1
|
Romero-López MJ, Jiménez-Wences H, Cruz-De La Rosa MI, Alarcón-Millán J, Mendoza-Catalán MÁ, Ortiz-Sánchez E, Tinajero-Rodríguez JM, Hernández-Sotelo D, Valente-Niño GW, Martínez-Carrillo DN, Fernández-Tilapa G. miR-218-5p, miR-124-3p and miR-23b-3p act synergistically to modulate the expression of NACC1, proliferation, and apoptosis in C-33A and CaSki cells. Noncoding RNA Res 2024; 9:720-731. [PMID: 38577025 PMCID: PMC10990753 DOI: 10.1016/j.ncrna.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Background In cervical cancer (CC), miR-218-5p, -124-3p, and -23b-3p act as tumor suppressors. These miRNAs have specific and common target genes that modulate apoptosis, proliferation, invasion, and migration; biological processes involved in cancer. Methods miR-218-5p, -124-3p, and -23b-3p mimics were transfected into C-33A and CaSki cells, and RT-qPCR was used to quantify the level of each miRNA and NACC1. Proliferation was assessed by BrdU and apoptosis by Annexin V/PI. In the TCGA and The Human Protein Atlas databases, the level of NACC1 mRNA and protein (putative target of the three miRNAs) was analyzed in CC and normal tissue. The relationship of NACC1 with the overall survival in CC was analyzed in GEPIA2. NACC1 mRNA and protein levels were higher in CC tissues compared with cervical tissue without injury. Results An increased expression of NACC1 was associated with lower overall survival in CC patients. The levels of miR-218-5p, -124-3p, and -23b-3p were lower, and NACC1 was higher in C-33A and CaSki cells compared to HaCaT cells. The increase of miR-218-5p, -124-3p, and -23b-3p induced a significant decrease in NACC1 mRNA. The transfection of the three miRNAs together caused more drastic changes in the level of NACC1, in the proliferation, and in the apoptosis with respect to the individual transfections of each miRNA. Conclusion The results indicate that miR-218-5p, -124-3p, and -23b-3p act synergistically to decrease NACC1 expression and proliferation while promoting apoptosis in C-33A and CaSki cells. The levels of NACC1, miR-218-5p, -124-3p, and -23b-3p may be a potential prognostic indicator in CC.
Collapse
Affiliation(s)
- Manuel Joaquín Romero-López
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Hilda Jiménez-Wences
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Merlin Itsel Cruz-De La Rosa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Miguel Ángel Mendoza-Catalán
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Elizabeth Ortiz-Sánchez
- Basic Research Sub-directorate, National Institute of Cancerology, Mexico City, 14080, Mexico
| | - José Manuel Tinajero-Rodríguez
- Basic Research Sub-directorate, National Institute of Cancerology, Mexico City, 14080, Mexico
- Cancer Epigenetics Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Daniel Hernández-Sotelo
- Cancer Epigenetics Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Gladys Wendy Valente-Niño
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
- Biomolecules Research Laboratory, Faculty of Biological Chemical Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39087, Mexico
| |
Collapse
|
2
|
Barati T, Mirzaei Z, Ebrahimi A, Shekari Khaniani M, Mansoori Derakhshan S. miR-449a: A Promising Biomarker and Therapeutic Target in Cancer and Other Diseases. Cell Biochem Biophys 2024; 82:1629-1650. [PMID: 38809350 DOI: 10.1007/s12013-024-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
In the regulation of gene expression, epigenetic factors like non-coding RNAs (ncRNAs) play an equal role in genetics. The role of microRNAs (miRNAs), which are members of the ncRNA family, in post-transcriptional gene regulation is well-documented and has important implications for both normal and abnormal biological processes, such as angiogenesis, proliferation, survival, and apoptosis. The purpose of this study was to synthesize previous research on miR-449a by analyzing published results from various databases, as there have been a number of investigations on miR-449's potential involvement in the development of human disorders. Based on our findings, miR-449 is strongly dysregulated in a wide range of diseases, from various cancers to cardiovascular diseases, cognitive impairments, and respiratory diseases, and it may play a pivotal role in the development of these problems. In addition, miR-449a functions as a crucial regulator of the expression of several well-known genes, including E2F-3, BCL2, NOTCH1, and SOX4. This, in turn, modulates various pathways and processes related to cancer, including Notch, PI3K, and TGF-β, and contributes to the improvement of cancer drug sensitivity. Curiously, abnormalities in the expression of this miRNA may serve as diagnostic or prognostic indicators for distinguishing between healthy people and patients or to evaluate the survival rates for specific disorders. This article provides a synopsis of the current understanding of miR-449a's role in human disease development through its regulation of gene expression and the biological processes related to these genes and their linked processes. In addition, we have covered the topic of miR-449a's potential as a clinical feature (diagnosis and prognosis) indicator for a range of disorders, both neoplastic and non-neoplastic. In general, our goal was to gain a thorough comprehension of the numerous functions of miR-449a in different disorders.
Collapse
Affiliation(s)
- Tahereh Barati
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirzaei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Pathania AS, Chava H, Balusu R, Pasupulati AK, Coulter DW, Challagundla KB. The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200785. [PMID: 38595981 PMCID: PMC10973673 DOI: 10.1016/j.omton.2024.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Balusu
- Department of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Anil K. Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Shekhar R, Kumari S, Vergish S, Tripathi P. The crosstalk between miRNAs and signaling pathways in human cancers: Potential therapeutic implications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:133-165. [PMID: 38782498 DOI: 10.1016/bs.ircmb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components. Aberrant expression of miRNAs can either promote or suppress key signaling events, influencing critical cellular processes such as proliferation, apoptosis, angiogenesis, and metastasis. For example, oncogenic miRNAs often promote cancer progression by targeting tumor suppressors or negative regulators of signaling pathways, thereby enhancing pathway activity. Conversely, tumor-suppressive miRNAs frequently inhibit oncogenic signaling by targeting key components within these pathways. This complex regulatory crosstalk underscores the significance of miRNAs as central players in shaping the signaling landscape of cancer cells. Furthermore, the therapeutic implications of targeting miRNAs in cancer are substantial. miRNAs can be manipulated to restore normal signaling pathway activity, offering a potential avenue for precision medicine. The development of miRNA-based therapeutics, including synthetic miRNA mimics and miRNA inhibitors, has shown promise in preclinical and clinical studies. These strategies aim to either enhance the activity of tumor-suppressive miRNAs or inhibit the function of oncogenic miRNAs, thereby restoring balanced signaling and impeding cancer progression. In conclusion, the crosstalk between miRNAs and signaling pathways in human cancers is a dynamic and influential aspect of cancer biology. Understanding this interplay provides valuable insights into cancer development and progression. Harnessing the therapeutic potential of miRNAs as regulators of signaling pathways opens up exciting opportunities for the development of innovative cancer treatments with the potential to improve patient outcomes. In this chapter, we provide an overview of the crosstalk between miRNAs and signaling pathways in the context of cancer and highlight the potential therapeutic implications of targeting this regulatory interplay.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
| | - Sujata Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Satyam Vergish
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
5
|
Ghafouri-Fard S, Askari A, Hussen BM, Taheri M, Akbari Dilmaghani N. Role of miR-424 in the carcinogenesis. Clin Transl Oncol 2024; 26:16-38. [PMID: 37178445 PMCID: PMC10761534 DOI: 10.1007/s12094-023-03209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sun Y, Lei YW, Zeng JX, Zhong LY, Liu JW, Man YN, He ML. Clinical Significance and Potential Mechanisms of the RNA Methyltransferase KIAA1429 in Osteosarcoma. J Cancer 2024; 15:126-139. [PMID: 38164289 PMCID: PMC10751680 DOI: 10.7150/jca.86630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
Background: KIAA1429, a member of the RNA methyltransferase complex, is involved in cancer progression; however, the clinical significance and underlying mechanism of KIAA1429 in osteosarcoma (OS) remains to be reported. Methods: We evaluated the clinical significance of KIAA1429 in OS by performing RT-qPCR, microarray, and RNA sequencing and using published data as a reference. Two KIAA1429-targeting siRNA constructs were transfected into SW1353 cells. CCK-8 assay, colony formation assays, flow cytometry and the xenograft mouse model were conducted to investigate the biological function of KIAA1429 in OS. Results: The mRNA expression of KIAA1429 was markedly upregulated in 250 OS samples as compared to that in 71 non-cancer samples (standardized mean difference = 0.67). Summary receiver operating characteristic curve analysis revealed that KIAA1429 exhibited reliable diagnostic capacity to differentiate OS samples from non-cancer samples (area under the curve = 0.83). Further, survival analysis indicated that KIAA1429 overexpression was associated with shorter overall survival time. Knocking down KIAA1429 reduced m6A methylation levels, inhibited proliferation, prevented the growth of tumors in vivo and accelerated apoptosis of OS cells. In total, 395 KIAA1429-related genes were identified among co-expressed genes and differentially expressed genes, which were enriched in the cell cycle pathway. Protein-protein interaction network analysis showed that CDK1, CCNA2, and CCNB1 were KIAA1429-related genes, serving as major network hubs in OS. Conclusions: Our findings indicate that KIAA1429 plays an oncogenic role in OS and potentially facilitates OS progression via a mechanism that involves regulating CDK1, CCNA2, and CCNB1.
Collapse
Affiliation(s)
- Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-wu Lei
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Shuangyong Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia-xing Zeng
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Trauma Microsurgical Hand Surgery, Guangxi Zhuang Autonomous Region People's Hospital, Taoyuan Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lu-yang Zhong
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jian-wei Liu
- Department of Osteology, The Second People's Hospital of Nanning, The Third Affiliated Hospital of Guangxi Medical University, Dancun Road 13, Nanning 530031, Guangxi, China
| | - Yu-nan Man
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mao-lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
7
|
Tetrault E, Swenson J, Aaronson B, Marcho C, Albertson RC. The transcriptional state and chromatin landscape of cichlid jaw shape variation across species and environments. Mol Ecol 2023; 32:3922-3941. [PMID: 37160741 PMCID: PMC10524807 DOI: 10.1111/mec.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Adaptive phenotypes are shaped by a combination of genetic and environmental forces, but how they interact remains poorly understood. Here, we utilize the cichlid oral jaw apparatus to better understand these gene-by-environment effects. First, we employed RNA-seq in bony and ligamentous tissues important for jaw opening to identify differentially expressed genes between species and across foraging environments. We used two Lake Malawi species adapted to different foraging habitats along the pelagic-benthic ecomorphological axis. Our foraging treatments were designed to force animals to employ either suction or biting/scraping, which broadly mimic pelagic or benthic modes of feeding. We found a large number of differentially expressed genes between species, and while we identified relatively few differences between environments, species differences were far more pronounced when they were challenged with a pelagic versus benthic foraging mode. Expression data carried the signature of genetic assimilation, and implicated cell cycle regulation in shaping the jaw across species and environments. Next, we repeated the foraging experiment and performed ATAC-seq procedures on nuclei harvested from the same tissues. Cross-referencing results from both analyses revealed subsets of genes that were both differentially expressed and differentially accessible. This reduced dataset implicated notable candidate genes including the Hedgehog effector, KIAA0586 and the ETS transcription factor, etv4, which connects environmental stress and craniofacial morphogenesis. Taken together, these data provide novel insights into the epigenetic, genetic and cellular bases of species- and environment-specific bone shapes.
