1
|
Tan QW, Tan E, Mutwil M. Diurnal.plant.tools in 2024: Expanding to Marchantia polymorpha and Four Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:1888-1899. [PMID: 39219534 DOI: 10.1093/pcp/pcae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
Diurnal gene expression is a pervasive phenomenon occurring across all kingdoms of life, orchestrating adaptive responses to daily environmental fluctuations and thus enhancing organismal fitness. Our understanding of the plant circadian clock is primarily derived from studies in Arabidopsis, and direct comparisons are difficult due to differences in gene family sizes. To this end, the identification of functional orthologs based on diurnal and tissue expression is necessary. The diurnal.plant.tools database constitutes a repository of gene expression profiles from 17 members of the Archaeplastida lineage, with built-in tools facilitating cross-species comparisons. In this database update, we expand the dataset with diurnal gene expression from four agriculturally significant crop species and Marchantia, a plant of evolutionary significance. Notably, the inclusion of diurnal gene expression data for Marchantia enables researchers to glean insights into the evolutionary trajectories of the circadian clock and other biological processes spanning from algae to angiosperms. Moreover, integrating diurnal gene expression data with datasets from related gene co-expression databases, such as CoNekt-Plants and CoNekt-Stress, which contain gene expression data for tissue and perturbation experiments, provides a comprehensive overview of gene functions across diverse biological contexts. This expanded database serves as a valuable resource for elucidating the intricacies of diurnal gene regulation and its evolutionary underpinnings in plant biology.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Emmanuel Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
2
|
Jung S, Kim H, Lee J, Kang MH, Kim J, Kim J, Lim PO, Nam HG. The genetically programmed rhythmic alteration of diurnal gene expression in the aged Arabidopsis leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1481682. [PMID: 39559769 PMCID: PMC11570267 DOI: 10.3389/fpls.2024.1481682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024]
Abstract
The circadian clock regulates the daily pattern of temporal gene expression. In Arabidopsis, aging is associated with a shortening of the endogenous period of circadian rhythms under circadian conditions. However, the functional link between the circadian clock and aging under diurnal conditions and its physiological relevance remain elusive. In this study, we investigate and characterize the effect of aging on the waveforms of rhythmic gene expression patterns under light/dark cycles. Our analysis revealed that the diurnal rhythmic patterns of core clock genes undergo significant rhythmic alteration with phase shift and change of waveforms in aged plants compared to younger plants. Transcriptomic analysis indicated that this age-dependent rhythmic alteration occurs not only in core clock genes but also globally. Due to the rhythmic alteration patterns of the diurnal rhythmic gene expression, aged plants experience subjectively a shorter day and longer night. We also observed that genetic mutants of core clock component genes exhibited broadly yet distinctively altered changes in diurnal rhythmic gene expression patterns as aging progresses. Collectively, our findings support that age-dependent rhythmic alteration of diurnal gene expression rhythms reprograms the timetable of daily gene expression, leading to the physiological changes required for plant senescence.
Collapse
Affiliation(s)
- Sukjoon Jung
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Hyunmin Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Juhyeon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
| | - Myeong Hoon Kang
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
| | - Jungyeon Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
| | - JongKyoung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Pyung Ok Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
| | - Hong Gil Nam
- Department of New Biology, Daegu Gyeongbuk Institute of Science&Technology (DGIST), Daegu, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
- Ever Summer Labs for Aging Research, Daegu Catholic University, Gyungsan, Republic of Korea
| |
Collapse
|
3
|
Du SX, Wang LL, Yu WP, Xu SX, Chen L, Huang W. Appropriate induction of TOC1 ensures optimal MYB44 expression in ABA signaling and stress response in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:3046-3062. [PMID: 38654596 DOI: 10.1111/pce.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Plants possess the remarkable ability to integrate the circadian clock with various signalling pathways, enabling them to quickly detect and react to both external and internal stress signals. However, the interplay between the circadian clock and biological processes in orchestrating responses to environmental stresses remains poorly understood. TOC1, a core component of the plant circadian clock, plays a vital role in maintaining circadian rhythmicity and participating in plant defences. Here, our study reveals a direct interaction between TOC1 and the promoter region of MYB44, a key gene involved in plant defence. TOC1 rhythmically represses MYB44 expression, thereby ensuring elevated MYB44 expression at dawn to help the plant in coping with lowest temperatures during diurnal cycles. Additionally, both TOC1 and MYB44 can be induced by cold stress in an Abscisic acid (ABA)-dependent and independent manner. TOC1 demonstrates a rapid induction in response to lower temperatures compared to ABA treatment, suggesting timely flexible regulation of TOC1-MYB44 regulatory module by the circadian clock in ensuring a proper response to diverse stresses and maintaining a balance between normal physiological processes and energy-consuming stress responses. Our study elucidates the role of TOC1 in effectively modulating expression of MYB44, providing insights into the regulatory network connecting the circadian clock, ABA signalling, and stress-responsive genes.
