1
|
Yang CQ, Lai CC, Pan JC, Gao J, Shen BY, Ru Y, Shen X, Liu Y, Shen NN, Li BW, Wang YG, Gao Y. Maintaining calcium homeostasis as a strategy to alleviate nephrotoxicity caused by evodiamine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116563. [PMID: 38878560 DOI: 10.1016/j.ecoenv.2024.116563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Evodiamine (EVO), the main active alkaloid in Evodia rutaecarpa, was shown to exert various pharmacological activities, especially anti-tumor. Currently, it is considered a potential anti-cancer drug due to its excellent anti-tumor activity, which unfortunately has adverse reactions, such as the risk of liver and kidney injury, when Evodia rutaecarpa containing EVO is used clinically. In the present study, we aim to clarify the potential toxic target organs and toxicity mechanism of EVO, an active monomer in Evodia rutaecarpa, and to develop mitigation strategies for its toxicity mechanism. Transcriptome analysis and related experiments showed that the PI3K/Akt pathway induced by calcium overload was an important step in EVO-induced apoptosis of renal cells. Specifically, intracellular calcium ions were increased, and mitochondrial calcium ions were decreased. In addition, EVO-induced calcium overload was associated with TRPV1 receptor activation. In vivo TRPV1 antagonist and calcium chelator effects were observed to significantly reduce body weight loss and renal damage in mice due to EVO toxicity. The potential nephrotoxicity of EVO was further confirmed by an in vivo test. In conclusion, TRPV1-mediated calcium overload-induced apoptosis is one of the mechanisms contributing to the nephrotoxicity of EVO due to its toxicity, whereas maintaining body calcium homeostasis is an effective measure to reduce toxicity. These studies suggest that the clinical use of EVO-containing herbal medicines should pay due attention to the changes in renal function of patients as well as the off-target effects of the drugs.
Collapse
Affiliation(s)
- Chun-Qi Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Cheng-Cai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jin-Chao Pan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bao-Ying Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yi Ru
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xin Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yufu Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning-Ning Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Wei Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
2
|
Andelova N, Waczulikova I, Kunstek L, Talian I, Ravingerova T, Jasova M, Suty S, Ferko M. Dichloroacetate as a metabolic modulator of heart mitochondrial proteome under conditions of reduced oxygen utilization. Sci Rep 2022; 12:16348. [PMID: 36175475 PMCID: PMC9522880 DOI: 10.1038/s41598-022-20696-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Myocardial compensatory mechanisms stimulated by reduced oxygen utilization caused by streptozotocin-induced diabetes mellitus (DM) and treated with dichloroacetate (DCA) are presumably associated with the regulation of mitochondria. We aimed to promote the understanding of key signaling pathways and identify effectors involved in signal transduction. Proteomic analysis and fluorescence spectroscopy measurements revealed significantly decreased membrane potential and upregulated protein amine oxidase [flavin-containing] A (AOFA) in DM mitochondria, indicative of oxidative damage. DCA in diabetic animals (DM + DCA) downregulated AOFA, increased membrane potential, and stimulated thioredoxin-dependent peroxide reductase, a protein with antioxidant function. Furthermore, the DM condition was associated with mitochondrial resistance to calcium overload through mitochondrial permeability transition pores (mPTPs) regulation, despite an increased protein level of voltage-dependent anion-selective protein (VDAC1). In contrast, DM + DCA influenced ROS levels and downregulated VDAC1 and VDAC3 when compared to DM alone. The diabetic myocardium showed an identical pattern of mPTP protein interactions as in the control group, but the interactions were attenuated. Characterization of the combined effect of DM + DCA is a novel finding showing that DCA acted as an effector of VDAC protein interactions, calcium uptake regulation, and ROS production. Overall, DM and DCA did not exhibit an additive effect, but an individual cardioprotective pathway.
