1
|
Thompson MD, Percy ME, Cole DEC, Bichet DG, Hauser AS, Gorvin CM. G protein-coupled receptor (GPCR) gene variants and human genetic disease. Crit Rev Clin Lab Sci 2024; 61:317-346. [PMID: 38497103 DOI: 10.1080/10408363.2023.2286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 03/19/2024]
Abstract
Genetic variations in the genes encoding G protein-coupled receptors (GPCRs) can disrupt receptor structure and function, which can result in human genetic diseases. Disease-causing mutations have been reported in at least 55 GPCRs for more than 66 monogenic diseases in humans. The spectrum of pathogenic and likely pathogenic variants includes loss of function variants that decrease receptor signaling on one extreme and gain of function that may result in biased signaling or constitutive activity, originally modeled on prototypical rhodopsin GPCR variants identified in retinitis pigmentosa, on the other. GPCR variants disrupt ligand binding, G protein coupling, accessory protein function, receptor desensitization and receptor recycling. Next generation sequencing has made it possible to identify variants of uncertain significance (VUS). We discuss variants in receptors known to result in disease and in silico strategies for disambiguation of VUS such as sorting intolerant from tolerant and polymorphism phenotyping. Modeling of variants has contributed to drug development and precision medicine, including drugs that target the melanocortin receptor in obesity and interventions that reverse loss of gonadotropin-releasing hormone receptor from the cell surface in idiopathic hypogonadotropic hypogonadism. Activating and inactivating variants of the calcium sensing receptor (CaSR) gene that are pathogenic in familial hypocalciuric hypercalcemia and autosomal dominant hypocalcemia have enabled the development of calcimimetics and calcilytics. Next generation sequencing has continued to identify variants in GPCR genes, including orphan receptors, that contribute to human phenotypes and may have therapeutic potential. Variants of the CaSR gene, some encoding an arginine-rich region that promotes receptor phosphorylation and intracellular retention, have been linked to an idiopathic epilepsy syndrome. Agnostic strategies have identified variants of the pyroglutamylated RF amide peptide receptor gene in intellectual disability and G protein-coupled receptor 39 identified in psoriatic arthropathy. Coding variants of the G protein-coupled receptor L1 (GPR37L1) orphan receptor gene have been identified in a rare familial progressive myoclonus epilepsy. The study of the role of GPCR variants in monogenic, Mendelian phenotypes has provided the basis of modeling the significance of more common variants of pharmacogenetic significance.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, ON, Canada
| | - Maire E Percy
- Departments of Physiology and Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
| | - David E C Cole
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Daniel G Bichet
- Department of Physiology and Medicine, Hôpital du Sacré-Coeur, Université de Montréal, QC, Canada
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
2
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 Variants Reveal Potential Association between GPR37L1 and Disorders of Anxiety and Migraine. J Neurosci 2024; 44:e1226232024. [PMID: 38569927 PMCID: PMC11089846 DOI: 10.1523/jneurosci.1226-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Andrea Cippitelli
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Yingcai Wang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Oliver Pelletier
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Ridge Dershem
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Lawrence Toll
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Bianca Fakhoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Gloria Brunori
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | - David J Carey
- Geisinger, Weis Center for Research, Danville, Pennsylvania
| | - Janet Robishaw
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Nguyen TT, Camp CR, Doan JK, Traynelis SF, Sloan SA, Hall RA. GPR37L1 controls maturation and organization of cortical astrocytes during development. Glia 2023; 71:1921-1946. [PMID: 37029775 PMCID: PMC10315172 DOI: 10.1002/glia.24375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Astrocyte maturation is crucial to proper brain development and function. This maturation process includes the ramification of astrocytic morphology and the establishment of astrocytic domains. While this process has been well-studied, the mechanisms by which astrocyte maturation is initiated are not well understood. GPR37L1 is an astrocyte-specific G protein-coupled receptor (GPCR) that is predominantly expressed in mature astrocytes and has been linked to the modulation of seizure susceptibility in both humans and mice. To investigate the role of GPR37L1 in astrocyte biology, RNA-seq analyses were performed on astrocytes immunopanned from P7 Gpr37L1-/- knockout (L1KO) mouse cortex and compared to those from wild-type (WT) mouse cortex. These RNA-seq studies revealed that pathways involved in central nervous system development were altered and that L1KO cortical astrocytes express lower amounts of mature astrocytic genes compared to WT astrocytes. Immunohistochemical studies of astrocytes from L1KO mouse brain revealed that these astrocytes exhibit overall shorter total process length, and are also less complex and spaced further apart from each other in the mouse cortex. This work sheds light on how GPR37L1 regulates cellular processes involved in the control of astrocyte biology and maturation.
