1
|
Zhang Y, Zhou L, Xu Y, Zhou J, Jiang T, Wang J, Li C, Sun X, Song H, Song J. Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer. Angiogenesis 2023; 26:1-18. [PMID: 35503397 DOI: 10.1007/s10456-022-09839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
Angiogenesis is an essential factor affecting the occurrence and development of solid tumors. SET And MYND Domain Containing 2 (SMYD2) serves as an oncogene in various cancers. However, whether SMYD2 is involved in tumor angiogenesis remains unclear. Here, we report that SMYD2 expression is associated with microvessel density in colorectal cancer (CRC) tissues. SMYD2 promotes CRC angiogenesis in vitro and in vivo. Mechanistically, SMYD2 physically interacts with HNRNPK and mediates lysine monomethylation at K422 of HNRNPK, which substantially increases RNA binding activity. HNRNPK acts by binding and stabilizing EGFL7 mRNA. As an angiogenic stimulant, EGFL7 enhances CRC angiogenesis. H3K4me3 maintained by PHF8 mediates the abnormal overexpression of SMYD2 in CRC. Moreover, targeting SMYD2 blocks CRC angiogenesis in tumor xenografts. Treatment with BAY-598, a functional inhibitor of SMYD2, can also synergize with apatinib in patient-derived xenografts. Overall, our findings reveal a new regulatory axis of CRC angiogenesis and provide a potential strategy for antiangiogenic therapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Jingyu Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Chao Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiong Sun
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, No. 99, Huaihai West Road, Xuzhou, 221002, Jiangsu, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Razmi M, Yazdanpanah A, Etemad-Moghadam S, Alaeddini M, Angelini S, Eini L. Clinical prognostic value of the SMYD2/3 as new epigenetic biomarkers in solid cancer patients: a systematic review and meta-analysis. Expert Rev Mol Diagn 2022; 22:1-15. [PMID: 36346387 DOI: 10.1080/14737159.2022.2144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND SET and MYND domain-containing protein (SMYD) family with methyltransferase activity is involved in cancer progression. This novel meta-analysis aimed to evaluate the association of SMYD family with the clinical and survival outcomes in solid cancer patients. METHODS We systematically searched Embase, PubMed, Scopus and Web of Science to select relevant articles. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals were extracted. Heterogeneity was evaluated by chi-square-based Q and I2 tests, while publication bias by funnel plots and Egger's test. RESULTS Thirty-two articles (4,826 patients) met inclusion criteria. SMYD2/3 overexpression was statistically associated with poor overall survival (HR = 1.794, P < 0.001), disease/relapse/progression-free survival (HR = 2.114, P < 0.001), disease/cancer-specific survival (HR = 3.220, P = 0.003), larger tumor size (OR = 1.963, P < 0.001), advanced TNM stage (OR = 2.066, P < 0.001), lymph node metastasis (OR = 2.054, P < 0.001), and distant metastasis (OR = 1.978, P = 0.004). Subgroup analysis showed more significant association between SMYD2 overexpression and reduced survival outcomes than that in SMYD3. Conversely, the relationship between SMYD3 and various clinicopathologic factors was stronger compared to SMYD2. CONCLUSION Enhanced SMYD2/3 expression may be an unfavorable clinical prognostic factor in different solid cancer types.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ayna Yazdanpanah
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology (Fabit), University of Bologna, Bologna, Italy
| | - Leila Eini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
HSP90 mediates the connection of multiple programmed cell death in diseases. Cell Death Dis 2022; 13:929. [PMID: 36335088 PMCID: PMC9637177 DOI: 10.1038/s41419-022-05373-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.