Collapse
Affiliation(s)
- Shen-Xiu Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lu-Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Peng Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhang H, Harmer SL. A Luciferase Imaging-Based Assay for Studying Temperature Compensation of the Circadian Clock. Methods Mol Biol 2024; 2795:43-53. [PMID: 38594526 DOI: 10.1007/978-1-0716-3814-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The pace of circadian rhythms remains relatively unchanged across a physiologically relevant range of temperatures, a phenomenon known as temperature compensation. Temperature compensation is a defining characteristic of circadian rhythms, ensuring that clock-regulated processes occur at approximately the same time of day across a wide range of conditions. Despite the identification of several genes involved in the regulation of temperature compensation, the molecular mechanisms underlying this process are still not well understood. High-throughput assays of circadian period are essential for the investigation of temperature compensation. In this chapter, we present a luciferase imaging-based method that enables robust and accurate examination of temperature compensation in the plant circadian clock.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Rodriguez Gallo MC, Li Q, Talasila M, Uhrig RG. Quantitative Time-Course Analysis of Osmotic and Salt Stress in Arabidopsis thaliana Using Short Gradient Multi-CV FAIMSpro BoxCar DIA. Mol Cell Proteomics 2023; 22:100638. [PMID: 37704098 PMCID: PMC10663867 DOI: 10.1016/j.mcpro.2023.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
A major limitation when undertaking quantitative proteomic time-course experimentation is the tradeoff between depth-of-analysis and speed-of-analysis. In high complexity and high dynamic range sample types, such as plant extracts, balance between resolution and time is especially apparent. To address this, we evaluate multiple compensation voltage (CV) high field asymmetric waveform ion mobility spectrometry (FAIMSpro) settings using the latest label-free single-shot Orbitrap-based DIA acquisition workflows for their ability to deeply quantify the Arabidopsis thaliana seedling proteome. Using a BoxCarDIA acquisition workflow with a -30 -50 -70 CV FAIMSpro setting, we were able to consistently quantify >5000 Arabidopsis seedling proteins over a 21-min gradient, facilitating the analysis of ∼42 samples per day. Utilizing this acquisition approach, we then quantified proteome-level changes occurring in Arabidopsis seedling shoots and roots over 24 h of salt and osmotic stress, to identify early and late stress response proteins and reveal stress response overlaps. Here, we successfully quantify >6400 shoot and >8500 root protein groups, respectively, quantifying nearly ∼9700 unique protein groups in total across the study. Collectively, we pioneer a short gradient, multi-CV FAIMSpro BoxCarDIA acquisition workflow that represents an exciting new analysis approach for undertaking quantitative proteomic time-course experimentation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - M Talasila
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Zhou J, Li QQ. Stress responses of plants through transcriptome plasticity by mRNA alternative polyadenylation. MOLECULAR HORTICULTURE 2023; 3:19. [PMID: 37789388 PMCID: PMC10536700 DOI: 10.1186/s43897-023-00066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
The sessile nature of plants confines their responsiveness to changing environmental conditions. Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors. Alternative polyadenylation (APA) is known for its capacity to augment transcriptome diversity and plasticity, thereby furnishing an additional set of tools for modulating gene expression. APA has also been demonstrated to exhibit intimate associations with plant stress responses. In this study, we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses. These stresses include adverse environmental stresses, and pathogenic attacks, such as cadmium toxicity, high salt, hypoxia, oxidative stress, cold, heat shock, along with bacterial, fungal, and viral infections. We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition. We also proposed a general APA model where transacting factors, including poly(A) factors, epigenetic regulators, RNA m6A modification factors, and phase separation proteins, assume pivotal roles in APA related transcriptome plasticity during stress response in plants.
