1
|
Indelicato E, Wanschitz J, Löscher W, Boesch S. Skeletal Muscle Involvement in Friedreich Ataxia. Int J Mol Sci 2024; 25:9915. [PMID: 39337401 PMCID: PMC11432698 DOI: 10.3390/ijms25189915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Friedreich Ataxia (FRDA) is an inherited neuromuscular disorder triggered by a deficit of the mitochondrial protein frataxin. At a cellular level, frataxin deficiency results in insufficient iron-sulfur cluster biosynthesis and impaired mitochondrial function and adenosine triphosphate production. The main clinical manifestation is a progressive balance and coordination disorder which depends on the involvement of peripheral and central sensory pathways as well as of the cerebellum. Besides the neurological involvement, FRDA affects also the striated muscles. The most prominent manifestation is a hypertrophic cardiomyopathy, which also represents the major determinant of premature mortality. Moreover, FRDA displays skeletal muscle involvement, which contributes to the weakness and marked fatigue evident throughout the course of the disease. Herein, we review skeletal muscle findings in FRDA generated by functional imaging, histology, as well as multiomics techniques in both disease models and in patients. Altogether, these findings corroborate a disease phenotype in skeletal muscle and support the notion of progressive mitochondrial damage as a driver of disease progression in FRDA. Furthermore, we highlight the relevance of skeletal muscle investigations in the development of biomarkers for early-phase trials and future therapeutic strategies in FRDA.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Julia Wanschitz
- Unit for Neuromuscular Disorders and Clinical Neurophysiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Wolfgang Löscher
- Unit for Neuromuscular Disorders and Clinical Neurophysiology, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
2
|
Mishra P, Sivakumar A, Johnson A, Pernaci C, Warden AS, El-Hachem LR, Hansen E, Badell-Grau RA, Khare V, Ramirez G, Gillette S, Solis AB, Guo P, Coufal N, Cherqui S. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich's ataxia iPSC-derived neurons. Front Pharmacol 2024; 15:1323491. [PMID: 38420191 PMCID: PMC10899513 DOI: 10.3389/fphar.2024.1323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Friedreich ataxia (FRDA) is a multisystemic, autosomal recessive disorder caused by homozygous GAA expansion mutation in the first intron of frataxin (FXN) gene. FXN is a mitochondrial protein critical for iron-sulfur cluster biosynthesis and deficiency impairs mitochondrial electron transport chain functions and iron homeostasis within the organelle. Currently, there is no effective treatment for FRDA. We have previously demonstrated that single infusion of wild-type hematopoietic stem and progenitor cells (HSPCs) resulted in prevention of neurologic and cardiac complications of FRDA in YG8R mice, and rescue was mediated by FXN transfer from tissue engrafted, HSPC-derived microglia/macrophages to diseased neurons/myocytes. For a future clinical translation, we developed an autologous stem cell transplantation approach using CRISPR/Cas9 for the excision of the GAA repeats in FRDA patients' CD34+ HSPCs; this strategy leading to increased FXN expression and improved mitochondrial functions. The aim of the current study is to validate the efficiency and safety of our gene editing approach in a disease-relevant model. We generated a cohort of FRDA patient-derived iPSCs and isogenic lines that were gene edited with our CRISPR/Cas9 approach. iPSC derived FRDA neurons displayed characteristic apoptotic and mitochondrial phenotype of the disease, such as non-homogenous microtubule staining in neurites, increased caspase-3 expression, mitochondrial superoxide levels, mitochondrial fragmentation, and partial degradation of the cristae compared to healthy controls. These defects were fully prevented in the gene edited neurons. RNASeq analysis of FRDA and gene edited neurons demonstrated striking improvement in gene clusters associated with endoplasmic reticulum (ER) stress in the isogenic lines. Gene edited neurons demonstrated improved ER-calcium release, normalization of ER stress response gene, XBP-1, and significantly increased ER-mitochondrial contacts that are critical for functional homeostasis of both organelles, as compared to FRDA neurons. Ultrastructural analysis for these contact sites displayed severe ER structural damage in FRDA neurons, that was undetected in gene edited neurons. Taken together, these results represent a novel finding for disease pathogenesis showing dramatic ER structural damage in FRDA, validate the efficacy profile of our FXN gene editing approach in a disease relevant model, and support our approach as an effective strategy for therapeutic intervention for Friedreich's ataxia.
