1
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
2
|
Zheng S, Zeng Y, Chu L, Gong T, Li S, Yang M. Renal Tissue-Derived Exosomal miRNA-34a in Diabetic Nephropathy Induces Renal Tubular Cell Fibrosis by Promoting the Polarization of M1 Macrophages. IET Nanobiotechnol 2024; 2024:5702517. [PMID: 38863972 PMCID: PMC11095076 DOI: 10.1049/2024/5702517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/13/2024] Open
Abstract
Background Diabetic nephropathy (DN) is the leading cause of chronic kidney disease, and the activation and infiltration of phagocytes are critical steps of DN. This study aimed to explore the mechanism of exosomes in macrophages and diabetes nephropathy and the role of miRNA-34a, which might provide a new path for treating DN. Materials and Methods The DN model was established, and the success of the model establishment was confirmed by detecting general indicators, HE staining, and immunohistochemistry. Electron microscopy and NanoSight Tracking Analysis (NTA) were used to see the morphology and size of exosomes. MiRNA-34a inhibitor, miRNA-34a mimics, pc-PPARGC1A, and controls were transfected in macrophages with or without kidney exosomal. A dual-luciferase reporter gene experiment verifies the targeting relationship between miRNA-34a and PPARGC1A. After exosomal culture, macrophages are co-cultured with normal renal tubular cells to detect renal tubular cell fibrosis. Q-PCR and western blot were undertaken to detect related RNA and proteins. Results An animal model of diabetic nephropathy was successfully constructed. Macrophages could phagocytose exosomes. After ingesting model exosomes, M1 macrophages were activated, while M2 macrophages were weakened, indicating the model mice's kidney exosomes caused the polarization. MiRNA-34a inhibitor increased PPARGC1A expression. MiRNA-34a expressed higher in diabetic nephropathy Model-Exo. MiRNA-34a negatively regulated PPARGC1A. PPARGC1A rescued macrophage polarization and renal tubular cell fibrosis. Conclusion Exosomal miRNA-34a of tubular epithelial cells promoted M1 macrophage activation in diabetic nephropathy via negatively regulating PPARGC1A expression, which may provide a new direction for further exploration of DN treatment.
Collapse
Affiliation(s)
- Shuai Zheng
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Yi Zeng
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Liqing Chu
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Taiyang Gong
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Sihong Li
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| | - Min Yang
- Department of Nephrology, The Second Affiliated Hospital, Kunming Medical University, No. 347 Dianmian Street, Kunming, Yunnan 650101, China
| |
Collapse
|
3
|
Yang C, Huang F, Fang H, Zang Y. Jiawei Shengjiangsan's Effect on Renal Injury in Diabetic Nephropathy Mice is Investigated via the PI3K/Akt/NF-κB Signaling Pathway. Diabetes Metab Syndr Obes 2024; 17:1687-1698. [PMID: 38629025 PMCID: PMC11020332 DOI: 10.2147/dmso.s456205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose This study aimed to investigate the intervention mechanism of Jiawei Shengjiangsan (JWSJS) on kidney injury in diabetic nephropathy mice. Methods Thirty 8-week-old db/db mice were randomly divided into five groups: model group, Perindopril group, and JWSJS low-, medium-, and high-dose groups (n=6 per group) based on body weight. Additionally, a blank control group was established consisting of 6 db/m mice aged 8 weeks. The blank and model groups received daily intragastric administration of 7g/kg/d pure water. The remaining groups were assigned to JWSJS low (3.5g/kg/d), medium (7g/kg/d), high (14g/kg/d) dosage groups, and perindopril positive control group (0.48mg/kg/d) for 12 weeks. Post-experiment, serum creatinine (SCr) and blood urea nitrogen (BUN) were analyzed using an automatic biochemical analyzer. Enzyme-linked immunosorbent assay (ELISA) measured 24-hour urinary albumin, neutrophil gelatinase-associated lipocalin (NGAL), TNF-α, IL-1β, VCAM-1, MCP-1, and HbA1c. Western blot assessed the protein expressions of p-PI3K, p-Akt, and p-NF-κB p65, while pathological kidney changes were observed. Results Compared to the blank group, the model group exhibited increased SCr, BUN, 24-hour urinary albumin, serum NGAL, TNF-α, IL-1β, VCAM-1, MCP-1, HbA1c, p-PI3K, and p-Akt, alongside increased p-NF-κB p65 expression, indicating significant kidney pathology. After treatment, the JWSJS group showed decreased SCr, BUN, 24-hour urinary microalbumin, NGAL, HbA1c, TNF-α, IL-1β, VCAM-1, MCP-1 levels, increased p-PI3K and p-Akt expression (P<0.05), and reduced p-NF-κB p65 content (P<0.05). Histopathological analysis revealed that JWSJS ameliorated renal tubular epithelial cell damage, glomerular capillary and basement membrane injuries, and facilitated the repair of damaged podocytes in diabetic nephropathy mice. Conclusion JWSJS demonstrated efficacy in reducing renal inflammation in diabetic nephropathy mice, with its mechanism likely associated with the inhibition of the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenhua Yang
- General Medicine, Bao’an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Fengling Huang
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, People’s Republic of China
| | - Huiqin Fang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yunhua Zang
- General Medicine, Bao’an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Wu D, Jiang T, Zhang S, Huang M, Zhu Y, Chen L, Zheng Y, Zhang D, Yu H, Yao G, Sun L. Blockade of Notch1 Signaling Alleviated Podocyte Injury in Lupus Nephritis Via Inhibition of NLRP3 Inflammasome Activation. Inflammation 2024; 47:649-663. [PMID: 38085465 DOI: 10.1007/s10753-023-01935-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 05/07/2024]
Abstract
To explore the role of Notch1 pathway in the pathogenesis of podocyte injury, and to provide novel strategy for podocyte repair in lupus nephritis (LN). Bioinformatics analysis and immunofluorescence assay were applied to determine the expression and localization of Notch1 intracellular domain1 (NICD1) in kidneys of LN patients and MRL/lpr mice. The stable podocyte injury model in vitro was established by puromycin aminonucleoside (PAN) treatment. Expression of inflammasome activation related gene was detected by qPCR. The podocytes with PAN treatment were cultured with or without N-S-phenyl-glycine-t-butylester (DAPT), an inhibitor of Notch1 pathway. NICD1, Wilm'stumor1 (WT1), nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), and absent in melanoma-like receptors 2 (AIM2) were detected by western blot. In vivo, MRL/lpr mice were administrated with DAPT or vehicle. The LN symptoms were assessed. The podocyte injury was evaluated, and the NLRP3 in podocytes of mice was detected. Notch1 pathway was overactivated in glomeruli of LN patients. NICD1 was colocalized with podocytes of LN patients and MRL/lpr mice. The inflammasome-related genes were significantly increased in podocytes with PAN treatment. NICD1 and NLRP3 were significantly decreased, while WT1 was significantly increased in injured podocytes treated with DAPT in vitro. In vivo, lupus-like symptoms were alleviated in DAPT treatment group. Notch1 pathway was inhibited in kidneys of mice treated with DAPT. The renal inflammation was reduced and the podocyte injury was mitigated in DAPT treatment group. The NLRP3 was decreased in podocytes of mice treated with DAPT. Notch1 pathway was overactivated in podocytes of LN patients and MRL/lpr mice. Blockade of Notch1 pathway reduced renal inflammation and alleviated podocyte injury via inhibition of NLRP3 inflammasome activation in LN.
