1
|
Kida H, Toyoshima S, Kawakami R, Sakimoto Y, Mitsushima D. Properties of layer V pyramidal neurons in the primary motor cortex that represent acquired motor skills. Neuroscience 2024; 559:54-63. [PMID: 39209105 DOI: 10.1016/j.neuroscience.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Layer V neurons in primary motor cortex (M1) are required for motor skill learning. We analyzed training-induced plasticity using a whole-cell slice patch-clamp technique with a rotor rod task, and found that training induces diverse changes in intrinsic properties and synaptic plasticity in M1 layer V neurons. Although the causal relationship between specific cellular changes and motor performance is unclear, by linking individual motor performance to cellular/synaptic functions, we identified several cellular and synaptic parameters that represent acquired motor skills. With respect to cellular properties, motor performance was positively correlated with resting membrane potential and fast afterhyperpolarization, but not with the membrane resistance, capacitance, or threshold. With respect to synaptic function, the performance was positively correlated with AMPA receptor-mediated postsynaptic currents, but not with GABAA receptor-mediated postsynaptic currents. With respect to live imaging analysis in Thy1-YFP mice, we further demonstrated a cross-correlation between motor performance, spine head volume, and self-entropy per spine. In the present study, we identified several changes in M1 layer V pyramidal neurons after motor training that represent acquired motor skills. Furthermore, training increased extracellular acetylcholine levels known to promote synaptic plasticity, which is correlated with individual motor performance. These results suggest that systematic control of specific intracellular parameters and enhancement of synaptic plasticity in M1 layer V neurons may be useful for improving motor skills.
Collapse
Affiliation(s)
- H Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan.
| | - S Toyoshima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - R Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan
| | - Y Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - D Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan; The Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-8511, Japan.
| |
Collapse
|
2
|
Sanchez Trivino CA, Spelat R, Spada F, D’Angelo C, Manini I, Rolle IG, Ius T, Parisse P, Menini A, Cesselli D, Skrap M, Cesca F, Torre V. Exosomal TNF-α mediates voltage-gated Na+ channel 1.6 overexpression and contributes to brain tumor-induced neuronal hyperexcitability. J Clin Invest 2024; 134:e166271. [PMID: 39088270 PMCID: PMC11405049 DOI: 10.1172/jci166271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/29/2024] [Indexed: 08/03/2024] Open
Abstract
Patients affected by glioma frequently experience epileptic discharges; however, the causes of brain tumor-related epilepsy (BTRE) are still not completely understood. We investigated the mechanisms underlying BTRE by analyzing the effects of exosomes released by U87 glioma cells and by patient-derived glioma cells. Rat hippocampal neurons incubated for 24 hours with these exosomes exhibited increased spontaneous firing, while their resting membrane potential shifted positively by 10-15 mV. Voltage clamp recordings demonstrated that the activation of the Na+ current shifted toward more hyperpolarized voltages by 10-15 mV. To understand the factors inducing hyperexcitability, we focused on exosomal cytokines. Western blot and ELISAs showed that TNF-α was present inside glioma-derived exosomes. Remarkably, incubation with TNF-α fully mimicked the phenotype induced by exosomes, with neurons firing continuously, while their resting membrane potential shifted positively. Real-time PCR revealed that both exosomes and TNF-α induced overexpression of the voltage-gated Na+ channel Nav1.6, a low-threshold Na+ channel responsible for hyperexcitability. When neurons were preincubated with infliximab, a specific TNF-α inhibitor, the hyperexcitability induced by exosomes and TNF-α was drastically reduced. We propose that infliximab, an FDA-approved drug to treat rheumatoid arthritis, could ameliorate the conditions of glioma patients with BTRE.