Collapse
Affiliation(s)
- Emily Tetrault
- Graduate Program in Molecular and Cell Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - John Swenson
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Ben Aaronson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst MA, 01003, U.S.A
| | - R. Craig Albertson
- Biology Department, University of Massachusetts, Amherst MA, 01003, U.S.A
| |
Collapse
|
8
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
9
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Hassan M, Kloczkowski A, Chun W. Exploration of Flavonoids as Lead Compounds against Ewing Sarcoma through Molecular Docking, Pharmacogenomics Analysis, and Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010414. [PMID: 36615603 PMCID: PMC9823950 DOI: 10.3390/molecules28010414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Ewing sarcoma (ES) is a highly malignant carcinoma prevalent in children and most frequent in the second decade of life. It mostly occurs due to t(11;22) (q24;q12) translocation. This translocation encodes the oncogenic fusion protein EWS/FLI (Friend leukemia integration 1 transcription factor), which acts as an aberrant transcription factor to deregulate target genes essential for cancer. Traditionally, flavonoids from plants have been investigated against viral and cancerous diseases and have shown some promising results to combat these disorders. In the current study, representative flavonoid compounds from various subclasses are selected and used to disrupt the RNA-binding motif of EWS, which is required for EWS/FLI fusion. By blocking the RNA-binding motif of EWS, it might be possible to combat ES. Therefore, molecular docking experiments validated the binding interaction patterns and structural behaviors of screened flavonoid compounds within the active region of the Ewing sarcoma protein (EWS). Furthermore, pharmacogenomics analysis was used to investigate potential drug interactions with Ewing sarcoma-associated genes. Finally, molecular dynamics simulations were used to investigate the stability of the best selected docked complexes. Taken together, daidzein, kaempferol, and genistein exhibited a result comparable to ifosfamide in the proposed in silico study and can be further analyzed as possible candidate compounds in biological in vitro studies against ES.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-8853
| |
Collapse
|
10
|
Feng Y, Yang X, Wang Y, Chi N, Yu J, Fu X. circRNA mannosidase alpha class 1A member 2 contributes to the proliferation and motility of papillary thyroid cancer cells through upregulating metadherin via absorbing microRNA-449a. Anticancer Drugs 2023; 34:44-56. [PMID: 36066401 DOI: 10.1097/cad.0000000000001340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Papillary thyroid carcinoma (PTC) is a common malignancy in endocrine system globally. Accumulating articles have found that circular RNAs (circRNAs) were dysregulated, and they were involved in PTC development. The aim of this project was to explore the function and associated mechanism of circRNA mannosidase alpha class 1A member 2 (circMAN1A2) in PTC progression. The expression of RNA was determined by real-time quantitative PCR. Cell proliferation ability was analyzed by colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration and invasion were assessed by wound healing assay and transwell invasion assay, respectively. Protein levels were determined by Western blot assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were applied to confirm the interaction between microRNA-449a (miR-449a) and circMAN1A2 or metadherin (MTDH). Xenograft tumor model was utilized to explore the effect of circMAN1A2 silencing on tumor growth in vivo . CircMAN1A2 expression was elevated in PTC specimens and three PTC cell lines relative to adjacent normal specimens and Nthy-ori 3-1 cell line. CircMAN1A2 silencing inhibited the proliferation and motility of PTC cells. CircMAN1A2 acted as a molecular sponge of miR-449a, and circMAN1A2 knockdown suppressed PTC development partly through upregulating miR-449a. MiR-449a bound to the 3' untranslated region of MTDH, and miR-449a restrained PTC progression partly through down-regulating MTDH. CircMAN1A2 interference suppressed PTC progression in vivo . CircMAN1A2 contributed to the proliferation ability and motility of PTC cells through enhancing MTDH expression via sponging miR-449a.
Collapse
Affiliation(s)
- Yao Feng
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Xinxin Yang
- School of Clinical Medicine, Jiamusi University and Departments of
| | | | - Nannan Chi
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Jianan Yu
- School of Clinical Medicine, Jiamusi University and Departments of
| | - Xiandong Fu
- General Surgery, Jiamusi University, Jiamusi, China
| |
Collapse
|
11
|
Xia Y, Wang D, Piao Y, Chen M, Wang D, Jiang Z, Liu B. Modulation of immunosuppressive cells and noncoding RNAs as immunotherapy in osteosarcoma. Front Immunol 2022; 13:1025532. [PMID: 36457998 PMCID: PMC9705758 DOI: 10.3389/fimmu.2022.1025532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 07/21/2023] Open
Abstract
The most common bone cancer is osteosarcoma (OS), which mostly affects children and teenagers. Early surgical resection combined with chemotherapy significantly improves the prognosis of patients with OS. Existing chemotherapies have poor efficacy in individuals with distant metastases or inoperable resection, and these patients may respond better to novel immunotherapies. Immune escape, which is mediated by immunosuppressive cells in the tumour microenvironment (TME), is a major cause of poor OS prognosis and a primary target of immunotherapy. Myeloid-derived suppressor cells, regulatory T cells, and tumour-associated macrophages are the main immunosuppressor cells, which can regulate tumorigenesis and growth on a variety of levels through the interaction in the TME. The proliferation, migration, invasion, and epithelial-mesenchymal transition of OS cells can all be impacted by the expression of non-coding RNAs (ncRNAs), which can also influence how immunosuppressive cells work and support immune suppression in TME. Interferon, checkpoint inhibitors, cancer vaccines, and engineered chimeric antigen receptor (CAR-T) T cells for OS have all been developed using information from studies on the metabolic properties of immunosuppressive cells in TME and ncRNAs in OS cells. This review summarizes the regulatory effect of ncRNAs on OS cells as well as the metabolic heterogeneity of immunosuppressive cells in the context of OS immunotherapies.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yuting Piao
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
miR-23b-3p, miR-124-3p and miR-218-5p Synergistic or Additive Effects on Cellular Processes That Modulate Cervical Cancer Progression? A Molecular Balance That Needs Attention. Int J Mol Sci 2022; 23:ijms232113551. [PMID: 36362337 PMCID: PMC9658720 DOI: 10.3390/ijms232113551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
In cervical cancer (CC), miR-23b-3p, miR-124-3p, and miR-218-5p have been found to act as tumor suppressors by regulating cellular processes related to progression and metastasis. The objective of the present review is to provide an update on the experimental evidence about the role of miR-23b-3p, miR-124-3p, and miR-218-5p in the regulation of CC progression. Additionally, we present the results of a bioinformatic analysis that suggest that these miRNAs have a somewhat redundant role in the same cellular processes that may result in a synergistic effect to promote CC progression. The results indicate that specific and common target genes for miR-23b-3p, miR-124-3p, and miR-218-5p regulate proliferation, migration, apoptosis, and angiogenesis, all processes that are related to CC maintenance and progression. Furthermore, several target genes may regulate cancer-related signaling pathways. We found that a total of 271 proteins encoded by the target mRNAs of miR-23b-3p, miR-124-3p, or miR-218-5p interact to regulate the cellular processes previously mentioned, and some of these proteins are regulated by HPV-16 E7. Taken together, information analysis indicates that miR-23b-3p, miR-124-3p, and miR-218-5p may potentiate their effects to modulate the cellular processes related to the progression and maintenance of CC with and without HPV-16 involvement.
Collapse
|
13
|
Najafi F, Kelaye SK, Kazemi B, Foruzandeh Z, Allahverdizadeh F, Vakili S, Rad KK, Derakhshani M, Solali S, Alivand MR. The role of miRNA-424 and miR-631 in various cancers: Focusing on drug resistance and sensitivity. Pathol Res Pract 2022; 239:154130. [DOI: 10.1016/j.prp.2022.154130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
|
14
|
Sequence Requirements for miR-424-5p Regulating and Function in Cancers. Int J Mol Sci 2022; 23:ijms23074037. [PMID: 35409396 PMCID: PMC8999618 DOI: 10.3390/ijms23074037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
MiRNAs (microRNAs) are the most abundant family of small noncoding RNAs in mammalian cells. Increasing evidence shows that miRNAs are crucial regulators of individual development and cell homeostasis by controlling various biological processes. Therefore, miRNA dysfunction can lead to human diseases, especially in cancers with high morbidity and mortality worldwide. MiRNAs play different roles in these processes. In recent years, studies have found that miR-424-5p is closely related to the occurrence, development, prognosis and treatment of tumors. This review discusses how miR-424-5p plays a role in different kinds of cancers from different stages of tumors, including its roles in (i) promoting or inhibiting tumorigenesis, (ii) regulating tumor development in the tumor microenvironment and (iii) participating in cancer chemotherapy. This review provides a deep discussion of the latest findings on miR-424-5p and its importance in cancer, as well as a mechanistic analysis of the role of miR-424-5p in various tissues through target gene verification and pathway analysis.
Collapse
|
15
|
The Biological Function of MicroRNAs in Bone Tumors. Int J Mol Sci 2022; 23:ijms23042348. [PMID: 35216464 PMCID: PMC8876091 DOI: 10.3390/ijms23042348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Micro ribonucleic acids (miRNAs) are small endogenous noncoding RNAs molecules that regulate gene expression post-transcriptionally. A single miRNA is able to target hundreds of specific messenger RNA (mRNAs) by binding to the 3′-untranslated regions. miRNAs regulate different biological processes such as cell proliferation, differentiation and apoptosis. Altered miRNA expression is certainly related to the development of the most common human diseases, including tumors. Osteosarcoma (OS), Ewing’s Sarcoma (ES), and Chondrosarcoma (CS) are the most common primary bone tumors which affect mainly children and adolescents. A significant dysregulation of miRNA expression, in particular of mir-34, mir-21, mir-106, mir-143, and miR-100, has been revealed in OS, ES and CS. In this context, miRNAs can act as either tumor suppressor genes or oncogenes, contributing to the initiation and progression of bone tumors. The in-depth study of these small molecules can thus help to better understand their biological functions in bone tumors. Therefore, this review aims to examine the potential role of miRNAs in bone tumors, especially OS, ES and CS, and to suggest their possible use as potential therapeutic targets for the treatment of bone tumors and as biomarkers for early diagnosis.
