize the complex reciprocal interactions between oncogenic signalling and choline metabolism. Because choline-containing compounds are detected by non-invasive magnetic resonance spectroscopy (MRS), increased levels of these compounds provide a non-invasive biomarker of transformation, staging and response to therapy. Furthermore, enzymes of choline metabolism, such as choline kinase, present novel targets for image-guided cancer therapy.
Collapse
Affiliation(s)
- Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Zaver M. Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, 720 Rutland Avenue, 212 Traylor Building, Baltimore, Maryland 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Sabrina M. Ronen
- Department of Radiology, University of California San Francisco School of Medicine, UCSF Mission Bay Campus, Byers Hall, San Francisco, California CA94158-2330, USA
| |
Collapse
|
34
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
35
|
Brandes AH, Ward CS, Ronen SM. 17-allyamino-17-demethoxygeldanamycin treatment results in a magnetic resonance spectroscopy-detectable elevation in choline-containing metabolites associated with increased expression of choline transporter SLC44A1 and phospholipase A2. Breast Cancer Res 2010; 12:R84. [PMID: 20946630 PMCID: PMC3096977 DOI: 10.1186/bcr2729] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 10/14/2010] [Indexed: 01/18/2023] Open
Abstract
Introduction 17-allyamino-17-demethoxygeldanamycin (17-AAG), a small molecule inhibitor of Hsp90, is currently in clinical trials in breast cancer. However, 17-AAG treatment often results in inhibition of tumor growth rather than shrinkage, making detection of response a challenge. Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are noninvasive imaging methods than can be used to monitor metabolic biomarkers of drug-target modulation. This study set out to examine the MRS-detectable metabolic consequences of Hsp90 inhibition in a breast cancer model. Methods MCF-7 breast cancer cells were investigated, and MRS studies were performed both on live cells and on cell extracts. 31P and 1H MRS were used to determine total cellular metabolite concentrations and 13C MRS was used to probe the metabolism of [1,2-13C]-choline. To explain the MRS metabolic findings, microarray and RT-PCR were used to analyze gene expression, and in vitro activity assays were performed to determine changes in enzymatic activity following 17-AAG treatment. Results Treatment of MCF-7 cells with 17-AAG for 48 hours caused a significant increase in intracellular levels of choline (to 266 ± 18% of control, P = 0.05) and phosphocholine (PC; to 181 ± 10% of control, P = 0.001) associated with an increase in expression of choline transporter SLC44A1 and an elevation in the de novo synthesis of PC. We also detected an increase in intracellular levels of glycerophosphocholine (GPC; to 176 ± 38% of control, P = 0.03) associated with an increase in PLA2 expression and activity. Conclusions This study determined that in the MCF-7 breast cancer model inhibition of Hsp90 by 17-AAG results in a significant MRS-detectable increase in choline, PC and GPC, which is likely due to an increase in choline transport into the cell and phospholipase activation. 1H MRSI can be used in the clinical setting to detect levels of total choline-containing metabolite (t-Cho, composed of intracellular choline, PC and GPC). As Hsp90 inhibitors enter routine clinical use, t-Cho could thus provide an easily detectable, noninvasive metabolic biomarker of Hsp90 inhibition in breast cancer patients.
Collapse
Affiliation(s)
- Alissa H Brandes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 94158, USA
| | | | | |
Collapse
|
36
|
Desoubzdanne D, Claparols C, Martins-Froment N, Zedde C, Balayssac S, Gilard V, Tercé F, Martino R, Malet-Martino M. Analysis of hydrophilic and lipophilic choline compounds in radioresistant and radiosensitive glioblastoma cell lines by HILIC-ESI-MS/MS. Anal Bioanal Chem 2010; 398:2723-30. [DOI: 10.1007/s00216-010-4196-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/04/2010] [Accepted: 09/05/2010] [Indexed: 11/29/2022]
|
37
|
Eastmond PJ, Quettier AL, Kroon JTM, Craddock C, Adams N, Slabas AR. Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. THE PLANT CELL 2010; 22:2796-811. [PMID: 20699392 PMCID: PMC2947160 DOI: 10.1105/tpc.109.071423] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 06/22/2010] [Accepted: 07/21/2010] [Indexed: 05/17/2023]
Abstract
Phospholipid biosynthesis is essential for the construction of most eukaryotic cell membranes, but how this process is regulated in plants remains poorly understood. Here, we show that in Arabidopsis thaliana, two Mg(2+)-dependent phosphatidic acid phosphohydrolases called PAH1 and PAH2 act redundantly to repress phospholipid biosynthesis at the endoplasmic reticulum (ER). Leaves from pah1 pah2 double mutants contain ~1.8-fold more phospholipid than the wild type and exhibit gross changes in ER morphology, which are consistent with massive membrane overexpansion. The net rate of incorporation of [methyl-(14)C]choline into phosphatidylcholine (PC) is ~1.8-fold greater in the double mutant, and the transcript abundance of several key genes that encode enzymes involved in phospholipid synthesis is increased. In particular, we show that PHOSPHORYLETHANOLAMINE N-METHYLTRANSFERASE1 (PEAMT1) is upregulated at the level of transcription in pah1 pah2 leaves. PEAMT catalyzes the first committed step of choline synthesis in Arabidopsis and defines a variant pathway for PC synthesis not found in yeasts or mammals. Our data suggest that PAH1/2 play a regulatory role in phospholipid synthesis that is analogous to that described in Saccharomyces cerevisiae. However, the target enzymes differ, and key components of the signal transduction pathway do not appear to be conserved.