Collapse
Affiliation(s)
| | - Renza Spelat
- International School for Advanced Studies (SISSA), Trieste, Italy
- Institute of Materials (IOM-CNR), Area Science Park, Basovizza, Trieste, Italy
| | - Federica Spada
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Camilla D’Angelo
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ivana Manini
- Department of Medicine, University of Udine, Udine, Italy
- Institute of Pathology and
| | | | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Pietro Parisse
- Institute of Materials (IOM-CNR), Area Science Park, Basovizza, Trieste, Italy
| | - Anna Menini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Daniela Cesselli
- Department of Medicine, University of Udine, Udine, Italy
- Institute of Pathology and
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA), Trieste, Italy
- Institute of Materials (IOM-CNR), Area Science Park, Basovizza, Trieste, Italy
- BISS GlioGuard Srl, Trieste, Italy
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu, China
| |
Collapse
|
3
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
4
|
Topczewska A, Giacalone E, Pratt WS, Migliore M, Dolphin AC, Shah MM. T-type Ca 2+ and persistent Na + currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability. Cell Rep 2023; 42:112699. [PMID: 37368752 PMCID: PMC10687207 DOI: 10.1016/j.celrep.2023.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca2+ currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much CaV3.2 mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca2+ currents, which interact with persistent Na+ currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca2+ currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca2+ currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity.
Collapse
Affiliation(s)
| | | | - Wendy S Pratt
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - Annette C Dolphin
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Mala M Shah
- Pharmacology, School of Pharmacy, University College London, London WC1N 4AX, UK.
| |
Collapse
|
5
|
Jang DC, Chung G, Kim SK, Kim SJ. Dynamic alteration of intrinsic properties of the cerebellar Purkinje cell during the motor memory consolidation. Mol Brain 2023; 16:58. [PMID: 37430311 DOI: 10.1186/s13041-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Intrinsic plasticity of the cerebellar Purkinje cell (PC) plays a critical role in motor memory consolidation. However, detailed changes in their intrinsic properties during memory consolidation are not well understood. Here, we report alterations in various properties involved in intrinsic excitability, such as the action potential (AP) threshold, AP width, afterhyperpolarization (AHP), and sag voltage, which are associated with the long-term depression of intrinsic excitability following the motor memory consolidation process. We analyzed data recorded from PCs before and 1, 4, and 24 h after cerebellum-dependent motor learning and found that these properties underwent dynamic changes during the consolidation process. We further analyzed data from PC-specific STIM1 knockout (STIM1PKO) mice, which show memory consolidation deficits, and derived intrinsic properties showing distinct change patterns compared with those of wild-type littermates. The levels of memory retention in the STIM1PKO mice were significantly different compared to wild-type mice between 1 and 4 h after training, and AP width, fast- and medium-AHP, and sag voltage showed different change patterns during this period. Our results provide information regarding alterations in intrinsic properties during a particular period that are critical for memory consolidation.
Collapse
Affiliation(s)
- Dong Cheol Jang
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| |
Collapse
|
6
|
Hanquier JN, Sanders K, Berryhill CA, Sahoo FK, Hudmon A, Vilseck JZ, Cornett EM. Identification of non-histone substrates of the lysine methyltransferase PRDM9. J Biol Chem 2023; 299:104651. [PMID: 36972790 PMCID: PMC10164904 DOI: 10.1016/j.jbc.2023.104651] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Lysine methylation is a dynamic, post-translational mark that regulates the function of histone and non-histone proteins. Many of the enzymes that mediate lysine methylation, known as lysine methyltransferases (KMTs), were originally identified to modify histone proteins but have also been discovered to methylate non-histone proteins. In this work, we investigate the substrate selectivity of the lysine methyltransferase PRDM9 to identify both potential histone and non-histone substrates. Though normally expressed in germ cells, PRDM9 is significantly upregulated across many cancer types. The methyltransferase activity of PRDM9 is essential for double-strand break formation during meiotic recombination. PRDM9 has been reported to methylate histone H3 at lysine residues 4 and 36; however, PRDM9 KMT activity had not previously been evaluated on non-histone proteins. Using lysine-oriented peptide (K-OPL) libraries to screen potential substrates of PRDM9, we determined that PRDM9 preferentially methylates peptide sequences not found in any histone protein. We confirmed PRDM9 selectivity through in vitro KMT reactions using peptides with substitutions at critical positions. A multisite λ-dynamics computational analysis provided a structural rationale for the observed PRDM9 selectivity. The substrate selectivity profile was then used to identify putative non-histone substrates, which were tested by peptide spot array, and a subset were further validated at the protein level by in vitro KMT assays on recombinant proteins. Finally, one of the non-histone substrates, CTNNBL1, was found to be methylated by PRDM9 in cells.