Collapse
|
16
|
Priyanka P, Sharma M, Das S, Saxena S. E2F1-induced lncRNA, EMSLR regulates lncRNA LncPRESS1. Sci Rep 2022; 12:2548. [PMID: 35169159 PMCID: PMC8847401 DOI: 10.1038/s41598-022-06154-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
E2F1 induces hundreds of protein-coding genes influencing diverse signaling pathways but much less is known about its non-coding RNA targets. For identifying E2F1-dependent oncogenic long non-coding RNAs (lncRNAs), we carried out genome-wide transcriptome analysis and discovered an lncRNA, EMSLR, which is induced both in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). EMSLR depletion blocks the cells in G1 phase and inhibits the clonogenic ability indicating that it is essential for the tumor-related phenotypes. We discovered that EMSLR represses the promoter activity of another lncRNA, LncPRESS1, which is located 6.9 kb upstream of EMSLR and they display an inverse expression pattern in lung cancer cell lines. Depletion of C-MYC results in downregulation of EMSLR and simultaneous upregulation of EMSLR target LncPRESS1, exemplifying how C-MYC and E2F1 signal transduction pathways control the network of lncRNA genes to modulate cell proliferation and differentiation.
Collapse
Affiliation(s)
- Priyanka Priyanka
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Sanjeev Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Saxena
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India. .,JNU, New Delhi, India.
| |
Collapse
|
17
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
18
|
Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Nanoparticle mediated RNA delivery for wound healing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1741. [PMID: 34369096 DOI: 10.1002/wnan.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a complicated physiological process that comprises various steps, including hemostasis, inflammation, proliferation, and remodeling. The wound healing process is significantly affected by coexisting disease states such as diabetes, immunosuppression, or vascular disease. It can also be impacted by age, repeated injury, or hypertrophic scarring. These comorbidities can affect the rate of wound closure, the quality of wound closure, and tissues' function at the affected sites. There are limited options to improve the rate or quality of wound healing, creating a significant unmet need. Advances in nucleic acid research and the human genome project have developed potential novel approaches to address these outstanding requirements. In particular, the use of microRNA, short hairpin RNA, and silencing RNA is unique in their abilities as key regulators within the physiologic machinery of the cell. Although this innovative therapeutic approach using ribonucleic acid (RNA) is an attractive approach, the application as a therapeutic remains a challenge due to site-specific delivery, off-target effects, and RNA degradation obstacles. An ideal delivery system is essential for successful gene delivery. An ideal delivery system should result in high bioactivity, inhibit rapid dilution, controlled release, allow specific activation timings facilitating physiological stability, and minimize multiple dosages. Currently, these goals can be achieved by inorganic nanoparticle (NP) (e.g., cerium oxide, gold, silica, etc.) based delivery systems. This review focuses on providing insight into the preeminent research carried out on various RNAs and their delivery through NPs for effective wound healing. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Balaashwin Babu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
19
|
Priyanka P, Sharma M, Das S, Saxena S. The lncRNA HMS recruits RNA-binding protein HuR to stabilize the 3'-UTR of HOXC10 mRNA. J Biol Chem 2021; 297:100997. [PMID: 34302808 PMCID: PMC8363838 DOI: 10.1016/j.jbc.2021.100997] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to drive key cancer pathways but the functions of majority of lncRNAs are unknown making a case for comprehensive functional evaluation of lncRNAs. With an aim to identify lncRNAs dysregulated in human cancers, we analyzed the cancer patient database of lung adenocarcinoma (LUAD), which revealed an upregulated lncRNA, LINC02381 (renamed HOXC10mRNA stabilizing factor or HMS in this study), whose depletion results in proliferation defects and inhibition of colony formation of human cancer cells. In order to identify the binding targets of HMS, we screened for cis-genes and discovered that HOXC10, an oncogene, is downregulated in the absence of HMS. Depletion of HMS does not affect the HOXC10 promoter activity but inhibits the HOXC10 3′-UTR-linked luciferase reporter activity. Since lncRNAs have been known to associate with RNA-binding proteins (RBPs) to stabilize mRNA transcripts, we screened for different RBPs and discovered that HuR, an ELAV family protein, stabilizes HOXC10 mRNA. Using RNA pull-down and deletion mapping experiments, we show that HuR physically interacts with the cytosine-rich stretch of HMS and HOXC10 3′-UTR to stabilize HOXC10 mRNA. HOXC10 is overexpressed in many human cancers, and our discovery highlights that lncRNA HMS sustains the HOXC10 mRNA levels to maintain the invasive phenotypes of cancer cells.
Collapse
Affiliation(s)
- Priyanka Priyanka
- DNA Replication and Cell Cycle Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Sanjeev Das
- DNA Replication and Cell Cycle Laboratory, National Institute of Immunology, New Delhi, India
| | - Sandeep Saxena
- DNA Replication and Cell Cycle Laboratory, National Institute of Immunology, New Delhi, India; Department of Biotechnology, JNU, New Delhi, India.
| |
Collapse
|
20
|
Yang X, Tian M, Zhang W, Chai T, Shen Z, Kang M, Lin J. Identification of potential core genes in esophageal carcinoma using bioinformatics analysis. Medicine (Baltimore) 2021; 100:e26428. [PMID: 34232175 PMCID: PMC8270608 DOI: 10.1097/md.0000000000026428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a common human malignancy worldwide. The tumorigenesis mechanism in ESCC is unclear. MATERIALS AND METHODS To explore potential therapeutic targets for ESCC, we analyzed 3 microarray datasets (GSE20347, GSE38129, and GSE67269) derived from the gene expression omnibus (GEO) database. Then, the GEO2R tool was used to screen out differently expressed genes (DEGs) between ESCC and normal tissue. Gene ontology function and kyoto encyclopedia of genes and genomes pathway enrichment analysis were performed using the database for annotation, visualization and integrated discovery to identify the pathways and functional annotation of DEGs. Protein-protein interaction of these DEGs was analyzed based on the search tool for the retrieval of interacting genes database and visualized by Cytoscape software. In addition, we used encyclopedia of RNA interactomes (ENCORI), gene expression profiling interactive analysis (GEPIA), and the human protein atlas to confirm the expression of hub genes in ESCC. Finally, GEPIA was used to evaluate the prognostic value of hub genes expression in ESCC patients and we estimated the associations between hub genes expression and immune cell populations (B Cell, CD8+ T Cell, CD4+ T Cell, Macrophage, Neutrophil, and Dendritic Cell) in esophageal carcinoma (ESCA) using tumor immune estimation resource (TIMER). RESULTS In this study, 707 DEGs (including 385 upregulated genes and 322 downregulated genes) and 6 hub genes (cyclin B1 [CCNB1], cyclin dependent kinase 1 [CDK1], aurora kinase A [AURKA], ubiquitin conjugating enzyme E2C [UBE2C], cyclin A2 [CCNA2], and cell division cycle 20 [CDC20]) were identified. All of the 6 hub genes were highly expressed in ESCC tissues. Among of them, only CCNB1 and CDC20 were associated with stage of ESCC and all of them were not associated with survival time of patients. CONCLUSION DEGs and hub genes were confirmed in our study, providing a thorough, scientific and comprehensive research goals for the pathogenesis of ESCC.
Collapse
Affiliation(s)
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | | | - Tianci Chai
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou
- Department of Anesthesiology, Xinyi People's Hospital, Xuzhou
| | | | | | | |
Collapse
|
21
|
Shang J, Sun S, Zhang L, Hao F, Zhang D. miR-211 alleviates ischaemia/reperfusion-induced kidney injury by targeting TGFβR2/TGF-β/SMAD3 pathway. Bioengineered 2021; 11:547-557. [PMID: 32375588 PMCID: PMC8291827 DOI: 10.1080/21655979.2020.1765501] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-211 (miR-211) is closely related to apoptosis and plays an important role in ischemia/reperfusion (I/R) injury. Whether miR-211 is involved in the protective effects in renal I/R injury is unknown. In this study, we evaluated the role of miR-211 in human tubular epithelial cells in response to hypoxia-reoxygenation (H/R) stimulation and I/R injury in vitro and in vivo. The results revealed that miR-211 was down-regulated and TGFβR2 was up-regulated in human kidney (HK-2) cells subjected to H/R. Luciferase reporter assay showed that TGFβR2 was a direct target of miR-211. Enforced miR-211 expression decreased H/R-induced HK-2 cell apoptosis and increased cell viability, and targeting miR-211 further increased H/R-induced HK-2 cell apoptosis and decreased cell viability. However, the effect of miR-211 was reversed by targeting TGFβR2 or enforced TGFβR2 expression in miR-211 overexpressing cells or miR-211 downexpressing cells. Moreover, we confirmed that miR-211 interacted with TGFβR2, and regulating TGF-β/SMAD3 signal. In vivo in mice, miR-211 overexpression ameliorates biochemical and histological kidney injury, reduces apoptosis in mice following I/R. On the contrary, miR-211 downexpressing promoted histological kidney injury and increased apoptosis in mice following I/R. Inhibition of miR-211 or miR-211 overexpression inhibited TGF-β/SMAD3 pathways or activated TGF-β/SMAD3 signal pathways in vitro and in vivo, which are critical for cell survival. Our findings suggested that miR-211 suppress apoptosis and relieve kidney injury following H/R or I/R via targeting TGFβR2/TGF-β/SMAD3 signals. Therefore, miR-211 may be as therapeutic potential for I/R- induced kidney injury.