Collapse
Affiliation(s)
- Priyanka Mishra
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Anusha Sivakumar
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Avalon Johnson
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Carla Pernaci
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Anna S. Warden
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Lilas Rony El-Hachem
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Emily Hansen
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Rafael A. Badell-Grau
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Gabriela Ramirez
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Sydney Gillette
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Angelyn B. Solis
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| | - Peng Guo
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| | - Nicole Coufal
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Indelicato E, Faserl K, Amprosi M, Nachbauer W, Schneider R, Wanschitz J, Sarg B, Boesch S. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich's ataxia. Front Neurosci 2023; 17:1289027. [PMID: 38027498 PMCID: PMC10644315 DOI: 10.3389/fnins.2023.1289027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystemic disorder caused by a deficiency of the mitochondrial protein frataxin. While some aspects of FRDA pathology are developmental, the causes underlying the steady progression are unclear. The inaccessibility of key affected tissues to sampling is a main hurdle. Skeletal muscle displays a disease phenotype and may be sampled in vivo to address open questions on FRDA pathophysiology. Thus, we performed a quantitative mass spectrometry-based proteomics analysis in gastrocnemius skeletal muscle biopsies from genetically confirmed FRDA patients (n = 5) and controls. Obtained data files were processed using Proteome Discoverer and searched by Sequest HT engine against a UniProt human reference proteome database. Comparing skeletal muscle proteomics profiles between FRDA and controls, we identified 228 significant differentially expressed (DE) proteins, of which 227 were downregulated in FRDA. Principal component analysis showed a clear separation between FRDA and control samples. Interactome analysis revealed clustering of DE proteins in oxidative phosphorylation, ribosomal elements, mitochondrial architecture control, and fission/fusion pathways. DE findings in the muscle-specific proteomics suggested a shift toward fast-twitching glycolytic fibers. Notably, most DE proteins (169/228, 74%) are target of the transcription factor nuclear factor-erythroid 2. Our data corroborate a mitochondrial biosignature of FRDA, which extends beyond a mere oxidative phosphorylation failure. Skeletal muscle proteomics highlighted a derangement of mitochondrial architecture and maintenance pathways and a likely adaptive metabolic shift of contractile proteins. The present findings are relevant for the design of future therapeutic strategies and highlight the value of skeletal muscle-omics as disease state readout in FRDA.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Nachbauer
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Institute of Biochemistry, Center of Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Julia Wanschitz
- Laboratory of Tissue Diagnostics, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Maheshwari S, Vilema-Enríquez G, Wade-Martins R. Patient-derived iPSC models of Friedreich ataxia: a new frontier for understanding disease mechanisms and therapeutic application. Transl Neurodegener 2023; 12:45. [PMID: 37726850 PMCID: PMC10510273 DOI: 10.1186/s40035-023-00376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
Friedreich ataxia (FRDA) is a rare genetic multisystem disorder caused by a pathological GAA trinucleotide repeat expansion in the FXN gene. The numerous drawbacks of historical cellular and rodent models of FRDA have caused difficulty in performing effective mechanistic and translational studies to investigate the disease. The recent discovery and subsequent development of induced pluripotent stem cell (iPSC) technology provides an exciting platform to enable enhanced disease modelling for studies of rare genetic diseases. Utilising iPSCs, researchers have created phenotypically relevant and previously inaccessible cellular models of FRDA. These models enable studies of the molecular mechanisms underlying GAA-induced pathology, as well as providing an exciting tool for the screening and testing of novel disease-modifying therapies. This review explores how the use of iPSCs to study FRDA has developed over the past decade, as well as discussing the enormous therapeutic potentials of iPSC-derived models, their current limitations and their future direction within the field of FRDA research.
Collapse
Affiliation(s)
- Saumya Maheshwari
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Gabriela Vilema-Enríquez
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood RNA transcripts reveal similar and differential alterations in fundamental cellular processes in Alzheimer's disease and other neurodegenerative diseases. Alzheimers Dement 2023; 19:2618-2632. [PMID: 36541444 DOI: 10.1002/alz.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Dysfunctional processes in Alzheimer's disease and other neurodegenerative diseases lead to neural degeneration in the central and peripheral nervous system. Research demonstrates that neurodegeneration of any kind is a systemic disease that may even begin outside of the region vulnerable to the disease. Neurodegenerative diseases are defined by the vulnerabilities and pathology occurring in the regions affected. METHOD A random forest machine learning analysis on whole blood transcriptomes from six neurodegenerative diseases generated unbiased disease-classifying RNA transcripts subsequently subjected to pathway analysis. RESULTS We report that transcripts of the blood transcriptome selected for each of the neurodegenerative diseases represent fundamental biological cell processes including transcription regulation, degranulation, immune response, protein synthesis, apoptosis, cytoskeletal components, ubiquitylation/proteasome, and mitochondrial complexes that are also affected in the brain and reveal common themes across six neurodegenerative diseases. CONCLUSION Neurodegenerative diseases share common dysfunctions in fundamental cellular processes. Identifying regional vulnerabilities will reveal unique disease mechanisms. HIGHLIGHTS Transcriptomics offer information about dysfunctional processes. Comparing multiple diseases will expose unique malfunctions within diseases. Blood RNA can be used ante mortem to track expression changes in neurodegenerative diseases. Protocol standardization will make public datasets compatible.
Collapse
Affiliation(s)
- Carol J Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| | - Danielle L Brokaw
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paul D Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
7
|
Dionisi C, Chazalon M, Rai M, Keime C, Imbault V, Communi D, Puccio H, Schiffmann SN, Pandolfo M. Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain Commun 2023; 5:fcad007. [PMID: 36865673 PMCID: PMC9972525 DOI: 10.1093/braincomms/fcad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/28/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Friedreich ataxia is an autosomal recessive multisystem disorder with prominent neurological manifestations and cardiac involvement. The disease is caused by large GAA expansions in the first intron of the FXN gene, encoding the mitochondrial protein frataxin, resulting in downregulation of gene expression and reduced synthesis of frataxin. The selective loss of proprioceptive neurons is a hallmark of Friedreich ataxia, but the cause of the specific vulnerability of these cells is still unknown. We herein perform an in vitro characterization of human induced pluripotent stem cell-derived sensory neuronal cultures highly enriched for primary proprioceptive neurons. We employ neurons differentiated from healthy donors, Friedreich ataxia patients and Friedreich ataxia sibling isogenic control lines. The analysis of the transcriptomic and proteomic profile suggests an impairment of cytoskeleton organization at the growth cone, neurite extension and, at later stages of maturation, synaptic plasticity. Alterations in the spiking profile of tonic neurons are also observed at the electrophysiological analysis of mature neurons. Despite the reversal of the repressive epigenetic state at the FXN locus and the restoration of FXN expression, isogenic control neurons retain many features of Friedreich ataxia neurons. Our study suggests the existence of abnormalities affecting proprioceptors in Friedreich ataxia, particularly their ability to extend towards their targets and transmit proper synaptic signals. It also highlights the need for further investigations to better understand the mechanistic link between FXN silencing and proprioceptive degeneration in Friedreich ataxia.