Collapse
Affiliation(s)
- Jocelyne N Hanquier
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Kenidi Sanders
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Christine A Berryhill
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Firoj K Sahoo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Jonah Z Vilseck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Evan M Cornett
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A.
| |
Collapse
|
7
|
Cai Q, Chen X, Zhu S, Nicoll RA, Zhang M. Differential roles of CaMKII isoforms in phase separation with NMDA receptors and in synaptic plasticity. Cell Rep 2023; 42:112146. [PMID: 36827181 DOI: 10.1016/j.celrep.2023.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Calcium calmodulin-dependent kinase II (CaMKII) is critical for synaptic transmission and plasticity. Two major isoforms of CaMKII, CaMKIIα and CaMKIIβ, play distinct roles in synaptic transmission and long-term potentiation (LTP) with unknown mechanisms. Here, we show that the length of the unstructured linker between the kinase domain and the oligomerizing hub determines the ability of CaMKII to rescue the basal synaptic transmission and LTP defects caused by removal of both CaMKIIα and CaMKIIβ (double knockout [DKO]). Remarkably, although CaMKIIβ binds to GluN2B with a comparable affinity as CaMKIIα does, only CaMKIIα with the short linker forms robust dense clusters with GluN2B via phase separation. Lengthening the linker of CaMKIIα with unstructured "Gly-Gly-Ser" repeats impairs its phase separation with GluN2B, and the mutant enzyme cannot rescue the basal synaptic transmission and LTP defects of DKO mice. Our results suggest that the phase separation capacity of CaMKII with GluN2B is critical for its cellular functions in the brain.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Heath, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiumin Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shihan Zhu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Kida H, Kawakami R, Sakai K, Otaku H, Imamura K, Han TZ, Sakimoto Y, Mitsushima D. Motor training promotes both synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. J Physiol 2023; 601:335-353. [PMID: 36515167 DOI: 10.1113/jp283755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor β3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor β3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.
Collapse
Affiliation(s)
- H Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - R Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - K Sakai
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - H Otaku
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - K Imamura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Thiri-Zin Han
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Y Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
Ogata G, Partida GJ, Fasoli A, Ishida AT. Calcium/calmodulin-dependent protein kinase II associates with the K + channel isoform Kv4.3 in adult rat optic nerve. Front Neuroanat 2022; 16:958986. [PMID: 36172564 PMCID: PMC9512010 DOI: 10.3389/fnana.2022.958986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Spikes are said to exhibit "memory" in that they can be altered by spikes that precede them. In retinal ganglion cell axons, for example, rapid spiking can slow the propagation of subsequent spikes. This increases inter-spike interval and, thus, low-pass filters instantaneous spike frequency. Similarly, a K+ ion channel blocker (4-aminopyridine, 4AP) increases the time-to-peak of compound action potentials recorded from optic nerve, and we recently found that reducing autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) does too. These results would be expected if CaMKII modulates spike propagation by regulating 4AP-sensitive K+ channels. As steps toward identifying a possible substrate, we test whether (i) 4AP alters optic nerve spike shape in ways consistent with reducing K+ current, (ii) 4AP alters spike propagation consistent with effects of reducing CaMKII activation, (iii) antibodies directed against 4AP-sensitive and CaMKII-regulated K+ channels bind to optic nerve axons, and (iv) optic nerve CaMKII co-immunoprecipitates with 4AP-sensitive K+ channels. We find that, in adult rat optic nerve, (i) 4AP selectively slows spike repolarization, (ii) 4AP slows spike propagation, (iii) immunogen-blockable staining is achieved with anti-Kv4.3 antibodies but not with antibodies directed against Kv1.4 or Kv4.2, and (iv) CaMKII associates with Kv4.3. Kv4.3 may thus be a substrate that underlies activity-dependent spike regulation in adult visual system pathways.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Gloria J. Partida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Anna Fasoli
