1
|
Hone AJ, Santiago U, Harvey PJ, Tekarli B, Gajewiak J, Craik DJ, Camacho CJ, McIntosh JM. Design, Synthesis, and Structure-Activity Relationships of Novel Peptide Derivatives of the Severe Acute Respiratory Syndrome-Coronavirus-2 Spike-Protein that Potently Inhibit Nicotinic Acetylcholine Receptors. J Med Chem 2024; 67:9587-9598. [PMID: 38814877 PMCID: PMC11444331 DOI: 10.1021/acs.jmedchem.4c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The spike-protein of SARS-CoV-2 has a distinctive amino-acid sequence (682RRARS686) that forms a cleavage site for the enzyme furin. Strikingly, the structure of the spike-protein loop containing the furin cleavage site bears substantial similarity to neurotoxin peptides found in the venoms of certain snakes and marine cone snails. Leveraging this relationship, we designed and synthesized disulfide-constrained peptides with amino-acid sequences corresponding to the furin cleavage-sites of wild-type (B.1 variant) SARS-CoV-2 or the Alpha, Delta, and Omicron variants. Remarkably, some of these peptides potently inhibited α7 and α9α10 nicotinic acetylcholine receptors (nAChR) with nM affinity and showed SARS-CoV-2 variant and nAChR subtype-dependent potencies. Nuclear magnetic resonance spectroscopy and molecular dynamics were used to rationalize structure-activity relationships between peptides and their cognate receptors. These findings delineate nAChR subtypes that can serve as high-affinity spike-protein targets in tissues central to COVID-19 pathophysiology and identify ligands and target receptors to inform the development of novel SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Arik J Hone
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Peta J Harvey
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bassel Tekarli
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - J Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Psychiatry, University of Utah, Salt Lake City, Utah 84112, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| |
Collapse
|
2
|
Williams BM, Steed ND, Woolley JT, Moedl AA, Nelson CA, Jones GC, Burris MD, Arias HR, Kim OH, Jang EY, Hone AJ, McIntosh JM, Yorgason JT, Steffensen SC. Catharanthine Modulates Mesolimbic Dopamine Transmission and Nicotine Psychomotor Effects via Inhibition of α6-Nicotinic Receptors and Dopamine Transporters. ACS Chem Neurosci 2024; 15:1738-1754. [PMID: 38613458 DOI: 10.1021/acschemneuro.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3β2β3 or α6/α3β4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.
Collapse
Affiliation(s)
- Benjamin M Williams
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Nathan D Steed
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Joel T Woolley
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Aubrey A Moedl
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Christina A Nelson
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Gavin C Jones
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Matthew D Burris
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma 74464, United States
| | - Oc-Hee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| | - Eun Young Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea
| | - Arik J Hone
- George E. Wahlen Veterans Affairs Medical Center, and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jordan T Yorgason
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| | - Scott C Steffensen
- Department of Psychology/Neuroscience, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
3
|
Wu X, Hone AJ, Huang YH, Clark RJ, McIntosh JM, Kaas Q, Craik DJ. Computational Design of α-Conotoxins to Target Specific Nicotinic Acetylcholine Receptor Subtypes. Chemistry 2024; 30:e202302909. [PMID: 37910861 PMCID: PMC10872529 DOI: 10.1002/chem.202302909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are drug targets for neurological diseases and disorders, but selective targeting of the large number of nAChR subtypes is challenging. Marine cone snail α-conotoxins are potent blockers of nAChRs and some have been engineered to achieve subtype selectivity. This engineering effort would benefit from rapid computational methods able to predict mutational energies, but current approaches typically require high-resolution experimental structures, which are not widely available for α-conotoxin complexes. Herein, five mutational energy prediction methods were benchmarked using crystallographic and mutational data on two acetylcholine binding protein/α-conotoxin systems. Molecular models were developed for six nAChR subtypes in complex with five α-conotoxins that were studied through 150 substitutions. The best method was a combination of FoldX and molecular dynamics simulations, resulting in a predictive Matthews Correlation Coefficient (MCC) of 0.68 (85 % accuracy). Novel α-conotoxin mutants designed using this method were successfully validated by experimental assay with improved pharmaceutical properties. This work paves the way for the rapid design of subtype-specific nAChR ligands and potentially accelerated drug development.