Collapse
Affiliation(s)
| | | | - Myriam Rai
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 CNRS-UdS / INSERM U1258, Université de Strasbourg, 67404 Illkirch Cedex, Strasbourg, France
| | - Virginie Imbault
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - David Communi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire UMR 7104 CNRS-UdS / INSERM U1258, Université de Strasbourg, 67404 Illkirch Cedex, Strasbourg, France,Institut NeuroMyoGene (INMG) UMR5310—INSERM U1217, Faculté de Médecine, Université Claude Bernard—Lyon I, 69008 Lyon, France
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB-Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Massimo Pandolfo
- Correspondence to: Massimo Pandolfo Department of Neurology and Neurosurgery McGill University, Montreal Neurological Institute 3801 University Street, Montreal, Quebec H3A 2B4, Canada E-mail:
| |
Collapse
|
8
|
Angulo MB, Bertalovitz A, Argenziano MA, Yang J, Patel A, Zesiewicz T, McDonald TV. Frataxin deficiency alters gene expression in Friedreich ataxia derived IPSC-neurons and cardiomyocytes. Mol Genet Genomic Med 2022; 11:e2093. [PMID: 36369844 PMCID: PMC9834160 DOI: 10.1002/mgg3.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Friedreich's ataxia (FRDA) is an autosomal recessive disease, whereby homozygous inheritance of an expanded GAA trinucleotide repeat expansion in the first intron of the FXN gene leads to transcriptional repression of the encoded protein frataxin. FRDA is a progressive neurodegenerative disorder, but the primary cause of death is heart disease which occurs in 60% of the patients. Several functions of frataxin have been proposed, but none of them fully explain why its deficiency causes the FRDA phenotypes nor why the most affected cell types are neurons and cardiomyocytes. METHODS To investigate, we generated iPSC-derived neurons (iNs) and cardiomyocytes (iCMs) from an FRDA patient and upregulated FXN expression via lentivirus without altering genomic GAA repeats at the FXN locus. RESULTS RNA-seq and differential gene expression enrichment analyses demonstrated that frataxin deficiency affected the expression of glycolytic pathway genes in neurons and extracellular matrix pathway genes in cardiomyocytes. Genes in these pathways were differentially expressed when compared to a control and restored to control levels when FRDA cells were supplemented with frataxin. CONCLUSIONS These results offer novel insight into specific roles of frataxin deficiency pathogenesis in neurons and cardiomyocytes.
Collapse
Affiliation(s)
- Mariana B. Angulo
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Alexander Bertalovitz
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Mariana A. Argenziano
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Jiajia Yang
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Aarti Patel
- Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Theresa Zesiewicz
- Department of NeurologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA
| | - Thomas V. McDonald
- Heart Institute, Morsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Molecular Pharmacology & PhysiologyMorsani College of Medicine, University of South FloridaTampaFloridaUSA,Department of Medicine (Cardiology)Morsani College of Medicine, University of South FloridaTampaFloridaUSA
| |
Collapse
|
9
|
Huseby CJ, Delvaux E, Brokaw DL, Coleman PD. Blood Transcript Biomarkers Selected by Machine Learning Algorithm Classify Neurodegenerative Diseases including Alzheimer's Disease. Biomolecules 2022; 12:1592. [PMID: 36358942 PMCID: PMC9687215 DOI: 10.3390/biom12111592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 10/15/2023] Open
Abstract
The clinical diagnosis of neurodegenerative diseases is notoriously inaccurate and current methods are often expensive, time-consuming, or invasive. Simple inexpensive and noninvasive methods of diagnosis could provide valuable support for clinicians when combined with cognitive assessment scores. Biological processes leading to neuropathology progress silently for years and are reflected in both the central nervous system and vascular peripheral system. A blood-based screen to distinguish and classify neurodegenerative diseases is especially interesting having low cost, minimal invasiveness, and accessibility to almost any world clinic. In this study, we set out to discover a small set of blood transcripts that can be used to distinguish healthy individuals from those with Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, Friedreich's ataxia, or frontotemporal dementia. Using existing public datasets, we developed a machine learning algorithm for application on transcripts present in blood and discovered small sets of transcripts that distinguish a number of neurodegenerative diseases with high sensitivity and specificity. We validated the usefulness of blood RNA transcriptomics for the classification of neurodegenerative diseases. Information about features selected for the classification can direct the development of possible treatment strategies.