Collapse
Affiliation(s)
| | - Chad R. Camp
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Juleva K. Doan
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Stephen F. Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| | - Steven A. Sloan
- Emory University School of Medicine, Department of Human Genetics
| | - Randy A. Hall
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology
| |
Collapse
|
4
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|
5
|
Davis CM, Bah TM, Zhang WH, Nelson JW, Golgotiu K, Nie X, Alkayed FN, Young JM, Woltjer RL, Silbert LC, Grafe MR, Alkayed NJ. GPR39 localization in the aging human brain and correlation of expression and polymorphism with vascular cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12214. [PMID: 34692987 PMCID: PMC8515554 DOI: 10.1002/trc2.12214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The pathogenesis of vascular cognitive impairment (VCI) is not fully understood. GPR39, an orphan G-protein coupled receptor, is implicated in neurological disorders but its role in VCI is unknown. METHODS We performed GPR39 immunohistochemical analysis in post mortem brain samples from mild cognitive impairment (MCI) and control subjects. DNA was analyzed for GPR39 single nucleotide polymorphisms (SNPs), and correlated with white matter hyperintensity (WMH) burden on pre mortem magnetic resonance imaging. RESULTS GPR39 is expressed in aged human dorsolateral prefrontal cortex, localized to microglia and peri-capillary cells resembling pericytes. GPR39-capillary colocalization, and density of GPR39-expressing microglia was increased in aged brains compared to young. SNP distribution was equivalent between groups; however, homozygous SNP carriers were present only in the MCI group, and had higher WMH volume than wild-type or heterozygous SNP carriers. DISCUSSION GPR39 may play a role in aging-related VCI, and may serve as a therapeutic target and biomarker for the risk of developing VCI.
Collapse
Affiliation(s)
- Catherine M. Davis
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Thierno M. Bah
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Wenri H. Zhang
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Jonathan W. Nelson
- Division of Nephrology and Hypertension, Department of MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Kirsti Golgotiu
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Xiao Nie
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Farah N. Alkayed
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Jennifer M. Young
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandOregonUSA
| | - Randy L. Woltjer
- Department of PathologyOregon Health & Science UniversityPortlandOregonUSA
| | - Lisa C. Silbert
- Layton Aging and Alzheimer's Disease Research CenterDepartment of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Marjorie R. Grafe
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
- Department of PathologyOregon Health & Science UniversityPortlandOregonUSA
| | - Nabil J. Alkayed
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
6
|
Xu Y, Barnes AP, Alkayed NJ. Role of GPR39 in Neurovascular Homeostasis and Disease. Int J Mol Sci 2021; 22:8200. [PMID: 34360964 PMCID: PMC8346997 DOI: 10.3390/ijms22158200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
GPR39, a member of the ghrelin family of G protein-coupled receptors, is zinc-responsive and contributes to the regulation of diverse neurovascular and neurologic functions. Accumulating evidence suggests a role as a homeostatic regulator of neuronal excitability, vascular tone, and the immune response. We review GPR39 structure, function, and signaling, including constitutive activity and biased signaling, and summarize its expression pattern in the central nervous system. We further discuss its recognized role in neurovascular, neurological, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Anthony P. Barnes
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| |
Collapse
|
7
|
Nguyen TT, Dammer EB, Owino SA, Giddens MM, Madaras NS, Duong DM, Seyfried NT, Hall RA. Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. J Proteome Res 2021; 19:744-755. [PMID: 31903766 DOI: 10.1021/acs.jproteome.9b00622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.
