1
|
Sun S, Bakkeren G. A bird's-eye view: exploration of the flavin-containing monooxygenase superfamily in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1369299. [PMID: 38681221 PMCID: PMC11046709 DOI: 10.3389/fpls.2024.1369299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024]
Abstract
The Flavin Monooxygenase (FMO) gene superfamily in plants is involved in various processes most widely documented for its involvement in auxin biosynthesis, specialized metabolite biosynthesis, and plant microbial defense signaling. The roles of FMOs in defense signaling and disease resistance have recently come into focus as they may present opportunities to increase immune responses in plants including leading to systemic acquired resistance, but are not well characterized. We present a comprehensive catalogue of FMOs found in genomes across vascular plants and explore, in depth, 170 wheat TaFMO genes for sequence architecture, cis-acting regulatory elements, and changes due to Transposable Element insertions. A molecular phylogeny separates TaFMOs into three clades (A, B, and C) for which we further report gene duplication patterns, and differential rates of homoeologue expansion and retention among TaFMO subclades. We discuss Clade B TaFMOs where gene expansion is similarly seen in other cereal genomes. Transcriptome data from various studies point towards involvement of subclade B2 TaFMOs in disease responses against both biotrophic and necrotrophic pathogens, substantiated by promoter element analysis. We hypothesize that certain TaFMOs are responsive to both abiotic and biotic stresses, providing potential targets for enhancing disease resistance, plant yield and other important agronomic traits. Altogether, FMOs in wheat and other crop plants present an untapped resource to be exploited for improving the quality of crops.
Collapse
Affiliation(s)
- Sherry Sun
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Center, Summerland, BC, Canada
| |
Collapse
|
2
|
Wróbel-Kwiatkowska M, Turski W, Silska G, Rakicka-Pustułka M, Dymińska L, Rymowicz W. Determination of Bioactive Compound Kynurenic Acid in Linum usitatissimum L. Molecules 2024; 29:1702. [PMID: 38675522 PMCID: PMC11051930 DOI: 10.3390/molecules29081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Kynurenic acid (KYNA) is a bioactive compound exhibiting multiple actions and positive effects on human health due to its antioxidant, anti-inflammatory and neuroprotective properties. KYNA has been found to have a beneficial effect on wound healing and the prevention of scarring. Despite notable progress in the research focused on KYNA observed during the last 10 years, KYNA's presence in flax (Linum usitatissimum L.) has not been proven to date. In the present study, parts of flax plants were analysed for KYNA synthesis. Moreover, eight different cultivars of flax seeds were tested for the presence of KYNA, resulting in a maximum of 0.432 µg/g FW in the seeds of the cultivar Jan. The level of KYNA was also tested in the stems and roots of two selected flax cultivars: an oily cultivar (Linola) and a fibrous cultivar (Nike). The exposure of plants to the KYNA precursors tryptophan and kynurenine resulted in higher levels of KYNA accumulation in flax shoots and roots. Thus, the obtained results indicate that KYNA might be synthesized in flax. The highest amount of KYNA (295.9 µg/g dry weight [DW]) was detected in flax roots derived from plants grown in tissue cultures supplemented with tryptophan. A spectroscopic analysis of KYNA was performed using the FTIR/ATR method. It was found that, in tested samples, the characteristic KYNA vibration bands overlap with the bands corresponding to the vibrations of biopolymers (especially pectin and cellulose) present in flax plants and fibres.
Collapse
Affiliation(s)
- Magdalena Wróbel-Kwiatkowska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland (W.R.)
| | - Waldemar Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090 Lublin, Poland;
| | - Grażyna Silska
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland;
| | - Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland (W.R.)
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wroclaw, Poland;
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland (W.R.)
| |
Collapse
|
3
|
He W, Truong HA, Zhang L, Cao M, Arakawa N, Xiao Y, Zhong K, Hou Y, Busch W. Identification of mebendazole as an ethylene signaling activator reveals a role of ethylene signaling in the regulation of lateral root angles. Cell Rep 2024; 43:113763. [PMID: 38358890 PMCID: PMC10949360 DOI: 10.1016/j.celrep.2024.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.
