1
|
Loix M, Zelcer N, Bogie JFJ, Hendriks JJA. The ubiquitous role of ubiquitination in lipid metabolism. Trends Cell Biol 2024; 34:416-429. [PMID: 37770289 DOI: 10.1016/j.tcb.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Lipids are essential molecules that play key roles in cell physiology by serving as structural components, for storage of energy, and in signal transduction. Hence, efficient regulation and maintenance of lipid homeostasis are crucial for normal cellular and tissue function. In the past decade, increasing research has shown the importance of ubiquitination in regulating the stability of key players in different aspects of lipid metabolism. This review describes recent insights into the regulation of lipid metabolism by ubiquitin signaling, discusses how ubiquitination can be targeted in diseases characterized by lipid dysregulation, and identifies areas that require further research.
Collapse
Affiliation(s)
- Melanie Loix
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Noam Zelcer
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences and Gastroenterology and Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen F J Bogie
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, School of Life Sciences, Hasselt University, Diepenbeek, Belgium; University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
2
|
Das A, Cheng H, Wang Y, Kinch LN, Liang G, Hong S, Hobbs HH, Cohen JC. The ubiquitin E3 ligase BFAR promotes degradation of PNPLA3. Proc Natl Acad Sci U S A 2024; 121:e2312291121. [PMID: 38294943 PMCID: PMC10861911 DOI: 10.1073/pnas.2312291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.
Collapse
Affiliation(s)
- Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Haili Cheng
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Helen H. Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jonathan C. Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
3
|
Qian L, Scott NA, Capell-Hattam IM, Draper EA, Fenton NM, Luu W, Sharpe LJ, Brown AJ. Cholesterol synthesis enzyme SC4MOL is fine-tuned by sterols and targeted for degradation by the E3 ligase MARCHF6. J Lipid Res 2023; 64:100362. [PMID: 36958722 PMCID: PMC10176258 DOI: 10.1016/j.jlr.2023.100362] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/09/2023] [Accepted: 02/25/2023] [Indexed: 03/25/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated pathway, with over 20 enzymes controlled at the transcriptional and post-translational level. Whilst some enzymes remain stable, increased sterol levels can trigger degradation of several synthesis enzymes via the ubiquitin-proteasome system. Of note, we previously identified four cholesterol synthesis enzymes as substrates for one E3 ubiquitin ligase, membrane-associated RING-CH-type finger 6 (MARCHF6). Whether MARCHF6 targets the cholesterol synthesis pathway at other points is unknown. In addition, the post-translational regulation of many cholesterol synthesis enzymes, including the C4-demethylation complex (sterol-C4-methyl oxidase-like, SC4MOL; NAD(P) dependent steroid dehydrogenase-like, NSDHL; hydroxysteroid 17-beta dehydrogenase, HSD17B7) is largely uncharacterized. Using cultured mammalian cell-lines (human-derived and Chinese Hamster Ovary cells), we show SC4MOL, the first acting enzyme of C4-demethylation, is a MARCHF6 substrate, and is rapidly turned over and sensitive to sterols. Sterol depletion stabilizes SC4MOL protein levels, whilst sterol excess downregulates both transcript and protein levels. Furthermore, we found SC4MOL depletion by siRNA results in a significant decrease in total cell cholesterol. Thus, our work indicates SC4MOL is the most regulated enzyme in the C4-demethylation complex. Our results further implicate MARCHF6 as a crucial post-translational regulator of cholesterol synthesis, with this E3 ubiquitin ligase controlling levels of at least five enzymes of the pathway.
