1
|
Houser BJ, Camacho AN, Bryner CA, Ziegler M, Wood JB, Spencer AJ, Gautam RP, Okonkwo TP, Wagner V, Smith SJ, Chesnel K, Harrison RG, Pitt WG. Bacterial Binding to Polydopamine-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58226-58240. [PMID: 39420634 DOI: 10.1021/acsami.4c11169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis. This study introduces a novel approach for bacterial concentration using polydopamine (pDA), a highly adhesive polymer often purported to create antibacterial and antibiofouling coatings on medical devices. Although pDA has been generally studied for its ability to coat surfaces and reduce biofilm growth, we have found that when coated on magnetic nanoclusters (MNCs), more specifically iron oxide nanoclusters, it effectively binds to and can remove from suspension some types of bacteria. This study investigated the binding of pDA-coated MNCs (pDA-MNCs) to various Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and several E. coli strains. MNCs were successfully coated with pDA, and these functionalized MNCs bound a wide variety of bacterial strains. The efficiency of removing bacteria from a suspension can range from 0.99 for S. aureus to 0.01 for an E. coli strain. Such strong capture and differential capture have important applications in collecting bacteria from dilute samples found in medical diagnostics, food and water quality monitoring, and other industries.
Collapse
Affiliation(s)
- Bowen J Houser
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Alyson N Camacho
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Camille A Bryner
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Masa Ziegler
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Justin B Wood
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ashley J Spencer
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Rajendra P Gautam
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Tochukwu P Okonkwo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Victoria Wagner
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Stacey J Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Karine Chesnel
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Roger G Harrison
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
2
|
Li J, Hao X, van Loosdrecht MCM, Lin Y. Understanding the ionic hydrogel-forming property of extracellular polymeric substances: Differences in lipopolysaccharides between flocculent and granular sludge. WATER RESEARCH 2024; 268:122707. [PMID: 39481336 DOI: 10.1016/j.watres.2024.122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
An interesting and potential property of extracellular polymeric substances (EPS) is the hydrogel formation with calcium ions. Aiming at understanding the significant difference in the hydrogel formed between EPS from flocculent and granular sludge, a targeted investigation of the lipopolysaccharides (LPS), one of the important EPS components, was performed. LPS was isolated from the EPS of flocculent and granular sludge, and both the glycan and the lipid A parts of LPS were characterized and compared. The morphology of LPS-calcium (LPS-Ca) aggregates were visualized by the polymyxin B-based fluorescent probe. The LPS constituted about 25 % and 15 % of the EPS from flocculent and granular sludge, respectively. The flocculent sludge LPS showed a lower amount of glycans, shorter glycan chain length, lower molecular weight, and higher possibility of containing unsaturated lipids than the granular sludge EPS. The flocculent sludge LPS-Ca aggregates demonstrated invert structures with the water phase in between, contributing to the fluid-like property of the respect EPS-Ca. In contrast, with the remarkably different chemical structure, LPS-Ca aggregates from granular sludge displayed bilaminar multilayered morphology, contributing to the solid, self-standing hydrogel of EPS-Ca.
Collapse
Affiliation(s)
- Ji Li
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629 HZ Delft, The Netherlands; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China.
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629 HZ Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629 HZ Delft, The Netherlands
| |
Collapse
|
3
|
Kiseleva E, Mikhailopulo K, Sviridov O. Detection of Salmonella by competitive ELISA of lipopolysaccharide secreted into the culture medium. Anal Biochem 2024:115695. [PMID: 39455039 DOI: 10.1016/j.ab.2024.115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Detection of Salmonella in food is topical due to known cases of salmonellosis epidemics. Immunochemical methods including ELISA are widely used for Salmonella detection. Traditionally, commercial ELISA kits are based on sandwich technique and detect lipopolysaccharide (LPS), which is considered to be the component of the outer membrane of Gram-negative bacteria. Our aim was elaboration of competitive ELISA test for Salmonella detection in food with improved parameters. It was shown that in the Salmonella culture after the standard sample preparation procedure LPS is present mainly outside cells as a component of outer membrane vesicles. Improved sample preparation procedure includes separation of bacteria from the medium and analysis of the medium, which increases analytical sensitivity. Immobilization of the bovine serum albumin (BSA)-LPS conjugate in microplate wells allows to obtain a more homogeneous coating than immobilization of LPS itself. Thus, we have developed test system for Salmonella detection in food by competitive ELISA of LPS secreted into the culture medium with the immobilized BSA-LPS conjugate and monoclonal antibodies (mAb) to LPS core in the liquid phase. New competitive ELISA test is high sensitive, give reproducible results, allows the detection of any Salmonella serotype and is important for the protection of human health.