Collapse
Affiliation(s)
- Natalia Andelova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Iveta Waczulikova
- Division of Biomedical Physics, Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
| | - Lukas Kunstek
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, 04011, Kosice, Slovakia
| | - Tanya Ravingerova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Magdalena Jasova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Simon Suty
- Division of Biomedical Physics, Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248, Bratislava, Slovakia
| | - Miroslav Ferko
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 84104, Bratislava, Slovakia.
| |
Collapse
|
3
|
Hypothermia Prevents Cardiac Dysfunction during Acute Ischemia Reperfusion by Maintaining Mitochondrial Bioenergetics and by Promoting Hexokinase II Binding to Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4476448. [PMID: 35873800 PMCID: PMC9301761 DOI: 10.1155/2022/4476448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Background Hypothermia (H), cardioplegia (CP), and both combined (HCP) are known to be protective against myocardial ischemia reperfusion (IR) injury. Mitochondria have molecular signaling mechanisms that are associated with both cell survival and cell death. In this study, we investigated the dynamic changes in proapoptotic and prosurvival signaling pathways mediating H, CP, or HCP-induced protection of mitochondrial function after acute myocardial IR injury. Methods Rats were divided into five groups. Each group consists of 3 subgroups based on a specific reperfusion time (5, 20, or 60 min) after a 25-min global ischemia. The time control (TC) groups were not subjected to IR but were perfused with 37 °C Krebs-Ringer's (KR) buffer, containing 4.5 mM K+, in a specific perfusion protocol that corresponded with the duration of each IR protocol. The IR group (control) was perfused for 20 min with KR, followed by 25-min global ischemia, and then KR reperfusion for 5, 20, or 60 min. The treatment groups were exposed to 17 °C H, 37 °C CP (16 mM K+), or HCP (17 °C + CP) for 5 min before ischemia and for 2 min on reperfusion before switching to 37 °C KR perfusion for the remainder of each of the reperfusion times. Cardiac function and mitochondrial redox state (NADH/FAD) were monitored online in the ex vivo hearts before, during, and after ischemia. Mitochondria were isolated at the end of each specified reperfusion time, and changes in O2 consumption, membrane potential (ΔΨm), and Ca2+ retention capacity (CRC) were assessed using complex I and complex II substrates. In another set of hearts, mitochondrial and cytosolic fractions were isolated after a specified reperfusion time to conduct western blot assays to determine hexokinase II (HKII) and Bax binding/translocation to mitochondria, cytosolic pAkt levels, and cytochrome c (Cyto-c) release into the cytosol. Results H and HCP were more protective of mitochondrial integrity and, concomitantly, cardiac function than CP alone; H and HCP improved post-ischemic cardiac function by (1) maintaining mitochondrial bioenergetics, (2) maintaining HKII binding to mitochondria with an increase in pAkt levels, (3) increasing CRC, and (4) decreasing Cyto-c release during reperfusion. Bax translocation/binding to mitochondria was unaffected by any treatment, regardless of cardiac functional recovery. Conclusions Hypothermia preserved mitochondrial function and cardiac function, in part, by maintaining mitochondrial bioenergetics, by retaining HKII binding to mitochondria via upstream pAkt, and by reducing Cyto-c release independently of Bax binding to mitochondria.