Collapse
|
4
|
Zheng Q, Zhang W, Rao GW. Protein Lysine Methyltransferase SMYD2: A Promising Small Molecule Target for Cancer Therapy. J Med Chem 2022; 65:10119-10132. [PMID: 35914250 DOI: 10.1021/acs.jmedchem.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In epigenetic research, the abnormality of protein methylation modification is closely related to the occurrence and development of tumors, which stimulates the interest of researchers in protein methyltransferase research and the efforts to develop corresponding specific small molecule inhibitors. Currently, the protein lysine methyltransferase SMYD2 has been identified as a promising new small molecule target for cancer therapy. But its biological functions have not been fully studied and relatively few inhibitors have been reported, thus this field needs to be further explored. This perspective provides a comprehensive and systematic review of the available resources in this field, including its research status, biological structure, related substrates and methylation mechanisms, and research status of inhibitors. In addition, this perspective elaborates in detail the current challenges in this field, our insights into what needs to be done next, rational drug design of novel SMYD2 inhibitors, and foreseeable development directions in the future.
Collapse
Affiliation(s)
- Quan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Wang C, Chen X, Dai Y, Zhang Y, Sun Y, Cui X. Comparative transcriptome analysis of heat-induced domesticated zebrafish during gonadal differentiation. BMC Genom Data 2022; 23:39. [PMID: 35641933 PMCID: PMC9158171 DOI: 10.1186/s12863-022-01058-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of environmental factors, especially temperature, on sex ratio is of great significance to elucidate the mechanism of sex determination. However, the molecular mechanisms by which temperature affects sex determination remains unclear, although a few candidate genes have been found to play a role in the process. In this study, we conducted transcriptome analysis of the effects induced by high temperature on zebrafish during gonad differentiation period. RESULTS Totals of 1171, 1022 and 2921 differentially expressed genes (DEGs) between high temperature and normal temperature were identified at 35, 45 and 60 days post-fertilization (dpf) respectively, revealing that heat shock proteins (HSPs) and DNA methyltransferases (DNMTs) were involved in the heat-exposed sex reversal. The Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway that were enriched in individuals after heat treatment included Fanconi anemia (FA) pathway, cell cycle, oocyte meiosis and homologous recombination. CONCLUSIONS Our study provides the results of comparative transcriptome analyses between high temperature and normal temperature, and reveals that the molecular mechanism of heat-induced masculinization in zebrafish is strongly related to the expression of HSPs and DNMTs and FA pathway during gonad differentiation.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuhuai Chen
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yu Dai
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yifei Zhang
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Yuandong Sun
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xiaojuan Cui
- School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
6
|
Hou Y, Sun X, Gheinani PT, Guan X, Sharma S, Zhou Y, Jin C, Yang Z, Naren AP, Yin J, Denning TL, Gewirtz AT, Liu Y, Xie Z, Li C. Epithelial SMYD5 Exaggerates IBD by Down-regulating Mitochondrial Functions via Post-Translational Control of PGC-1α Stability. Cell Mol Gastroenterol Hepatol 2022; 14:375-403. [PMID: 35643234 PMCID: PMC9249919 DOI: 10.1016/j.jcmgh.2022.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The expression and role of methyltransferase SET and MYND domain-containing protein 5 (SMYD5) in inflammatory bowel disease (IBD) is completely unknown. Here, we investigated the role and underlying mechanism of epithelial SMYD5 in IBD pathogenesis and progression. METHODS The expression levels of SMYD5 and the mitochondrial transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) were examined by Western blot, immunofluorescence staining, and immunohistochemistry in intestinal epithelial cells (IECs) and in colon tissues from human IBD patients and colitic mice. Mice with Smyd5 conditional knockout in IECs and littermate controls were subjected to dextran sulfate sodium-induced colitis and the disease severity was assessed. SMYD5-regulated mitochondrial biogenesis was examined by quantitative reverse-transcription polymerase chain reaction and transmission electron microscopy, and the mitochondrial oxygen consumption rate was measured in a Seahorse Analyzer system (Agilent, Santa Clara, CA). SMYD5 and PGC-1α interaction was determined by co-immunoprecipitation assay. PGC-1α degradation and turnover (half-life) were analyzed by cycloheximide chase assay. SMYD5-mediated PGC-1α methylation was assessed via in vitro methylation assay