Collapse
Affiliation(s)
- Carol J. Huseby
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| | - Danielle L. Brokaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul D. Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
10
|
Rodden LN, Rummey C, Dong YN, Lagedrost S, Regner S, Brocht A, Bushara K, Delatycki MB, Gomez CM, Mathews K, Murray S, Perlman S, Ravina B, Subramony SH, Wilmot G, Zesiewicz T, Bolotta A, Domissy A, Jespersen C, Ji B, Soragni E, Gottesfeld JM, Lynch DR. A non-synonymous single nucleotide polymorphism in SIRT6 predicts neurological severity in Friedreich ataxia. Front Mol Biosci 2022; 9:933788. [PMID: 36133907 PMCID: PMC9483148 DOI: 10.3389/fmolb.2022.933788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Friedreich ataxia (FRDA) is a recessive neurodegenerative disease characterized by progressive ataxia, dyscoordination, and loss of vision. The variable length of the pathogenic GAA triplet repeat expansion in the FXN gene in part explains the interindividual variability in the severity of disease. The GAA repeat expansion leads to epigenetic silencing of FXN; therefore, variability in properties of epigenetic effector proteins could also regulate the severity of FRDA. Methods: In an exploratory analysis, DNA from 88 individuals with FRDA was analyzed to determine if any of five non-synonymous SNPs in HDACs/SIRTs predicted FRDA disease severity. Results suggested the need for a full analysis at the rs352493 locus in SIRT6 (p.Asn46Ser). In a cohort of 569 subjects with FRDA, disease features were compared between subjects homozygous for the common thymine SIRT6 variant (TT) and those with the less common cytosine variant on one allele and thymine on the other (CT). The biochemical properties of both variants of SIRT6 were analyzed and compared. Results: Linear regression in the exploratory cohort suggested that an SNP (rs352493) in SIRT6 correlated with neurological severity in FRDA. The follow-up analysis in a larger cohort agreed with the initial result that the genotype of SIRT6 at the locus rs352493 predicted the severity of disease features of FRDA. Those in the CT SIRT6 group performed better on measures of neurological and visual function over time than those in the more common TT SIRT6 group. The Asn to Ser amino acid change resulting from the SNP in SIRT6 did not alter the expression or enzymatic activity of SIRT6 or frataxin, but iPSC-derived neurons from people with FRDA in the CT SIRT6 group showed whole transcriptome differences compared to those in the TT SIRT6 group. Conclusion: People with FRDA in the CT SIRT6 group have less severe neurological and visual dysfunction than those in the TT SIRT6 group. Biochemical analyses indicate that the benefit conferred by T to C SNP in SIRT6 does not come from altered expression or enzymatic activity of SIRT6 or frataxin but is associated with changes in the transcriptome.
Collapse
Affiliation(s)
- Layne N. Rodden
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Yi Na Dong
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Lagedrost
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sean Regner
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alicia Brocht
- University of Rochester, Rochester, NY, United States
| | | | - Martin B. Delatycki
- Murdoch Children’s Research Institute, Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | | | - Katherine Mathews
- Departments of Pediatrics and Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Sarah Murray
- Department of Pathology, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Susan Perlman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - S. H. Subramony
- Department of Neurology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - George Wilmot
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, United States
| | | | - Alain Domissy
- The Scripps Research Institute, La Jolla, CA, United States
| | | | - Baohu Ji
- The Scripps Research Institute, La Jolla, CA, United States
| | | | | | - David R. Lynch
- Departments of Pediatrics and Neurology, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: David R. Lynch,
| |
Collapse
|
11
|
Kelekçi S, Yıldız AB, Sevinç K, Çimen DU, Önder T. Perspectives on current models of Friedreich’s ataxia. Front Cell Dev Biol 2022; 10:958398. [PMID: 36036008 PMCID: PMC9403045 DOI: 10.3389/fcell.2022.958398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Friedreich’s ataxia (FRDA, OMIM#229300) is the most common hereditary ataxia, resulting from the reduction of frataxin protein levels due to the expansion of GAA repeats in the first intron of the FXN gene. Why the triplet repeat expansion causes a decrease in Frataxin protein levels is not entirely known. Generation of effective FRDA disease models is crucial for answering questions regarding the pathophysiology of this disease. There have been considerable efforts to generate in vitro and in vivo models of FRDA. In this perspective article, we highlight studies conducted using FRDA animal models, patient-derived materials, and particularly induced pluripotent stem cell (iPSC)-derived models. We discuss the current challenges in using FRDA animal models and patient-derived cells. Additionally, we provide a brief overview of how iPSC-based models of FRDA were used to investigate the main pathways involved in disease progression and to screen for potential therapeutic agents for FRDA. The specific focus of this perspective article is to discuss the outlook and the remaining challenges in the context of FRDA iPSC-based models.
Collapse
Affiliation(s)
| | | | | | | | - Tamer Önder
- *Correspondence: Simge Kelekçi, , ; Tamer Önder,
| |
Collapse
|
12
|
Harvey JP, Sladen PE, Yu-Wai-Man P, Cheetham ME. Induced Pluripotent Stem Cells for Inherited Optic Neuropathies-Disease Modeling and Therapeutic Development. J Neuroophthalmol 2022; 42:35-44. [PMID: 34629400 DOI: 10.1097/wno.0000000000001375] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inherited optic neuropathies (IONs) cause progressive irreversible visual loss in children and young adults. There are limited disease-modifying treatments, and most patients progress to become severely visually impaired, fulfilling the legal criteria for blind registration. The seminal discovery of the technique for reprogramming somatic nondividing cells into induced pluripotent stem cells (iPSCs) has opened several exciting opportunities in the field of ION research and treatment. EVIDENCE ACQUISITION A systematic review of the literature was conducted with PubMed using the following search terms: autosomal dominant optic atrophy, ADOA, dominant optic atrophy, DOA, Leber hereditary optic neuropathy, LHON, optic atrophy, induced pluripotent stem cell, iPSC, iPSC derived, iPS, stem cell, retinal ganglion cell, and RGC. Clinical trials were identified on the ClinicalTrials.gov website. RESULTS This review article is focused on disease modeling and the therapeutic strategies being explored with iPSC technologies for the 2 most common IONs, namely, dominant optic atrophy and Leber hereditary optic neuropathy. The rationale and translational advances for cell-based and gene-based therapies are explored, as well as opportunities for neuroprotection and drug screening. CONCLUSIONS iPSCs offer an elegant, patient-focused solution to the investigation of the genetic defects and disease mechanisms underpinning IONs. Furthermore, this group of disorders is uniquely amenable to both the disease modeling capability and the therapeutic potential that iPSCs offer. This fast-moving area will remain at the forefront of both basic and translational ION research in the coming years, with the potential to accelerate the development of effective therapies for patients affected with these blinding diseases.