Collapse
|
4
|
Wang X, Ren L, Chen S, Tao Y, Zhao D, Wu C. Long non-coding RNA MIR4435-2HG/microRNA-125a-5p axis is involved in myocardial ischemic injuries. Bioengineered 2022; 13:10707-10720. [PMID: 35475469 PMCID: PMC9208505 DOI: 10.1080/21655979.2022.2051259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study aimed to investigate whether and how long non-coding RNA (lncRNA) MIR4435-2 host gene (MIR4435-2HG) involved in acute myocardial ischemia/reperfusion (I/R). Blood samples were collected from acute myocardial infarction (AMI) patients to detect MIR4435-2HG expression. In vivo myocardial I/R mice model and in vitro H2O2-induced oxidative stress model were established. Echocardiography, TUNEL assay and lactate dehydrogenase (LDH) detection were performed to assess heart infarction and myocardium apoptosis. Relationship among microRNA-125a-5p (miR-125a-5p), MIR4435-2HG and Mitochondrial fission protein 1 (MTFP1) was predicted by Targetscan and verified by luciferase reporter assay. MIR4435-2HG was notably upregulated in AMI patients, myocardial I/R mice and H2O2-treated cells. Knockdown of MIR4435-2HG notably alleviated infraction volume, ejection fraction (EF) and fractional shortening (FS) levels, cell apoptosis portion and pro-apoptotic cleaved-caspase-3 and Cyt c expression caused by myocardial I/R and oxidative stress, as well as improved cardiomyocytes viability. Transfection with miR-125a-5p alleviated MIR4435-2HG-caused cardiomyocytes apoptosis during oxidative stress. MiR-125a-5p overexpression decreased luciferase activity of the wild-type MIR4435-2HG compared with the mutated MIR4435-2HG. The expression levels of MTFP1 were elevated in myocardium from MI mice model and H2O2-treated AC16 cardiomyocytes. In addition, miR-125a-5p overexpression inhibited MTFP1 expression, and could stimulate the wild-type MTFP1 promoter luciferase activity but not the mutated one. Our findings revealed the role of MIR4435-2HG in MI-induced myocardium injury and cardiomyocytes apoptosis, disclosed a novel MIR4435-2HG/miR-125a-5p regulatory axis during myocardial I/R, and thus identified a potential target for the therapy of myocardial IR injury.
Collapse
Affiliation(s)
- Xiuling Wang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Lina Ren
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Shuai Chen
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Yanli Tao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Dandan Zhao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Chunwei Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
5
|
Stevic N, Maalouf J, Argaud L, Gallo-Bona N, Lo Grasso M, Gouriou Y, Gomez L, Crola Da Silva C, Ferrera R, Ovize M, Cour M, Bidaux G. Cooling Uncouples Differentially ROS Production from Respiration and Ca 2+ Homeostasis Dynamic in Brain and Heart Mitochondria. Cells 2022; 11:cells11060989. [PMID: 35326440 PMCID: PMC8947173 DOI: 10.3390/cells11060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypothermia provides an effective neuro and cardio-protection in clinical settings implying ischemia/reperfusion injury (I/R). At the onset of reperfusion, succinate-induced reactive oxygen species (ROS) production, impaired oxidative phosphorylation (OXPHOS), and decreased Ca2+ retention capacity (CRC) concur to mitochondrial damages. We explored the effects of temperature from 6 to 37 °C on OXPHOS, ROS production, and CRC, using isolated mitochondria from mouse brain and heart. Oxygen consumption and ROS production was gradually inhibited when cooling from 37 to 6 °C in brain mitochondria (BM) and heart mitochondria (HM). The decrease in ROS production was gradual in BM but steeper between 31 and 20 °C in HM. In respiring mitochondria, the gradual activation of complex II, in addition of complex I, dramatically enhanced ROS production at all temperatures without modifying respiration, likely because of ubiquinone over-reduction. Finally, CRC values were linearly increased by cooling in both BM and HM. In BM, the Ca2+ uptake rate by the mitochondrial calcium uniporter (MCU) decreased by 2.7-fold between 25 and 37 °C, but decreased by 5.7-fold between 25 and 37 °C in HM. In conclusion, mild cold (25-37 °C) exerts differential inhibitory effects by preventing ROS production, by reverse electron transfer (RET) in BM, and by reducing MCU-mediated Ca2+ uptake rate in BM and HM.
Collapse
Affiliation(s)
- Neven Stevic
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Jennifer Maalouf
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
| | - Laurent Argaud
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Noëlle Gallo-Bona
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Mégane Lo Grasso
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Yves Gouriou
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Ludovic Gomez
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Claire Crola Da Silva
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - René Ferrera
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Michel Ovize
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
| | - Martin Cour
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, F-69437 Lyon, France
| | - Gabriel Bidaux
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, Université Claude Bernard Lyon 1, INSA Lyon, F-69550 Bron, France; (N.S.); (J.M.); (L.A.); (N.G.-B.); (M.L.G.); (Y.G.); (L.G.); (C.C.D.S.); (R.F.); (M.O.); (M.C.)