Collapse
Affiliation(s)
- Xiaosa Wu
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Arik J Hone
- School of Biological Science, University of Utah, Salt Lake City, Utah, 84112, USA
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, 84112, USA
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - J Michael McIntosh
- School of Biological Science, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, 84112, USA
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, 84112, USA
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Tae HS, Ortells MO, Tekarli BJ, Manetti D, Romanelli MN, McIntosh JM, Adams DJ, Arias HR. DM506 (3-Methyl-1,2,3,4,5,6-hexahydroazepino[4,5- b]indole fumarate), a Novel Derivative of Ibogamine, Inhibits α7 and α9α10 Nicotinic Acetylcholine Receptors by Different Allosteric Mechanisms. ACS Chem Neurosci 2023; 14:2537-2547. [PMID: 37386821 DOI: 10.1021/acschemneuro.3c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
The main objective of this study was to determine the pharmacological activity and molecular mechanism of action of DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole fumarate), a novel ibogamine derivative, at different nicotinic acetylcholine receptor (nAChR) subtypes. The functional results showed that DM506 neither activates nor potentiates but inhibits ACh-evoked currents at each rat nAChR subtype in a non-competitive manner. The receptor selectivity for DM506 inhibition follows the sequence: α9α10 (IC50 = 5.1 ± 0.3 μM) ≅ α7β2 (5.6 ± 0.2 μM) ∼ α7 (6.4 ± 0.5 μM) > α6/α3β2β3 (25 ± 1 μM) > α4β2 (62 ± 4 μM) ≅ α3β4 (70 ± 5 μM). No significance differences in DM506 potency were observed between rat and human α7 and α9α10 nAChRs. These results also indicated that the β2 subunit is not involved or is less relevant in the activity of DM506 at the α7β2 nAChR. DM506 inhibits the α7 and α9α10 nAChRs in a voltage-dependent and voltage-independent manner, respectively. Molecular docking and molecular dynamics studies showed that DM506 forms stable interactions with a putative site located in the α7 cytoplasmic domain and with two intersubunit sites in the extracellular-transmembrane junction of the α9α10 nAChR, one located in the α10(+)/α10(─) interface and another in the α10(+)/α9(─) interface. This study shows for the first time that DM506 inhibits both α9α10 and α7 nAChR subtypes by novel allosteric mechanisms likely involving modulation of the extracellular-transmembrane domain junction and cytoplasmic domain, respectively, but not by direct competitive antagonism or open channel block.
Collapse
Affiliation(s)
- Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón, CONICET, B1708 Morón, Argentina
| | - Bassel J Tekarli
- School of Biological Sciences University of Utah, Salt Lake City, Utah 84112, United States
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino 50019, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino 50019, Italy
| | - J Michael McIntosh
- School of Biological Sciences University of Utah, Salt Lake City, Utah 84112, United States
- Department of Psychiatry, University of Utah, Salt Lake City, Utah 84112, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma 74464, United States
| |
Collapse
|
5
|
Xie T, Qin Y, Zhao J, Dong J, Qi P, Zhang P, Zhangsun D, Zhu X, Yu J, Luo S. Molecular Determinants of Species Specificity of α-Conotoxin TxIB towards Rat and Human α6/α3β4 Nicotinic Acetylcholine Receptors. Int J Mol Sci 2023; 24:ijms24108618. [PMID: 37239959 DOI: 10.3390/ijms24108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Conotoxins are widely distributed and important for studying ligand-gated ion channels. TxIB, a conotoxin consisting of 16 amino acids derived from Conus textile, is a unique selective ligand that blocks rat α6/α3β2β3 nAChR (IC50 = 28 nM) without affecting other rat subtypes. However, when the activity of TxIB against human nAChRs was examined, it was unexpectedly found that TxIB had a significant blocking effect on not only human α6/α3β2β3 nAChR but also human α6/α3β4 nAChR, with an IC50 of 537 nM. To investigate the molecular mechanism of this species specificity and to establish a theoretical basis for drug development studies of TxIB and its analogs, different amino acid residues between human and rat α6/α3 and β4 nAChR subunits were identified. Each residue of the human species was then substituted with the corresponding residue of the rat species via PCR-directed mutagenesis. The potencies of TxIB towards the native α6/α3β4 nAChRs and their mutants were evaluated through electrophysiological experiments. The results showed that the IC50 of TxIB against h[α6V32L, K61R/α3]β4L107V, V115I was 22.5 μM, a 42-fold decrease in potency compared to the native hα6/α3β4 nAChR. Val-32 and Lys-61 in the human α6/α3 subunit and Leu-107 and Val-115 in the human β4 subunit, together, were found to determine the species differences in the α6/α3β4 nAChR. These results also demonstrate that the effects of species differences between humans and rats should be fully considered when evaluating the efficacy of drug candidates targeting nAChRs in rodent models.