Collapse
Affiliation(s)
- Joshua Paul Harvey
- UCL Institute of Ophthalmology (JPH, PES, PY-W-M, MC), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, PY-W-M), London, United Kingdom; Department of Clinical Neurosciences (PY-W-M), Cambridge Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom; and Department of Clinical Neurosciences (PY-W-M), John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
13
|
Napierala JS, Rajapakshe K, Clark A, Chen YY, Huang S, Mesaros C, Xu P, Blair IA, Hauser LA, Farmer J, Lynch DR, Edwards DP, Coarfa C, Napierala M. Reverse Phase Protein Array Reveals Correlation of Retinoic Acid Metabolism With Cardiomyopathy in Friedreich's Ataxia. Mol Cell Proteomics 2021; 20:100094. [PMID: 33991687 PMCID: PMC8214145 DOI: 10.1016/j.mcpro.2021.100094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Identifying biomarkers is important for assessment of disease progression, prediction of symptom development, and determination of treatment effectiveness. While unbiased analyses of differential gene expression using next-generation sequencing methods are now routinely conducted, proteomics studies are more challenging because of traditional methods predominantly being low throughput and offering a limited dynamic range for simultaneous detection of hundreds of proteins that drastically differ in their intracellular abundance. We utilized a sensitive and high-throughput proteomic technique, reverse phase protein array (RPPA), to attain protein expression profiles of primary fibroblasts obtained from patients with Friedreich's ataxia (FRDA) and unaffected controls (CTRLs). The RPPA was designed to detect 217 proteins or phosphorylated proteins by individual antibody, and the specificity of each antibody was validated prior to the experiment. Among 62 fibroblast samples (44 FRDA and 18 CTRLs) analyzed, 30 proteins/phosphoproteins were significantly changed in FRDA fibroblasts compared with CTRL cells (p < 0.05), mostly representing signaling molecules and metabolic enzymes. As expected, frataxin was significantly downregulated in FRDA samples, thus serving as an internal CTRL for assay integrity. Extensive bioinformatics analyses were conducted to correlate differentially expressed proteins with critical disease parameters (e.g., selected symptoms, age of onset, guanine-adenine-adenine sizes, frataxin levels, and Functional Assessment Rating Scale scores). Members of the integrin family of proteins specifically associated with hearing loss in FRDA. Also, RPPA data, combined with results of transcriptome profiling, uncovered defects in the retinoic acid metabolism pathway in FRDA samples. Moreover, expression of aldehyde dehydrogenase family 1 member A3 differed significantly between cardiomyopathy-positive and cardiomyopathy-negative FRDA cohorts, demonstrating that metabolites such as retinol, retinal, or retinoic acid could become potential predictive biomarkers of cardiac presentation in FRDA.
Collapse
Affiliation(s)
- Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Amanda Clark
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yu-Yun Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peining Xu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren A Hauser
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer Farmer
- Friedreich's Ataxia Research Alliance, Downingtown, Pennsylvania, USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dean P Edwards
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
14
|
Rodden LN, Chutake YK, Gilliam K, Lam C, Soragni E, Hauser L, Gilliam M, Wiley G, Anderson MP, Gottesfeld JM, Lynch DR, Bidichandani SI. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum Mol Genet 2021; 29:3818-3829. [PMID: 33432325 PMCID: PMC7861014 DOI: 10.1093/hmg/ddaa267] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat in intron 1 of the FXN gene, which results in transcriptional deficiency via epigenetic silencing. Most patients are homozygous for alleles containing > 500 triplets, but a subset (~20%) have at least one expanded allele with < 500 triplets and a distinctly milder phenotype. We show that in FRDA DNA methylation spreads upstream from the expanded repeat, further than previously recognized, and establishes an FRDA-specific region of hypermethylation in intron 1 (~90% in FRDA versus < 10% in non-FRDA) as a novel epigenetic signature. The hypermethylation of this differentially methylated region (FRDA-DMR) was observed in a variety of patient-derived cells; it significantly correlated with FXN transcriptional deficiency and age of onset, and it reverted to the non-disease state in isogenically corrected induced pluripotent stem cell (iPSC)-derived neurons. Bisulfite deep sequencing of the FRDA-DMR in peripheral blood mononuclear cells from 73 FRDA patients revealed considerable intra-individual epiallelic variability, including fully methylated, partially methylated, and unmethylated epialleles. Although unmethylated epialleles were rare (median = 0.33%) in typical patients homozygous for long GAA alleles with > 500 triplets, a significantly higher prevalence of unmethylated epialleles (median = 9.8%) was observed in patients with at least one allele containing < 500 triplets, less severe FXN deficiency (>20%) and later onset (>15 years). The higher prevalence in mild FRDA of somatic FXN epialleles devoid of DNA methylation is consistent with variegated epigenetic silencing mediated by expanded triplet-repeats. The proportion of unsilenced somatic FXN genes is an unrecognized phenotypic determinant in FRDA and has implications for the deployment of effective therapies.