Collapse
Affiliation(s)
- Peter J Eastmond
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
The rate-limiting enzyme in phosphatidylcholine synthesis is associated with nuclear speckles under stress conditions. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1184-94. [PMID: 20647050 DOI: 10.1016/j.bbalip.2010.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 11/20/2022]
Abstract
Phosphatidylcholine (PtdCho) is the most abundant phospholipid in eukaryotic membranes and its biosynthetic pathway is generally controlled by CTP:Phosphocholine Cytidylyltransferase (CCT), which is considered the rate-limiting enzyme. CCT is an amphitropic protein, whose enzymatic activity is commonly associated with endoplasmic reticulum (ER) translocation; however, most of the enzyme is intranuclearly located. Here we demonstrate that CCTα is concentrated in the nucleoplasm of MDCK cells. Confocal immunofluorescence revealed that extracellular hypertonicity shifted the diffuse intranuclear distribution of the enzyme to intranuclear domains in a foci pattern. One population of CCTα foci colocalised and interacted with lamin A/C speckles, which also contained the pre-mRNA processing factor SC-35, and was resistant to detergent and salt extraction. The lamin A/C silencing allowed us to visualise a second more labile population of CCTα foci that consisted of lamin A/C-independent foci non-resistant to extraction. We demonstrated that CCTα translocation is not restricted to its redistribution from the nucleus to the ER and that intranuclear redistribution must thus be considered. We suggest that the intranuclear organelle distribution of CCTα is a novel mechanism for the regulation of enzyme activity.
Collapse
|
39
|
Déchamps S, Shastri S, Wengelnik K, Vial HJ. Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. Int J Parasitol 2010; 40:1347-65. [PMID: 20600072 DOI: 10.1016/j.ijpara.2010.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Centre National de la Recherche Scientifique (CNRS) - Universite Montpellier 2, cc 107, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
40
|
Marcucci H, Paoletti L, Jackowski S, Banchio C. Phosphatidylcholine biosynthesis during neuronal differentiation and its role in cell fate determination. J Biol Chem 2010; 285:25382-93. [PMID: 20525991 DOI: 10.1074/jbc.m110.139477] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal differentiation is characterized by neuritogenesis and neurite outgrowth, processes that are dependent on membrane biosynthesis. Thus, the production of phosphatidylcholine (PtdCho), the major membrane phospholipid, should be stimulated during neuronal differentiation. We demonstrate that during retinoic acid (RA)-induced differentiation of Neuro-2a cells, PtdCho synthesis was promoted by an ordered and sequential activation of choline kinase alpha (CK(alpha)) and choline cytidylyltransferase alpha (CCT(alpha)). Early after RA stimulation, the increase in PtdCho synthesis is mainly governed by the biochemical activation of CCT(alpha). Later, the transcription of CK(alpha)- and CCT(alpha)-encoding genes was induced. Both PtdCho biosynthesis and neuronal differentiation are dependent on ERK activation. A novel mechanism is proposed by which PtdCho biosynthesis is coordinated during neuronal differentiation. Enforced expression of either CK(alpha) or CCTalpha increased the rate of synthesis and the amount of PtdCho, and these cells initiated differentiation without RA stimulation, as evidenced by cell morphology and the expression of genes associated with neuritogenesis. The differentiation resulting from enforced expression of CCT(alpha) or CK(alpha) was dependent on persistent ERK activation. These results indicate that elevated PtdCho synthesis could mimic the RA signals and thus determine neuronal cell fate. Moreover, they could explain the key role that PtdCho plays during neuronal regeneration.