- Hospices Civils de Lyon, Groupement Hospitalier EST, Département de Cardiologie, IHU-OPERA Bâtiment B13, F-69500 Bron, France
- Correspondence:
| |
Collapse
|
6
|
Analysis of Mitochondrial Function, Structure, and Intracellular Organization In Situ in Cardiomyocytes and Skeletal Muscles. Int J Mol Sci 2022; 23:ijms23042252. [PMID: 35216368 PMCID: PMC8876605 DOI: 10.3390/ijms23042252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.
Collapse
|
7
|
Mendoza AM, Karch J. Simultaneous Acquisition of Mitochondrial Calcium Retention Capacity and Swelling to Measure Permeability Transition Sensitivity. Methods Mol Biol 2022; 2497:129-140. [PMID: 35771440 PMCID: PMC10263276 DOI: 10.1007/978-1-0716-2309-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The loss of mitochondrial cristae integrity and mitochondrial swelling are hallmarks of multiple forms of necrotic cell death. One of the most well-studied and relevant inducers of mitochondrial swelling is matrix calcium (Ca2+). Respiring mitochondria will intake available Ca2+ into their matrix until a threshold is reached which triggers the opening of the mitochondrial permeability transition pore (MPTP). Upon opening of the pore, mitochondrial membrane potential dissipates and the mitochondria begin to swell, rendering them dysfunctional. The total amount of Ca2+ taken up by a mitochondrion prior to the engagement of the MPTP is referred to as mitochondrial Ca2+ retention capacity (CRC). The CRC/swelling assay is a useful tool for observing the dose-dependent event of mitochondrial dysfunction in real-time. In this technique, isolated mitochondria are treated with specific boluses of Ca2+ until they reach CRC and undergo swelling. A fluorometer is utilized to detect an increase in transmitted light passing through the sample as the mitochondria lose cristae density, and simultaneously measures calcium uptake by way of a Ca2+-specific membrane impermeable fluorescent dye. Here we provide a detailed protocol describing the mitochondrial CRC/swelling assay and we discuss how varying amounts of mitochondria and Ca2+ added to the system affect the dose-dependency of the assay. We also report how to validate the assay by using MPTP and calcium uptake inhibitors and troubleshooting common mistakes that occur with this approach.
Collapse
Affiliation(s)
- Arielys M Mendoza
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Jang S, Chapa-Dubocq XR, Fossati S, Javadov S. Analysis of Mitochondrial Calcium Retention Capacity in Cultured Cells: Permeabilized Cells Versus Isolated Mitochondria. Front Physiol 2021; 12:773839. [PMID: 34950052 PMCID: PMC8688924 DOI: 10.3389/fphys.2021.773839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/17/2021] [Indexed: 12/04/2022] Open
Abstract
In response to various pathological stimuli, such as oxidative and energy stress accompanied by high Ca2+, mitochondria undergo permeability transition (PT) leading to the opening of the non-selective PT pores (PTP) in the inner mitochondrial membrane. Opening of the pores at high conductance allows the passage of ions and solutes <1.5 kD across the membrane, that increases colloid osmotic pressure in the matrix leading to excessive mitochondrial swelling. Calcium retention capacity (CRC) reflects maximum Ca2+ overload of mitochondria that occurs just before PTP opening. Quantification of CRC is important for elucidating the effects of different pathological stimuli and the efficacy of pharmacological agents on the mitochondria. Here, we performed a comparative analysis of CRC in mitochondria isolated from H9c2 cardioblasts, and in permeabilized H9c2 cells in situ to highlight the strengths and weaknesses of the CRC technique in isolated cell mitochondria vs. permeabilized cells. The cells were permeabilized by digitonin or saponin, and the Ca2+-sensitive fluorescence probe Calcium Green-5N was used in both preparations. Results demonstrated the interference of dye-associated fluorescence signals with saponin and the adverse effects of digitonin on mitochondria at high concentrations. Analysis of the CRC in permeabilized cells revealed a higher CRC in the saponin-permeabilized cells in comparison with the digitonin-permeabilized cells. In addition, the mitochondrial CRC in saponin-permeabilized cells was higher than in isolated mitochondria. Altogether, these data demonstrate that the quantification of the mitochondrial CRC in cultured cells permeabilized by saponin has more advantages compared to the isolated mitochondria.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, United States
| |
Collapse
|
9
|
Hu HJ, Wang XH, Liu Y, Zhang TQ, Chen ZR, Zhang C, Tang ZH, Qu SL, Tang HF, Jiang ZS. Hydrogen Sulfide Ameliorates Angiotensin II-Induced Atrial Fibrosis Progression to Atrial Fibrillation Through Inhibition of the Warburg Effect and Endoplasmic Reticulum Stress. Front Pharmacol 2021; 12:690371. [PMID: 34950023 PMCID: PMC8689064 DOI: 10.3389/fphar.2021.690371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-β-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.