Collapse
Affiliation(s)
- Layne N Rodden
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yogesh K Chutake
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kaitlyn Gilliam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabetta Soragni
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Hauser
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Gilliam
- Department of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Graham Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael P Anderson
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Vilema-Enríquez G, Quinlan R, Kilfeather P, Mazzone R, Saqlain S, Del Molino Del Barrio I, Donato A, Corda G, Li F, Vedadi M, Németh AH, Brennan PE, Wade-Martins R. Inhibition of the SUV4-20 H1 histone methyltransferase increases frataxin expression in Friedreich's ataxia patient cells. J Biol Chem 2020; 295:17973-17985. [PMID: 33028632 PMCID: PMC7939392 DOI: 10.1074/jbc.ra120.015533] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms of reduced frataxin (FXN) expression in Friedreich's ataxia (FRDA) are linked to epigenetic modification of the FXN locus caused by the disease-associated GAA expansion. Here, we identify that SUV4-20 histone methyltransferases, specifically SUV4-20 H1, play an important role in the regulation of FXN expression and represent a novel therapeutic target. Using a human FXN-GAA-Luciferase repeat expansion genomic DNA reporter model of FRDA, we screened the Structural Genomics Consortium epigenetic probe collection. We found that pharmacological inhibition of the SUV4-20 methyltransferases by the tool compound A-196 increased the expression of FXN by ∼1.5-fold in the reporter cell line. In several FRDA cell lines and patient-derived primary peripheral blood mononuclear cells, A-196 increased FXN expression by up to 2-fold, an effect not seen in WT cells. SUV4-20 inhibition was accompanied by a reduction in H4K20me2 and H4K20me3 and an increase in H4K20me1, but only modest (1.4-7.8%) perturbation in genome-wide expression was observed. Finally, based on the structural activity relationship and crystal structure of A-196, novel small molecule A-196 analogs were synthesized and shown to give a 20-fold increase in potency for increasing FXN expression. Overall, our results suggest that histone methylation is important in the regulation of FXN expression and highlight SUV4-20 H1 as a potential novel therapeutic target for FRDA.
Collapse
Affiliation(s)
| | - Robert Quinlan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Kilfeather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Roberta Mazzone
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Saba Saqlain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Annalidia Donato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Gabriele Corda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Centre for Genomic Medicine, Oxford University Hospitals National Health Service Trust, Oxford, United Kingdom
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom; Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
17
|
Mazzara PG, Muggeo S, Luoni M, Massimino L, Zaghi M, Valverde PTT, Brusco S, Marzi MJ, Palma C, Colasante G, Iannielli A, Paulis M, Cordiglieri C, Giannelli SG, Podini P, Gellera C, Taroni F, Nicassio F, Rasponi M, Broccoli V. Frataxin gene editing rescues Friedreich's ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. Nat Commun 2020; 11:4178. [PMID: 32826895 PMCID: PMC7442818 DOI: 10.1038/s41467-020-17954-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal-recessive neurodegenerative and cardiac disorder which occurs when transcription of the FXN gene is silenced due to an excessive expansion of GAA repeats into its first intron. Herein, we generate dorsal root ganglia organoids (DRG organoids) by in vitro differentiation of human iPSCs. Bulk and single-cell RNA sequencing show that DRG organoids present a transcriptional signature similar to native DRGs and display the main peripheral sensory neuronal and glial cell subtypes. Furthermore, when co-cultured with human intrafusal muscle fibers, DRG organoid sensory neurons contact their peripheral targets and reconstitute the muscle spindle proprioceptive receptors. FRDA DRG organoids model some molecular and cellular deficits of the disease that are rescued when the entire FXN intron 1 is removed, and not with the excision of the expanded GAA tract. These results strongly suggest that removal of the repressed chromatin flanking the GAA tract might contribute to rescue FXN total expression and fully revert the pathological hallmarks of FRDA DRG neurons.
Collapse
Affiliation(s)
- Pietro Giuseppe Mazzara
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- Department of Neuroscience, The Scripps Research Institute, 92037, La Jolla, CA, USA
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Mattia Zaghi
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Simone Brusco
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Matteo Jacopo Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Cecilia Palma
- Department of Electronics, Information & Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Gaia Colasante
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Angelo Iannielli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129, Milan, Italy
| | - Marianna Paulis
- Humanitas Clinical and Research Center, 20089, Rozzano, Milano, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics "Romeo e Enrica Invernizzi" - INGM, 20122, Milan, Italy
| | - Serena Gea Giannelli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paola Podini
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information & Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- National Research Council (CNR), Institute of Neuroscience, 20129, Milan, Italy.