Collapse
Affiliation(s)
- Lydia Qian
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Isabelle M Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Eliza A Draper
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
4
|
Capell-Hattam IM, Fenton NM, Coates HW, Sharpe LJ, Brown AJ. The Non Catalytic Protein ERG28 has a Functional Role in Cholesterol Synthesis and is Coregulated Transcriptionally. J Lipid Res 2022; 63:100295. [PMID: 36216146 PMCID: PMC9730225 DOI: 10.1016/j.jlr.2022.100295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The enzymatic pathway of cholesterol biosynthesis has been well characterized. However, there remain several potential interacting proteins that may play ancillary roles in the regulation of cholesterol production. Here, we identified ERG28 (chromosome 14 open reading frame 1 [C14orf1]), a homologue of the yeast protein Erg28p, as a player in mammalian cholesterol synthesis. ERG28 is conserved from yeast to humans but has been largely overlooked in mammals. Using quantitative RT-PCR, luciferase assays, and publicly available chromatin immunoprecipitation sequencing data, we found that transcription of this gene is driven by the transcription factor SREBP-2, akin to most cholesterol synthesis enzymes, as well as identifying sterol-responsive elements and cofactor binding sites in its proximal promoter. Based on a split luciferase system, ERG28 interacted with itself and two enzymes of cholesterol synthesis (NSDHL and SC4MOL). Huh7 ERG28-KO cell lines were generated, revealing reduced total cholesterol levels in sterol-depleted environments. In addition, radiolabeled metabolic flux assays showed a 60-75% reduction in the rate of cholesterol synthesis in the KO versus wild-type cells, which could be rescued by expression of ectopic ERG28. Unexpectedly, KO of ERG28 also impaired the activation of SREBP-2 under sterol-replete conditions, by a yet-to-be defined mechanism. These results indicate that ERG28 is clearly involved in cholesterol synthesis, although the precise role this noncatalytic protein plays in this complex metabolic pathway remains to be fully elucidated. A deeper understanding of ERG28, and other ancillary proteins of cholesterol synthesis, may help inform therapeutic strategies for diseases associated with aberrant cholesterol metabolism.
Collapse
Affiliation(s)
| | - Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
5
|
Korade Z, Tallman KA, Kim HYH, Balog M, Genaro-Mattos TC, Pattnaik A, Mirnics K, Pattnaik AK, Porter NA. Dose-Response Effects of 7-Dehydrocholesterol Reductase Inhibitors on Sterol Profiles and Vesicular Stomatitis Virus Replication. ACS Pharmacol Transl Sci 2022; 5:1086-1096. [PMID: 36407960 PMCID: PMC9667548 DOI: 10.1021/acsptsci.2c00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/29/2022]
Abstract
Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.
Collapse
Affiliation(s)
- Zeljka Korade
- Department
of Pediatrics, Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Keri A. Tallman
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hye-Young H. Kim
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta Balog
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
- Department
of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Thiago C. Genaro-Mattos
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Aryamav Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Károly Mirnics
- Munroe-Meyer
Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Asit K. Pattnaik
- Nebraska
Center for Virology and School of Veterinary Medicine and Biomedical
Sciences, University of Nebraska-Lincoln, Lincoln 68583, United States
| | - Ned A. Porter
- Department
of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Zhang X, Wang C, He D, Cheng Y, Yu L, Qi D, Li B, Zheng F. Identification of DNA methylation-regulated genes as potential biomarkers for coronary heart disease via machine learning in the Framingham Heart Study. Clin Epigenetics 2022; 14:122. [PMID: 36180886 PMCID: PMC9526342 DOI: 10.1186/s13148-022-01343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation-regulated genes have been demonstrated as the crucial participants in the occurrence of coronary heart disease (CHD). The machine learning based on DNA methylation-regulated genes has tremendous potential for mining non-invasive predictive biomarkers and exploring underlying new mechanisms of CHD. Results First, the 2085 age-gender-matched individuals in Framingham Heart Study (FHS) were randomly divided into training set and validation set. We then integrated methylome and transcriptome data of peripheral blood leukocytes (PBLs) from the training set to probe into the methylation and expression patterns of CHD-related genes. A total of five hub DNA methylation-regulated genes were identified in CHD through dimensionality reduction, including ATG7, BACH2, CDKN1B, DHCR24 and MPO. Subsequently, methylation and expression features of the hub DNA methylation-regulated genes were used to construct machine learning models for CHD prediction by LightGBM, XGBoost and Random Forest. The optimal model established by LightGBM exhibited favorable predictive capacity, whose AUC, sensitivity, and specificity were 0.834, 0.672, 0.864 in the validation set, respectively. Furthermore, the methylation and expression statuses of the hub genes were verified in monocytes using methylation microarray and transcriptome sequencing. The methylation statuses of ATG7, DHCR24 and MPO and the expression statuses of ATG7, BACH2 and DHCR24 in monocytes of our study population were consistent with those in PBLs from FHS. Conclusions We identified five DNA methylation-regulated genes based on a predictive model for CHD using machine learning, which may clue the new epigenetic mechanism for CHD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01343-2.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Chen Wang
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Dingdong He