Collapse
Affiliation(s)
- Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuan Qin
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinyuan Zhao
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Qi
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Tae HS, Adams DJ. Nicotinic acetylcholine receptor subtype expression, function, and pharmacology: Therapeutic potential of α-conotoxins. Pharmacol Res 2023; 191:106747. [PMID: 37001708 DOI: 10.1016/j.phrs.2023.106747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The pentameric nicotinic acetylcholine receptors (nAChRs) are typically classed as muscle- or neuronal-type, however, the latter has also been reported in non-neuronal cells. Given their broad distribution, nAChRs mediate numerous physiological and pathological processes including synaptic transmission, presynaptic modulation of transmitter release, neuropathic pain, inflammation, and cancer. There are 17 different nAChR subunits and combinations of these subunits produce subtypes with diverse pharmacological properties. The expression and role of some nAChR subtypes have been extensively deciphered with the aid of knock-out models. Many nAChR subtypes expressed in heterologous systems are selectively targeted by the disulfide-rich α-conotoxins. α-Conotoxins are small peptides isolated from the venom of cone snails, and a number of them have potential pharmaceutical value.
Collapse
|
7
|
Zhu X, Wang S, Kaas Q, Yu J, Wu Y, Harvey PJ, Zhangsun D, Craik DJ, Luo S. Discovery, Characterization, and Engineering of LvIC, an α4/4-Conotoxin That Selectively Blocks Rat α6/α3β4 Nicotinic Acetylcholine Receptors. J Med Chem 2023; 66:2020-2031. [PMID: 36682014 DOI: 10.1021/acs.jmedchem.2c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
α6β4 nicotinic acetylcholine receptors (nAChRs) are expressed in the central and peripheral nervous systems, but their functions are not fully understood, largely because of a lack of specific ligands. Here, we characterized a novel α-conotoxin, LvIC, and designed a series of analogues to probe structure-activity relationships at the α6β4 nAChR. The potency and selectivity of these conotoxins were tested using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes. One of the analogues, [D1G,ΔQ14]LvIC, potently blocked α6/α3β4 nAChRs (α6/α3 is a chimera) with an IC50 of 19 nM, with minimal activity at other nAChR subtypes, including the structurally similar α6/α3β2β3 and α3β4 subtypes. Using NMR, molecular docking, and receptor mutation, structure-activity relationships of [D1G,ΔQ14]LvIC at the α6/α3β4 nAChR were defined. It is a potent and specific antagonist of α6β4 nAChRs that could potentially serve as a novel molecular probe to explore α6β4 nAChR-related neurophysiological and pharmacological functions.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Shuai Wang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yong Wu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
A Single Amino Acid Replacement Boosts the Analgesic Activity of α-Conotoxin AuIB through the Inhibition of the GABA BR-Coupled N-Type Calcium Channel. Mar Drugs 2022; 20:md20120750. [PMID: 36547897 PMCID: PMC9781320 DOI: 10.3390/md20120750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
α-conotoxin AuIB is the only one of the 4/6 type α-conotoxins (α-CTxs) that inhibits the γ-aminobutyric acid receptor B (GABABR)-coupled N-type calcium channel (CaV2.2). To improve its inhibitory activity, a series of variants were synthesized and evaluated according to the structure-activity relationships of 4/7 type α-CTxs targeting GABABR-coupled CaV2.2. Surprisingly, only the substitution of Pro7 with Arg results in a 2-3-fold increase in the inhibition of GABABR-coupled CaV2.2 (IC50 is 0.74 nM); substitutions of position 9-12 with basic or hydrophobic amino acid and the addition of hydrophobic amino acid Leu or Ile at the second loop to mimic 4/7 type α-CTxs all failed to improve the inhibitory activity of AuIB against GABABR-coupled CaV2.2. Interestingly, the most potent form of AuIB[P7R] has disulfide bridges of "1-4, 2-3" (ribbon), which differs from the "1-3, 2-4" (globular) in the isoforms of wildtype AuIB. In addition, AuIB[P7R](globular) displays potent analgesic activity in the acetic acid writhing model and the partial sciatic nerve injury (PNL) model. Our study demonstrated that 4/6 type α-CTxs, with the disulfide bridge connectivity "1-4, 2-3," are also potent inhibitors for GABABR-coupled CaV2.2, exhibiting potent analgesic activity.