Collapse
Affiliation(s)
- Jinchun Shang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shukai Sun
- Department of Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lin Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dianlong Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Wang H, Liu Z, Wu P, Wang H, Ren W. NUSAP1 Accelerates Osteosarcoma Cell Proliferation and Cell Cycle Progression via Upregulating CDC20 and Cyclin A2. Onco Targets Ther 2021; 14:3443-3454. [PMID: 34079289 PMCID: PMC8164717 DOI: 10.2147/ott.s295818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 01/17/2023] Open
Abstract
Purpose Nucleolar and spindle-associated protein 1 (NUSAP1) is a significant mitotic regulator and has been found to be implicated in carcinogenesis of several cancers. The aim of this study was to explore the functional role and underlying mechanisms of NUSAP1 in osteosarcoma. Methods Western blot assay and Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) were employed to assess the expressions of NUSAP1, cell division cycle 20 homologue (CDC20) and cyclin A2 (CCNA2) in osteosarcoma cells. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay, and flow cytometry was applied for exploring cell cycle. In addition, an osteosarcoma tumor-bearing mouse model was established by injection of transfected osteosarcoma cells. Tumor volume and protein expressions of Ki67 and PCNA were examined. Bioinformatics analysis and immunoprecipitation were used to identify the combination of NUSAP1 with CDC20 and CCNA2. Results The mRNA and protein expression of NUSAP1 were extremely upregulated in osteosarcoma cells. Overexpression of NUSAP1 promoted whereas NUSAP1 silencing suppressed cell proliferation and cell cycle progression in transfected osteosarcoma cells. In osteosarcoma mouse model, NUSAP1 expression affected tumor volume and levels of Ki67 and PCNA. Moreover, CDC20 or CCNA2 silencing inhibited NUSAP1-induced cell proliferation and cell cycle in osteosarcoma cells. Conclusion Our data demonstrated that upregulated NUSAP1 may exacerbate the development of osteosarcoma by accelerating the proliferation and cell cycle process of osteosarcoma cells by binding to CDC20 and CCNA2, suggesting NUSAP1 as a possible therapeutic target for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Zixiang Liu
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Peng Wu
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Hanqing Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| | - Weiwei Ren
- Department of Gynecology, Hangzhou Children's Hospital, Hangzhou, People's Republic of China
| |
Collapse
|
23
|
Liu Y, Gu X, Liu Y. The effect of dexmedetomidine on biological behavior of osteosarcoma cells through miR-1307 expression. Am J Transl Res 2021; 13:4876-4883. [PMID: 34150070 PMCID: PMC8205663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES This study analyzed the effect of dexmedetomidine (DEX) on biological behavior of osteosarcoma cells through expression of miR-1307. METHODS We performed routine culture of human osteosarcoma cells MG-63 and randomly divided into control group, low-dose DEX group (25 ng/ml), medium-dose DEX group (50 ng/ml) and high-dose DEX group (100 ng/ml). Subsequently, we detected the cell proliferation (by CCK8 method), cell apoptosis (flow cytometry), mir-1307 expression (qRT-PCR), cell invasion (Transwell), and cell migration (scratch test) respectively. RESULTS The growth rate of osteosarcoma cells MG-63 slowed down with the increase of DEX concentration. Compared with the control group, the cellular absorbance in groups with different DEX dose decreased remarkably after 72 hours of culture (P<0.05). The proportion of apoptotic cells increased as well with the uplifting of DEX concentration, and the apoptotic rate in medium and high dosed DEX groups were remarkably higher than which in control group (P<0.05). Compared with the control group, the invasive ability of MG-63 cells after DEX treatment decreased significantly, and with the increase of DEX concentration, the number of invasive cells declined more obviously (P<0.05). Compared with the control group, the mobility rate of MG-63 cells after DEX treatment decreased significantly, and with the increase of DEX concentration, the cell mobility rate decreased more remarkably (P<0.05). In addition, the relative expression of miR-1307 in MG-63 cells after DEX treatment decreased significantly comparing to the control group, and the decline was more noteworthy with the increase of DEX concentration (P<0.05). CONCLUSION DEX can effectively inhibit the proliferation, invasion, metastasis, and apoptosis of osteosarcoma cells in a dose-dependent manner, and its efficacy may be related to its regulation of miR-1307 expression.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Anesthesiology, The Third Clinical Medical College of Xinjiang Medical University (Cancer Hospital)Urumqi 830011, Xinjiang, China
| | - Xiaopeng Gu
- Department of Orthopedics, Zhoushan Guhechuan HospitalZhoushan 316000, Zhejiang, China
| | - Yongtao Liu
- Department of Spinal Column Surgery, Zhoushan Guhechuan HospitalZhoushan 316000, Zhejiang, China
| |
Collapse
|
24
|
Liu D, Wang H, Zhou Z, Mao X, Ye Z, Zhang Z, Tu S, Zhang Y, Cai X, Lan X, Zhang Z, Han B, Zuo G. Integrated bioinformatic analysis and experiment confirmation of the antagonistic effect and molecular mechanism of ginsenoside Rh2 in metastatic osteosarcoma. J Pharm Biomed Anal 2021; 201:114088. [PMID: 33957363 DOI: 10.1016/j.jpba.2021.114088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022]
Abstract
This study aimed to compare the gene expression variation of clinical primary osteosarcoma (OS) and metastatic OS, identify expression profiles and signal pathways related to disease classification, and systematically evaluate the potential anticancer effect and molecular mechanism of ginsenoside Rh2 on OS. A raw dataset (GSE14359), which excluded GSM359137 and GSM359138, was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) and principal component analysis (PCA) were obtained with limma. Pathways enrichment analysis was understood by GSEA app. Rh2-associated targets were harvested and mapped through PharmMapper and Cytoscape 3.4.0. The toxicity of Rh2 was determined using crystal staining and MTT assay on 143B and MG63 cell lines. The relative protein expression was confirmed through Western blot analysis. The mitochondrial membrane potential (△Ψm) was evaluated by JC-1 fluorescence staining. The cell mobility was measured via wound healing and transwell assays. A total of 752 genes were upregulated, while 161 genes were downregulated. GSEA and PCA displayed significant function enrichment and classification. Through PharmMapper and Cytoscape 3.4.0, Rh2 was found to target the mitogen activated protein kinase (MAPK) and PI3K signaling pathways, which are the key pathways in the metastasis of OS. Furthermore, Rh2 induced a concentration-dependent decrease in cell viability and early apoptosis associated with ΔΨm decline, while a non-lethal dose of Rh2 weakened the metastatic capability. Moreover, systematic evaluation showed that promoting the MAPK signaling pathway and inhibiting PI3K/Akt/mTOR were correlated with the anticancer effects of Rh2 on metastatic OS. In conclusion, transcriptome-derived approaches may be beneficial in diagnosing early metastases, and Rh2, a multi-targeting agent, shows promising application potential in suppressing metastatic OS in an MAPK- and PI3K/Akt/mTOR-dependent manner.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhangxu Zhou
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohan Mao
- Department of Clinical Laboratory, Yubei District People's Hospital, Chongqing, 401120, China
| | - Ziqian Ye
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhilun Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shixin Tu
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yanlai Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Cai
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Lan
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical, University, Luzhou, 646000, China
| | - Baoru Han
- Medical Data Science Academy, College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China.
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Ji SF, Wen SL, Sun Y, Huang PW, Wu H, He ML. The biological function and clinical significance of STIL in osteosarcoma. Cancer Cell Int 2021; 21:218. [PMID: 33858425 PMCID: PMC8051131 DOI: 10.1186/s12935-021-01922-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background SCL/TAL1 interrupting locus (STIL) is associated with the progression of several tumors; however, the biological role of STIL in osteosarcoma remains poorly understood. Methods In this study, the clinical significance of STIL in osteosarcoma was analyzed by gene chip data recorded in public databases. STIL expression was silenced in osteosarcoma cell lines to observe the effects on proliferation, apoptosis, invasion, and migration. Differentially expressed genes (DEGs) in the osteosarcoma chip were analyzed using The Limma package, and STIL co-expressed genes were obtained via the Pearson correlation coefficient. The potential molecular mechanism of STIL in osteosarcoma was further explored by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Results Osteosarcoma was associated with higher STIL expression compared to the control samples, and the standardized mean difference (SMD) was 1.52. STIL also had a good ability to distinguish osteosarcoma from non-osteosarcoma samples [area under the curve (AUC) = 0.96]. After silencing STIL, osteosarcoma cell proliferation decreased, apoptosis increased, and the migratory and invasion ability decreased. A total of 294 STIL differentially co-expressed genes were screened, and a bioinformatics analysis found that differentially co-expressed genes were primarily enriched in the cell signaling pathways. The protein-protein interaction (PPI) network indicated that the hub differentially co-expressed genes of STIL were CDK1, CCNB2, CDC20, CCNA2, BUB1, and AURKB. Conclusions STIL is associated with osteosarcoma proliferation and invasion, and may be promote the progression of osteosarcoma by regulating the expression of CDK1, CCNB2, CDC20, CCNA2, BUB1 and AURKB.
Collapse
Affiliation(s)
- Shu-Fan Ji
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sheng-Lian Wen
- Department of Radiology, The First Affiliated Hospital, Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, 530021, Nanning, People's Republic of China
| | - Yu Sun
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pi-Wei Huang
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Wu
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Mao-Lin He
- Division of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China. .,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China. .,Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
26
|
Hanying M, Zhao Y, Suo N. Identification of Specific Modules and Hub microRNAs Related to Osteosarcoma by Weighted microRNA Co-Expression Network Analysis. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteosarcoma (OS) is a malignant tumor with high morbidity and poor prognosis, especially for patients with metastasis. New therapeutic approaches are extremely needed. MicroRNAs can affect manykey biological processes, including the development and progression of complex diseases,
such as OS. Here we identified specific modules and hub microRNAs related to OS through weighted gene co-expression network analysis (WGCNA). A module consisting of 72 microRNAs were found to be highly related to OS and 22 of them have been reported as deregulatedmicroRNAs in OS patients which
play a role in OS tumorigenesis, development or prognosis. Then the target genes of the microRNAs were predicted and the functional enrichment analysis was performed on these genes. This study will provide a more clear understanding for facilitating the characterization and identification
of new biomarkers and treatment for patients with OS by targeted miRNA.