Collapse
Affiliation(s)
- Jiawen Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
7
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
8
|
Schmal C, Maier B, Ashwal-Fluss R, Bartok O, Finger AM, Bange T, Koutsouli S, Robles MS, Kadener S, Herzel H, Kramer A. Alternative polyadenylation factor CPSF6 regulates temperature compensation of the mammalian circadian clock. PLoS Biol 2023; 21:e3002164. [PMID: 37379316 DOI: 10.1371/journal.pbio.3002164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bert Maier
- Laboratory of Chronobiology, Institute for Medical immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Reut Ashwal-Fluss
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Osnat Bartok
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna-Marie Finger
- Laboratory of Chronobiology, Institute for Medical immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Stella Koutsouli
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Sebastian Kadener
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Alternative Splicing in the Regulatory Circuit of Plant Temperature Response. Int J Mol Sci 2023; 24:ijms24043878. [PMID: 36835290 PMCID: PMC9962249 DOI: 10.3390/ijms24043878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
As sessile organisms, plants have evolved complex mechanisms to rapidly respond to ever-changing ambient temperatures. Temperature response in plants is modulated by a multilayer regulatory network, including transcriptional and post-transcriptional regulations. Alternative splicing (AS) is an essential post-transcriptional regulatory mechanism. Extensive studies have confirmed its key role in plant temperature response, from adjustment to diurnal and seasonal temperature changes to response to extreme temperatures, which has been well documented by previous reviews. As a key node in the temperature response regulatory network, AS can be modulated by various upstream regulations, such as chromatin modification, transcription rate, RNA binding proteins, RNA structure and RNA modifications. Meanwhile, a number of downstream mechanisms are affected by AS, such as nonsense-mediated mRNA decay (NMD) pathway, translation efficiency and production of different protein variants. In this review, we focus on the links between splicing regulation and other mechanisms in plant temperature response. Recent advances regarding how AS is regulated and the following consequences in gene functional modulation in plant temperature response will be discussed. Substantial evidence suggests that a multilayer regulatory network integrating AS in plant temperature response has been unveiled.
Collapse
|
10
|
Lin J, Li QQ. Coupling epigenetics and RNA polyadenylation: missing links. TRENDS IN PLANT SCIENCE 2023; 28:223-234. [PMID: 36175275 DOI: 10.1016/j.tplants.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Precise regulation of gene expression is crucial for plant survival. As a cotranscriptional regulatory mechanism, pre-mRNA polyadenylation is essential for fine-tuning gene expression. Polyadenylation can be alternatively projected at various sites of a transcript, which contributes to transcriptome diversity. Epigenetic modification is another mechanism of transcriptional control. Recent studies have uncovered crosstalk between cotranscriptional polyadenylation processes and both epigenomic and epitranscriptomic markers. Genetic analyses have demonstrated that DNA methylation, histone modifications, and epitranscriptomic modification are involved in regulating polyadenylation in plants. Here we summarize current understanding of the links between epigenetics and polyadenylation and their novel biological efficacy for plant development and environmental responses. Unresolved issues and future directions are discussed to shed light on the field.