Collapse
Affiliation(s)
- Hebe Marcucci
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
| | | | | | | |
Collapse
|
41
|
Quintero M, Cabañas ME, Arús C. 13C-labelling studies indicate compartmentalized synthesis of triacylglycerols in C6 rat glioma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:693-701. [PMID: 20380892 DOI: 10.1016/j.bbalip.2010.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 03/08/2010] [Accepted: 03/23/2010] [Indexed: 12/27/2022]
Abstract
NMR-visible mobile lipid (ML) signals have been detected in (1)H-NMR spectra of tissues in vivo, ex vivo and in vitro, and have been shown to change in apparent intensity in association with pathology (necrosis in brain tumours) and normal processes (cell differentiation, cell growth arrest and apoptosis). Although it is widely accepted that ML signals originate mainly from fatty-acyl chains in triacylglycerols (TAG) contained in cytosolic lipid droplets (LD), the dynamics of TAG in LD is not yet fully understood. In order to better understand the synthesis of cellular TAG and its relationship to ML dynamics we carried out a set of labelling experiments with C6 rat glioma cells in culture. TAG and phospholipid metabolism was monitored by incubating C6 cells with [1-(13)C]-glucose at two time points during cell growth curve -24 h incubation starting at log-phase; 48 h incubation starting at saturation density- and by acquiring the 2D-HMQC NMR spectra of the respective total lipid extracts. The resulting TAG, diacylglycerol (DAG) and phospholipid labelling patterns can only be explained if TAG synthesis takes place in two different subcellular compartments. One compartment would be the endoplasmic reticulum, which is known to be involved in TAG metabolism, while the other compartment could be the plasma membrane and/or the LD. This possible role of LD is further supported by the recent description of diacylglycerolacyltranferase-activity associated with LD. Accordingly, we postulate the existence of a carbon-shuttling mechanism between plasma membrane phospholipids and endoplasmic reticulum by way of LD content. The results we have obtained with C6 cells may also apply to other cellular systems and should be taken into account when interpreting ML dynamics detected by NMR in vivo.
Collapse
Affiliation(s)
- MariaRosa Quintero
- GABRMN, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | | | | |
Collapse
|
42
|
Chang PA, Chen YY, Qin WZ, Long DX, Wu YJ. The role of cell cycle-dependent neuropathy target esterase in cell proliferation. Mol Biol Rep 2010; 38:123-30. [PMID: 20306302 DOI: 10.1007/s11033-010-0085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Neuropathy target esterase (NTE) is a novel phospholipase B and plays a role in phospholipid homeostasis. Although over-expression of NTE inhibits cell division, the role of NTE in cell proliferation is still unknown. In the current study, we firstly used synchronous HeLa cells to study the expression profile of NTE during the cell cycle. NTE protein and activity are regulated during the cell cycle with highest level at G1 and lowest at G2/M phase. However, NTE mRNA levels are constant during the cell cycle. The role of NTE in cell proliferation was investigated by short hairpin RNA (shRNA) to suppress the expression of NTE. Knockdown of NTE significant down-regulated of NTE expression and reduced the glycerophosphocholine level. However, suppression of NTE did not affect phosphatidylcholine content or cell cycle progression. In addition, NTE was demonstrated to be degraded by the ubiquitin-proteasome pathway. These results suggested for the first time that NTE is a cell cycle-dependent protein, but is not essential for cell proliferation, and the ubiquitin-mediated proteolysis may be involved in the regulation of NTE during the cell cycle.
Collapse
Affiliation(s)
- Ping-An Chang
- Key Laboratory of Molecular Biology, College of Bio-Information, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Bilayer synthesis during membrane biogenesis involves the concerted assembly of multiple lipid species, requiring coordination of the level of lipid synthesis, uptake, turnover, and subcellular distribution. In this review, we discuss some of the salient conclusions regarding the coordination of lipid synthesis that have emerged from work in mammalian and yeast cells. The principal instruments of global control are a small number of transcription factors that target a wide range of genes encoding enzymes that operate in a given metabolic pathway. Critical in mammalian cells are sterol regulatory element binding proteins (SREBPs) that stimulate expression of genes for the uptake and synthesis of cholesterol and fatty acids. From work with Saccharomyces cerevisiae, much has been learned about glycerophospholipid and ergosterol regulation through Ino2p/Ino4p and Upc2p transcription factors, respectively. Lipid supply is fine-tuned through a multitude of negative feedback circuits initiated by both end products and intermediates of lipid synthesis pathways. Moreover, there is evidence that the diversity of membrane lipids is maintained through cross-regulatory effects, whereby classes of lipids activate the activity of enzymes operating in another metabolic branch.