Collapse
Affiliation(s)
- TrangKimberly Thu Nguyen
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Eric B Dammer
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Sharon A Owino
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Michelle M Giddens
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Nora S Madaras
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| | - Duc M Duong
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Nicholas T Seyfried
- Department of Biochemistry , Emory University School of Medicine , Atlanta 30345 , Georgia , United States
| | - Randy A Hall
- Department of Pharmacology and Chemical Biology , Emory University School of Medicine , Atlanta 30322 , Georgia , United States
| |
Collapse
|
8
|
Laitakari A, Liu L, Frimurer TM, Holst B. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target. Int J Mol Sci 2021; 22:ijms22083872. [PMID: 33918078 PMCID: PMC8070507 DOI: 10.3390/ijms22083872] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled receptor GPR39 is abundantly expressed in various tissues and can be activated by changes in extracellular Zn2+ in physiological concentrations. Previously, genetically modified rodent models have been able to shed some light on the physiological functions of GPR39, and more recently the utilization of novel synthetic agonists has led to the unraveling of several new functions in the variety of tissues GPR39 is expressed. Indeed, GPR39 seems to be involved in many important metabolic and endocrine functions, but also to play a part in inflammation, cardiovascular diseases, saliva secretion, bone formation, male fertility, addictive and depression disorders and cancer. These new discoveries offer opportunities for the development of novel therapeutic approaches against many diseases where efficient therapeutics are still lacking. This review focuses on Zn2+ as an endogenous ligand as well as on the novel synthetic agonists of GPR39, placing special emphasis on the recently discovered physiological functions and discusses their pharmacological potential.
Collapse
Affiliation(s)
- Anna Laitakari
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Lingzhi Liu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
9
|
Mlyniec K, Siodłak D, Doboszewska U, Nowak G. GPCR oligomerization as a target for antidepressants: Focus on GPR39. Pharmacol Ther 2021; 225:107842. [PMID: 33746052 DOI: 10.1016/j.pharmthera.2021.107842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
At present most of the evidence for the relevance of oligomerization for the pharmacology of depression comes from in vitro studies which identified oligomers, and from neuropsychopharmacological studies of receptors which participate in oligomerization. For example, behavioural and biochemical studies in knockout animals suggest that GPR39 may mediate the antidepressant action of monoaminergic antidepressants. We have recently found long-lasting antidepressant-like effects of GPR39 agonist, thus suggesting GPR39 as a target for the development of novel antidepressant drugs. In vitro studies have shown that GPR39 oligomerizes with other GPCRs. Oligomerization of GPR39 should thus be considered in relation to the development of new antidepressants targeting this receptor as well as antidepressants targeting other receptors that may form complexes with GPR39. Here, we summarize recent data suggestive of the importance of oligomerization for the pharmacology of depression and discuss approaches for validation of this phenomenon.
Collapse
Affiliation(s)
- Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland.
| | - Dominika Siodłak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland; Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
10
|
Dhindsa RS, Copeland BR, Mustoe AM, Goldstein DB. Natural Selection Shapes Codon Usage in the Human Genome. Am J Hum Genet 2020; 107:83-95. [PMID: 32516569 PMCID: PMC7332603 DOI: 10.1016/j.ajhg.2020.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon usage has been identified as a determinant of translational efficiency and mRNA stability in model organisms and human cell lines. However, whether natural selection shapes human codon content to optimize translation efficiency is unclear. Furthermore, aside from those that affect splicing, synonymous mutations are typically ignored as potential contributors to disease. Using genetic sequencing data from nearly 200,000 individuals, we uncover clear evidence that natural selection optimizes codon content in the human genome. In deriving intolerance metrics to quantify gene-level constraint on synonymous variation, we discover that dosage-sensitive genes, DNA-damage-response genes, and cell-cycle-regulated genes are particularly intolerant to synonymous variation. Notably, we illustrate that reductions in codon optimality in BRCA1 can attenuate its function. Our results reveal that synonymous mutations most likely play an underappreciated role in human variation.