Collapse
Affiliation(s)
- Dan Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Tingting Jiang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shiyi Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Mengxi Huang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Ying Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion therapy center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Dongdong Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, People's Republic of China.
| |
Collapse
|
5
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Gong L, Wang R, Wang X, Liu J, Han Z, Li Q, Jin Y, Liao H. Research progress of natural active compounds on improving podocyte function to reduce proteinuria in diabetic kidney disease. Ren Fail 2023; 45:2290930. [PMID: 38073545 PMCID: PMC11001328 DOI: 10.1080/0886022x.2023.2290930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a primary cause of end-stage renal disease. Proteinuria is a clinical indicator of the different stages of DKD, and podocyte injury is a major cause of proteinuria. Podocyte-specific proteins (PSPs) play important roles in the normal filtration of podocytes. Studies have shown that natural active compounds (NACs) can ameliorate proteinuria; however, the mechanism related to PSPs needs to be explored. In this study, the five stages of DKD related to proteinuria and the functions of PSPs are displayed separately. Mechanisms for ameliorating proteinuria and improving the PSPs of the 15 NACs are summarized. The in vitro and in vivo mechanistic research showed that five compounds, astragaloside IV, ligustrazine, berberine, emodin and resveratrol, exerted renal protective effects via AMPK signaling, icariin and berberine via TLR4 signaling, hirudin and baicalin via MAPK signaling, curcumin and baicalin via NF-κB signaling, and emodin via protein kinase RNA-like endoplasmic reticulum kinase signaling. The 13 PSPs were divided into five categories: actin cytoskeleton, basal domain, apical domain, slit diaphragm, and others. In conclusion, anti-inflammatory effects, anti-oxidative stress, and enhanced autophagy are the main mechanisms underlying the ameliorative effects of NACs. Podocyte apoptosis is mainly related to nephrin and podocin, which are the most studied slit diaphragm PSPs.
Collapse
Affiliation(s)
- Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Rui Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xinyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Zhaodi Han
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Qian Li
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Yi Jin
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan, China
| |
Collapse
|
7
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
8
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
9
|
Kunke M, Knöfler H, Dahlke E, Zanon Rodriguez L, Böttner M, Larionov A, Saudenova M, Ohrenschall GM, Westermann M, Porubsky S, Bernardes JP, Häsler R, Magnin JL, Koepsell H, Jouret F, Theilig F. Targeted deletion of von-Hippel-Lindau in the proximal tubule conditions the kidney against early diabetic kidney disease. Cell Death Dis 2023; 14:562. [PMID: 37626062 PMCID: PMC10457389 DOI: 10.1038/s41419-023-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Glomerular hyperfiltration and albuminuria subject the proximal tubule (PT) to a subsequent elevation of workload, growth, and hypoxia. Hypoxia plays an ambiguous role in the development and progression of DKD and shall be clarified in our study. PT-von-Hippel-Lindau (Vhl)-deleted mouse model in combination with streptozotocin (STZ)-induced type I diabetes mellitus (DM) was phenotyped. In contrary to PT-Vhl-deleted STZ-induced type 1 DM mice, proteinuria and glomerular hyperfiltration occurred in diabetic control mice the latter due to higher nitric oxide synthase 1 and sodium and glucose transporter expression. PT Vhl deletion and DKD share common alterations in gene expression profiles, including glomerular and tubular morphology, and tubular transport and metabolism. Compared to diabetic control mice, the most significantly altered in PT Vhl-deleted STZ-induced type 1 DM mice were Ldc-1, regulating cellular oxygen consumption rate, and Zbtb16, inhibiting autophagy. Alignment of altered genes in heat maps uncovered that Vhl deletion prior to STZ-induced DM preconditioned the kidney against DKD. HIF-1α stabilization leading to histone modification and chromatin remodeling resets most genes altered upon DKD towards the control level. These data demonstrate that PT HIF-1α stabilization is a hallmark of early DKD and that targeting hypoxia prior to the onset of type 1 DM normalizes renal cell homeostasis and prevents DKD development.
Collapse
Affiliation(s)
- Madlen Kunke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Hannah Knöfler
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Eileen Dahlke
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | | | - Martina Böttner
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany
| | - Alexey Larionov
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | - Joana P Bernardes
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert Häsler
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - François Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liège (ULiège), Liège, Belgium
- Division of Nephrology, CHU of Liège, University of Liège (CHU ULiège), Liège, Belgium
| | - Franziska Theilig
- Institute of Anatomy, Christian Albrechts-University Kiel, Kiel, Germany.
- Institute of Anatomy, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
10
|
Kleibert M, Zygmunciak P, Łakomska K, Mila K, Zgliczyński W, Mrozikiewicz-Rakowska B. Insight into the Molecular Mechanism of Diabetic Kidney Disease and the Role of Metformin in Its Pathogenesis. Int J Mol Sci 2023; 24:13038. [PMID: 37685845 PMCID: PMC10487922 DOI: 10.3390/ijms241713038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.