Collapse
Affiliation(s)
- Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; FAFU-UCR Joint Center, Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Biomedical Science Division, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
11
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
12
|
Kelliher CM, Stevenson EL, Loros JJ, Dunlap JC. Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability. PLoS Biol 2023; 21:e3001961. [PMID: 36603054 PMCID: PMC9848017 DOI: 10.1371/journal.pbio.3001961] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/18/2023] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Compensation is a defining principle of a true circadian clock, where its approximately 24-hour period length is relatively unchanged across environmental conditions. Known compensation effectors directly regulate core clock factors to buffer the oscillator's period length from variables in the environment. Temperature Compensation mechanisms have been experimentally addressed across circadian model systems, but much less is known about the related process of Nutritional Compensation, where circadian period length is maintained across physiologically relevant nutrient levels. Using the filamentous fungus Neurospora crassa, we performed a genetic screen under glucose and amino acid starvation conditions to identify new regulators of Nutritional Compensation. Our screen uncovered 16 novel mutants, and together with 4 mutants characterized in prior work, a model emerges where Nutritional Compensation of the fungal clock is achieved at the levels of transcription, chromatin regulation, and mRNA stability. However, eukaryotic circadian Nutritional Compensation is completely unstudied outside of Neurospora. To test for conservation in cultured human cells, we selected top hits from our fungal genetic screen, performed siRNA knockdown experiments of the mammalian orthologs, and characterized the cell lines with respect to compensation. We find that the wild-type mammalian clock is also compensated across a large range of external glucose concentrations, as observed in Neurospora, and that knocking down the mammalian orthologs of the Neurospora compensation-associated genes CPSF6 or SETD2 in human cells also results in nutrient-dependent period length changes. We conclude that, like Temperature Compensation, Nutritional Compensation is a conserved circadian process in fungal and mammalian clocks and that it may share common molecular determinants.
Collapse
Affiliation(s)
- Christina M. Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Elizabeth-Lauren Stevenson
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
13
|
Gao C, Lu S, Zhou R, Ding J, Fan J, Han B, Chen M, Wang B, Cao Y. Phylogenetic analysis and stress response of the plant U2 small nuclear ribonucleoprotein B″ gene family. BMC Genomics 2022; 23:744. [DOI: 10.1186/s12864-022-08956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alternative splicing (AS) is an important channel for gene expression regulation and protein diversification, in addition to a major reason for the considerable differences in the number of genes and proteins in eukaryotes. In plants, U2 small nuclear ribonucleoprotein B″ (U2B″), a component of splicing complex U2 snRNP, plays an important role in AS. Currently, few studies have investigated plant U2B″, and its mechanism remains unclear.
Result
Phylogenetic analysis, including gene and protein structures, revealed that U2B″ is highly conserved in plants and typically contains two RNA recognition motifs. Subcellular localisation showed that OsU2B″ is located in the nucleus and cytoplasm, indicating that it has broad functions throughout the cell. Elemental analysis of the promoter region showed that it responded to numerous external stimuli, including hormones, stress, and light. Subsequent qPCR experiments examining response to stress (cold, salt, drought, and heavy metal cadmium) corroborated the findings. The prediction results of protein–protein interactions showed that its function is largely through a single pathway, mainly through interaction with snRNP proteins.
Conclusion
U2B″ is highly conserved in the plant kingdom, functions in the nucleus and cytoplasm, and participates in a wide range of processes in plant growth and development.
Collapse
|
14
|
Rees H, Rusholme-Pilcher R, Bailey P, Colmer J, White B, Reynolds C, Ward SJ, Coombes B, Graham CA, de Barros Dantas LL, Dodd AN, Hall A. Circadian regulation of the transcriptome in a complex polyploid crop. PLoS Biol 2022; 20:e3001802. [PMID: 36227835 PMCID: PMC9560141 DOI: 10.1371/journal.pbio.3001802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
The circadian clock is a finely balanced timekeeping mechanism that coordinates programmes of gene expression. It is currently unknown how the clock regulates expression of homoeologous genes in polyploids. Here, we generate a high-resolution time-course dataset to investigate the circadian balance between sets of 3 homoeologous genes (triads) from hexaploid bread wheat. We find a large proportion of circadian triads exhibit imbalanced rhythmic expression patterns, with no specific subgenome favoured. In wheat, period lengths of rhythmic transcripts are found to be longer and have a higher level of variance than in other plant species. Expression of transcripts associated with circadian controlled biological processes is largely conserved between wheat and Arabidopsis; however, striking differences are seen in agriculturally critical processes such as starch metabolism. Together, this work highlights the ongoing selection for balance versus diversification in circadian homoeologs and identifies clock-controlled pathways that might provide important targets for future wheat breeding.