Collapse
|
9
|
Hone AJ, McIntosh JM. Alkaloid ligands enable function of homomeric human α10 nicotinic acetylcholine receptors. Front Pharmacol 2022; 13:981760. [PMID: 36188578 PMCID: PMC9523446 DOI: 10.3389/fphar.2022.981760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
In the nervous system, nicotinic acetylcholine receptors (nAChRs) rapidly transduce a chemical signal into one that is electrical via ligand-gated ion flux through the central channel of the receptor. However, some nAChR subunits are expressed by non-excitable cells where signal transduction apparently occurs through non-ionic mechanisms. One such nAChR subunit, α10, is present in a discreet subset of immune cells and has been implicated in pathologies including cancer, neuropathic pain, and chronic inflammation. Longstanding convention holds that human α10 subunits require co-assembly with α9 subunits for function. Here we assessed whether cholinergic ligands can enable or uncover ionic functions from homomeric α10 nAChRs. Xenopus laevis oocytes expressing human α10 subunits were exposed to a panel of ligands and examined for receptor activation using voltage-clamp electrophysiology. Functional expression of human α10 nAChRs was achieved by exposing the oocytes to the alkaloids strychnine, brucine, or methyllycaconitine. Furthermore, acute exposure to the alkaloid ligands significantly enhanced ionic responses. Acetylcholine-gated currents mediated by α10 nAChRs were potently inhibited by the snake toxins α-bungarotoxin and α-cobratoxin but not by α-conotoxins that target α9 and α9α10 nAChRs. Our findings indicate that human α10 homomers are expressed in oocytes and exposure to certain ligands can enable ionic functions. To our knowledge, this is the first demonstration that human α10 subunits can assemble as functional homomeric nAChRs. These findings have potential implications for receptor regulatory-mechanisms and will enable structural, functional, and further pharmacological characterization of human α10 nAChRs.
Collapse
Affiliation(s)
- Arik J. Hone
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| | - J. Michael McIntosh
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
11
|
Paguigan ND, Tun JO, Leavitt LS, Lin Z, Chase K, Dowell C, Deering-Rice CE, Lim AL, Karthikeyan M, Hughen RW, Zhang J, Peterson RT, Reilly CA, Light AR, Raghuraman S, McIntosh JM, Olivera BM, Schmidt EW. Nicotinic Acetylcholine Receptor Partial Antagonist Polyamides from Tunicates and Their Predatory Sea Slugs. ACS Chem Neurosci 2021; 12:2693-2704. [PMID: 34213884 DOI: 10.1021/acschemneuro.1c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3β4 (mouse) and α6/α3β4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 μM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.
Collapse
Affiliation(s)
- Noemi D. Paguigan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jortan O. Tun
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lee S. Leavitt
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cheryl Dowell
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Cassandra E. Deering-Rice
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Manju Karthikeyan
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ronald W. Hughen
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jie Zhang
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christopher A. Reilly
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Alan R. Light
- Department of Anesthesiology, School of Medicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shrinivasan Raghuraman
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - J. Michael McIntosh
- Department of Psychiatry, and School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
- George E Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148, United States
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Wang S, Zhu X, Zhangsun M, Wu Y, Yu J, Harvey PJ, Kaas Q, Zhangsun D, Craik DJ, Luo S. Engineered Conotoxin Differentially Blocks and Discriminates Rat and Human α7 Nicotinic Acetylcholine Receptors. J Med Chem 2021; 64:5620-5631. [PMID: 33902275 DOI: 10.1021/acs.jmedchem.0c02079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is present in the central nervous system and plays an important role in cognitive function and memory. α-Conotoxin LvIB, identified from genomic DNA of Conus lividus, its three isomers and four globular isomer analogues were synthesized and screened at a wide range of nAChR subtypes. One of the analogues, amidated [Q1G,ΔR14]LvIB, was found to be a potent blocker of rat α7 nAChRs. Importantly, it differentiates between α7 nAChRs of human (IC50: 1570 nM) and rat (IC50: 97 nM). Substitutions between rat and human α7 nAChRs at three key mutation sites revealed that no single mutant could completely change the activity profile of amidated [Q1G,ΔR14]LvIB. Rather, we found that the combined influence of Gln141, Asn184, and Lys186 determines the α7 nAChR species specificity of this peptide. This engineered α4/4 conotoxin has potential applications as a template for designing ligands to selectively block human α7 nAChRs.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| | - Manqi Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yong Wu
- Medical School, Guangxi University, Nanning 530004, China
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Terpinskaya TI, Osipov AV, Kryukova EV, Kudryavtsev DS, Kopylova NV, Yanchanka TL, Palukoshka AF, Gondarenko EA, Zhmak MN, Tsetlin VI, Utkin YN. α-Conotoxins and α-Cobratoxin Promote, while Lipoxygenase and Cyclooxygenase Inhibitors Suppress the Proliferation of Glioma C6 Cells. Mar Drugs 2021; 19:md19020118. [PMID: 33669933 PMCID: PMC7956437 DOI: 10.3390/md19020118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, β2 and β4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.