Collapse
Affiliation(s)
- Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemysław Zygmunciak
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Klaudia Łakomska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Klaudia Mila
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| |
Collapse
|
11
|
Li Q, Zhang K, Hou L, Liao J, Zhang H, Han Q, Guo J, Li Y, Hu L, Pan J, Yu W, Tang Z. Endoplasmic reticulum stress contributes to pyroptosis through NF-κB/NLRP3 pathway in diabetic nephropathy. Life Sci 2023; 322:121656. [PMID: 37011874 DOI: 10.1016/j.lfs.2023.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
AIMS Diabetic nephropathy (DN) is known as a major microvascular complication in type 1 diabetes. Endoplasmic reticulum (ER) stress and pyroptosis play a critical role in the pathological process of DN, but their mechanism in DN has been litter attention. MAIN METHODS Here, we firstly used large mammal beagles as DN model for 120 d to explored the mechanism of endoplasmic reticulum stress-mediated pyroptosis in DN. Meanwhile, 4-Phenylbutytic acid (4-PBA) and BYA 11-7082 were added in the MDCK (Madin-Daby canine kidney) cells by high glucose (HG) treatment. ER stress and pyroptosis related factors expression levels were analyzed by immunohistochemistry, immunofluorescence, western blotting, and quantitative real-time PCR assay. KEY FINDINGS We identified that glomeruli atrophy, renal capsules were increased, and renal tubules thickened in diabetes. Masson and PAS staining resulted showed that the collagen fibers and glycogen were accumulated in kidney. Meanwhile, the ER stress and pyroptosis-related factors were significantly activated in vitro. Importantly, 4-PBA significantly inhibited the ER stress, which also alleviated the HG-induced pyroptosis in MDCK cells. Furthermore, BYA 11-7082 could reduce the expression levels of NLRP3 and GSDMD genes and proteins. SIGNIFICANCE These data provide evidence for ER stress contributes to pyroptosis through NF-κΒ/ΝLRP3 pathway in canine type 1 diabetic nephropathy.
Collapse
|
12
|
Song LL, Wang N, Zhang JP, Yu LP, Chen XP, Zhang B, Yang WY. Postprandial glucagon-like peptide 1 secretion is associated with urinary albumin excretion in newly diagnosed type 2 diabetes patients. World J Diabetes 2023; 14:279-289. [PMID: 37035218 PMCID: PMC10075041 DOI: 10.4239/wjd.v14.i3.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Microalbuminuria is an early and informative marker of diabetic nephropathy. Our study found that microalbuminuria developed in patients with newly diagnosed type 2 diabetes mellitus (T2DM).
AIM To investigate the association between glucagon-like peptide 1 (GLP-1) and microalbuminuria in newly diagnosed T2DM patients.
METHODS In total, 760 patients were recruited for this cross-sectional study. The GLP-1 levels during a standard meal test and urinary albumin-creatinine ratio (UACR) were determined.
RESULTS Patients with microalbuminuria exhibited lower GLP-1 levels at 30 min and 120 min during a standard meal test than patients with normal albuminuria (30 min GLP-1, 16.7 ± 13.3 pmol vs 19.9 ± 15.6 pmol, P = 0.007; 120 min GLP-1, 16.0 ± 14.1 pmol vs 18.4 ± 13.8 pmol, P = 0.037). The corresponding area under the curve for active GLP-1 (AUCGLP-1) was also lower in microalbuminuria patients (2257, 1585 to 3506 vs 2896, 1763 to 4726, pmol × min, P = 0.003). Postprandial GLP-1 levels at 30 min and 120 min and AUCGLP-1 were negatively correlated with the UACR (r = 0.159, r = 0.132, r = 0.206, respectively, P < 0.001). The prevalence of microalbuminuria in patients with newly diagnosed T2DM was 21.7%, which decreased with increasing quartiles of AUCGLP-1 levels (27.4%, 25.3%, 18.9% and 15.8%). After logistic regression analysis adjusted for sex, age, hemoglobin A1c, body mass index, systolic blood pressure, estimated glomerular filtration rate, homeostasis model assessment of insulin resistance, AUCglucose and AUCglucagon, patients in quartile 4 of the AUCGLP-1 presented a lower risk of microalbuminuria compared with the patients in quartile 1 (odds ratio = 0.547, 95% confidence interval: 0.325-0.920, P = 0.01). A consistent association was also found between 30 min GLP-1 or 120 min GLP-1 and microalbuminuria.
CONCLUSION Postprandial GLP-1 levels were independently associated with microalbuminuria in newly diagnosed Chinese T2DM patients.
Collapse
Affiliation(s)
- Lu-Lu Song
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Na Wang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jin-Ping Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Li-Ping Yu
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Ping Chen
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bo Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Wen-Ying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
13
|
Mukhi D, Kolligundla LP, Maruvada S, Nishad R, Pasupulati AK. Growth hormone induces transforming growth factor-β1 in podocytes: Implications in podocytopathy and proteinuria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119391. [PMID: 36400249 DOI: 10.1016/j.bbamcr.2022.119391] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
Pituitary growth hormone (GH) is essential for growth, metabolism, and renal function. Overactive GH signaling is associated with impaired kidney function. Glomerular podocytes, a key kidney cell type, play an indispensable role in the renal filtration and express GH receptors (GHR), suggesting the direct action of GH on these cells. However, the precise mechanism and the downstream signaling events by which GH leads to diabetic nephropathy remain to be elucidated. Here we performed proteome analysis of the condition media from human podocytes and confirmed that GH-induces TGF-β1. Inhibition of GH/GHR stimulated-JAK2 signaling abrogates GH-induced TGF-β1 secretion. Mice administered with GH showed glomerular manifestations concomitant with proteinuria. Pharmacological inhibition of TGF-βR1 in mice prevented GH-induced TGF-β dependent SMAD signaling and proteinuria. Conditional deletion of GHR in podocytes protected mice from streptozotocin-induced diabetic nephropathy. GH and TGF-β1 signaling components expression was elevated in the kidneys of human diabetic nephropathy patients. Our study identifies that GH induces TGF-β1 in podocytes, contributing to diabetic nephropathy.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lakshmi P Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Saikrishna Maruvada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
14
|
[MiR-34a alleviates podocyte injury in mice with diabetic nephropathy by targeted downregulation of Notch signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1839-1845. [PMID: 36651252 PMCID: PMC9878418 DOI: 10.12122/j.issn.1673-4254.2022.12.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To explore the effects of miR-34a on injury and apoptosis of podocytes in diabetic nephropathy (DN) and the role of Notch signaling pathway in mediating its effects. METHODS The expression of miR-34a in podocytes exposed to high glucose (30 mmol/L) was detected using RT-PCR. A podocyte line with miR-34a overexpression was constructed, and the miRNA-target relationship between miR-34a and Notch 1 was verified with luciferase assay. The effects of overexpression of Notch 1 and both miR-34a and Notch 1 on podocyte survival and apoptosis were evaluated using CCK-8 and flow cytometry and by detecting apoptosis-related proteins using Western blotting. In a DN mouse model established by high-fat diet and streptozotocin, the effect of tail vein injection of agomir-34a and agomir-NC on pathology and apoptosis in the renal tissues were observed with HE staining and TUNEL staining, and the renal expressions of apoptosis-related proteins and Notch 1 protein were detected with Western blotting. RESULTS High glucose exposure significantly lowered miR-34a expression in cultured human podocytes (P < 0.05). The expression of Notch 1 was significantly lowered in miR-34a-overexpressing podocytes as compared with the cells with miR-NC transfection (P < 0.05). Luciferase assay confirmed the mRNA-target relationship between miR-34a and Notch 1 (P < 0.05). MiR-34a overexpression obviously promoted podocyte survival (P < 0.05), reduced Notch 1 expression, and lowered apoptosis rate and the protein expressions of caspase-3, caspase-9 and Bax/Bcl-2 levels in the cells (P < 0.05), while the reverse changes were observed in Notch 1-overexpressing podocytes (P < 0.05). In DN mouse models, treatment with miR-34a obviously alleviated renal pathologies. Compared with that in the control group, the expression level of miR-34a in the renal tissues was significantly lowered in DN model group (P < 0.05) and increased in miR-34a group (P < 0.05). The mice in the model group showed significantly higher apoptosis index of the renal tissues with increased expressions of caspase-3, caspase-9 and Notch 1 (P < 0.05), which were lowered by treatment with miR-34a (P < 0.05). CONCLUSION MiR-34a is capable of improving podocyte injury and apoptosis in DN mice by targeted downregulation of Notch 1.