| |
Collapse
|
18
|
Misiorek JO, Schreiber AM, Urbanek-Trzeciak MO, Jazurek-Ciesiołka M, Hauser LA, Lynch DR, Napierala JS, Napierala M. A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich's Ataxia Patients. Mol Neurobiol 2020; 57:2639-2653. [PMID: 32291635 PMCID: PMC7253519 DOI: 10.1007/s12035-020-01899-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Friedreich's ataxia (FRDA) is a genetic neurodegenerative disease that is caused by guanine-adenine-adenine (GAA) nucleotide repeat expansions in the first intron of the frataxin (FXN) gene. Although present in the intron, this mutation leads to a substantial decrease in protein expression. Currently, no effective treatment is available for FRDA, and, in addition to FXN, other targets with therapeutic potential are continuously sought. As miRNAs can regulate the expression of a broad spectrum of genes, are used as biomarkers, and can serve as therapeutic tools, we decided to identify and characterize differentially expressed miRNAs and their targets in FRDA cells compared to unaffected control (CTRL) cells. In this study, we performed an integrated miRNAseq and RNAseq analysis using the same cohort of primary FRDA and CTRL cells. The results of the transcriptome studies were supported by bioinformatic analyses and validated by qRT-PCR. miRNA interactions with target genes were assessed by luciferase assays, qRT-PCR, and immunoblotting. In silico analysis identified the FXN transcript as a target of five miRNAs upregulated in FRDA cells. Further studies confirmed that miRNA-224-5p indeed targets FXN, resulting in decreases in mRNA and protein levels. We also validated the ability of miRNA-10a-5p to bind and regulate the levels of brain-derived neurotrophic factor (BDNF), an important modulator of neuronal growth. We observed a significant decrease in the levels of miRNA-10a-5p and increase in the levels of BDNF upon correction of FRDA cells via zinc-finger nuclease (ZFN)-mediated excision of expanded GAA repeats. Our comprehensive transcriptome analyses identified miRNA-224-5p and miRNA-10a-5p as negative regulators of the FXN and BDNF expression, respectively. These results emphasize not only the importance of miRNAs in the pathogenesis of FRDA but also their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Julia O. Misiorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna M. Schreiber
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | - Lauren A. Hauser
- Department of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - David R. Lynch
- Department of Pediatrics and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Jill S. Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| | - Marek Napierala
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
19
|
Dionisi C, Rai M, Chazalon M, Schiffmann SN, Pandolfo M. Primary proprioceptive neurons from human induced pluripotent stem cells: a cell model for afferent ataxias. Sci Rep 2020; 10:7752. [PMID: 32385372 PMCID: PMC7210273 DOI: 10.1038/s41598-020-64831-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/23/2020] [Indexed: 11/29/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are used to generate models of human diseases that recapitulate the pathogenic process as it occurs in affected cells. Many differentiated cell types can currently be obtained from iPSCs, but no validated protocol is yet available to specifically generate primary proprioceptive neurons. Proprioceptors are affected in a number of genetic and acquired diseases, including Friedreich ataxia (FRDA). To develop a cell model that can be applied to conditions primarily affecting proprioceptors, we set up a protocol to differentiate iPSCs into primary proprioceptive neurons. We modified the dual-SMAD inhibition/WNT activation protocol, previously used to generate nociceptor-enriched cultures of primary sensory neurons from iPSCs, to favor instead the generation of proprioceptors. We succeeded in substantially enriching iPSC-derived primary sensory neuron cultures for proprioceptors, up to 50% of finally differentiated neurons, largely exceeding the proportion of 7.5% normally represented by these cells in dorsal root ganglia. We also showed that almost pure populations of proprioceptors can be purified from these cultures by fluorescence-activated cell sorting. Finally, we demonstrated that the protocol can be used to generate proprioceptors from iPSCs from FRDA patients, providing a cell model for this genetic sensory neuronopathy.
Collapse
Affiliation(s)
- Chiara Dionisi
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Myriam Rai
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Marine Chazalon
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Massimo Pandolfo
- Laboratory of Experimental Neurology, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium.
| |
Collapse
|
20
|
Georges P, Boza-Moran MG, Gide J, Pêche GA, Forêt B, Bayot A, Rustin P, Peschanski M, Martinat C, Aubry L. Induced pluripotent stem cells-derived neurons from patients with Friedreich ataxia exhibit differential sensitivity to resveratrol and nicotinamide. Sci Rep 2019; 9:14568. [PMID: 31601825 PMCID: PMC6787055 DOI: 10.1038/s41598-019-49870-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Translation of pharmacological results from in vitro cell testing to clinical trials is challenging. One of the causes that may underlie these discrepant results is the lack of the phenotypic or species-specific relevance of the tested cells; today, this lack of relevance may be reduced by relying on cells differentiated from human pluripotent stem cells. To analyse the benefits provided by this approach, we chose to focus on Friedreich ataxia, a neurodegenerative condition for which the recent clinical testing of two compounds was not successful. These compounds, namely, resveratrol and nicotinamide, were selected because they had been shown to stimulate the expression of frataxin in fibroblasts and lymphoblastoid cells. Our results indicated that these compounds failed to do so in iPSC-derived neurons generated from two patients with Friedreich ataxia. By comparing the effects of both molecules on different cell types that may be considered to be non-relevant for the disease, such as fibroblasts, or more relevant to the disease, such as neurons differentiated from iPSCs, a differential response was observed; this response suggests the importance of developing more predictive in vitro systems for drug discovery. Our results demonstrate the value of utilizing human iPSCs early in drug discovery to improve translational predictability.
Collapse
Affiliation(s)
| | - Maria-Gabriela Boza-Moran
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | | | - Georges Arielle Pêche
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | | | - Aurélien Bayot
- CNRS UMR 3691, Institut Pasteur, Mitochondrial Biology Group, Paris, France
| | - Pierre Rustin
- Hôpital Robert Debré, INSERM UMR, 1141, Paris, France
| | - Marc Peschanski
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Cécile Martinat
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France.