Collapse
Affiliation(s)
- Wenrong He
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai An Truong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Min Cao
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Neal Arakawa
- Environmental and Complex Analysis Laboratory (ECAL), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kaizhen Zhong
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Luo P, Di DW. Precise Regulation of the TAA1/TAR-YUCCA Auxin Biosynthesis Pathway in Plants. Int J Mol Sci 2023; 24:ijms24108514. [PMID: 37239863 DOI: 10.3390/ijms24108514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The indole-3-pyruvic acid (IPA) pathway is the main auxin biosynthesis pathway in the plant kingdom. Local control of auxin biosynthesis through this pathway regulates plant growth and development and the responses to biotic and abiotic stresses. During the past decades, genetic, physiological, biochemical, and molecular studies have greatly advanced our understanding of tryptophan-dependent auxin biosynthesis. The IPA pathway includes two steps: Trp is converted to IPA by TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS/TRYPTOPHAN AMINOTRANSFERASE RELATED PROTEINs (TAA1/TARs), and then IPA is converted to IAA by the flavin monooxygenases (YUCCAs). The IPA pathway is regulated at multiple levels, including transcriptional and post-transcriptional regulation, protein modification, and feedback regulation, resulting in changes in gene transcription, enzyme activity and protein localization. Ongoing research indicates that tissue-specific DNA methylation and miRNA-directed regulation of transcription factors may also play key roles in the precise regulation of IPA-dependent auxin biosynthesis in plants. This review will mainly summarize the regulatory mechanisms of the IPA pathway and address the many unresolved questions regarding this auxin biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
5
|
Aizezi Y, Xie Y, Guo H, Jiang K. New Wine in an Old Bottle: Utilizing Chemical Genetics to Dissect Apical Hook Development. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081285. [PMID: 36013464 PMCID: PMC9410295 DOI: 10.3390/life12081285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem during soil emergence. Regulated by many phytohormones, the apical hook has been taken as a model to study the crosstalk between individual signaling pathways. Over recent decades, the roles of different phytohormones and environmental signals in apical hook development have been illustrated. However, key regulators downstream of canonical hormone signaling have rarely been identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation. Chemical genetics that utilize small molecules to perturb and elucidate biological processes could provide a complementary strategy to overcome the limitations in classical genetics. In this review, we summarize current progress in hormonal regulation of the apical hook, and previously reported chemical tools that could assist the understanding of this complex developmental process. We also provide insight into novel strategies for chemical screening and target identification, which could possibly lead to discoveries of new regulatory components in apical hook development, or unidentified signaling crosstalk that is overlooked by classical genetics screening.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| |
Collapse
|
6
|
Shi J, Zhu Z. Seedling morphogenesis: when ethylene meets high ambient temperature. ABIOTECH 2022; 3:40-48. [PMID: 36311540 PMCID: PMC9590463 DOI: 10.1007/s42994-021-00063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
Unlike animals, plant development is plastic and sensitive to environmental changes. For example, Arabidopsis thaliana seedlings display distinct growth patterns when they are grown under different light or temperature conditions. Moreover, endogenous plant hormone such as ethylene also impacts seedling morphology. Ethylene induces hypocotyl elongation in light-grown seedlings but strongly inhibits hypocotyl elongation in etiolated (dark-grown) seedlings. Another characteristic ethylene response in etiolated seedlings is the formation of exaggerated apical hooks. Although it is well known that high ambient temperature promotes hypocotyl elongation in light-grown seedlings (thermomorphogenesis), ethylene suppresses thermomorphogenesis. On another side, high ambient temperature also inhibits the ethylene-responsive hypocotyl shortening and exaggerated hook formation in etiolated seedlings. Therefore, the simplest phytohormone ethylene exhibits almost the most complicated responses, depending on temperature and/or light conditions. In this review, we will focus on two topics related to the main theme of this special issue (response to high temperature): (1) how does high temperature suppress ethylene-induced seedling morphology in dark-grown seedlings, and (2) how does ethylene inhibit high temperature-induced seedling growth in light-grown seedlings. Controlling ethylene biosynthesis through antisense technology was the hallmark event in plant genetic engineering in 1990, we assume that manipulations on plant ethylene signaling in agricultural plants may pave the way for coping with climate change in future.