Collapse
|
15
|
Nishad R, Mukhi D, Kethavath S, Raviraj S, Paturi ASV, Motrapu M, Kurukuti S, Pasupulati AK. Podocyte derived TNF-α mediates monocyte differentiation and contributes to glomerular injury. FASEB J 2022; 36:e22622. [PMID: 36421039 DOI: 10.1096/fj.202200923r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022]
Abstract
Diabetes shortens the life expectancy by more than a decade, and the excess mortality in diabetes is correlated with the incidence of kidney disease. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Macrophage accumulation predicts the severity of kidney injury in human biopsies and experimental models of DKD. However, the mechanism underlying macrophage recruitment in diabetes glomeruli is unclear. Elevated plasma growth hormone (GH) levels in type I diabetes and acromegalic individuals impaired glomerular biology. In this study, we examined whether GH-stimulated podocytes contribute to macrophage accumulation. RNA-seq analysis revealed elevated TNF-α signaling in GH-treated human podocytes. Conditioned media from GH-treated podocytes (GH-CM) induced differentiation of monocytes to macrophages. On the other hand, neutralization of GH-CM with the TNF-α antibody diminished GH-CM's action on monocytes. The treatment of mice with GH resulted in increased macrophage recruitment, podocyte injury, and proteinuria. Furthermore, we noticed the activation of TNF-α signaling, macrophage accumulation, and fibrosis in DKD patients' kidney biopsies. Our findings suggest that podocytes could secrete TNF-α and contribute to macrophage migration, resulting in DKD-related renal inflammation. Inhibition of either GH action or TNF-α expression in podocytes could be a novel therapeutic approach for DKD treatment.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Srinivas Kethavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sumathi Raviraj
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Atreya S V Paturi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Manga Motrapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil Kumar Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Marked reduction of proteinuria after removal of a growth hormone-producing pituitary adenoma in a patient with focal segmental glomerulosclerosis: a case report and literature review. CEN Case Rep 2022; 12:164-170. [PMID: 36201148 PMCID: PMC10151435 DOI: 10.1007/s13730-022-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Focal segmental glomerulosclerosis is a rare complication of acromegaly. A 74-year-old man was found to have acromegaly features such as enlargement of the forehead, nose, and hands. Laboratory tests showed a urine protein/creatinine ratio of 3.16 g/gCr and serum creatinine of 1.34 mg/dL. The levels of growth hormone and insulin-like growth factor I were markedly elevated, and the growth hormone level was not suppressed after 75 g oral glucose loading. Magnetic resonance imaging revealed a pituitary tumor with a diameter of 1.2 cm. Renal biopsy confirmed the diagnosis of focal segmental glomerulosclerosis. Transsphenoidal resection of the pituitary tumor led to remission of acromegaly and reduction in proteinuria highlighting the causal link between growth hormone overproduction and proteinuria. Treatment of acromegaly may be effective for acromegaly-associated focal segmental glomerulosclerosis.
Collapse
|
18
|
Liu B, Deng C, Tan P. Ombuin ameliorates diabetic nephropathy in rats by anti-inflammation and antifibrosis involving Notch 1 and PPAR γ signaling pathways. Drug Dev Res 2022; 83:1270-1280. [PMID: 35672933 DOI: 10.1002/ddr.21956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/03/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and it is urgent to develop effective therapies for DN. In this study, high-sucrose and high-fat diet combined with streptozotocin was used to induce DN in rats to observe the effects of natural flavonoid ombuin on renal function, inflammation, and interstitial fibrosis. Immunohistochemistry and western blotting analysis were used to detect protein expression levels. Results showed that ombuin significantly improved renal function and pathological injury, inhibited accumulation of advanced glycation end-products, suppressed the release of inflammatory cytokines, and improved renal interstitial fibrosis in DN rats. Ombuin also significantly downregulated the expressions of transforming growth factor beta1 (TGF-β1), connective tissue growth factor (CTGF), fibronectin (FN), p65, phosphorylated (p)-p65, Cleaved-Notch 1, and hairy and enhancer of split 1 (Hes 1), and upregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ). When PPAR γ activity was inhibited by T0070907, the effects of ombuin on improving DN were significantly reversed, and the expressions of TGF-β1, FN, CTGF, p-p65, and p65 increased, while the expressions of Cleaved-Notch 1 and Hes 1 were not significantly affected. These results suggest that ombuin may activate PPAR γ to exert anti-inflammatory and antifibrotic effects by inhibiting Notch 1 activity in DN. It is also possible that ombuin acts on these two independent signal pathways synchronously.