Collapse
Affiliation(s)
- Mei Hanying
- Depatment of Rheumatology-Immuny, The First People’s Hospital of Jiujiang Jiangxi, Jiujiang, Jiangxi Province, 332000, China
| | - Yueling Zhao
- Departement of Science, Tianjin Beichen District Hospital of Traditional Chinese Medicine Tianjin, Tianjing Province, 300400, China
| | - Na Suo
- Depatment of Spinal and Bone Oncology, Hengshui People’s Hospital Affiliated to Hebei Medical University, Henshui, Hebei Province, 053000, China
| |
Collapse
|
27
|
Liu J, Zeng X, Han K, Jia X, Zhou M, Zhang Z, Wang Y. The expression regulation of Cyclins and CDKs in ovary via miR-9c and miR-263a of Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110567. [PMID: 33548504 DOI: 10.1016/j.cbpb.2021.110567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Scylla paramamosain is an economically important cultured crab species in China. Cyclins and cyclin-dependent kinases (CDKs) play important roles in regulations of cell cycle and ovarian development. MiRNAs can negatively regulate gene expression at the post-transcriptional level through base-complementary pairing with the 3'-untranslated region (3-UTR) of the target gene. In this study, bioinformatics prediction showed that miR-9c and miR-263a identified from our group's gonad miRNAome of S. paramamosain may bind to the 3' UTR region of cyclin A, cyclin B, cyclin E, cyclin H, CDK1, and CDK2. Furthermore, the results of double luciferase reporter gene assay showed that the luciferase activities of HEK293T cells co-transfected with miR-9c mimics/miR-9c inhibitor and the 3'-UTR plasmid vectors of the five genes (cyclin A, cyclin B, cyclin H, CDK1, and CDK2) were significantly decreased/increased compared with those in the NC (negative control) and BC (blank control) groups. The results in miR-263a were similar to miR-9c, but all of the six genes could be regulated by miR-263a. In in vivo experiments, agomiR-9c (miR-9c enhancer) injection resulted in decreases of cyclin A and CDK1 expression level, and reverse effects were observed by injecting antagomiR-9c. AgomiR-263a decreased the expression of cyclin A, cyclin B, cyclin H, CDK1, and CDK2, but antagomiR-263a increased their expression. Both the in vitro and in vivo experiments confirmed functions of miR-9c and miR-263a in cell cycle progress of ovarian development by expression regulation of cyclin A, cyclin B, cyclin E, cyclin H, CDK1, and CDK2. The findings provide new insights into the reproductive regulation mechanism in mud crab and further enrich the knowledge of cell cycle and ovarian development regulation in invertebrates.
Collapse
Affiliation(s)
- Jianan Liu
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Xianyuan Zeng
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Kunhuang Han
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; School of Life Sciences, Ningde Normal University, Ningde 352100, China
| | - Xiwei Jia
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Mingcan Zhou
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
28
|
Li Z, Wang X, Liang S. Long non-coding RNA small nucleolar RNA host gene 1 knockdown suppresses the proliferation, migration and invasion of osteosarcoma cells by regulating microRNA-424-5p/FGF2 in vitro. Exp Ther Med 2021; 21:325. [PMID: 33732298 DOI: 10.3892/etm.2021.9756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to clarify the effect of long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) on the proliferation, migration and invasion of osteosarcoma (OS) cells and to explore the potential underlying mechanisms. The expression levels of SNHG1, microRNA (miR)-424-5p and fibroblast growth factor 2 (FGF2) in OS tissues and cells were detected using reverse transcription-quantitative polymerase chain reaction. OS cell proliferation, migration and invasion were analysed by MTT, wound healing and Transwell invasion assays, respectively. The targeting relationships between SNHG1 and miR-424-5p, as well as between miR-424-5p and FGF2, were confirmed using RNA-binding protein immunoprecipitation and/or dual-luciferase reporter gene assays. The results demonstrated that the expression levels of SNHG1 and FGF2 were upregulated, whereas the expression of miR-424-5p was downregulated in OS tissues and cells. The silencing of SNHG1 significantly inhibited the proliferation, migration and invasion of OS cells. Additionally, FGF2 was shown to be a target of miR-424-5p, which in turn, was a target of SNHG1. miR-424-5p silencing and FGF2 overexpression both reversed the suppressive effects of SNHG1 knockdown on the proliferation, migration and invasion of OS cells. Thus, the silencing of SNHG1 may inhibit the proliferation, migration and invasion of OS cells by regulating the miR-424-5p/FGF2 axis.
Collapse
Affiliation(s)
- Zhuokai Li
- Department of Orthopaedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaohe Wang
- Department of Orthopaedics, Jinan Zhangqiu District Hospital of TCM, Jinan, Shandong 250200, P.R. China
| | - Shuofu Liang
- Department of Orthopaedics, Zibo Zhoucun People's Hospital, Zibo, Shandong 255300, P.R. China
| |
Collapse
|
29
|
Dastmalchi N, Baradaran B, Banan Khojasteh SM, Hosseinpourfeizi M, Safaralizadeh R. miR-424: A novel potential therapeutic target and prognostic factor in malignancies. Cell Biol Int 2020; 45:720-730. [PMID: 33325141 DOI: 10.1002/cbin.11530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
microRNAs are endogenous, noncoding RNAs. Showing both tumor-suppressive and oncogenic characteristics, miRNAs can regulate important processes in malignancies. This review aimed at highlighting the recent studies on the contribution of miR-424 to the modulation of carcinogenesis and exploring its probable clinical effectiveness in the diagnosis and therapy of malignancies. The data were extracted from all papers published from 2013 until 2020. Mature miR-424 leads to the degradation of its target transcripts or the suppression of translation via binding to the molecular targets. miR-424 is involved in modulating p53, PI3K/Akt, Wnt, and other molecular pathways, thereby regulating cellular growth, apoptosis, differentiation, chemoresistance, and cancer immunity. miR-424 was introduced as a tumor-suppressive miR in numerous types of cancers while as an oncogene in several cancers. Regarding the cancer dependent role of miR-424, it may be a prognostic and diagnostic biomarker and a potential candidate for the treatment of cancers.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
30
|
The microRNA-424/503 cluster: A master regulator of tumorigenesis and tumor progression with paradoxical roles in cancer. Cancer Lett 2020; 494:58-72. [PMID: 32846190 DOI: 10.1016/j.canlet.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a crucial role in post-transcriptional gene regulation and act as indispensable mediators in several critical biological processes, including tumorigenesis, tissue homeostasis, and regeneration. MiR-424 and miR-503 are intragenic miRNAs that are clustered on human chromosome Xq26.3. Previous studies have reported that both miRNAs are dysregulated and play crucial but paradoxical roles in tumor initiation and progression, involving different target genes and molecular pathways. Moreover, these two miRNAs are concomitantly expressed in several cancer cells, indicating a coordinating function as a cluster. In this review, the roles and regulatory mechanisms of miR-424, miR-503, and miR-424/503 cluster are summarized in different types of cancers.
Collapse
|
31
|
Peng X, Wang J, Li D, Chen X, Liu K, Zhang C, Lai Y. Identification of grade-related genes and construction of a robust genomic-clinicopathologic nomogram for predicting recurrence of bladder cancer. Medicine (Baltimore) 2020; 99:e23179. [PMID: 33217824 PMCID: PMC7676566 DOI: 10.1097/md.0000000000023179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common tumor in the urinary system with a high recurrence rate. The individualized treatment and follow-up after surgery is the key to a successful outcome. Currently, the surveillance strategies are mainly depending on tumor stage and grade. Previous evidence has proved that tumor grade was a significant and independent risk factor of BC recurrence. Exploring the grade-related genes may provide us a new approach to predict prognosis and guide the post-operative treatment in BC patients. METHODS In this study, the weighted gene co-expression network analysis was applied to identify the hub gene module correlated with BC grade using GSE71576. After constructing a protein-protein interaction (PPI) network with the hub genes inside the hub gene module, we identified some potential core genes. TCGA and another independent dataset were used for further validation. RESULTS The results revealed that the expression of AURKA, CCNA2, CCNB1, KIF11, TTK, BUB1B, BUB1, and CDK1 were significantly higher in high-grade BC, showing a strong ability to distinguish BC grade. The expression levels of the 8 genes in normal, paracancerous, tumorous, and recurrent bladder tissues were progressively increased. By conducting survival analysis, we proved their prognostic value in predicting the recurrence of BC. Eventually, we constructed a prognostic nomogram by combining the 8-core-gene panel with clinicopathologic features, which had shown great performance in predicting the recurrence of BC. CONCLUSION We identified 8 core genes that revealed a significant correlation with the tumor grade as well as the recurrence of BC. Finally, we proved the value of a novel prognostic nomogram for predicting the relapse-free survival of BC patients after surgery, which could guide their treatment and follow-up.
Collapse
Affiliation(s)
- Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen
- Shantou University Medical College, Shantou, Guangdong
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen
| | - Dongna Li
- Shantou University Medical College, Shantou, Guangdong
| | - Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen
- Shantou University Medical College, Shantou, Guangdong
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen
- Anhui Medical University, Hefei, Anhui, China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen
| |
Collapse
|
32
|
Pan X, Li H, Tan J, Weng X, Zhou L, Weng Y, Cao X. miR-1297 Suppresses Osteosarcoma Proliferation and Aerobic Glycolysis by Regulating PFKFB2. Onco Targets Ther 2020; 13:11265-11275. [PMID: 33173315 PMCID: PMC7648564 DOI: 10.2147/ott.s274744] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background MiR-1297 is reported to function as a tumor suppressor of various cancers. However, the role of miR-1297 in the development of osteosarcoma (OS) has not been elaborated. The purpose of this study was to investigate the functional effects of miR-1297 on OS progression and the underlying mechanism. Methods The expression of protein and mRNA in OS cells was evaluated by Western blotting and quantitative real-time polymerase chain reaction. Cellular proliferation was investigated by cell counting kit-8, colony formation and apoptosis assays. Bioinformatics methods were used to predict target genes. The relationship between PFKFB2 and miR-1297 was demonstrated by dual-luciferase reporter assay. Metabolic changes in OS cells were monitored using an XF96 metabolic flux analyzer. Results We found that miR-1297 was downregulated in OS and that lower expression of miR-1297 promoted proliferation and contributed to the Warburg effect in OS cells. Furthermore, we showed that silencing PFKFB2 inhibited proliferation and reduced aerobic glycolysis while overexpression of PFKFB2 reduced the anti-tumor function of miR-1297 in OS cells. Mechanistically, miR-1297 acted as a tumor suppressor in OS and reduced the expression of PFKFB2 by directly targeting its 3ʹUTR. Conclusion The miR-1297/PFKFB2 axis regulated OS proliferation by controlling the Warburg effect. Our results revealed a previously undiscovered function of miR-1297 in OS, which strongly linked metabolic alterations with cancer progression. Targeting miR-1297 may become a promising therapeutic approach for OS.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Haibo Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Jingxue Tan
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Xiaokun Weng
- Department of Radiotherapy, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Li Zhou
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No.2 People's Hospital, Changzhou, Jiangsu 213003, People's Republic of China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
33
|
Li S, Wu Y, Zhang J, Sun H, Wang X. Role of miRNA-424 in Cancers. Onco Targets Ther 2020; 13:9611-9622. [PMID: 33061443 PMCID: PMC7532073 DOI: 10.2147/ott.s266541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
microRNA (miRNA) is an important part of non-coding RNA that regulates gene expression at a posttranscriptional level. miRNA has gained increasing interest in recent years, both in research and clinical fields. miRNAs have been found to play an important role in various diseases, particularly cancer. Aberrant miR-424 expression is found in several tumors where they can function as either oncogenes or tumor-suppressor genes. Meanwhile, miR-424 is also affected by the reorganization of many other non-coding RNAs such as lncRNA and cirRNA. Several studies have found that miR-424 participates in proliferation, differentiation, apoptosis, invasion, angiogenesis, and drug resistance, and plays an important role in the tumorigenesis and progression of tumors. This review will focus on the recent progress of research on miR-424 in tumors.