Collapse
Affiliation(s)
- Axel Nohturfft
- Molecular and Metabolic Signalling Centre, Division of Basic Medical Sciences, St. George's University of London, London, SW17 0RE United Kingdom.
| | | |
Collapse
|
44
|
Butler PL, Mallampalli RK. Cross-talk between remodeling and de novo pathways maintains phospholipid balance through ubiquitination. J Biol Chem 2009; 285:6246-58. [PMID: 20018880 DOI: 10.1074/jbc.m109.017350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylcholine (PtdCho), the major phospholipid of animal membranes, is generated by its remodeling and de novo synthesis. Overexpression of the remodeling enzyme, LPCAT1 (acyl-CoA:lysophosphatidylcholine acyltransferase) in epithelia decreased de novo PtdCho synthesis without significantly altering cellular PtdCho mass. Overexpression of LPCAT1 increased degradation of CPT1 (cholinephosphotransferase), a resident Golgi enzyme that catalyzes the terminal step for de novo PtdCho synthesis. CPT1 degradation involved its multiubiquitination and processing via the lysosomal pathway. CPT1 mutants harboring arginine substitutions at multiple carboxyl-terminal lysines exhibited proteolytic resistance to effects of LPCAT1 overexpression in cells and restored de novo PtdCho synthesis. Thus, cross-talk between phospholipid remodeling and de novo pathways involves ubiquitin-lysosomal processing of a key molecular target that mechanistically provides homeostatic control of cellular PtdCho content.
Collapse
Affiliation(s)
- Phillip L Butler
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
45
|
Agassandian M, Chen BB, Schuster CC, Houtman JCD, Mallampalli RK. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia. FASEB J 2009; 24:1271-83. [PMID: 20007511 DOI: 10.1096/fj.09-136044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Integrity of animal biomembranes is critical to preserve normal cellular functions and viability. Phosphatidylcholine, an indispensible membrane component, requires the enzyme CCTalpha for its biosynthesis. Nuclear expression of CCTalpha is needed for expansion of the nuclear membrane network, but mechanisms for CCTalpha nuclear import are unknown. Herein, we show that in epithelia, extracellular Ca(2+) triggers CCTalpha cytoplasmic-nuclear translocation. CCTalpha nuclear import was associated with binding to 14-3-3zeta, a key regulator of protein trafficking. 14-3-3zeta was both sufficient and required for CCTalpha nuclear import. Helix G within the 14-3-3zeta binding groove interacts with a putative molecular signature within the CCTalpha carboxyl-terminal phosphoserine motif (residues 328-343). 14-3-3zeta was critically involved in preserving phosphatidylcholine synthesis and cell viability in a model of Pseudomonas aeruginosa infection where Ca(2+) concentrations increase within epithelia. Thus, 14-3-3zeta controls CCTalpha nuclear import in response to calcium signals, thereby regulating mammalian phospholipid synthesis. Agassandian, M., Chen, B. B., Schuster, C. C., Houtman, J. C. D., Mallampalli, R. K. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia.
Collapse
Affiliation(s)
- Marianna Agassandian
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
46
|
Lee J, Johnson J, Ding Z, Paetzel M, Cornell RB. Crystal structure of a mammalian CTP: phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a highly conserved nucleotidyltransferase fold. J Biol Chem 2009; 284:33535-48. [PMID: 19783652 PMCID: PMC2785197 DOI: 10.1074/jbc.m109.053363] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/11/2009] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphocholine cytidylyltransferase (CCT) is the key regulatory enzyme in the synthesis of phosphatidylcholine, the most abundant phospholipid in eukaryotic cell membranes. The CCT-catalyzed transfer of a cytidylyl group from CTP to phosphocholine to form CDP-choline is regulated by a membrane lipid-dependent mechanism imparted by its C-terminal membrane binding domain. We present the first analysis of a crystal structure of a eukaryotic CCT. A deletion construct of rat CCTalpha spanning residues 1-236 (CCT236) lacks the regulatory domain and as a result displays constitutive activity. The 2.2-A structure reveals a CCT236 homodimer in complex with the reaction product, CDP-choline. Each chain is composed of a complete catalytic domain with an intimately associated N-terminal extension, which together with the catalytic domain contributes to the dimer interface. Although the CCT236 structure reveals elements involved in binding cytidine that are conserved with other members of the cytidylyltransferase superfamily, it also features nonconserved active site residues, His-168 and Tyr-173, that make key interactions with the beta-phosphate of CDP-choline. Mutagenesis and kinetic analyses confirmed their role in phosphocholine binding and catalysis. These results demonstrate structural and mechanistic differences in a broadly conserved protein fold across the cytidylyltransferase family. Comparison of the CCT236 structure with those of other nucleotidyltransferases provides evidence for substrate-induced active site loop movements and a disorder-to-order transition of a loop element in the catalytic mechanism.