Collapse
Affiliation(s)
- Bin Liu
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| | - Caichun Deng
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| | - Ping Tan
- Department of Nephrology and Rheumatology, Chinese Medicine Hospital of Hainan Province, Haikou, China
| |
Collapse
|
19
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Sridhar VS, Yau K, Benham JL, Campbell DJT, Cherney DZI. Sex and Gender Related Differences in Diabetic Kidney Disease. Semin Nephrol 2022; 42:170-184. [PMID: 35718364 DOI: 10.1016/j.semnephrol.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diversity in sex and gender are important considerations in the pathogenesis, prognostication, research, and management of diabetic kidney disease (DKD). Sex and gender differences in the disease risk, disease-specific mechanisms, and outcomes in DKD may be attributed to biological differences between males and females at the cellular and tissue level, inconsistencies in the diagnostic and assessment tools used in chronic kidney disease and DKD, as well societal differences in the way men, women, and gender-diverse individuals self-manage and interact with health care systems. This review outlines key considerations related to the impact of sex on DKD, specifically elaborating on how they contribute to observed differences in disease epidemiology, pathogenesis, and treatment strategies. We also highlight the effect of gender on DKD progression and care.
Collapse
Affiliation(s)
- Vikas S Sridhar
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - Jamie L Benham
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| | - David J T Campbell
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta.
| | - David Z I Cherney
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta; Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta
| |
Collapse
|
21
|
Li MR, Lei CT, Tang H, Yin XJ, Hao Z, Qiu Y, Xie YR, Zeng JY, Su H, Zhang C. MAD2B promotes podocyte injury through regulating Numb-dependent Notch 1 pathway in diabetic nephropathy. Int J Biol Sci 2022; 18:1896-1911. [PMID: 35342338 PMCID: PMC8935242 DOI: 10.7150/ijbs.68977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022] Open
Abstract
Rationale: Recent studies have demonstrated that the loss of podocyte is a critical event in diabetic nephropathy (DN). Previously, our group have found that the mitotic arrest deficient protein MAD2B was involved in high glucose (HG)-induced podocyte injury by regulating APC/C activity. However, the exact mechanism of MAD2B implicated in podocyte injury is still lacking. Methods: The experiments were conducted by using kidney tissues from streptozotocin (STZ) induced diabetic mice with or without podocyte-specific deletion of MAD2B and the cultured podocytes exposed to different treatments. Glomerular pathological injury was evaluated by periodic acid-Schiff staining and transmission electron microscopy. The endogenous interaction between MAD2B and Numb was discovered by yeast two-hybrid analysis and co-immunoprecipitation assay. The expressions of MAD2B, Numb and related pathway were detected by western blot, immunochemistry and immunofluorescence. Results: The present study revealed that MAD2B was upregulated in diabetic glomeruli and cultured podocytes under hyperglycemic conditions. Podocyte-specific deletion of MAD2B alleviated podocyte injury and renal function deterioration in mice of diabetic nephropathy. Afterwards, MAD2B was found to interact with Numb, which was downregulated in diabetic glomeruli and HG-stimulated cultured podocytes. Interestingly, MAD2B genetic deletion could partly reverse the decline of Numb in podocytes exposed to HG and in diabetic mice, and the expressions of Numb downstream molecules such as NICD and Hes-1 were decreased accordingly. In addition, overexpression of Numb ameliorated HG-induced podocyte injury. Conclusions: The present findings suggest that upregulated MAD2B expression contributes to Numb depletion and activation of Notch 1 signaling pathway, which ultimately leads to podocyte injury during DN progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Gurevich E, Segev Y, Landau D. Growth Hormone and IGF1 Actions in Kidney Development and Function. Cells 2021; 10:cells10123371. [PMID: 34943879 PMCID: PMC8699155 DOI: 10.3390/cells10123371] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Daniel Landau
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3925-3651
| |
Collapse
|
23
|
EP300/CBP is crucial for cAMP-PKA pathway to alleviate podocyte dedifferentiation via targeting Notch3 signaling. Exp Cell Res 2021; 407:112825. [PMID: 34506759 DOI: 10.1016/j.yexcr.2021.112825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/05/2021] [Indexed: 11/20/2022]
Abstract
Podocyte injury is the hallmark of proteinuric glomerular diseases. Notch3 is neo-activated simultaneously in damaged podocytes and podocyte's progenitor cells of FSGS, indicating a unique role of Notch3. We previously showed that activation of cAMP-PKA pathway alleviated podocyte injury possibly via inhibiting Notch3 expression. However, the mechanisms are unknown. In the present study, Notch3 signaling was significantly activated in ADR-induced podocytes in vitro and in PAN nephrosis rats and patients with idiopathic FSGS in vivo, concomitantly with podocyte dedifferentiation. In cultured podocytes, pCPT-cAMP, a selective cAMP-PKA activator, dramatically blocked ADR-induced activation of Notch3 signaling as well as inhibition of cAMP-PKA pathway, thus alleviating the decreased cell viability and podocyte dedifferentiation. Bioinformatics analysis revealed EP300/CBP, a transcriptional co-activator, as a central hub for the crosstalk between these two signaling pathways. Additionally, CREB/KLF15 in cAMP-PKA pathway competed with RBP-J the major transcriptional factor of Notch3 signaling for binding to EP300/CBP. EP300/CBP siRNA significantly inhibited these two signaling transduction pathways and disrupted the interactions between the above major transcriptional factors. These data indicate a crucial role of EP300/CBP in regulating the crosstalk between cAMP-PKA pathway and Notch3 signaling and modulating the phenotypic change of podocytes, and enrich the reno-protective mechanisms of cAMP-PKA pathway.