Collapse
Affiliation(s)
- Shulin Li
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Yuqi Wu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Jiawei Zhang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Hao Sun
- Department of Urology, Shenzhen Second People's Hospital & the First Affiliated Hospital of Shenzhen University, Shenzhen 518000, People's Republic of China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
34
|
Li N, Jiang S, Shi J, Fu R, Wu H, Lu M. Construction of a potential microRNA, transcription factor and mRNA regulatory network in hepatocellular carcinoma. Transl Cancer Res 2020; 9:5528-5543. [PMID: 35117917 PMCID: PMC8799260 DOI: 10.21037/tcr-20-686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer-related death. MicroRNAs and transcription factors (TFs) cooperate to regulate the same target gene, thus affecting the progression of HCC. Methods Differentially expressed miRNAs and mRNAs were screened. Functional enrichment analysis of these HCC-related mRNAs was performed, and a protein-protein interaction network was constructed. TFs that regulate these miRNAs and hub genes were also screened. Results Ten differentially upregulated miRNAs and 5 differentially downregulated miRNAs were screened. Additionally, 183 downregulated mRNAs and 303 upregulated mRNAs that are potentially bound to these differentially expressed miRNAs were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the differentially expressed mRNAs were significantly enriched in pathways in cancer, the Wnt signaling pathway, and the Rap1 signaling pathway. Then, 220 TFs were identified for 5 candidate genes of the downregulated mRNAs, and 258 TFs were identified for 9 candidate genes of the upregulated mRNAs. Finally, the 9 upregulated hub genes were related to higher overall survival (OS) in the low-expression group, and 4/5 downregulated hub genes were related to higher OS in the high-expression group. Conclusions This study constructed a potential regulatory network between candidate molecules and that need to be further verified. These regulatory relationships are expected to clarify the new molecular mechanisms of the occurrence and development of HCC.
Collapse
Affiliation(s)
- Ning Li
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shaotao Jiang
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiewei Shi
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongdang Fu
- Department of Hepatic Surgery, the First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Huijie Wu
- Department of Obstetrics, the First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Minqiang Lu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
35
|
Cui Y, Yang J, Bai Y, Zhang Y, Yao Y, Zheng T, Liu C, Wu F. miR-424-5p regulates cell proliferation and migration of esophageal squamous cell carcinoma by targeting SIRT4. J Cancer 2020; 11:6337-6347. [PMID: 33033517 PMCID: PMC7532497 DOI: 10.7150/jca.50587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: The present research is aimed to elucidate the expression patterns of miR-424-5p and its role in tumorigenesis and progression of esophageal squamous cell carcinoma (ESCC). Methods: Both starBase and TCGA were utilized to assess miR-424-5p expression status in ESCC. The endogenous mRNA expression levels of miR-424-5p in ESCC and normal esophagus cell lines were detected by qRT-PCR. CCK8 and colony-forming assays were applied to determine the effects of miR-424-5p on ESCC proliferation. Transwell migration and wound healing assays were carried out to observe the changes of ESCC cell mobility after miR-424-5p mimic or inhibitor transfection. Impact of miR-424-5p on malignancy growth in vivo was further verified in a mouse xenograft model. The regulatory relationships between miR-424-5p and SIRT4 were validated by dual luciferase reporter assay, qRT-PCR and Western blot. Results: miR-424-5p expression was found upregulated in ESCC. miR-424-5p overexpression dramatically facilitated ESCC cells proliferation and migration capacity in vitro, while downregulation of miR-424-5p displayed the opposite trend. Inhibition of xenograft tumor growth was further evidenced in vivo. Moreover, SIRT4 was confirmed to be a specific target gene of miR-424-5p in ESCC and negatively modulated by miR-424-5p. Finally, SIRT4 overexpression strongly rescued the promoting influence of miR-424-5p on the proliferative and migratory capacity of ESCC cells. Conclusions: miR-424-5p had tumor promoting functions in proliferation and migration of ESCC by targeting SIRT4, suggesting that miR-424-5p may serve as a potential diagnostic biomarker and manipulation of miR-424-5p/SIRT4 axis could provide a novel therapeutic strategy for further ESCC treatment.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiani Yang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yibing Bai
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tongsen Zheng
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng Wu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Tang Z, Wu X, Hu L, Xiao Y, Tan J, Zuo S, Shen M, Yuan X. Circ-100290 Positively Regulates Angiogenesis Induced by Conditioned Medium of Human Amnion-Derived Mesenchymal Stem Cells Through miR-449a/eNOS and miR-449a/VEGFA Axes. Int J Biol Sci 2020; 16:2131-2144. [PMID: 32549760 PMCID: PMC7294943 DOI: 10.7150/ijbs.39895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
The powerful pro-angiogenic capacity of human amnion-derived mesenchymal stem cells (hAMSCs) could be a valuable therapeutic angiogenesis strategy for bone regeneration. However, the molecular mechanisms underlying this process remain largely unknown. Herein, we report upregulated expression of circular RNA 100290 (circ-100290) and an enhanced angiogenic phenotype of human umbilical vein endothelial cells (HUVECs) incubated with conditioned medium from hAMSCs (hAMSC-CM), whereas downregulation of circ-100290 reversed the pro-angiogenic capacity of HUVECs induced by hAMSC-CM. Circ-100290/microRNA 449a (miR-449a)/endothelial nitric oxide synthase (eNOS) and circ-100290/miR-449a/vascular endothelial growth factor A (VEGFA) axes were predicted by a bioinformatics method and subsequently verified by luciferase reporter assays in vitro. Gain- or loss-of-function assays were then performed using small interfering RNAs (siRNAs) targeting circ-100290, or a plasmid overexpressing circ-100290. As expected, downregulation of circ-100290 in HUVECs led to weakened tube formation and migration of HUVECs following hAMSC-CM treatment, along with decreased expression of eNOS and VEGFA. In contrast, upregulation of circ-100290 led to enhanced tube formation and migration of HUVECs following hAMSC-CM treatment, along with increased expression of eNOS and VEGFA. Furthermore, a miR-449a inhibitor could largely rescue the effect of circ-100290 silencing on HUVECs, whereas a miR-449a mimic could significantly rescue the effect of overexpressing circ-100290 on HUVECs. Functional assays using eNOS or VEGF receptor inhibitors indicated eNOS and VEGFA may be important targets of miR-449a. Finally, a Matrigel plug assay revealed weakened angiogenesis when circ-100290 was silenced in HUVECs, but enhanced angiogenesis when circ-100290 was overexpressed in vivo. Our results suggest that circ-100290 might function via miR-449a/eNOS and miR-449a/VEGFA axes in the pro-angiogenic role of hAMSC-CM on HUVECs.
Collapse
Affiliation(s)
- Zichun Tang
- Department of Stomatology, Tongling People's Hospital, Tongling, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Liping Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yijing Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Junling Tan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Siyu Zuo
- Nanjing Medical University, Department of Anatomy, Histology and Embryology, Nanjing, China
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiaoqin Yuan
- Nanjing Medical University, Department of Anatomy, Histology and Embryology, Nanjing, China
| |
Collapse
|
37
|
Fan Y, Liang Y, Deng K, Zhang Z, Zhang G, Zhang Y, Wang F. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics 2020; 21:327. [PMID: 32349667 PMCID: PMC7191724 DOI: 10.1186/s12864-020-6751-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DNA methylation is an epigenetic regulatory form that plays an important role in regulating the gene expression and the tissues development.. However, DNA methylation regulators involved in sheep muscle development remain unclear. To explore the functional importance of genome-scale DNA methylation during sheep muscle growth, this study systematically investigated the genome-wide DNA methylation profiles at key stages of Hu sheep developmental (fetus and adult) using deep whole-genome bisulfite sequencing (WGBS). RESULTS Our study found that the expression levels of DNA methyltransferase (DNMT)-related genes were lower in fetal muscle than in the muscle of adults. The methylation levels in the CG context were higher than those in the CHG and CHH contexts, and methylation levels were highest in introns, followed by exons and downstream regions. Subsequently, we identified 48,491, 17, and 135 differentially methylated regions (DMRs) in the CG, CHG, and CHH sequence contexts and 11,522 differentially methylated genes (DMGs). The results of bisulfite sequencing PCR (BSP) correlated well with the WGBS-Seq data. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis revealed that some DMGs were involved in regulating skeletal muscle development and fatty acid metabolism. By combining the WGBS-Seq and previous RNA-Seq data, a total of 159 overlap genes were obtained between differentially expressed genes (DEGs) and DMGs (FPKM > 10 and fold change > 4). Finally, we found that 9 DMGs were likely to be involved in muscle growth and metabolism of Hu sheep. CONCLUSIONS We systemically studied the global DNA methylation patterns of fetal and adult muscle development in Hu sheep, which provided new insights into a better understanding of the epigenetic regulation of sheep muscle development.