Collapse
Affiliation(s)
- Jaeyong Lee
- From the Departments of Molecular Biology and Biochemistry and
| | - Joanne Johnson
- From the Departments of Molecular Biology and Biochemistry and
| | - Ziwei Ding
- From the Departments of Molecular Biology and Biochemistry and
| | - Mark Paetzel
- From the Departments of Molecular Biology and Biochemistry and
| | - Rosemary B. Cornell
- From the Departments of Molecular Biology and Biochemistry and
- Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
47
|
Braker JD, Hodel KJ, Mullins DR, Friesen JA. Identification of hydrophobic amino acids required for lipid activation of C. elegans CTP:phosphocholine cytidylyltransferase. Arch Biochem Biophys 2009; 492:10-6. [PMID: 19836342 DOI: 10.1016/j.abb.2009.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/18/2022]
Abstract
CTP:phosphocholine cytidylyltransferase (CCT), critical for phosphatidylcholine biosynthesis, is activated by translocation to the membrane surface. The lipid activation region of Caenorhabditis elegans CCT is between residues 246 and 266 of the 347 amino acid polypeptide, a region proposed to form an amphipathic alpha helix. When leucine 246, tryptophan 249, isoleucine 256, isoleucine 257, or phenylalanine 260, on the hydrophobic face of the helix, were changed individually to serine low activity was observed in the absence of lipid vesicles, similar to wild-type CCT, while lipid stimulated activity was reduced compared to wild-type CCT. Mutational analysis of phenylalanine 260 implicated this residue as a contributor to auto-inhibition of CCT while mutation of L246, W249, I256, and I257 simultaneously to serine resulted in significantly higher activity in the absence of lipid vesicles and an enzyme that was not lipid activated. These results support a concerted mechanism of lipid activation that requires multiple residues on the hydrophobic face of the putative amphipathic alpha helix.
Collapse
Affiliation(s)
- Jay D Braker
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | | | | | | |
Collapse
|
48
|
Hou WY, Long DX, Wu YJ. Effect of inhibition of neuropathy target esterase in mouse nervous tissues in vitro on phosphatidylcholine and lysophosphatidylcholine homeostasis. Int J Toxicol 2009; 28:417-24. [PMID: 19620706 DOI: 10.1177/1091581809340704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuropathy target esterase has been shown to be a lysophospholipase in mouse. The authors investigate the effect of neuropathy target esterase inhibition in mouse nervous tissues in vitro on the homeostasis of phosphatidylcholine and lysophosphatidylcholine by treating the homogenates with tri-ortho-cresyl phosphate, paraoxon, paraoxon plus mipafox, and phenylmethylsulfonyl fluoride. The activity of neuropathy target esterase is significantly inhibited by phenylmethylsulfonyl fluoride and paraoxon plus mipafox but not by paraoxon alone. Tri-ortho-cresyl phosphate slightly but significantly inhibits neuropathy target esterase activity in brain. The levels of phosphatidylcholine and lysophosphatidylcholine in all 3 nervous tissues are not obviously altered after treatment with tri-ortho-cresyl phosphate, paraoxon, or paraoxon plus mipafox. However, phosphatidylcholine and lysophosphatidylcholine levels are clearly enhanced by phenylmethylsulfonyl fluoride. It is concluded that inhibition of neuropathy target esterase in mouse nervous tissues is not enough to disrupt the homeostasis of phosphatidylcholine and lysophosphatidylcholine and that the upregulation by phenylmethylsulfonyl fluoride may be the consequence of combined inhibition of neuropathy target esterase and other phospholipases.