Collapse
|
24
|
Haffner D, Grund A, Leifheit-Nestler M. Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol 2021; 36:2511-2530. [PMID: 34143299 PMCID: PMC8260426 DOI: 10.1007/s00467-021-05097-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Growth hormone (GH) and its mediator insulin-like growth factor-1 (IGF-1) have manifold effects on the kidneys. GH and IGF receptors are abundantly expressed in the kidney, including the glomerular and tubular cells. GH can act either directly on the kidneys or via circulating or paracrine-synthesized IGF-1. The GH/IGF-1 system regulates glomerular hemodynamics, renal gluconeogenesis, tubular sodium and water, phosphate, and calcium handling, as well as renal synthesis of 1,25 (OH)2 vitamin D3 and the antiaging hormone Klotho. The latter also acts as a coreceptor of the phosphaturic hormone fibroblast-growth factor 23 in the proximal tubule. Recombinant human GH (rhGH) is widely used in the treatment of short stature in children, including those with chronic kidney disease (CKD). Animal studies and observations in acromegalic patients demonstrate that GH-excess can have deleterious effects on kidney health, including glomerular hyperfiltration, renal hypertrophy, and glomerulosclerosis. In addition, elevated GH in patients with poorly controlled type 1 diabetes mellitus was thought to induce podocyte injury and thereby contribute to the development of diabetic nephropathy. This manuscript gives an overview of the physiological actions of GH/IGF-1 on the kidneys and the multiple alterations of the GH/IGF-1 system and its consequences in patients with acromegaly, CKD, nephrotic syndrome, and type 1 diabetes mellitus. Finally, the impact of short- and long-term treatment with rhGH/rhIGF-1 on kidney function in patients with kidney diseases will be discussed.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
25
|
Zhang Y, Jin D, Kang X, Zhou R, Sun Y, Lian F, Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front Cell Dev Biol 2021; 9:696542. [PMID: 34327204 PMCID: PMC8314387 DOI: 10.3389/fcell.2021.696542] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD), as the most common complication of diabetes mellitus (DM), is the major cause of end-stage renal disease (ESRD). Renal interstitial fibrosis is a crucial metabolic change in the late stage of DKD, which is always considered to be complex and irreversible. In this review, we discuss the pathological mechanisms of diabetic renal fibrosis and discussed some signaling pathways that are closely related to it, such as the TGF-β, MAPK, Wnt/β-catenin, PI3K/Akt, JAK/STAT, and Notch pathways. The cross-talks among these pathways were then discussed to elucidate the complicated cascade behind the tubulointerstitial fibrosis. Finally, we summarized the new drugs with potential therapeutic effects on renal fibrosis and listed related clinical trials. The purpose of this review is to elucidate the mechanisms and related pathways of renal fibrosis in DKD and to provide novel therapeutic intervention insights for clinical research to delay the progression of renal fibrosis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Endocrinology Department, Guang'anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rongrong Zhou
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Endocrinology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
26
|
Nishad R, Tahaseen V, Kavvuri R, Motrapu M, Singh AK, Peddi K, Pasupulati AK. Advanced-Glycation End-Products Induce Podocyte Injury and Contribute to Proteinuria. Front Med (Lausanne) 2021; 8:685447. [PMID: 34277660 PMCID: PMC8280521 DOI: 10.3389/fmed.2021.685447] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
The prevalence of diabetes reaches epidemic proportions. Diabetes is the leading cause of end-stage kidney disease (ESKD) since 30–40% of diabetic patients develop diabetic nephropathy. Albuminuria and glomerular filtration rate used to assess kidney function are considered surrogate outcomes of chronic kidney disease. The search for a biomarker that predicts progression to diabetic kidney disease is intense. We analyzed the association of serum advanced glycation end-products (AGEs) index (AGI) with impaired kidney function in poorly controlled type II diabetic patients. We observed an association between AGI and impaired kidney function in microalbuminuria patients with hyperglycemia. A significant association between AGEs, particularly carboxymethyl lysine (CML), and impaired kidney function were observed. Administration of AGEs to mice showed heavy proteinuria and glomerular abnormalities. Reduced podocyte number in mice administered with AGEs could be attributed to the epithelial-mesenchymal transition of podocytes. Our study suggests CML could be independently related to the podocyte injury and the risk of DN progression to ESKD in patients with microalbuminuria. AGEs in general or CML could be considered a prognostic marker to assess diabetic kidney disease.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Vazeeha Tahaseen
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, India
| | - Rajesh Kavvuri
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Manga Motrapu
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Ashish K Singh
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| | - Kiranmayi Peddi
- Department of Biochemistry, Acharya Nagarjuna University, Guntur, India
| | - Anil K Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
27
|
Cheng Q, Pan J, Zhou ZL, Yin F, Xie HY, Chen PP, Li JY, Zheng PQ, Zhou L, Zhang W, Liu J, Lu LM. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin 2021; 42:954-963. [PMID: 32968210 PMCID: PMC8149386 DOI: 10.1038/s41401-020-00525-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by sterile inflammation with continuous injury and loss of renal inherent parenchyma cells. Podocyte is an essential early injury target in DN. The injury and loss of podocytes are closely associated with proteinuria, the early symptom of renal injury in DN. However, the exact mechanism for podocyte injury and death in DN remains ambiguous. In this study we investigated whether pyroptosis, a newly discovered cell death pathway was involved in DN. Diabetic mice were generated by high-fat diet/STZ injections. We showed that the expression levels of caspase-11 and cleavage of gasdermin D (GSDMD-N) in podocytes were significantly elevated, accompanied by reduced expression of podocyte makers nephrin and podocin, loss and fusion in podocyte foot processes, increased inflammatory cytokines NF-κB, IL-1β, and IL-18, macrophage infiltration, glomerular matrix expansion and increased urinary albumin to creatinine ratio (UACR). All these changes in diabetic mice were blunted by knockout of caspase-11 or GSDMD. Cultured human and mouse podocytes were treated with high glucose (30 mM), which significantly increased the expression levels of caspase-11 or caspase-4 (the homolog of caspase-11 in human), GSDMD-N, NF-κB, IL-1β, and IL-18, and decreased the expression of nephrin and podocin. Either caspase-4 or GSDMD knockdown by siRNA significantly blunted these changes. In summary, our results demonstrate that caspase-11/4 and GSDMD-mediated pyroptosis is activated and involved in podocyte loss under hyperglycemia condition and the development of DN.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhuan-Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fan Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong-Yan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pan-Pan Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing-Yao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Pei-Qing Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Nishad R, Mukhi D, Singh AK, Motrapu M, Chintala K, Tammineni P, Pasupulati AK. Growth hormone induces mitotic catastrophe of glomerular podocytes and contributes to proteinuria. Cell Death Dis 2021; 12:342. [PMID: 33795655 PMCID: PMC8016968 DOI: 10.1038/s41419-021-03643-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Glomerular podocytes are integral members of the glomerular filtration barrier in the kidney and are crucial for glomerular permselectivity. These highly differentiated cells are vulnerable to an array of noxious stimuli that prevail in several glomerular diseases. Elevated circulating growth hormone (GH) levels are associated with podocyte injury and proteinuria in diabetes. However, the precise mechanism(s) by which excess GH elicits podocytopathy remains to be elucidated. Previous studies have shown that podocytes express GH receptor (GHR) and induce Notch signaling when exposed to GH. In the present study, we demonstrated that GH induces TGF-β1 signaling and provokes cell cycle reentry of otherwise quiescent podocytes. Though differentiated podocytes reenter the cell cycle in response to GH and TGF-β1, they cannot accomplish cytokinesis, despite karyokinesis. Owing to this aberrant cell cycle event, GH- or TGF-β1-treated cells remain binucleated and undergo mitotic catastrophe. Importantly, inhibition of JAK2, TGFBR1 (TGF-β receptor 1), or Notch prevented cell cycle reentry of podocytes and protected them from mitotic catastrophe associated with cell death. Inhibition of Notch activation prevents GH-dependent podocyte injury and proteinuria. Similarly, attenuation of GHR expression abated Notch activation in podocytes. Kidney biopsy sections from patients with diabetic nephropathy (DN) show activation of Notch signaling and binucleated podocytes. These data indicate that excess GH induced TGF-β1-dependent Notch1 signaling contributes to the mitotic catastrophe of podocytes. This study highlights the role of aberrant GH signaling in podocytopathy and the potential application of TGF-β1 or Notch inhibitors, as a therapeutic agent for DN.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ashish Kumar Singh
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Manga Motrapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kumaraswami Chintala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
29
|
Piani F, Melena I, Tommerdahl KL, Nokoff N, Nelson RG, Pavkov ME, van Raalte DH, Cherney DZ, Johnson RJ, Nadeau KJ, Bjornstad P. Sex-related differences in diabetic kidney disease: A review on the mechanisms and potential therapeutic implications. J Diabetes Complications 2021; 35:107841. [PMID: 33423908 PMCID: PMC8007279 DOI: 10.1016/j.jdiacomp.2020.107841] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Sexual dimorphism may play a key role in the pathogenesis of diabetic kidney disease (DKD) and explain differences observed in disease phenotypes, responses to interventions, and disease progression between men and women with diabetes. Therefore, omitting the consideration of sex as a biological factor may result in delayed diagnoses and suboptimal therapies. This review will summarize the effects of sexual dimorphism on putative metabolic and molecular mechanisms underlying DKD, and the potential implications of these differences on therapeutic interventions. To successfully implement precision medicine, we require a better understanding of sexual dimorphism in the pathophysiologic progression of DKD. Such insights can unveil sex-specific therapeutic targets that have the potential to maximize efficacy while minimizing adverse events.