- UEVE, Paris-Saclay UMR 861, I-STEM, AFM, 91100, Corbeil-Essonnes, France.
| |
Collapse
|
21
|
Gottesfeld JM. Molecular Mechanisms and Therapeutics for the GAA·TTC Expansion Disease Friedreich Ataxia. Neurotherapeutics 2019; 16:1032-1049. [PMID: 31317428 PMCID: PMC6985418 DOI: 10.1007/s13311-019-00764-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common inherited ataxia, is caused by transcriptional silencing of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin. Currently, there is no approved therapy for this fatal disorder. Gene silencing in FRDA is due to hyperexpansion of the triplet repeat sequence GAA·TTC in the first intron of the FXN gene, which results in chromatin histone modifications consistent with heterochromatin formation. Frataxin is involved in mitochondrial iron homeostasis and the assembly and transfer of iron-sulfur clusters to various mitochondrial enzymes and components of the electron transport chain. Frataxin insufficiency leads to progressive spinocerebellar neurodegeneration, causing symptoms of gait and limb ataxia, slurred speech, muscle weakness, sensory loss, and cardiomyopathy in many patients, resulting in death in early adulthood. Numerous approaches are being taken to find a treatment for FRDA, including excision or correction of the repeats by genome engineering methods, gene activation with small molecules or artificial transcription factors, delivery of frataxin to affected cells by protein replacement therapy, gene therapy, or small molecules to increase frataxin protein levels, and therapies aimed at countering the cellular consequences of reduced frataxin. This review will summarize the mechanisms involved in repeat-mediated gene silencing and recent efforts aimed at development of therapeutics.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
22
|
Li J, Rozwadowska N, Clark A, Fil D, Napierala JS, Napierala M. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Stem Cell Res 2019; 40:101529. [PMID: 31446150 PMCID: PMC6853280 DOI: 10.1016/j.scr.2019.101529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Friedreich's ataxia is caused by large homozygous, intronic expansions of GAA repeats in the frataxin (FXN) gene, resulting in severe downregulation of its expression. Pathogenic repeats are located in intron one, hence patients express unaffected FXN protein, albeit in low quantities. Although FRDA symptoms typically afflict the nervous system, hypertrophic cardiomyopathy is the predominant cause of death. Our studies were conducted using cardiomyocytes differentiated from induced pluripotent stem cells derived from control individuals, FRDA patients, and isogenic cells corrected by zinc finger nucleases-mediated excision of pathogenic expanded GAA repeats. This correction of the FXN gene removed the primary trigger of the transcription defect, upregulated frataxin expression, reduced pathological lipid accumulation observed in patient cardiomyocytes, and reversed gene expression signatures of FRDA cardiomyocytes. Transcriptome analyses revealed hypertrophy-specific expression signatures unique to FRDA cardiomyocytes, and emphasized similarities between unaffected and ZFN-corrected FRDA cardiomyocytes. Thus, the iPSC-derived FRDA cardiomyocytes exhibit various molecular defects characteristic for cellular models of cardiomyopathy that can be corrected by genome editing of the expanded GAA repeats. These results underscore the utility of genome editing in generating isogenic cellular models of FRDA and the potential of this approach as a future therapy for this disease.
Collapse
Affiliation(s)
- Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Amanda Clark
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Daniel Fil
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
23
|
Delatycki MB, Bidichandani SI. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol Dis 2019; 132:104606. [PMID: 31494282 DOI: 10.1016/j.nbd.2019.104606] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Friedreich ataxia is the most common of the hereditary ataxias. It is due to homozygous/compound heterozygous mutations in FXN. This gene encodes frataxin, a protein largely localized to mitochondria. In about 96% of affected individuals there is homozygosity for a GAA repeat expansion in intron 1 of the FXN gene. Studies of people with Friedreich ataxia and of animal and cell models, have provided much insight into the pathogenesis of this disorder. The expanded GAA repeat leads to transcriptional deficiency of the FXN gene. The consequent deficiency of frataxin protein leads to reduced iron-sulfur cluster biogenesis and mitochondrial ATP production, elevated mitochondrial iron, and oxidative stress. More recently, a role for inflammation has emerged as being important in the pathogenesis of Friedreich ataxia. These findings have led to a number of potential therapies that have been subjected to clinical trials or are being developed toward human studies. Therapies that have been proposed include pharmaceuticals that increase frataxin levels, protein and gene replacement therapies, antioxidants, iron chelators and modulators of inflammation. Whilst no therapies have yet been approved for Friedreich ataxia, there is much optimism that the advances in the understanding of the pathogenesis of this disorder since the discovery its genetic basis, will result in approved disease modifying therapies in the near future.
Collapse
Affiliation(s)
- Martin B Delatycki
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Victorian Clinical Genetics Services, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
24
|
Clay A, Hearle P, Schadt K, Lynch DR. New developments in pharmacotherapy for Friedreich ataxia. Expert Opin Pharmacother 2019; 20:1855-1867. [PMID: 31311349 DOI: 10.1080/14656566.2019.1639671] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Friedreich ataxia (FRDA), a rare disease caused by the deficiency of the mitochondrial matrix protein frataxin, affects roughly 1 in 50,000 individuals worldwide. Current and emerging therapies focus on reversing the deleterious effects of such deficiency including mitochondrial augmentation and increasing frataxin levels, providing the possibility of treatment options for this physiologically complex, multisystem disorder. Areas covered: In this review article, the authors discuss the current and prior in vivo and in vitro research studies related to the treatment of FRDA, with a particular interest in future implications of each therapy. Expert opinion: Since the discovery of FXN in 1996, multiple clinical trials have occurred or are currently occurring; at a rapid pace for a rare disease. These trials have been directed at the augmentation of mitochondrial function and/or alleviation of symptoms and are not regarded as potential cures in FRDA. Either a combination of therapies or a drug that replaces or increases the pathologically low levels of frataxin better represent potential cures in FRDA.
Collapse
Affiliation(s)
- Alexandra Clay
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Patrick Hearle
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - Kim Schadt
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| | - David R Lynch
- Division of Neurology, Children's Hospital of Philadelphia , Philadelphia , PA , USA
| |
Collapse
|