Collapse
Affiliation(s)
- Tatiana I. Terpinskaya
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alexey V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Nina V. Kopylova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Tatsiana L. Yanchanka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Alena F. Palukoshka
- Institute of Physiology, National Academy of Sciences of Belarus, ul. Akademicheskaya, 28, 220072 Minsk, Belarus; (T.I.T.); (T.L.Y.); (A.F.P.)
| | - Elena A. Gondarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.V.O.); (E.V.K.); (D.S.K.); (N.V.K.); (E.A.G.); (M.N.Z.); (V.I.T.)
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
14
|
Hone AJ, Kaas Q, Kearns I, Hararah F, Gajewiak J, Christensen S, Craik DJ, McIntosh JM. Computational and Functional Mapping of Human and Rat α6β4 Nicotinic Acetylcholine Receptors Reveals Species-Specific Ligand-Binding Motifs. J Med Chem 2021; 64:1685-1700. [PMID: 33523678 PMCID: PMC8382285 DOI: 10.1021/acs.jmedchem.0c01973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pharmacological targets for the treatment of neuropathic pain, and the α6β4 subtype has been identified as particularly promising. Rat α6β4 nAChRs are less sensitive to some ligands than the human homologue potentially complicating the use of rodent α6β4 receptors for screening therapeutic compounds. We used molecular dynamics simulations coupled with functional assays to study the interaction between α-conotoxin PeIA and α6β4 nAChRs and to identify key ligand-receptor interactions that contribute to species differences in α-conotoxin potency. Our results show that human and rat α6β4 nAChRs have distinct ligand-binding motifs and show markedly different sensitivities to α-conotoxins. These studies facilitated the creation of PeIA-5667, a peptide that shows 270-fold higher potency for rat α6β4 nAChRs over native PeIA and similar potency for the human homologue. Our results may inform the design of therapeutic ligands that target α6β4 nAChRs for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Arik J Hone
- MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148 United States
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072 Australia
| | | | | | | | | | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072 Australia
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah 84148 United States
| |
Collapse
|
15
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
16
|
Structure and Activity Studies of Disulfide-Deficient Analogues of αO-Conotoxin GeXIVA. J Med Chem 2020; 63:1564-1575. [DOI: 10.1021/acs.jmedchem.9b01409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Jin AH, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Conotoxins: Chemistry and Biology. Chem Rev 2019; 119:11510-11549. [PMID: 31633928 DOI: 10.1021/acs.chemrev.9b00207] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia.,Institute of Biological Chemistry, Faculty of Chemistry , University of Vienna , 1090 Vienna , Austria
| | - Sebastien Dutertre
- Département des Acides Amines, Peptides et Protéines, Unité Mixte de Recherche 5247, Université Montpellier 2-Centre Nationale de la Recherche Scientifique , Institut des Biomolécules Max Mousseron , Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - S W A Himaya
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience , The University of Queensland , Brisbane Queensland 4072 , Australia
| |
Collapse
|
18
|
Peigneur S, Devi P, Seldeslachts A, Ravichandran S, Quinton L, Tytgat J. Structure-Function Elucidation of a New α-Conotoxin, MilIA, from Conus milneedwardsi. Mar Drugs 2019; 17:md17090535. [PMID: 31527432 PMCID: PMC6780063 DOI: 10.3390/md17090535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/16/2022] Open
Abstract
The a-Conotoxins are peptide toxins that are found in the venom of marine cone snails and they are potent antagonists of various subtypes of nicotinic acetylcholine receptors (nAChRs). Because nAChRs have an important role in regulating transmitter release, cell excitability, and neuronal integration, nAChR dysfunctions have been implicated in a variety of severe pathologies. We describe the isolation and characterization of α-conotoxin MilIA, the first conopeptide from the venom of Conus milneedwardsi. The peptide was characterized by electrophysiological screening against several types of cloned nAChRs that were expressed in Xenopus laevis oocytes. MilIA, which is a member of the α3/5 family, is an antagonist of muscle type nAChRs with a high selectivity for muscle versus neuronal subtype nAChRs. Several analogues were designed and investigated for their activity in order to determine the key epitopes of MilIA. Native MilIA and analogues both showed activity at the fetal muscle type nAChR. Two single mutations (Met9 and Asn10) allowed for MilIA to strongly discriminate between the two types of muscle nAChRs. Moreover, one analogue, MilIA [∆1,M2R, M9G, N10K, H11K], displayed a remarkable enhanced potency when compared to native peptide. The key residues that are responsible for switching between muscle and neuronal nAChRs preference were elucidated. Interestingly, the same analogue showed a preference for α9α10 nAChRs among the neuronal types.