Collapse
Affiliation(s)
- Federica Piani
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Isabella Melena
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kalie L Tommerdahl
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Meda E Pavkov
- Division of Diabetes Translation, Center for Disease Control and Prevention, Atlanta, GA, USA
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
| | - David Z Cherney
- Department of Medicine, Division of Nephrology, University of Toronto School of Medicine, Toronto, Ontario, Canada
| | - Richard J Johnson
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen J Nadeau
- Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Petter Bjornstad
- Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Medicine, Division of Nephrology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
30
|
Chen H, Feng Z, Li L, Fan L. MicroRNA-9 rescues hyperglycemia-induced endothelial cell dysfunction and promotes arteriogenesis through downregulating Notch1 signaling. Mol Cell Biochem 2021; 476:2777-2789. [PMID: 33721156 DOI: 10.1007/s11010-021-04075-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
Hyperglycemia-induced endothelial dysfunction plays a major role in the pathogenesis of diabetic vascular complications. MicroRNAs are potential therapeutic agents to improve hyperglycemia-induced endothelial dysfunction. This study examined the relationship of miR-9 with Notch1 signaling in hyperglycemia-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) were exposed to 30 mM glucose concentration. Cell viability including proliferation, adhesion, migration and tube formation was significantly impaired. Quantitative real time polymerase chain reaction (qRT-PCR) or Western blot demonstrated that miR-9 expression remarkably decreased and expression of Notch1 and its effectors (Hes1, Hey1, Hey2) were upregulated. Transfection with miR-9 improved cell function, inhibited mRNA and protein expression of Notch1 and its effectors. Although basal expression of the arterial endothelium biomarker Ephrin B2 was almost undetectable in HUVECs, double-label immunofluorescence revealed that transfection with miR-9 upregulated Ephrin B2 expression. By contrast, such protective effects of miR-9 overexpression were eliminated due to use of miR-9 inhibitor. Dual luciferase assay further confirmed a significant inverse correlation between miR-9 and Notch1. In addition, Notch1 overactiviation was mimicked in HUVECs by transfecting with Notch1 intracellular domain (NICD1). MiR-9 significantly inhibited NICD1 mRNA expression and alleviated hyperglycemia-induced injury of the NICD1-overexpressing cells. Taken together, our data support upregulating miR-9 expression as a potential therapeutic strategy to antagonize hyperglycemia-induced injury by inhibiting Notch1 signaling.
Collapse
Affiliation(s)
- Huang Chen
- Department of Cardiology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou, 350001, China.,Institute of Coronary Heart Disease of Fujian Province, Xinquan Road 29#, Fuzhou, 350001, China
| | - Zhihai Feng
- Department of Cardiology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou, 350001, China.,Institute of Coronary Heart Disease of Fujian Province, Xinquan Road 29#, Fuzhou, 350001, China
| | - Lieyou Li
- Department of Cardiology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou, 350001, China.,Institute of Coronary Heart Disease of Fujian Province, Xinquan Road 29#, Fuzhou, 350001, China
| | - Lin Fan
- Department of Cardiology, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou, 350001, China. .,Institute of Coronary Heart Disease of Fujian Province, Xinquan Road 29#, Fuzhou, 350001, China. .,Department of Geriatrics, Fujian Medical University Union Hospital, Xinquan Road 29#, Fuzhou, 350001, China. .,Institute of Geriatrics of Fujian Province, Xinquan Road 29#, Fuzhou, 350001, China.