Collapse
Affiliation(s)
- Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
38
|
Yang L, Zeng W, Sun H, Huang F, Yang C, Cai X, Lu Y, Zeng J, Yang K. Bioinformatical Analysis of Gene Expression Omnibus Database Associates TAF7/CCNB1, TAF7/CCNA2, and GTF2E2/CDC20 Pathways with Glioblastoma Development and Prognosis. World Neurosurg 2020; 138:e492-e514. [PMID: 32147549 DOI: 10.1016/j.wneu.2020.02.159] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study bioinformatically analyzed aberrant genes and pathways for associations with glioblastoma development and prognosis. METHODS The Gene Expression Omnibus (GEO) database was searched and 4 GEO datasets (GSE4290, GSE50161, GSE116520, and GSE90598) were retrieved for limma and RobustRankAggreg package analyses of differentially expressed genes (DEGs) between glioblastoma and normal brain tissues. Functional enrichment analysis was conducted for the main biological functions of these DEGs, whereas the hub genes were identified using the protein-protein interaction network and confirmed for transcriptional and translational levels using the Cancer Genome Atlas, the Genotype-Tissue Expression, and the Human Protein Atlas data. The prognostic values of these hub genes were analyzed using the Chinese Glioma Genome Atlas. Their transcriptional factor regulation network was constructed to assess the roles in glioblastoma development and progression. RESULTS A total of 473 DEGs (182 upregulated and 291 downregulated) were identified and the hub genes (including CCNB1, CDC20, CCNB2, BUB1, and CCNA2) were shown in module 1 and enriched in the cell cycle or p53 signaling pathway. The highly expressed CCNB1, CDC20, BUB1, and CCNA2 in patients with glioblastoma were associated with poor overall survival, whereas TAF7 could upregulate expression of CCNB1 and CCNA2 and GTF2E2 could upregulate CDC20 expression in glioblastoma. CONCLUSIONS This study showed several DEGs in glioblastoma, and aberrant expression of their hub genes was associated with glioblastoma pathogenesis and poor prognosis, especially the signaling axes of TAF7/CCNB1, TAF7/CCNA2, and GTF2E2/CDC20.
Collapse
Affiliation(s)
- Liangwang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wangyuan Zeng
- Department of General Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Huamao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fen Huang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Changcheng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xingrui Cai
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanda Lu
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiangzheng Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
39
|
Wang H, Fu L, Wei D, Wang B, Zhang C, Zhu T, Ma Z, Li Z, Wu Y, Yu G. MiR-29c-3p Suppresses the Migration, Invasion and Cell Cycle in Esophageal Carcinoma via CCNA2/p53 Axis. Front Bioeng Biotechnol 2020; 8:75. [PMID: 32154226 PMCID: PMC7044414 DOI: 10.3389/fbioe.2020.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Objective In the present study, we tried to describe the role of miR-29c-3p in esophageal carcinoma (EC) and the relationship of miR-29c-3p with CCNA2 as well as cell cycle, accordingly revealing the potential molecular mechanism across cell proliferation, migration and invasion. Methods Expression profiles of EC miRNAs and matched clinical data were accessed from TCGA database for differential and survival analyses. Bioinformatics databases were employed to predict the downstream targets of the potential miRNA, and enrichment analysis was performed on the miRNA and corresponding target gene using GSEA software. qRT-PCR was conducted to detect the expression levels of miR-29c-3p and CCNA2 mRNA in EC tissues and cells, and Western blot was performed for the examination of CCNA2, CDK1 and p53 protein levels. Subsequently, cells were harvested for MTT, Transwell as well as flow cytometry assays to examine cell viability, migration, invasion and cell cycle. Dual-luciferase reporter gene assay and RIP were carried out to further investigate and verify the targeted relationship between miR-29c-3p and CCNA2. Results MiR-29c-3p was shown to be significantly down-regulated in EC tissues and able to predict poor prognosis. CCNA2 was found to be a downstream target of miR-29c-3p and mainly enriched in cell cycle and p53 signaling pathway, whereas miR-29c-3p was remarkably activated in cell cycle. MiR-29c-3p overexpression inhibited cell proliferation, migration and invasion, as well as arrested cells in G0/G1 phase. As suggested by dual-luciferase reporter gene assay and RIP, CCNA2 was under the regulation of miR-29c-3p, and the negative correlation between the two genes was verified. Silencing CCNA2 could suppress cell proliferation, migration and invasion, as well as activate p53 pathway, even was seen to reverse the inhibitory effect of PFTβ on p53. Besides, in the presence of low miR-29c-3p, CCNA2 was up-regulated while p53 was simultaneously inhibited, resulting in the promotion of cell migration, invasion and cell cycle arrest. Conclusion MiR-29c-3p plays a regulatory role in EC tumorigenesis and development. MiR-29c-3p can target CCNA2 to mediate p53 signaling pathway, finally attributing to the inhibition of cell proliferation, migration and invasion, and making cells arrest in G0/G1 phase.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Linhai Fu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Desheng Wei
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Bin Wang
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Chu Zhang
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Ting Zhu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhifeng Ma
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhupeng Li
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Yuanlin Wu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guangmao Yu
- Department of Thoracic and Cardiovascular Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
40
|
Guo L, Lu J, Gao J, Li M, Wang H, Zhan X. The function of SNHG7/miR-449a/ACSL1 axis in thyroid cancer. J Cell Biochem 2020; 121:4034-4042. [PMID: 31961004 DOI: 10.1002/jcb.29569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Thyroid cancer (TC) has been characterized as the most common malignant malady of the endocrine system. Small nucleolar RNA host gene 7 (SNHG7) has been reported to serve as a key regulator in a large number of human cancer types, but its role in TC and the underlying regulatory mechanism have never been evaluated yet. The present study indicated that the expression of SNHG7 was markedly higher in TC cell lines. Knockdown of SNHG7 led to a suppression of TC cell progression and migration. Acyl-CoA synthetase long-chain family member 1 (ACSL1) has also been demonstrated as an oncogene in many cancers. Herein an inhibition of ACSL1 after SNHG7 knockdown was captured. Further, the suppressing effects of SNHG7 knockdown on TC cell processes were counteracted by ACSL1 overexpression. Data from online bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays validated the interaction between microRNA-449a (miR-449a) and SNHG7 or ACSL1. It was also verified that SNHG7 sequestered miR-449a and therefore elevated ACSL1 expression levels. To conclude, the current study indicated that SNHG7 promoted proliferation and migration of TC cells by sponging miR-449a and therefore upregulating ACSL1. The present study may provide more explorations about the molecular regulation mechanism of long noncoding RNAs in TC progression.
Collapse
Affiliation(s)
- Linchi Guo
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Jixuan Lu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Jie Gao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,General Medicine, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia, China
| | - Mingyang Li
- Department of Endocrinology, Affiliated Hospital of Chifeng Medical College, Chifeng, Inner Mongolia, China
| | - Huihui Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar, Heilongjiang, China
| | - Xiaorong Zhan
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
41
|
Yang R, Du Y, Wang L, Chen Z, Liu X. Weighted gene co-expression network analysis identifies CCNA2 as a treatment target of prostate cancer through inhibiting cell cycle. J Cancer 2020; 11:1203-1211. [PMID: 31956366 PMCID: PMC6959059 DOI: 10.7150/jca.38173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is a malignant tumor disease that seriously harms the lives of middle-aged and elderly men. Weighted gene co-expression analysis can be used to construct gene co-expression networks to explore gene sets and genes that are significantly correlated with clinical features. In this study, the transcriptome data of prostate cancer on TCGA was analyzed by weighted gene co-expression network, and the gene with a significant correlation with disease Gleason stage and tumor T stage was identified: CCNA2. CCNA2 was significantly associated with biochemical recurrence, disease-free survival and overall survival rate of prostate cancer. The ability of cancer cell proliferation, invasion and metastasis was decreased after down-regulated expression of CCNA2 in prostate cancer cell lines. Flow cytometry revealed that tumor cells were arrested in the S phase after down-regulated the expression of CCNA2. Taken together, we used WGCNA and obtain a gene CCNA2 which is significantly associated with the prognosis of prostate cancer, which may be an indicator of the prognosis of prostate cancer and a new therapeutic target.
Collapse
Affiliation(s)
- Rui Yang
- Department of Urology, Ren min Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yang Du
- Department of Urology, Ren min Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Lei Wang
- Department of Urology, Ren min Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Zhiyuan Chen
- Department of Urology, Ren min Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Xiuheng Liu
- Department of Urology, Ren min Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| |
Collapse
|
42
|
Dong S, Xiao Y, Ma X, He W, Kang J, Peng Z, Wang L, Li Z. miR-193b Increases the Chemosensitivity of Osteosarcoma Cells by Promoting FEN1-Mediated Autophagy. Onco Targets Ther 2019; 12:10089-10098. [PMID: 31819503 PMCID: PMC6878930 DOI: 10.2147/ott.s219977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background Osteosarcoma (OS) is one of the most common malignant bone tumors and specific microRNAs (miRNAs) are closely associated with malignant OS progression. In this study, we examined the role of microRNA-193b-3p (miR-193b) and the involvement of autophagy and apoptosis in the chemosensitivity of OS cells. Methods We employed qRT-PCR, Western blot, and immunohistochemistry to examine the expression levels of miR-193b, flap endonuclease 1 (FEN1), and autophagy-related proteins. Apoptosis was determined by flow cytometry using an Annexin V-FITC/PI apoptosis detection kit. Luciferase reporter assays confirmed the relationship between miR-193b and FEN1. Results miR-193b was downregulated in OS compared to adjacent normal tissues (p < 0.05). miR-193b overexpression in the OS cell lines induced autophagy and apoptosis, as shown by Western blotting and flow cytometry. Knockdown of FEN1, a structure-specific nuclease overexpressed in OS tissues (p < 0.001), induced apoptosis through activation of autophagy. Luciferase reporter assays confirmed that FEN1 is a direct target of miR-193b, FEN1 knockdown reinforced miR-193b induced apoptosis. Moreover, miR-193b expression enhanced epirubicin-induced autophagy and apoptosis. Conclusion Collectively, the results showed that miR-193b/FEN1 may serve as a novel therapeutic target for OS aimed mainly at the induction of autophagy and apoptosis. The miR-193b/FEN1 axis increased the chemosensitivity of OS cells, while activation of autophagy enhanced the anticancer effects of epirubicin.