Collapse
Affiliation(s)
- Hannah Rees
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Paul Bailey
- Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom
| | - Joshua Colmer
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Benjamen White
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Connor Reynolds
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Calum A. Graham
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Antony N. Dodd
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
16
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
17
|
Jia ZC, Yang X, Hou XX, Nie YX, Wu J. The Importance of a Genome-Wide Association Analysis in the Study of Alternative Splicing Mutations in Plants with a Special Focus on Maize. Int J Mol Sci 2022; 23:4201. [PMID: 35457019 PMCID: PMC9024592 DOI: 10.3390/ijms23084201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing is an important mechanism for regulating gene expressions at the post-transcriptional level. In eukaryotes, the genes are transcribed in the nucleus to produce pre-mRNAs and alternative splicing can splice a pre-mRNA to eventually form multiple different mature mRNAs, greatly increasing the number of genes and protein diversity. Alternative splicing is involved in the regulation of various plant life activities, especially the response of plants to abiotic stresses and is also an important process of plant growth and development. This review aims to clarify the usefulness of a genome-wide association analysis in the study of alternatively spliced variants by summarizing the application of alternative splicing, genome-wide association analyses and genome-wide association analyses in alternative splicing, as well as summarizing the related research progress.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550000, China;
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (X.Y.); (X.-X.H.)
| | - Xue Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (X.Y.); (X.-X.H.)
| | - Xuan-Xuan Hou
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (X.Y.); (X.-X.H.)
| | - Yong-Xin Nie
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China; (X.Y.); (X.-X.H.)
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550000, China;
| |
Collapse
|
18
|
Regulatory Role of Circadian Clocks on ABA Production and Signaling, Stomatal Responses, and Water-Use Efficiency under Water-Deficit Conditions. Cells 2022; 11:cells11071154. [PMID: 35406719 PMCID: PMC8997731 DOI: 10.3390/cells11071154] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Plants deploy molecular, physiological, and anatomical adaptations to cope with long-term water-deficit exposure, and some of these processes are controlled by circadian clocks. Circadian clocks are endogenous timekeepers that autonomously modulate biological systems over the course of the day–night cycle. Plants’ responses to water deficiency vary with the time of the day. Opening and closing of stomata, which control water loss from plants, have diurnal responses based on the humidity level in the rhizosphere and the air surrounding the leaves. Abscisic acid (ABA), the main phytohormone modulating the stomatal response to water availability, is regulated by circadian clocks. The molecular mechanism of the plant’s circadian clock for regulating stress responses is composed not only of transcriptional but also posttranscriptional regulatory networks. Despite the importance of regulatory impact of circadian clock systems on ABA production and signaling, which is reflected in stomatal responses and as a consequence influences the drought tolerance response of the plants, the interrelationship between circadian clock, ABA homeostasis, and signaling and water-deficit responses has to date not been clearly described. In this review, we hypothesized that the circadian clock through ABA directs plants to modulate their responses and feedback mechanisms to ensure survival and to enhance their fitness under drought conditions. Different regulatory pathways and challenges in circadian-based rhythms and the possible adaptive advantage through them are also discussed.
Collapse
|
19
|
Bonnot T, Blair EJ, Cordingley SJ, Nagel DH. Circadian coordination of cellular processes and abiotic stress responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102133. [PMID: 34773857 DOI: 10.1016/j.pbi.2021.102133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Diel changes in the environment are perceived by the circadian clock which transmits temporal information throughout the plant cell to synchronize daily and seasonal environmental signals with internal biological processes. Dynamic modulations of diverse levels of clock gene regulation within the plant cell are impacted by stress. Recent insights into circadian control of cellular processes such as alternative splicing, polyadenylation, and noncoding RNAs are discussed. We highlight studies on the circadian regulation of reactive oxygen species, calcium signaling, and gating of temperature stress responses. Finally, we briefly summarize recent work on the translation-specific rhythmicity of cell cycle genes and the control of subcellular localization and relocalization of oscillator components. Together, this mini-review highlights these cellular events in the context of clock gene regulation and stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Titouan Bonnot
- University of California, Riverside, Department of Botany and Plant Sciences, Riverside, CA 92507, USA
| | - Emily J Blair
- University of California, Riverside, Department of Botany and Plant Sciences, Riverside, CA 92507, USA
| | - Samantha J Cordingley
- University of California, Riverside, Department of Botany and Plant Sciences, Riverside, CA 92507, USA
| | - Dawn H Nagel
- University of California, Riverside, Department of Botany and Plant Sciences, Riverside, CA 92507, USA.
| |
Collapse
|
20
|
Lin J, Yu Z, Ye C, Hong L, Chu Y, Shen Y, Li QQ. Alternative polyadenylated mRNAs behave as asynchronous rhythmic transcription in Arabidopsis. RNA Biol 2021; 18:2594-2604. [PMID: 34036876 PMCID: PMC8632115 DOI: 10.1080/15476286.2021.1933732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.