| |
Collapse
|
31
|
Zuo Y, Chen L, He X, Ye Z, Li L, Liu Z, Zhou S. Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes Metab Syndr Obes 2021; 14:1631-1645. [PMID: 33880049 PMCID: PMC8053520 DOI: 10.2147/dmso.s298950] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the main complications of diabetes mellitus (DM), which leads to the long-term loss of kidney functions. Long noncoding RNAs (LncRNAs) can alleviate DN by interacting with microRNAs (miRNAs). In this work, we aimed to explore the effects of the MALAT1/miR-200c/NRF2 regulatory axis on the pyroptosis and oxidative stress (Oxidative stress, OS) of renal podocytes in high glucose (HG) environment and whether the lipid-lowering drug atorvastatin (AT) can relieve renal OS through this approach. METHODS MPC-5, a mouse podocyte cell line, was induced by HG as a cell model. The protein expressions of caspase-1, GSDMD, NLRP3, NRF2, etc. were detected by Western blotting and immunofluorescence, and the mRNA level of caspase-1, GSDMD, NLRP3, NRF2, MALAT1, miR-200c was tested by qRT-PCR. The cell pyroptosis of podocytes treated with AT was verified by CCK-8 or flow cytometry. The levels of Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were measured by spectrophotometer, respectively. RESULTS The caspase-1 was upregulated in time-dependent manner and got the peak at 48 h and 30 mmol/L respectively in MPC-5 cells treated with HG. Further, the expression of GSDMD, MALAT1 and miR-200c were increased, while the level of NRF2, HO-1, OS-related indicators, were decreased simultaneously. Knockdown the MALAT1 protected MPC-5 cells from pyroptosis and OS induced by HG. However, overexpressing miR-200c in control-group cells increased pyroptosis and upregulated the OS level with HG culture medium. Further, atorvastatin protected MPC-5 cells from cell pyroptosis and downregulated the level of renal OS via attenuating the expression of MALAT1 and miR-200c. CONCLUSION Atorvastatin protects podocyte cells via MALAT1/miR-200c/NRF2 signal pathway from pyroptosis and OS induced by HG.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Li Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, People’s Republic of China
| | - Xiaoyun He
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Zhen Ye
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Zhanhong Liu
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
| | - Suxian Zhou
- Department of Endocrinology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People’s Republic of China
- Correspondence: Suxian Zhou Department of Endocrinology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, Guangxi, 541001, People’s Republic of China Email
| |
Collapse
|
32
|
Kiełbasiński K, Peszek W, Grabarek BO, Boroń D, Wierzbik-Strońska M, Oplawski M. Effect of Salinomycin on Expression Pattern of Genes Associated with Apoptosis in Endometrial Cancer Cell Line. Curr Pharm Biotechnol 2020; 21:1269-1277. [PMID: 32400328 PMCID: PMC7604770 DOI: 10.2174/1389201021666200513074022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
Abstract
Background Salinomycin is part of a group of ionophore antibiotics characterized by an activity towards tumor cells. To this day, the mechanism through which salinomycin induces their apoptosis is not fully known yet. The goal of this study was to assess the expression pattern of genes and the proteins coded by them connected with the process of programmed cell death in an endometrial cancer cell Ishikawa culture exposed to salinomycin and compared to the control. Materials and Methods Analysis of the effect of salinomycin on Ishikawa endometrial cancer cells (ECACC 99040201) included a cytotoxicity MTT test (with a concentration range of 0.1-100 µM), assessment of the induction of apoptosis and necrosis by salinomycin at a concentration of 1 µM as well the assessment of the expression of the genes chosen in the microarray experiment (microarray HG-U 133A_2) and the proteins coded by them connected with apoptosis (RTqPCR, ELISA assay). The statistical significance level for all analyses carried out as part of this study was p<0.05. Results It was observed that salinomycin causes the death of about 50% of cells treated by it (50.74±0.80% of all cells) at a concentration of 1µM. The decrease in the number of living cells was determined directly after treatment of the cells with the drug (time 0). The average percent of late apoptotic cells was 1.65±0.24% and 0.57±0.01% for necrotic cells throughout the entire observation period. Discussion Microarray analysis indicated the following number of mRNA differentiating the culture depending on the time of incubation with the drug: H_12 vs C = 114 mRNA, H_8 vs C = 84 mRNA, H_48 vs. C = 27 mRNA, whereas 5 mRNAs were expressed differently at all times. During the whole incubation period of the cells with the drug, the following dependence of the expression profile of the analyzed transcripts was observed: Bax>p53>FASL>BIRC5>BCL2L. Conclusion The analysis carried out indicated that salinomycin, at a concentration of 1 µM, stopped the proliferation of 50% of endometrial cancer cells, mainly by inducing the apoptotic process of the cells. The molecular exponent of the induction of programmed cell death was an observed increase in the transcriptional activity of pro-apoptotic genes: Bax;p53;FASL and a decrease in the expression of anti-apoptotic genes: BCL2L2; BIRC5.
Collapse
Affiliation(s)
- Kamil Kiełbasiński
- Department of Obsterics and Gynaecology in Ruda Slaska, Medical University of Silesia, Ruda Slaska, Poland
| | - Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology Krakow Branch, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland
| | | | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
33
|
Dou Y, Shang Y, Shen Y, Qu J, Liu C, Cao J. Baicalin alleviates adriamycin-induced focal segmental glomerulosclerosis and proteinuria by inhibiting the Notch1-Snail axis mediated podocyte EMT. Life Sci 2020; 257:118010. [DOI: 10.1016/j.lfs.2020.118010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
|
34
|
Nishad R, Meshram P, Singh AK, Reddy GB, Pasupulati AK. Activation of Notch1 signaling in podocytes by glucose-derived AGEs contributes to proteinuria. BMJ Open Diabetes Res Care 2020; 8:8/1/e001203. [PMID: 32601154 PMCID: PMC7326296 DOI: 10.1136/bmjdrc-2020-001203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Advanced glycation end-products (AGEs) are implicated in the pathogenesis of diabetic nephropathy (DN). Previous studies have shown that AGEs contribute to glomerulosclerosis and proteinuria. Podocytes, terminally differentiated epithelial cells of the glomerulus and the critical component of the glomerular filtration barrier, express the receptor for AGEs (RAGE). Podocytes are susceptible to severe injury during DN. In this study, we investigated the mechanism by which AGEs contribute to podocyte injury. RESEARCH DESIGN AND METHODS Glucose-derived AGEs were prepared in vitro. Reactivation of Notch signaling was examined in AGE-treated human podocytes (in vitro) and glomeruli from AGE-injected mice (in vivo) by quantitative reverse transcription-PCR, western blot analysis, ELISA and immunohistochemical staining. Further, the effects of AGEs on epithelial to mesenchymal transition (EMT) of podocytes and expression of fibrotic markers were evaluated. RESULTS Using human podocytes and a mouse model, we demonstrated that AGEs activate Notch1 signaling in podocytes and provoke EMT. Inhibition of RAGE and Notch1 by FPS-ZM1 (N-Benzyl-4-chloro-N-cyclohexylbenzamide) and DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenyl glycine t-butylester), respectively, abrogates AGE-induced Notch activation and EMT. Inhibition of RAGE and Notch1 prevents AGE-induced glomerular fibrosis, thickening of the glomerular basement membrane, foot process effacement, and proteinuria. Furthermore, kidney biopsy sections from people with DN revealed the accumulation of AGEs in the glomerulus with elevated RAGE expression and activated Notch signaling. CONCLUSION The data suggest that AGEs activate Notch signaling in the glomerular podocytes. Pharmacological inhibition of Notch signaling by DAPT ameliorates AGE-induced podocytopathy and fibrosis. Our observations suggest that AGE-induced Notch reactivation in mature podocytes could be a novel mechanism in glomerular disease and thus could represent a novel therapeutic target.
Collapse
|