Collapse
Affiliation(s)
- Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| | - Prabha Devi
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India.
| | - Andrea Seldeslachts
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| | | | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Hone AJ, Fisher F, Christensen S, Gajewiak J, Larkin D, Whiteaker P, McIntosh JM. PeIA-5466: A Novel Peptide Antagonist Containing Non-natural Amino Acids That Selectively Targets α3β2 Nicotinic Acetylcholine Receptors. J Med Chem 2019; 62:6262-6275. [PMID: 31194549 DOI: 10.1021/acs.jmedchem.9b00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacologically distinguishing α3β2 nicotinic acetylcholine receptors (nAChRs) from closely related subtypes, particularly α6β2, has been challenging due to the lack of subtype-selective ligands. We created analogs of α-conotoxin (α-Ctx) PeIA to identify ligand-receptor interactions that could be exploited to selectively increase potency and selectivity for α3β2 nAChRs. A series of PeIA analogs were synthesized by replacing amino acid residues in the second disulfide loop with standard or nonstandard residues and assessing their activity on α3β2 and α6/α3β2β3 nAChRs heterologously expressed in Xenopus laevis oocytes. Asparagine11 was found to occupy a pivotal position, and when replaced with negatively charged amino acids, selectivity for α3β2 over α6/α3β2β3 nAChRs was substantially increased. Second generation peptides were then designed to further improve both potency and selectivity. One peptide, PeIA-5466, was ∼300-fold more potent on α3β2 than α6/α3β2β3 and is the most α3β2-selective antagonist heretofore reported.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center , Salt Lake City , Utah 84148 , United States
| |
Collapse
|
20
|
Zouridakis M, Papakyriakou A, Ivanov IA, Kasheverov IE, Tsetlin V, Tzartos S, Giastas P. Crystal Structure of the Monomeric Extracellular Domain of α9 Nicotinic Receptor Subunit in Complex With α-Conotoxin RgIA: Molecular Dynamics Insights Into RgIA Binding to α9α10 Nicotinic Receptors. Front Pharmacol 2019; 10:474. [PMID: 31118896 PMCID: PMC6504684 DOI: 10.3389/fphar.2019.00474] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
The α9 subunit of nicotinic acetylcholine receptors (nAChRs) exists mainly in heteropentameric assemblies with α10. Accumulating data indicate the presence of three different binding sites in α9α10 nAChRs: the α9(+)/α9(−), the α9(+)/α10(−), and the α10(+)/α9(−). The major role of the principal (+) side of the extracellular domain (ECD) of α9 subunit in binding of the antagonists methyllylcaconitine and α-bungarotoxin was shown previously by the crystal structures of the monomeric α9-ECD with these molecules. Here we present the 2.26-Å resolution crystal structure of α9-ECD in complex with α-conotoxin (α-Ctx) RgIA, a potential drug for chronic pain, the first structure reported for a complex between an nAChR domain and an α-Ctx. Superposition of this structure with those of other α-Ctxs bound to the homologous pentameric acetylcholine binding proteins revealed significant similarities in the orientation of bound conotoxins, despite the monomeric state of the α9-ECD. In addition, ligand-binding studies calculated a binding affinity of RgIA to the α9-ECD at the low micromolar range. Given the high identity between α9 and α10 ECDs, particularly at their (+) sides, the presented structure was used as template for molecular dynamics simulations of the ECDs of the human α9α10 nAChR in pentameric assemblies. Our results support a favorable binding of RgIA at α9(+)/α9(−) or α10(+)/α9(−) rather than the α9(+)/α10(−) interface, in accordance with previous mutational and functional data.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,PhysBio of MEPhI, Moscow, Russia
| | - Socrates Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Department of Pharmacy, University of Patras, Patras, Greece
| | - Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|