Collapse
Affiliation(s)
- Wei-Yuan Hou
- Institute of Zoology, CAS, Beijing 100101, PR China
| | | | | |
Collapse
|
49
|
Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M, Jackowski S, Kaufman RJ, Brewer JW. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J Cell Sci 2009; 122:1626-36. [PMID: 19420237 DOI: 10.1242/jcs.045625] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A link exists between endoplasmic reticulum (ER) biogenesis and the unfolded protein response (UPR), a complex set of signaling mechanisms triggered by increased demands on the protein folding capacity of the ER. The UPR transcriptional activator X-box binding protein 1 (XBP1) regulates the expression of proteins that function throughout the secretory pathway and is necessary for development of an expansive ER network. We previously demonstrated that overexpression of XBP1(S), the active form of XBP1 generated by UPR-mediated splicing of Xbp1 mRNA, augments the activity of the cytidine diphosphocholine (CDP-choline) pathway for biosynthesis of phosphatidylcholine (PtdCho) and induces ER biogenesis. Another UPR transcriptional activator, activating transcription factor 6alpha (ATF6alpha), primarily regulates expression of ER resident proteins involved in the maturation and degradation of ER client proteins. Here, we demonstrate that enforced expression of a constitutively active form of ATF6alpha drives ER expansion and can do so in the absence of XBP1(S). Overexpression of active ATF6alpha induces PtdCho biosynthesis and modulates the CDP-choline pathway differently than does enforced expression of XBP1(S). These data indicate that ATF6alpha and XBP1(S) have the ability to regulate lipid biosynthesis and ER expansion by mechanisms that are at least partially distinct. These studies reveal further complexity in the potential relationships between UPR pathways, lipid production and ER biogenesis.
Collapse
Affiliation(s)
- Hemamalini Bommiasamy
- Department of Microbiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chamulitrat W, Burhenne J, Rehlen T, Pathil A, Stremmel W. Bile salt-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide as a hepatoprotective agent. Hepatology 2009; 50:143-54. [PMID: 19496180 DOI: 10.1002/hep.22955] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED A decrease of hepatocellular phosphatidylcholine (PC) is associated with hepatic injury, e.g., in nonalcoholic steatohepatitis (NASH). Therefore, we evaluated the hepatoprotective effect of a PC-precursor lipid specifically targeted to the liver. We synthesized the bile acid-phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), which was designed to target PC to hepatocytes by way of bile-acid transport systems. We synthesized a fluorescently labeled analogue UDCA-6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl PE (UDCA-NBDPE) for uptake and metabolism studies. Unexpectedly, the majority of UDCA-NBDPE was still intact and not hydrolyzed efficiently in HepG2 cells. For targeting in vivo, NBD fluorescence from UDCA-NBDPE-injected mice was recovered in the liver the most, whereas injection of NBDPE alone resulted in an even distribution in liver, kidneys, and intestine. Cytoprotection by UDCA-LPE was tested in starvation and tumor necrosis factor alpha (TNF-alpha) apoptosis models using HepG2 cells. Only the intact UDCA-LPE was able to persistently stimulate growth after 36 to 120-hour starvation, and significantly inhibited TNF-alpha-induced apoptosis. In both models, LPC, LPE, UDCA, or UDCA added with LPE exhibited weak to no cytoprotection. UDCA-LPE stabilized mitochondrial membranes by lowering mitochondrial membrane potential. Western blot analyses of phosphorylated Akt and glycogen synthase kinase-3 (GSK-3)alpha/beta revealed that UDCA-LPE activated phosphatidyl inositol 3-kinase (PI3K)/Akt signaling pathways. The PI3K inhibitor LY294002 or Akt small interfering (si)RNA consistently inhibited the proproliferative effects of UDCA-LPE during starvation. The TNF-alpha death-receptor extrinsic pathway involves caspase 8 activation, which is inhibited by cellular FLICE-inhibitory protein (cFLIP); thus, cFLIP siRNA was employed in our studies. cFLIP siRNA was able to reverse the cytoprotective effects of UDCA-LPE during TNF-alpha-induced apoptosis, and UDCA-LPE concomitantly upregulated protein expression of cFLIP(L). CONCLUSION UDCA-LPE, which targeted the liver in vivo, elicited potent biological activities in vitro by stimulating hepatocyte growth and by inhibiting TNF-alpha-induced apoptosis. Thus, UDCA-LPE may be suitable for evaluation of treatment efficacy in NASH.
Collapse
Affiliation(s)
- Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Infectious Diseases, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|