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.,Department of Clinical Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yating Cheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Li Yu
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Daoxi Qi
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Boyu Li
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
7
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Maimaris G, Christodoulou A, Santama N, Lederer CW. Regulation of ER Composition and Extent, and Putative Action in Protein Networks by ER/NE Protein TMEM147. Int J Mol Sci 2021; 22:10231. [PMID: 34638576 PMCID: PMC8508377 DOI: 10.3390/ijms221910231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023] Open
Abstract
Nuclear envelope (NE) and endoplasmic reticulum (ER) collaborate to control a multitude of nuclear and cytoplasmic actions. In this context, the transmembrane protein TMEM147 localizes to both NE and ER, and through direct and indirect interactions regulates processes as varied as production and transport of multipass membrane proteins, neuronal signaling, nuclear-shape, lamina and chromatin dynamics and cholesterol synthesis. Aiming to delineate the emerging multifunctionality of TMEM147 more comprehensively, we set as objectives, first, to assess potentially more fundamental effects of TMEM147 on the ER and, second, to identify significantly TMEM147-associated cell-wide protein networks and pathways. Quantifying curved and flat ER markers RTN4 and CLIMP63/CKAP4, respectively, we found that TMEM147 silencing causes area and intensity increases for both RTN4 and CLIMP63, and the ER in general, with a profound shift toward flat areas, concurrent with reduction in DNA condensation. Protein network and pathway analyses based on comprehensive compilation of TMEM147 interactors, targets and co-factors then served to manifest novel and established roles for TMEM147. Thus, algorithmically simplified significant pathways reflect TMEM147 function in ribosome binding, oxidoreductase activity, G protein-coupled receptor activity and transmembrane transport, while analysis of protein factors and networks identifies hub proteins and corresponding pathways as potential targets of TMEM147 action and of future functional studies.
Collapse
Affiliation(s)
- Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, Nicosia 1678, Cyprus; (G.M.); (A.C.); (N.S.)
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| |
Collapse
|
9
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
10
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
11
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
12
|
Gatticchi L, de Las Heras JI, Sivakumar A, Zuleger N, Roberti R, Schirmer EC. Tm7sf2 Disruption Alters Radial Gene Positioning in Mouse Liver Leading to Metabolic Defects and Diabetes Characteristics. Front Cell Dev Biol 2020; 8:592573. [PMID: 33330474 PMCID: PMC7719783 DOI: 10.3389/fcell.2020.592573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 01/23/2023] Open
Abstract
Tissue-specific patterns of radial genome organization contribute to genome regulation and can be established by nuclear envelope proteins. Studies in this area often use cancer cell lines, and it is unclear how well such systems recapitulate genome organization of primary cells or animal tissues; so, we sought to investigate radial genome organization in primary liver tissue hepatocytes. Here, we have used a NET47/Tm7sf2–/– liver model to show that manipulating one of these nuclear membrane proteins is sufficient to alter tissue-specific gene positioning and expression. Dam-LaminB1 global profiling in primary liver cells shows that nearly all the genes under such positional regulation are related to/important for liver function. Interestingly, Tm7sf2 is a paralog of the HP1-binding nuclear membrane protein LBR that, like Tm7sf2, also has an enzymatic function in sterol reduction. Fmo3 gene/locus radial mislocalization could be rescued with human wild-type, but not TM7SF2 mutants lacking the sterol reductase function. One central pathway affected is the cholesterol synthesis pathway. Within this pathway, both Cyp51 and Msmo1 are under Tm7sf2 positional and expression regulation. Other consequences of the loss of Tm7sf2 included weight gain, insulin sensitivity, and reduced levels of active Akt kinase indicating additional pathways under its regulation, several of which are highlighted by mispositioning genes. This study emphasizes the importance for tissue-specific radial genome organization in tissue function and the value of studying genome organization in animal tissues and primary cells over cell lines.
Collapse
Affiliation(s)
- Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jose I de Las Heras
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Aishwarya Sivakumar
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Nikolaj Zuleger
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Scott NA, Sharpe LJ, Brown AJ. The E3 ubiquitin ligase MARCHF6 as a metabolic integrator in cholesterol synthesis and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158837. [PMID: 33049405 DOI: 10.1016/j.bbalip.2020.158837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
MARCHF6 is a large multi-pass E3 ubiquitin ligase embedded in the membranes of the endoplasmic reticulum. It participates in endoplasmic reticulum associated degradation, including autoubiquitination, and many of its identified substrates are involved in sterol and lipid metabolism. Post-translationally, MARCHF6 expression is attuned to cholesterol status, with high cholesterol preventing its degradation and hence boosting MARCHF6 levels. By modulating MARCHF6 activity, cholesterol may regulate other aspects of cell metabolism beyond the known repertoire. Whilst we have learnt much about MARCHF6 in the past decade, there are still many more mysteries to be unravelled to fully understand its regulation, substrates, and role in human health and disease.