Collapse
Affiliation(s)
- Juncheng Lin
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yiru Chu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q. Li
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, USA
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Maillot P, Velt A, Rustenholz C, Butterlin G, Merdinoglu D, Duchêne E. Alternative splicing regulation appears to play a crucial role in grape berry development and is also potentially involved in adaptation responses to the environment. BMC PLANT BIOLOGY 2021; 21:487. [PMID: 34696712 PMCID: PMC8543832 DOI: 10.1186/s12870-021-03266-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alternative splicing (AS) produces transcript variants playing potential roles in proteome diversification and gene expression regulation. AS modulation is thus essential to respond to developmental and environmental stimuli. In grapevine, a better understanding of berry development is crucial for implementing breeding and viticultural strategies allowing adaptation to climate changes. Although profound changes in gene transcription have been shown to occur in the course of berry ripening, no detailed study on splicing modifications during this period has been published so far. We report here on the regulation of gene AS in developing berries of two grapevine (Vitis vinifera L.) varieties, Gewurztraminer (Gw) and Riesling (Ri), showing distinctive phenotypic characteristics. Using the software rMATS, the transcriptomes of berries at four developmental steps, from the green stage to mid-ripening, were analysed in pairwise comparisons between stages and varieties. RESULTS A total of 305 differential AS (DAS) events, affecting 258 genes, were identified. Interestingly, 22% of these AS events had not been reported before. Among the 80 genes that underwent the most significant variations during ripening, 22 showed a similar splicing profile in Gw and Ri, which suggests their involvement in berry development. Conversely, 23 genes were subjected to splicing regulation in only one variety. In addition, the ratios of alternative isoforms were different in Gw and Ri for 35 other genes, without any change during ripening. This last result indicates substantial AS differences between the two varieties. Remarkably, 8 AS events were specific to one variety, due to the lack of a splice site in the other variety. Furthermore, the transcription rates of the genes affected by stage-dependent splicing regulation were mostly unchanged, identifying AS modulation as an independent way of shaping the transcriptome. CONCLUSIONS The analysis of AS profiles in grapevine varieties with contrasting phenotypes revealed some similarity in the regulation of several genes with developmental functions, suggesting their involvement in berry ripening. Additionally, many splicing differences were discovered between the two varieties, that could be linked to phenotypic specificities and distinct adaptive capacities. Together, these findings open perspectives for a better understanding of berry development and for the selection of grapevine genotypes adapted to climate change.
Collapse
Affiliation(s)
- Pascale Maillot
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France.
- University of Haute Alsace, 68000, Mulhouse, France.
| | - Amandine Velt
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| | | | | | | | - Eric Duchêne
- SVQV, INRAE - University of Strasbourg, 68000, Colmar, France
| |
Collapse
|
22
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
23
|
Wang X, Jiang B, Gu L, Chen Y, Mora M, Zhu M, Noory E, Wang Q, Lin C. A photoregulatory mechanism of the circadian clock in Arabidopsis. NATURE PLANTS 2021; 7:1397-1408. [PMID: 34650267 DOI: 10.1038/s41477-021-01002-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/03/2021] [Indexed: 05/04/2023]
Abstract
Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid-liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants.
Collapse
Affiliation(s)
- Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Bochen Jiang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Manuel Mora
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mulangma Zhu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Eliace Noory
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
25
|
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies. Biochem Soc Trans 2021; 48:2399-2414. [PMID: 33196096 DOI: 10.1042/bst20190492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) technologies - Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/post-transcriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. The emerging theme from recent studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post-transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/post-transcriptional splicing are largely unknown, a few recent studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches.