Collapse
Affiliation(s)
- Junjie Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| |
Collapse
|
7
|
Aizezi Y, Shu H, Zhang L, Zhao H, Peng Y, Lan H, Xie Y, Li J, Wang Y, Guo H, Jiang K. Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:213-227. [PMID: 34459884 DOI: 10.1093/jxb/erab403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The apical hook is indispensable for protecting the delicate shoot apical meristem while dicot seedlings emerge from soil after germination in darkness. The development of the apical hook is co-ordinately regulated by multiple phytohormones and environmental factors. Yet, a holistic understanding of the spatial-temporal interactions between different phytohormones and environmental factors remains to be achieved. Using a chemical genetic approach, we identified kinetin riboside, as a proxy of kinetin, which promotes apical hook development of Arabidopsis thaliana in a partially ethylene-signaling-independent pathway. Further genetic and biochemical analysis revealed that cytokinin is able to regulate apical hook development via post-transcriptional regulation of the PHYTOCHROME INTERACTING FACTORs (PIFs), together with its canonical roles in inducing ethylene biosynthesis. Dynamic observations of apical hook development processes showed that ETHYLENE INSENSITVE3 (EIN3) and EIN3-LIKE1 (EIL1) are necessary for the exaggeration of hook curvature in response to cytokinin, while PIFs are crucial for the cytokinin-induced maintenance of hook curvature in darkness. Furthermore, these two families of transcription factors display divergent roles in light-triggered hook opening. Our findings reveal that cytokinin integrates ethylene signaling and light signaling via EIN3/EIL1 and PIFs, respectively, to dynamically regulate apical hook development during early seedling development.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Huazhang Shu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Linlin Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Hongming Zhao
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yang Peng
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hongxia Lan
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Jian Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- SUSTech Academy for Advanced and Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
9
|
Singh M, Kapoor A, Bhatnagar A. Physiological and Pathological Roles of Aldose Reductase. Metabolites 2021; 11:655. [PMID: 34677370 PMCID: PMC8541668 DOI: 10.3390/metabo11100655] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Aldose reductase (AR) is an aldo-keto reductase that catalyzes the first step in the polyol pathway which converts glucose to sorbitol. Under normal glucose homeostasis the pathway represents a minor route of glucose metabolism that operates in parallel with glycolysis. However, during hyperglycemia the flux of glucose via the polyol pathway increases significantly, leading to excessive formation of sorbitol. The polyol pathway-driven accumulation of osmotically active sorbitol has been implicated in the development of secondary diabetic complications such as retinopathy, nephropathy, and neuropathy. Based on the notion that inhibition of AR could prevent these complications a range of AR inhibitors have been developed and tested; however, their clinical efficacy has been found to be marginal at best. Moreover, recent work has shown that AR participates in the detoxification of aldehydes that are derived from lipid peroxidation and their glutathione conjugates. Although in some contexts this antioxidant function of AR helps protect against tissue injury and dysfunction, the metabolic transformation of the glutathione conjugates of lipid peroxidation-derived aldehydes could also lead to the generation of reactive metabolites that can stimulate mitogenic or inflammatory signaling events. Thus, inhibition of AR could have both salutary and injurious outcomes. Nevertheless, accumulating evidence suggests that inhibition of AR could modify the effects of cardiovascular disease, asthma, neuropathy, sepsis, and cancer; therefore, additional work is required to selectively target AR inhibitors to specific disease states. Despite past challenges, we opine that a more gainful consideration of therapeutic modulation of AR activity awaits clearer identification of the specific role(s) of the AR enzyme in health and disease.
Collapse
Affiliation(s)
- Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Internal Medicine—Critical Care, School of Medicine, Saint Louis University, St. Louis, MO 63141, USA;
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
10
|
Tillmann M, Tang Q, Cohen JD. Protocol: analytical methods for visualizing the indolic precursor network leading to auxin biosynthesis. PLANT METHODS 2021; 17:63. [PMID: 34158074 PMCID: PMC8220744 DOI: 10.1186/s13007-021-00763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The plant hormone auxin plays a central role in regulation of plant growth and response to environmental stimuli. Multiple pathways have been proposed for biosynthesis of indole-3-acetic acid (IAA), the primary auxin in a number of plant species. However, utilization of these different pathways under various environmental conditions and developmental time points remains largely unknown. RESULTS Monitoring incorporation of stable isotopes from labeled precursors into proposed intermediates provides a method to trace pathway utilization and characterize new biosynthetic routes to auxin. These techniques can be aided by addition of chemical inhibitors to target specific steps or entire pathways of auxin synthesis. CONCLUSIONS Here we describe techniques for pathway analysis in Arabidopsis thaliana seedlings using multiple stable isotope-labeled precursors and chemical inhibitors coupled with highly sensitive liquid chromatography-mass spectrometry (LC-MS) methods. These methods should prove to be useful to researchers studying routes of IAA biosynthesis in vivo in a variety of plant tissues.
Collapse
Affiliation(s)
- Molly Tillmann
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA.
| | - Qian Tang
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA
| | - Jerry D Cohen
- Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
11
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
12
|
Aghdam MS, Palma JM, Corpas FJ. NADPH as a quality footprinting in horticultural crops marketability. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Abstract
Flavin-dependent monooxygenases (FMOs) are ancient enzymes present in all kingdoms of life. FMOs typically catalyze the incorporation of an oxygen atom from molecular oxygen into small molecules. To date, the majority of functional characterization studies have been performed on mammalian, fungal and bacterial FMOs, showing that they play fundamental roles in drug and xenobiotic metabolism. By contrast, our understanding of FMOs across the plant kingdom is very limited, despite plants possessing far greater FMO diversity compared to both bacteria and other multicellular organisms. Here, we review the progress of plant FMO research, with a focus on FMO diversity and functionality. Significantly, of the FMOs characterized to date, they all perform oxygenation reactions that are crucial steps within hormone metabolism, pathogen resistance, signaling and chemical defense. This demonstrates the fundamental role FMOs have within plant metabolism, and presents significant opportunities for future research pursuits and downstream applications.
Collapse
|