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Andrew T. Ishida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology and Vision Science, University of California, Sacramento, Sacramento, CA, United States
| |
Collapse
|
10
|
Zybura AS, Sahoo FK, Hudmon A, Cummins TR. CaMKII Inhibition Attenuates Distinct Gain-of-Function Effects Produced by Mutant Nav1.6 Channels and Reduces Neuronal Excitability. Cells 2022; 11:2108. [PMID: 35805192 PMCID: PMC9266207 DOI: 10.3390/cells11132108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aberrant Nav1.6 activity can induce hyperexcitability associated with epilepsy. Gain-of-function mutations in the SCN8A gene encoding Nav1.6 are linked to epilepsy development; however, the molecular mechanisms mediating these changes are remarkably heterogeneous and may involve post-translational regulation of Nav1.6. Because calcium/calmodulin-dependent protein kinase II (CaMKII) is a powerful modulator of Nav1.6 channels, we investigated whether CaMKII modulates disease-linked Nav1.6 mutants. Whole-cell voltage clamp recordings in ND7/23 cells show that CaMKII inhibition of the epilepsy-related mutation R850Q largely recapitulates the effects previously observed for WT Nav1.6. We also characterized a rare missense variant, R639C, located within a regulatory hotspot for CaMKII modulation of Nav1.6. Prediction software algorithms and electrophysiological recordings revealed gain-of-function effects for R639C mutant channel activity, including increased sodium currents and hyperpolarized activation compared to WT Nav1.6. Importantly, the R639C mutation ablates CaMKII phosphorylation at a key regulatory site, T642, and, in contrast to WT and R850Q channels, displays a distinct response to CaMKII inhibition. Computational simulations demonstrate that modeled neurons harboring the R639C or R850Q mutations are hyperexcitable, and simulating the effects of CaMKII inhibition on Nav1.6 activity in modeled neurons differentially reduced hyperexcitability. Acute CaMKII inhibition may represent a promising mechanism to attenuate gain-of-function effects produced by Nav1.6 mutations.
Collapse
Affiliation(s)
- Agnes S. Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Firoj K. Sahoo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (F.K.S.); (A.H.)
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (F.K.S.); (A.H.)
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
12
|
Tong L, Xing M, Wu J, Zhang S, Chu D, Zhang H, Chen F, Du D. Overexpression of NaV1.6 in the rostral ventrolateral medulla in rats mediates stress-induced hypertension via glutamate regulation. Clin Exp Hypertens 2022; 44:134-145. [PMID: 34994674 DOI: 10.1080/10641963.2021.2007942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The rostral ventrolateral medulla (RVLM) plays a key role in mediating the development of stress-induced hypertension (SIH). Furthermore, enhanced glutamate transport within glutamatergic neurons in the RVLM mediates pressor responses. Data from our previous studies suggest that the voltage-gated sodium channel NaV1.6 is overexpressed in neurons in the RVLM in SIH model rats and participates in the resulting elevation of blood pressure. However, previous studies have not investigated the relationship between NaV1.6 expression and glutamatergic neurons. METHODS Here, we constructed an SIH rat model by knocking down NaV1.6 via microinjection of clustered regularly interspaced short palindromic repeats (CRISPR) guide RNA into the RVLM. Glutamate-related markers were quantified by Western blotting and immunofluorescence, and blood pressure was measured in the rats. RESULTS Our findings showed that vesicular glutamate transporter 1 (VGluT1) protein expression in the RVLM was higher in SIH rats than in Control rats, and GAD67 protein expression in SIH rats was lower than that in Control rats. Therefore, the number of VGluT1-positive neurons increased, while the number of GAD67-labeled neurons decreased after stress. After knocking down NaV1.6 expression in the RVLM, VGluT1 expression and the number of VGluT1-positive neurons decreased relative to those in SIH rats, while GAD67 protein expression and the number of GAD67-labeled neurons increased relative to those in SIH rats. CONCLUSIONS These results indicate that overexpression of NaV1.6 in the RVLM may mediate the transport and transformation of glutamate in neurons, and NaV1.6 may participate in SIH.