Collapse
Affiliation(s)
- Suwei Dong
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Yanbin Xiao
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Xiang Ma
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Wei He
- Medical Services Section, The First People's Hospital of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Jianping Kang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Zhuohui Peng
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Lei Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People's Republic of China
| |
Collapse
|
43
|
Lv Z, Ma J, Wang J, Lu J. MicroRNA-761 targets FGFR1 to suppress the malignancy of osteosarcoma by deactivating PI3K/Akt pathway. Onco Targets Ther 2019; 12:8501-8513. [PMID: 31686864 PMCID: PMC6800886 DOI: 10.2147/ott.s208263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose MicroRNA-761 (miR-761) has been reported to be deregulated in many types of human cancers and play important roles in cancer genesis and progression. However, the biological roles of miR-761 in osteosarcoma (OS) and the underlying mechanisms remain largely unknown. Methods The expression of miR-761 in OS tissues and cell lines was analyzed using RT-qPCR. A series of gain-of-function tests were performed, and status of malignancy was evaluated on basis of proliferation, migration, invasion, and apoptosis using different assays to determine the regulatory roles of miR-761 in OS cells in vivo and in vitro. Notably, the mechanisms underlying the action of miR-761 in the pathogenesis of OS were investigated using bioinformatic analysis, luciferase reporter assay, RT-qPCR and Western blotting. Results The results showed that miR-761 expression was decreased in OS tissues and cell lines and is closely correlated with clinical stage and distant metastasis in OS patients. Patients with OS having low miR-761 expression showed worse prognosis compared to OS patients with high miR-761 expression. Restoring the miR-761 expression level decreased OS cell proliferation, migration, and invasion in vitro; promoted cell apoptosis in vitro; and impaired tumor growth in vivo. In addition, fibroblast growth factor receptor 1 (FGFR1) was found as a direct target gene of miR-761 in OS cells. Furthermore, silencing FGFR1 expression stimulated the tumor-suppressing roles of miR-761 upregulation in OS cells, whereas the activity of miR-761 overexpression in OS cells was abolished by the restoration of FGFR1 expression. Moreover, restoration of miR-761 expression deactivated the PI3K/Akt pathway in vitro and in vivo. Conclusion These results suggest that miR-761 plays anti-cancer roles in OS by directly targeting FGFR1 and deactivating the PI3K/Akt pathway. The newly identified miR-761/FGFR1/PI3K/Akt pathway partially illustrates the mechanism of OS pathogenesis and presents a novel candidate therapeutic target for antitumor therapy.
Collapse
Affiliation(s)
- Zhongzhe Lv
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, People's Republic of China
| | - Jinming Ma
- School of Graduate Studies, Zunyi Medical University, Guizhou 563000, People's Republic of China
| | - Jianchuan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, People's Republic of China
| | - Jianmin Lu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Liaoning 116001, People's Republic of China
| |
Collapse
|
44
|
Chen ZH, Jing YJ, Yu JB, Jin ZS, Li Z, He TT, Su XZ. ESRP1 Induces Cervical Cancer Cell G1-Phase Arrest Via Regulating Cyclin A2 mRNA Stability. Int J Mol Sci 2019; 20:ijms20153705. [PMID: 31362365 PMCID: PMC6695732 DOI: 10.3390/ijms20153705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence indicates that epithelial splicing regulatory protein 1 (ESRP1) can inhibit the epithelial-to-mesenchymal transition (EMT), thus playing a central role in regulating the metastatic progression of tumors. However, it is still not clear whether ESRP1 directly influences the cell cycle, or what the possible underlying molecular mechanisms are. In this study, we showed that ESRP1 protein levels were significantly correlated with the Ki-67 proliferative index (r = −0.521; p < 0.01), and that ESRP1 overexpression can significantly inhibit cervical carcinoma cell proliferation and induced G1-phase arrest by downregulating cyclin A2 expression. Importantly, ESRP1 can bind to GGUGGU sequence in the 3′UTR of the cyclin A2 mRNA, and ESRP1 overexpression significantly decreases the stability of the cyclin A2 mRNA. In addition, our experimental results confirm that ESRP1 overexpression results in enhanced CDC20 expression, which is known to be responsible for cyclin A2 degradation. This study provides the first evidence that ESRP1 overexpression induces G1-phase cell cycle arrest via reducing the stability of the cyclin A2 mRNA, and inhibits cervical carcinoma cell proliferation. The findings suggest that the ESRP1/cyclin A2 regulatory axis may be essential as a regulator of cell proliferation, and may thus represent an attractive target for cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhi-Hong Chen
- School of Basic Medicine, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, China.
- Heilongjiang Province Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, No. 3, Tongxiang Street, Mudanjiang 157011, China.
| | - Ya-Jie Jing
- Sciences Research Center, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, China
| | - Jian-Bo Yu
- Heilongjiang Province Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, No. 3, Tongxiang Street, Mudanjiang 157011, China
| | - Zai-Shu Jin
- Heilongjiang Province Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, No. 3, Tongxiang Street, Mudanjiang 157011, China
| | - Zhu Li
- Heilongjiang Province Key Laboratory of Cancer Prevention and Treatment, Mudanjiang Medical University, No. 3, Tongxiang Street, Mudanjiang 157011, China
| | - Ting-Ting He
- Sciences Research Center, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, China
| | - Xiu-Zhen Su
- Sciences Research Center, Youjiang Medical University for Nationalities, No. 98 Chengxiang Road, Baise 533000, China
| |
Collapse
|
45
|
CDC20 and its downstream genes: potential prognosis factors of osteosarcoma. Int J Clin Oncol 2019; 24:1479-1489. [PMID: 31278532 DOI: 10.1007/s10147-019-01500-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/23/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the microarray data GSE42352 to identify genes that can be used as prognosis factors in osteosarcoma. METHODS Gene Ontology (GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of Cytoscape ClueGo were used in verifying the function of different genes. Realtime-PCR were used to confirm the microarray results. 83 patient samples were collected and underwent Kaplan-Meier survival analysis and multivariate analysis to predict the prospect of genes using as prognosis factors. RESULTS After analyzing the microarray data GSE42352, mitosis metaphase to anaphase-related genes CDC20, securin, cyclin A2 and cyclin B2 were found to be overexpressed in osteosarcoma cell lines. Kaplan-Meier survival analysis showed that overexpression of these genes can predict poor prognosis outcomes in osteosarcoma patients. Furthermore, any combination of the four genes seems to be more effective in predicting osteosarcoma outcomes than any of these genes alone. CONCLUSIONS CDC20 and its downstream substracts securin, cyclin A2 and cyclin B2 are good factors that can predict prognosis outcomes in osteosarcoma. Any two combination of these four genes are more effective to be used as osteosarcoma prognosis factors.
Collapse
|
46
|
Li X, Ma X, Tian F, Wu F, Zhang J, Zeng W, Lin Y, Zhang Y. Downregulation of
CCNA2
disturbs trophoblast migration, proliferation, and apoptosis during the pathogenesis of recurrent miscarriage. Am J Reprod Immunol 2019; 82:e13144. [PMID: 31087423 DOI: 10.1111/aji.13144] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/10/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Xiao Li
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐Ling Ma
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fu‐Ju Tian
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Fan Wu
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Zhang
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wei‐Hong Zeng
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yan Zhang
- Department of Obstetrics and Gynecology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
47
|
Xi X, Chu Y, Liu N, Wang Q, Yin Z, Lu Y, Chen Y. Joint bioinformatics analysis of underlying potential functions of hsa-let-7b-5p and core genes in human glioma. J Transl Med 2019; 17:129. [PMID: 30995921 PMCID: PMC6471881 DOI: 10.1186/s12967-019-1882-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glioma accounts for a large proportion of cancer, and an effective treatment for this disease is still lacking because of the absence of specific driver molecules. Current challenges in the treatment of glioma are the accurate and timely diagnosis of brain glioma and targeted treatment plans. To investigate the diagnostic biomarkers and prospective role of miRNAs in the tumorigenesis and progression of glioma, we analyzed the expression of miRNAs and key genes in glioma based on The Cancer Genome Atlas database. METHODS Of the 701 cases that were downloaded, five were normal and 696 were glioma. Then, 1626 differentially expressed genes were identified, and 173 aberrantly expressed miRNAs were calculated by edgeR. GO and KEGG pathway enrichment analyses were performed using Cytoscape software. A coexpression network was built by weighted correlation network analysis (WGCNA). A cell scratch test and transwell, cell apoptosis and cell cycle assays were performed to validate the function of hsa-let-7b-5p. RESULTS Based on crosstalk genes in the KEGG, PPI network, and WGCNA analyses, PLK1, CCNA2, cyclin B2 (CCNB2), and AURKA were screened as candidate diagnostic marker genes. The survival analysis revealed that high mRNA expression of PLK1, CCNA2, and AURKA was significantly associated with poor overall survival. Furthermore, hsa-let-7b-5p was identified as a core miRNA in the regulation of candidate genes involved in glioma development. We confirmed that hsa-let-7b-5p could inhibit the migration, invasion, and cell cycle of glioma cells. CONCLUSIONS This study provides four potential biomarkers for the diagnosis of glioma, offers a potential explanation of its pathogenesis, and proposes hsa-let-7b-5p as a therapeutic target.
Collapse
Affiliation(s)
- Xiaonan Xi
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Yahui Chu
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Zheng Yin
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Yaxin Lu
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| | - Yue Chen
- College of Pharmacy, Nankai University, Tianjin, 300350 People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350 People’s Republic of China
| |
Collapse
|
48
|
Sekar D, Mani P, Biruntha M, Sivagurunathan P, Karthigeyan M. Dissecting the functional role of microRNA 21 in osteosarcoma. Cancer Gene Ther 2019; 26:179-182. [PMID: 30905966 DOI: 10.1038/s41417-019-0092-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Osteosarcoma (OS) is considered to be a malignant bone tumour that mainly affects the long bones, but it is also involved in other bones of the body. Currently, surgery and chemotherapy have achieved some response to patients with OS, but they are not increasing the survival rate as well as treatment options. Researchers made lot of drug options for OS, but yet, no treatment is existing in sight for the disease and needs a new insight into the molecular and signaling pathways for the disease. Now, it is necessary to develop a novel and alternative strategy for the prognosis, diagnosis and treatment options for OS. MicroRNAs (miRNAs) are a small non-coding RNA, and their size ranges from 18 to 22 nt in length. In the nucleus, miRNAs originate and transcribe into primary transcripts and later cleaved to produce stem loop-structured precursor nucleotides. microRNA 21 (miR-21) is considered to be a trivial marker for many diseases and has been upregulated in many cancers. Moreover, it plays a main role in proliferation, migration, invasion and apoptosis. miR-21 and its associated pathways are very important and play a critical role in the pathogenesis of OS and are considered to be a biomarker and a therapeutic target for OS. To our knowledge, there is no paper that demonstrates the responsibility and the role of miR-21 in OS and the number of studies related to miR-21 in OS is spare. Therefore, the main aim of this paper is to give an outline of the recent clinical investigation and importance of miR-21 in OS. It has been suggested that the up- and downregulation of miRNAs plays a crucial role in the pathogenesis and progression of OS. Normally, miR-21 was found to be upregulated in OS; however, we summarize the clinical relevance and the recent research findings associated with miR-21 in OS.
Collapse
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| | - Panagal Mani
- Department of Biotechnology, Annai College of Arts and Science, Kumbakonam, Tamil Nadu, 612001, India
| | - M Biruntha
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - P Sivagurunathan
- Department of Microbiology, Faculty of Science, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - M Karthigeyan
- Department of Zoology, Arumugam Pillai Seethai Ammal College, Tiruppattur, Tamil Nadu, India
| |
Collapse
|