Collapse
Affiliation(s)
- Heng-Jing Hu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China
| | - Xiu-Heng Wang
- Department of Nuclear Medicine Lab, First Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Liu
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Tian-Qing Zhang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zheng-Rong Chen
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Chi Zhang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang, China.,Postdoctoral Research Station of Basic Medicine, University of South China, Hengyang, China.,Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
10
|
Zhao L, Jiang S, Wu N, Shi E, Yang L, Li Q. MiR-17-5p-mediated endoplasmic reticulum stress promotes acute myocardial ischemia injury through targeting Tsg101. Cell Stress Chaperones 2021; 26:77-90. [PMID: 32895884 PMCID: PMC7736418 DOI: 10.1007/s12192-020-01157-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death globally, among which acute myocardial infarction (AMI) frequently occurs in the heart and proceeds from myocardium ischemia and endoplasmic reticulum (ER) stress-induced cell death. Numerous studies on miRNAs indicated their potential as diagnostic biomarkers and treatment targets for heart diseases. Our study investigated the role of miR-17-5p and its regulatory mechanisms during AMI. Echocardiography, MTT, flow cytometry assay, evaluation of caspase-3 and lactate dehydrogenase (LDH) activity were conducted to assess cell viability, apoptosis in an MI/R mice model, and an H2O2-induced H9c2 hypoxia cell model, respectively. The expression levels of ER stress response-related biomarkers were detected using qRT-PCR, IHC, and western blotting assays. The binding site of miR-17-5p on Tsg101 mRNA was determined by bioinformatic prediction and luciferase reporter assay. The expression levels of miR-17-5p were notably elevated in MI/R mice and hypoxia cell models, accompanied by enhanced cell apoptosis. Inhibition of miR-17-5p led to decreased apoptosis related to ER stress response in the hypoxia model, which could be counteracted by knockdown of Tsg101 (tumor susceptibility gene 101). Transfection with miR-17-5p mimics downregulated the expression of Tsg101 in H9c2 cells. Luciferase assay demonstrated the binding between miR-17-5p and Tsg101. Moreover, 4-PBA, the inhibitor of the ER stress response, abolished shTsg101 elevated apoptosis in hypoxic H9c2 cells. Our findings investigated the pro-apoptotic role of miR-17-5p during MI/R, disclosed the specific mechanism of miR-17-5p/Tsg101 regulatory axis in ER stress-induced myocardium injury and cardiomyocytes apoptosis, and presented a promising diagnostic biomarker and potential target for therapy of AMI.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Cardiac Surgery, The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China
| | - Shan Jiang
- Department of Respiration, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning, People's Republic of China
| | - Naishi Wu
- Department of Cardiac Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Enyi Shi
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | - Lin Yang
- Department of Cardiovascular Medicine, The People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, People's Republic of China
| | - Qiang Li
- Department of Cardiac Surgery, The People's Hospital of Liaoning Province, No.33 Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca 2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse. Int J Mol Sci 2020; 21:ijms21207461. [PMID: 33050414 PMCID: PMC7589681 DOI: 10.3390/ijms21207461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023] Open
Abstract
Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.