Collapse
Affiliation(s)
- Lei Tong
- College of Life Science, Shanghai University, Shanghai, China
| | - Mengyu Xing
- College of Life Science, Shanghai University, Shanghai, China
| | - Jiaxiang Wu
- College of Life Science, Shanghai University, Shanghai, China
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Fuxue Chen
- College of Life Science, Shanghai University, Shanghai, China
| | - Dongshu Du
- College of Life Science, Shanghai University, Shanghai, China.,College of Agriculture and Bioengineering, Heze University, Heze, China
| |
Collapse
|
13
|
Kim KR, Jeong HJ, Kim Y, Lee SY, Kim Y, Kim HJ, Lee SH, Cho H, Kang JS, Ho WK. Calbindin regulates Kv4.1 trafficking and excitability in dentate granule cells via CaMKII-dependent phosphorylation. Exp Mol Med 2021; 53:1134-1147. [PMID: 34234278 PMCID: PMC8333054 DOI: 10.1038/s12276-021-00645-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Calbindin, a major Ca2+ buffer in dentate granule cells (GCs), plays a critical role in shaping Ca2+ signals, yet how it regulates neuronal function remains largely unknown. Here, we found that calbindin knockout (CBKO) mice exhibited dentate GC hyperexcitability and impaired pattern separation, which co-occurred with reduced K+ current due to downregulated surface expression of Kv4.1. Relatedly, manipulation of calbindin expression in HT22 cells led to changes in CaMKII activation and the level of surface localization of Kv4.1 through phosphorylation at serine 555, confirming the mechanism underlying neuronal hyperexcitability in CBKO mice. We also discovered that Ca2+ buffering capacity was significantly reduced in the GCs of Tg2576 mice to the level of CBKO GCs, and this reduction was restored to normal levels by antioxidants, suggesting that calbindin is a target of oxidative stress. Our data suggest that the regulation of CaMKII signaling by Ca2+ buffering is crucial for neuronal excitability regulation.
Collapse
Affiliation(s)
- Kyung-Ran Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Institute of BioInnovation Research, Kolon Life Science Inc, 110 Magokdong-ro, Gangseo-gu, Seoul, 07793, Korea
| | - Hyeon-Ju Jeong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yoonsub Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Yujin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
| | - Hyun-Ji Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Suk-Ho Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
| | - Won-Kyung Ho
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:cells10071595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel’s complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
15
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
16
|
The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:ijms22094307. [PMID: 33919163 PMCID: PMC8122486 DOI: 10.3390/ijms22094307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
CaMKII and CaMKIV are calcium/calmodulin-dependent kinases playing a rudimentary role in many regulatory processes in the organism. These kinases attract increasing interest due to their involvement primarily in memory and plasticity and various cellular functions. Although CaMKII and CaMKIV are mostly recognized as the important cogs in a memory machine, little is known about their effect on mood and role in neuropsychiatric diseases etiology. Here, we aimed to review the structure and functions of CaMKII and CaMKIV, as well as how these kinases modulate the animals’ behavior to promote antidepressant-like, anxiolytic-like, and procognitive effects. The review will help in the understanding of the roles of the above kinases in the selected neurodegenerative and neuropsychiatric disorders, and this knowledge can be used in future drug design.
Collapse
|
17
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|