Collapse
Affiliation(s)
- Elena Kiseleva
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Republic of Belarus.
| | - Konstantin Mikhailopulo
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Republic of Belarus
| | - Oleg Sviridov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Republic of Belarus
| |
Collapse
|
4
|
Toh KY, Toh TS, Chua KP, Rajakumar P, Lee JWJ, Chong CW. Identification of age-associated microbial changes via long-read 16S sequencing. Gut Pathog 2024; 16:56. [PMID: 39369250 PMCID: PMC11456230 DOI: 10.1186/s13099-024-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Age-related gut microbial changes have been widely investigated over the past decade. Most of the previous age-related microbiome studies were conducted on the Western population, and the short-read sequencing (e.g., 16S V4 or V3-V4 region) was the most common microbiota profiling method. We evaluated the gut compositional differences using the long-read sequencing approach (i.e., PacBio sequencing targeting the full-length V1-V9 regions) to enable a deeper taxonomic resolution and better characterize the gut microbiome of Singaporeans from different age groups. RESULTS A total of 83 research participants were included in this study. Although no significant differences were detected in alpha and beta diversity, our study demonstrated several bacterial taxa with abundances that were significantly different across age groups. With young individuals as the reference group, Eggerthella lenta and Bacteroides uniformis were found to be significantly altered in the middle-aged group, while Catenibacterium mitsuokai and Bacteroides plebeius were significantly altered in the elderly group. These age-related differences in the gut microbiome were associated with aberrations in several predicted functional pathways, including dysregulations of pathways related to lipopolysaccharide and tricarboxylic acid cycle in older adults. CONCLUSIONS The utilization of long-read sequencing facilitated the identification of species- and strain-level differences across age groups, which was challenging with the partial 16S rRNA sequencing approach. Nevertheless, replication studies are warranted to confirm our findings, and if confirmed, further in vitro and in vivo studies are crucial to better understand the impact of the altered levels of age-related bacterial taxa. Additionally, the modest performance of strain-level taxonomic classification using 16S-ITS-23S gene sequences, likely due to the limited depth of currently available alignment databases, highlights the need for optimization and refinement in curating these databases for the long-read sequencing approach.
Collapse
Affiliation(s)
- Kai Yee Toh
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore.
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khi Pin Chua
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Priscilla Rajakumar
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore
| | - Jonathan Wei Jie Lee
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine , National University Health System, Singapore, 119228, Singapore
- iHealthtech, National University of Singapore, Singapore, 117599, Singapore
- SynCTI, National University of Singapore, Singapore, 117456, Singapore
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- MUM Microbiome Research Centre, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
6
|
Crone L, Sobek J, Müller N, Restin T, Bassler D, Paganini D, Zimmermann MB, Zarnovican P, Routier FH, Romero-Uruñuela T, Izquierdo L, Hennet T. Inter-individual and inter-regional variability of breast milk antibody reactivity to bacterial lipopolysaccharides. Front Immunol 2024; 15:1404192. [PMID: 39308863 PMCID: PMC11412857 DOI: 10.3389/fimmu.2024.1404192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Breast milk is a vital source of nutrients, prebiotics, probiotics, and protective factors, including antibodies, immune cells and antimicrobial proteins. Using bacterial lipopolysaccharide arrays, we investigated the reactivity and specificity of breast milk antibodies towards microbial antigens, comparing samples from rural Kenya and urban Switzerland. Results showed considerable variability in antibody reactivity both within and between these locations. Kenyan breast milk demonstrated broad reactivity to bacterial lipopolysaccharides, likely due to increased microbial exposure. Antibodies primarily recognized the O-antigens of lipopolysaccharides and showed strong binding to specific carbohydrate motifs. Notably, antibodies against specific Escherichia coli O-antigens showed cross-reactivity with parasitic pathogens like Leishmania major and Plasmodium falciparum, thus showing that antibodies reacting against lipopolysaccharide O-antigens can recognize a wide range of antigens beyond bacteria. The observed diversity in antigen recognition highlights the significance of breast milk in safeguarding infants from infections, particularly those prevalent in specific geographic regions. The findings also offer insights for potential immunobiotic strategies to augment natural antibody-mediated defense against diverse pathogens.