Collapse
|
26
|
Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function. Proc Natl Acad Sci U S A 2021; 118:2103070118. [PMID: 34353905 PMCID: PMC8364196 DOI: 10.1073/pnas.2103070118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circadian clock is an internal molecular 24-h timer that is critical to life on Earth. We describe a series of artificial intelligence (AI)– and machine learning (ML)–based approaches that enable more cost-effective analysis and insight into circadian regulation and function. Throughout the manuscript, we illuminate what is inside the ML “black box” via explanation or interpretation of predictive ML models. Using this interpretation of our models, we derive biological insights into why a prediction was made, alongside accurate predictions. Most innovatively, we use only DNA sequence features for accurate circadian gene expression prediction. Using explainable AI, we define possible, responsible regulatory elements as we make these predictions; this critically requires no prior knowledge of regulatory elements. The circadian clock is an important adaptation to life on Earth. Here, we use machine learning to predict complex, temporal, and circadian gene expression patterns in Arabidopsis. Most significantly, we classify circadian genes using DNA sequence features generated de novo from public, genomic resources, facilitating downstream application of our methods with no experimental work or prior knowledge needed. We use local model explanation that is transcript specific to rank DNA sequence features, providing a detailed profile of the potential circadian regulatory mechanisms for each transcript. Furthermore, we can discriminate the temporal phase of transcript expression using the local, explanation-derived, and ranked DNA sequence features, revealing hidden subclasses within the circadian class. Model interpretation/explanation provides the backbone of our methodological advances, giving insight into biological processes and experimental design. Next, we use model interpretation to optimize sampling strategies when we predict circadian transcripts using reduced numbers of transcriptomic timepoints. Finally, we predict the circadian time from a single, transcriptomic timepoint, deriving marker transcripts that are most impactful for accurate prediction; this could facilitate the identification of altered clock function from existing datasets.
Collapse
|
27
|
Yue Y, Jiang Z, Sapey E, Wu T, Sun S, Cao M, Han T, Li T, Nian H, Jiang B. Transcriptomal dissection of soybean circadian rhythmicity in two geographically, phenotypically and genetically distinct cultivars. BMC Genomics 2021; 22:529. [PMID: 34246232 PMCID: PMC8272290 DOI: 10.1186/s12864-021-07869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. RESULTS We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. CONCLUSIONS These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Ze Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China
| | - Enoch Sapey
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tingting Wu
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Mengxue Cao
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, 450002, Zhengzhou, China.
| | - Hai Nian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, 510642, Guangzhou, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
28
|
Wang H, Wang Z, Xu W, Wang K. Comprehensive transcriptomic and proteomic analyses identify intracellular targets for myriocin to induce Fusarium oxysporum f. sp. niveum cell death. Microb Cell Fact 2021; 20:69. [PMID: 33731109 PMCID: PMC7968361 DOI: 10.1186/s12934-021-01560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myriocin is a natural product with antifungal activity and is derived from Bacillus amyloliquefaciens LZN01. Our previous work demonstrated that myriocin can inhibit the growth of Fusarium oxysporum f. sp. niveum (Fon) by inducing membrane damage. In this study, the antifungal actions of myriocin against Fon were investigated with a focus on the effects of myriocin on intracellular molecules. RESULTS Analysis of DNA binding and fluorescence spectra demonstrated that myriocin can interact with dsDNA from Fon cells. The intracellular-targeted mechanism of action was also supported by transcriptomic and proteomic analyses; a total of 2238 common differentially expressed genes (DEGs) were identified. The DEGs were further verified by RT-qPCR. Most of the DEGs were assigned metabolism and genetic information processing functions and were enriched in ribosome biogenesis in eukaryotes pathway. The expression of some genes and proteins in ribosome biogenesis in eukaryotes pathway was affected by myriocin, primarily the genes controlled by the C6 zinc cluster transcription factor family and the NFYA transcription factor. Myriocin influenced the posttranscriptional processing of gene products by triggering the main RI (retained intron) events of novel alternative splicing; myriocin targeted key genes (FOXG_09470) or proteins (RIOK2) in ribosome biogenesis in eukaryotes pathway, resulting in disordered translation. CONCLUSIONS In conclusion, myriocin was determined to exhibit activity against Fon by targeting intracellular molecules. The results of our study may help to elucidate the antifungal actions of myriocin against Fon.
Collapse
Affiliation(s)
- Hengxu Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Zhigang Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Weihui Xu
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China.
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China.
| | - Kexin Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| |
Collapse
|
29
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|