Collapse
Affiliation(s)
- Ryan S Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Brett R Copeland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anthony M Mustoe
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
11
|
Hauser AS, Gloriam DE, Bräuner‐Osborne H, Foster SR. Novel approaches leading towards peptide GPCR de-orphanisation. Br J Pharmacol 2020; 177:961-968. [PMID: 31863461 PMCID: PMC7042120 DOI: 10.1111/bph.14950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
The discovery of novel ligands for orphan GPCRs has profoundly affected our understanding of human biology, opening new opportunities for research, and ultimately for therapeutic development. Accordingly, much effort has been directed towards the remaining orphan receptors, yet the rate of GPCR de-orphanisation has slowed in recent years. Here, we briefly review contemporary methodologies of de-orphanisation and then highlight our recent integrated computational and experimental approach for discovery of novel peptide ligands for orphan GPCRs. We identified putative endogenous peptide ligands and found peptide receptor sequence and structural characteristics present in selected orphan receptors. With comprehensive pharmacological screening using three complementary assays, we discovered novel pairings of 17 peptides with five different orphan GPCRs and revealed potential additional ligands for nine peptide GPCRs. These promising findings lay the foundation for future studies on these peptides and receptors to characterise their roles in human physiology and disease.
Collapse
Affiliation(s)
- Alexander S. Hauser
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - David E. Gloriam
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Hans Bräuner‐Osborne
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Simon R. Foster
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
12
|
Kames J, Alexaki A, Holcomb DD, Santana-Quintero LV, Athey JC, Hamasaki-Katagiri N, Katneni U, Golikov A, Ibla JC, Bar H, Kimchi-Sarfaty C. TissueCoCoPUTs: Novel Human Tissue-Specific Codon and Codon-Pair Usage Tables Based on Differential Tissue Gene Expression. J Mol Biol 2020; 432:3369-3378. [PMID: 31982380 DOI: 10.1016/j.jmb.2020.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023]
Abstract
Protein expression in multicellular organisms varies widely across tissues. Codon usage in the transcriptome of each tissue is derived from genomic codon usage and the relative expression level of each gene. We created a comprehensive computational resource that houses tissue-specific codon, codon-pair, and dinucleotide usage data for 51 Homo sapiens tissues (TissueCoCoPUTs: https://hive.biochemistry.gwu.edu/review/tissue_codon), using transcriptome data from the Broad Institute Genotype-Tissue Expression (GTEx) portal. Distances between tissue-specific codon and codon-pair frequencies were used to generate a dendrogram based on the unique patterns of codon and codon-pair usage in each tissue that are clearly distinct from the genomic distribution. This novel resource may be useful in unraveling the relationship between codon usage and tRNA abundance, which could be critical in determining translation kinetics and efficiency across tissues. Areas of investigation such as biotherapeutic development, tissue-specific genetic engineering, and genetic disease prediction will greatly benefit from this resource.
Collapse
Affiliation(s)
- Jacob Kames
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Aikaterini Alexaki
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - David D Holcomb
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Luis V Santana-Quintero
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - John C Athey
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nobuko Hamasaki-Katagiri
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Upendra Katneni
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Anton Golikov
- High Performance Integrated Environment, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Juan C Ibla
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, 06268, USA
| | - Chava Kimchi-Sarfaty
- Division of Plasma Protein Therapeutics, Office of Tissue and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|