followed by mass spectrometry for identification of methylated lysine residues. RESULTS Up-regulated SMYD5 and down-regulated PGC-1α were observed in intestinal epithelia from IBD patients and colitic mice. Smyd5 depletion in IECs protected mice from dextran sulfate sodium-induced colitis. SMYD5 was critically involved in regulating mitochondrial biology such as mitochondrial biogenesis, respiration, and apoptosis. Mechanistically, SMYD5 regulates mitochondrial functions in a PGC-1α-dependent manner. Furthermore, SMYD5 mediates lysine methylation of PGC-1α and subsequently facilitates its ubiquitination and degradation. CONCLUSIONS SMYD5 attenuates mitochondrial functions in IECs and promotes IBD progression by enhancing PGC-1α degradation in a methylation-dependent manner. Strategies to decrease SMYD5 expression and/or increase PGC-1α expression in IECs might be a promising therapeutic approach to treat IBD patients.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | | | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Yu Zhou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia; Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, Georgia
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jun Yin
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia
| | - Timothy L Denning
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Yuan Liu
- Program of Immunology and Cellular Biology, Department of Biology, Georgia State University, Atlanta, Georgia
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
7
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
8
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
9
|
Protein expression profiling of rat uteruses with primary dysmenorrhea syndrome. Arch Gynecol Obstet 2021; 305:139-147. [DOI: 10.1007/s00404-021-06233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
|
10
|
Jit BP, Qazi S, Arya R, Srivastava A, Gupta N, Sharma A. An immune epigenetic insight to COVID-19 infection. Epigenomics 2021; 13:465-480. [PMID: 33685230 PMCID: PMC7958646 DOI: 10.2217/epi-2020-0349] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 is a positive-sense RNA virus, a causal agent of ongoing COVID-19 pandemic. ACE2R methylation across three CpG sites (cg04013915, cg08559914, cg03536816) determines the host cell's entry. It regulates ACE2 expression by controlling the SIRT1 and KDM5B activity. Further, it regulates Type I and III IFN response by modulating H3K27me3 and H3K4me3 histone mark. SARS-CoV-2 protein with bromodomain and protein E mimics bromodomain histones and evades from host immune response. The 2'-O MTases mimics the host's cap1 structure and plays a vital role in immune evasion through Hsp90-mediated epigenetic process to hijack the infected cells. Although the current review highlighted the critical epigenetic events associated with SARS-CoV-2 immune evasion, the detailed mechanism is yet to be elucidated.
Collapse
Affiliation(s)
- Bimal P Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sahar Qazi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Arya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ankit Srivastava
- Regional Institute of Ophthalmology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 220115, India
| | - Nimesh Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
11
|
Synthesis and structure–activity relationship studies of LLY-507 analogues as SMYD2 inhibitors. Bioorg Med Chem Lett 2020; 30:127598. [DOI: 10.1016/j.bmcl.2020.127598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
|
12
|
Cheng SZ, Guang-Xin E, Liu CL, Basang WD, Zhu YB, Na RS, Han YG, Zeng Y, Wang X, Ni WW, Yang BG, Duan XH, Guo ZH, Song M, Huang YF. SNP of AHSA2 gene in three cattle breeds using snapshot technology. J Genet 2020. [DOI: 10.1007/s12041-020-01211-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Dubrez L, Causse S, Borges Bonan N, Dumétier B, Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene 2019; 39:516-529. [DOI: 10.1038/s41388-019-1016-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/08/2023]
|
14
|
Yi X, Jiang XJ, Fang ZM. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Clin Epigenetics 2019; 11:112. [PMID: 31370883 PMCID: PMC6670139 DOI: 10.1186/s13148-019-0711-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing protein 2 (SMYD2) is a protein methyltransferase that methylates histone H3 at lysine 4 (H3K4) or lysine 36 (H3K36) and diverse nonhistone proteins. SMYD2 activity is required for normal organismal development and the regulation of a series of pathophysiological processes. Since aberrant SMYD2 expression and its dysfunction are often closely related to multiple diseases, SMYD2 is a promising candidate for the treatment of these diseases, such as cardiovascular disease and cancer. Here, we present an overview of the complex biology of SMYD2 and its family members and their context-dependent nature. Then, we discuss the discovery, structure, inhibitors, roles, and molecular mechanisms of SMYD2 in distinct diseases, with a focus on cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|