Collapse
Affiliation(s)
- Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Christodoulou A, Maimaris G, Makrigiorgi A, Charidemou E, Lüchtenborg C, Ververis A, Georgiou R, Lederer CW, Haffner C, Brügger B, Santama N. TMEM147 interacts with lamin B receptor, regulates its localization and levels, and affects cholesterol homeostasis. J Cell Sci 2020; 133:jcs245357. [PMID: 32694168 DOI: 10.1242/jcs.245357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023] Open
Abstract
The structurally and functionally complex endoplasmic reticulum (ER) hosts critical processes including lipid synthesis. Here, we focus on the functional characterization of transmembrane protein TMEM147, and report that it localizes at the ER and nuclear envelope in HeLa cells. Silencing of TMEM147 drastically reduces the level of lamin B receptor (LBR) at the inner nuclear membrane and results in mistargeting of LBR to the ER. LBR possesses a modular structure and corresponding bifunctionality, acting in heterochromatin organization via its N-terminus and in cholesterol biosynthesis via its sterol-reductase C-terminal domain. We show that TMEM147 physically interacts with LBR, and that the C-terminus of LBR is essential for their functional interaction. We find that TMEM147 also physically interacts with the key sterol reductase DHCR7, which is involved in cholesterol biosynthesis. Similar to what was seen for LBR, TMEM147 downregulation results in a sharp decline of DHCR protein levels and co-ordinate transcriptional decreases of LBR and DHCR7 expression. Consistent with this, lipidomic analysis upon TMEM147 silencing identified changes in cellular cholesterol levels, cholesteryl ester levels and profile, and in cellular cholesterol uptake, raising the possibility that TMEM147 is an important new regulator of cholesterol homeostasis in cells.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Giannis Maimaris
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Andri Makrigiorgi
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Antonis Ververis
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Renos Georgiou
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia and Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 1683 Nicosia, Cyprus
| | - Christof Haffner
- Institute of Stroke and Dementia Research, University of Munich, 81377 Munich, Germany
| | - Britta Brügger
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Niovi Santama
- Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|
15
|
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res 2020; 79:101033. [DOI: 10.1016/j.plipres.2020.101033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
16
|
The cholesterol synthesis enzyme lanosterol 14α-demethylase is post-translationally regulated by the E3 ubiquitin ligase MARCH6. Biochem J 2020; 477:541-555. [PMID: 31904814 PMCID: PMC6993871 DOI: 10.1042/bcj20190647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023]
Abstract
Cholesterol synthesis is a tightly controlled pathway, with over 20 enzymes involved. Each of these enzymes can be distinctly regulated, helping to fine-tune the production of cholesterol and its functional intermediates. Several enzymes are degraded in response to increased sterol levels, whilst others remain stable. We hypothesised that an enzyme at a key branch point in the pathway, lanosterol 14α-demethylase (LDM) may be post-translationally regulated. Here, we show that the preceding enzyme, lanosterol synthase is stable, whilst LDM is rapidly degraded. Surprisingly, this degradation is not triggered by sterols. However, the E3 ubiquitin ligase membrane-associated ring-CH-type finger 6 (MARCH6), known to control earlier rate-limiting steps in cholesterol synthesis, also control levels of LDM and the terminal cholesterol synthesis enzyme, 24-dehydrocholesterol reductase. Our work highlights MARCH6 as the first example of an E3 ubiquitin ligase that targets multiple steps in a biochemical pathway and indicates new facets in the control of cholesterol synthesis.
Collapse
|
17
|
van den Boomen DJH, Volkmar N, Lehner PJ. Ubiquitin-mediated regulation of sterol homeostasis. Curr Opin Cell Biol 2020; 65:103-111. [PMID: 32580085 DOI: 10.1016/j.ceb.2020.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Cholesterol is an essential component of mammalian membranes, and its homeostasis is strictly regulated, with imbalances causing atherosclerosis, Niemann Pick disease, and familial hypercholesterolemia. Cellular cholesterol supply is mediated by LDL-cholesterol import and de novo cholesterol biosynthesis, and both pathways are adjusted to cellular demand by the cholesterol-sensitive SREBP2 transcription factor. Cholesterol homeostasis is modulated by a wide variety of metabolic pathways and the ubiquitination machinery, in particular E3 ubiquitin ligases. In this article, we review recent progress in understanding the role of E3 ubiquitin ligases in the metabolic control of cellular sterol homeostasis.
Collapse
Affiliation(s)
- Dick J H van den Boomen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|