Collapse
Affiliation(s)
- Lisa Crone
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jens Sobek
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule (ETH) Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Müller
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tanja Restin
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniela Paganini
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael B. Zimmermann
- Medical Research Council (MRC) Translational Immune Discovery Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patricia Zarnovican
- Department of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Tais Romero-Uruñuela
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Hu B, Wang J, Li L, Wang Q, Qin J, Chi Y, Yan J, Sun W, Cao B, Guo X. Functional Identification and Genetic Analysis of O-Antigen Gene Clusters of Food-Borne Pathogen Yersinia enterocolitica O:10 and Other Uncommon Serotypes, Further Revealing Their Virulence Profiles. J Microbiol Biotechnol 2024; 34:1599-1608. [PMID: 39081257 PMCID: PMC11380512 DOI: 10.4014/jmb.2402.02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024]
Abstract
Yersinia enterocolitica is a globally distributed food-borne gastrointestinal pathogen. The O-antigen variation-determined serotype is an important characteristic of Y. enterocolitica, allowing intraspecies classification for diagnosis and epidemiology purposes. Among the 11 serotypes associated with human yersiniosis, O:3, O:5,27, O:8, and O:9 are the most prevalent, and their O-antigen gene clusters have been well defined. In addition to the O-antigen, several virulence factors are involved in infection and pathogenesis of Y. enterocolitica strains, and these are closely related to their biotypes, reflecting pathogenic properties. In this study, we identified the O-AGC of a Y. enterocolitica strain WL-21 of serotype O:10, and confirmed its functionality in O-antigen synthesis. Furthermore, we analyzed in silico the putative O-AGCs of uncommon serotypes, and found that the O-AGCs of Y. enterocolitica were divided into two genetic patterns: (1) O-AGC within the hemH-gsk locus, possibly synthesizing the O-antigen via the Wzx/Wzy dependent pathway, and (2) O-AGC within the dcuC-galU-galF locus, very likely assembling the O-antigen via the ABC transporter dependent pathway. By screening the virulence genes against genomes from GenBank, we discovered that strains representing different serotypes were grouped according to different virulence gene profiles, indicating strong links between serotypes and virulence markers and implying an interaction between them and the synergistic effect in pathogenicity. Our study provides a framework for further research on the origin and evolution of O-AGCs from Y. enterocolitica, as well as on differences in virulent mechanisms among distinct serotypes.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Jing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Linxing Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Qin Wang
- Disease Prevention and Control Center of Ganzhou District, 27 Xianfu Street, Ganzhou District, Zhangye City, Gansu Province, P.R. China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Yingxin Chi
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Wenkui Sun
- Shandong Center for Disease Control and Prevention, 16992 City Ten Road, Jinan 250014, Shandong, P.R. China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, P.R. China
| |
Collapse
|
8
|
Hartikainen AK, Jalanka J, Lahtinen P, Ponsero AJ, Mertsalmi T, Finnegan L, Crispie F, Cotter PD, Arkkila P, Satokari R. Fecal microbiota transplantation influences microbiota without connection to symptom relief in irritable bowel syndrome patients. NPJ Biofilms Microbiomes 2024; 10:73. [PMID: 39191760 PMCID: PMC11349920 DOI: 10.1038/s41522-024-00549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Imbalanced microbiota may contribute to the pathophysiology of irritable bowel syndrome (IBS), thus fecal microbiota transplantation (FMT) has been suggested as a potential treatment. Previous studies on the relationship between clinical improvement and microbiota after FMT have been inconclusive. In this study, we used 16S rRNA gene amplicon and shotgun metagenomics data from a randomized, placebo controlled FMT trial on 49 IBS patients to analyze changes after FMT in microbiota composition and its functional potential, and to identify connections between microbiota and patients' clinical outcome. As a result, we found that the successful modulation of microbiota composition and functional profiles by FMT from a healthy donor was not associated with the resolution of symptoms in IBS patients. Notably, a donor derived strain of Prevotella copri dominated the microbiota in those patients in the FMT group who had a low relative abundance of P. copri pre-FMT. The results highlight the multifactorial nature of IBS and the role of recipient's microbiota in the colonization of donor's strains.
Collapse
Affiliation(s)
- Anna K Hartikainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Lahtinen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- BIO5 Institute and Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA
| | - Tuomas Mertsalmi
- Department of Neurology, Helsinki University Hospital HUS, Helsinki, Finland
- Department of Clinical Neurosciences, University of Helsinki, HUS, PO Box 800, FI-00029, Helsinki, Finland
| | - Laura Finnegan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome, Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome, Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome, Ireland, Cork, Ireland
| | - Perttu Arkkila
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Durand T, Dodge GJ, Siuda RP, Higinbotham HR, Arbour CA, Ghosh S, Allen KN, Imperiali B. Proteome-Wide Bioinformatic Annotation and Functional Validation of the Monotopic Phosphoglycosyl Transferase Superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602977. [PMID: 39026775 PMCID: PMC11257628 DOI: 10.1101/2024.07.10.602977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Phosphoglycosyl transferases (PGTs) are membrane proteins that initiate glycoconjugate biosynthesis by transferring a phospho-sugar moiety from a soluble nucleoside diphosphate sugar to a membrane-embedded polyprenol phosphate acceptor. The centrality of PGTs in complex glycan assembly and the current lack of functional information make these enzymes high-value targets for biochemical investigation. In particular, the small monotopic PGT family is exclusively bacterial and represents the minimal functional unit of the monotopic PGT superfamily. Here, we combine a sequence similarity network (SSN) analysis with a generalizable, luminescence-based activity assay to probe the substrate specificity of this family of monoPGTs in a bacterial cell-membrane fraction. This strategy allows us to identify specificity on a far more significant scale than previously achievable and correlate preferred substrate specificities with predicted structural differences within the conserved monoPGT fold. Finally, we present the proof-of-concept for a small-scale inhibitor screen (eight nucleoside analogs) with four monoPGTs of diverse substrate specificity, thus building a foundation for future inhibitor discovery initiatives.