Collapse
|
12
|
Guevorkian AG. The effect of hypothalamic peptides, neurohormone C and proline-rich peptide-1on the Ca 2+-handling system in heartin pathophysiological conditions. Heliyon 2020; 6:e04360. [PMID: 32637717 PMCID: PMC7330072 DOI: 10.1016/j.heliyon.2020.e04360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022] Open
Abstract
Atthe Institute of Biochemistry named after H. Buniatyan we discovered and studied hypothalamic peptides with coronary dilatory and antioxidant activities:neurohormone C (NC) and proline-rich peptide-1 (PRP-1). Both NC and PRP-1 exhibit cardioprotective effects, in part by restoring the calcium affinity for calcium-binding membrane proteins in cardiomyocytes. This affinity is diminished in the sarcoplasmic reticulum and mitochondriawith myocardial damage, heart failure, pancreatic necrosis and crush syndrome caused by isoproterenol. The peptides can also destroy the four detected toxic peptides and myocardial depressant factor, and protect against ischemia-reperfusion injury. Further studies of these peptides may be promising for the treatment of patients at high risk of cardiovascular disease, regardless of pathology.
Collapse
Affiliation(s)
- Artashes G. Guevorkian
- Department of Biochemistry, Yerevan State Medical University after MkhitarHeratsi, 2 Koryun St., Yerevan 0025, Armenia
| |
Collapse
|
13
|
Boulghobra D, Coste F, Geny B, Reboul C. Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria? Free Radic Biol Med 2020; 152:395-410. [PMID: 32294509 DOI: 10.1016/j.freeradbiomed.2020.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Ischemic heart disease is one of the main causes of morbidity and mortality worldwide. Physical exercise is an effective lifestyle intervention to reduce the risk factors for cardiovascular disease and also to improve cardiac function and survival in patients with ischemic heart disease. Among the strategies that contribute to reduce heart damages during ischemia and reperfusion, regular physical exercise is efficient both in rodent experimental models and in humans. However, the cellular and molecular mechanisms of the cardioprotective effects of exercise remain unclear. During ischemia and reperfusion, mitochondria are crucial players in cell death, but also in cell survival. Although exercise training can influence mitochondrial function, the consequences on heart sensitivity to ischemic insults remain elusive. In this review, we describe the effects of physical activity on cardiac mitochondria and their potential key role in exercise-induced cardioprotection against ischemia-reperfusion damage. Based on recent scientific data, we discuss the role of different pathways that might help to explain why mitochondria are a key target of exercise-induced cardioprotection.
Collapse
Affiliation(s)
| | - Florence Coste
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France
| | - Bernard Geny
- EA3072, «Mitochondrie, Stress Oxydant, et Protection Musculaire», Université de Strasbourg, 67000, Strasbourg, France
| | - Cyril Reboul
- LAPEC EA4278, Avignon Université, F-84000, Avignon, France.
| |
Collapse
|
14
|
Davidson SM, Adameová A, Barile L, Cabrera-Fuentes HA, Lazou A, Pagliaro P, Stensløkken KO, Garcia-Dorado D. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med 2020; 24:3795-3806. [PMID: 32155321 PMCID: PMC7171390 DOI: 10.1111/jcmm.15127] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial‐independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled ‘Mitochondria as targets of acute cardioprotection’ and emerged as part of the discussions of the European Union (EU)‐CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Adriana Adameová
- Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia.,Centre of Experimental Medicine SAS, Bratislava, Slovakia
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation and Faculty of Biomedical Sciences, Università Svizzera Italiana, Lugano, Switzerland
| | - Hector Alejandro Cabrera-Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, Nuevo Leon, México.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Institute of Physiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Torino, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David Garcia-Dorado
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Department of Cardiology, Vascular Biology and Metabolism Area, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,Universitat Autónoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|