Collapse
Affiliation(s)
- Theo Durand
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Greg J. Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address Biogen, 225 Binney Street, Cambridge MA 02139, USA
| | - Roxanne P. Siuda
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, USA
- Dept. of Pharmacology Physiology, and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E Concord St L-630D, Boston, MA 02215, USA
| | - Hugh R. Higinbotham
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston MA 02215, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Kelly SD, Allas MJ, Goodridge LD, Lowary TL, Whitfield C. Structure, biosynthesis and regulation of the T1 antigen, a phase-variable surface polysaccharide conserved in many Salmonella serovars. Nat Commun 2024; 15:6504. [PMID: 39090110 PMCID: PMC11294581 DOI: 10.1038/s41467-024-50957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mikel Jason Allas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
11
|
Litschko C, Di Domenico V, Schulze J, Li S, Ovchinnikova OG, Voskuilen T, Bethe A, Cifuente JO, Marina A, Budde I, Mast TA, Sulewska M, Berger M, Buettner FFR, Lowary TL, Whitfield C, Codée JDC, Schubert M, Guerin ME, Fiebig T. Transition transferases prime bacterial capsule polymerization. Nat Chem Biol 2024:10.1038/s41589-024-01664-8. [PMID: 38951648 DOI: 10.1038/s41589-024-01664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Valerio Di Domenico
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona, Spanish National Research Council, Barcelona Science Park, Tower R, Barcelona, Spain
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sizhe Li
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thijs Voskuilen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Alberto Marina
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Tim A Mast
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Małgorzata Sulewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Proteomics, Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology; Molecular Biology Institute of Barcelona, Spanish National Research Council, Barcelona Science Park, Tower R, Barcelona, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Bizkaia Technology Park, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
12
|
Kelly SD, Williams DM, Zhu S, Kim T, Jana M, Nothof J, Thota VN, Lowary TL, Whitfield C. Klebsiella pneumoniae O-polysaccharide biosynthesis highlights the diverse organization of catalytic modules in ABC transporter-dependent glycan assembly. J Biol Chem 2024; 300:107420. [PMID: 38815868 PMCID: PMC11231755 DOI: 10.1016/j.jbc.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawna Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Nothof
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
13
|
Bozidis P, Markou E, Gouni A, Gartzonika K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024; 13:522. [PMID: 38921819 PMCID: PMC11206709 DOI: 10.3390/pathogens13060522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of multidrug-resistant bacteria is undoubtedly one of the most serious global health threats. One response to this threat that has been gaining momentum over the past decade is 'phage therapy'. According to this, lytic bacteriophages are used for the treatment of bacterial infections, either alone or in combination with antimicrobial agents. However, to ensure the efficacy and broad applicability of phage therapy, several challenges must be overcome. These challenges encompass the development of methods and strategies for the host range manipulation and bypass of the resistance mechanisms developed by pathogenic bacteria, as has been the case since the advent of antibiotics. As our knowledge and understanding of the interactions between phages and their hosts evolves, the key issue is to define the host range for each application. In this article, we discuss the factors that affect host range and how this determines the classification of phages into different categories of action. For each host range group, recent representative examples are provided, together with suggestions on how the different groups can be used to combat certain types of bacterial infections. The available methodologies for host range expansion, either through sequential adaptation to a new pathogen or through genetic engineering techniques, are also reviewed.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (E.M.); (A.G.)
| |
Collapse
|
14
|
Perez C, Szymanski CM. More than one way to add a sugar into bacterial polysaccharides. Proc Natl Acad Sci U S A 2024; 121:e2408556121. [PMID: 38857409 PMCID: PMC11194591 DOI: 10.1073/pnas.2408556121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Affiliation(s)
- Camilo Perez
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, GA30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602
| |
Collapse
|
15
|
Ghods S, Muszyński A, Yang H, Seelan RS, Mohammadi A, Hilson JS, Keiser G, Nichols FC, Azadi P, Ernst RK, Moradali F. The multifaceted role of c-di-AMP signaling in the regulation of Porphyromonas gingivalis lipopolysaccharide structure and function. Front Cell Infect Microbiol 2024; 14:1418651. [PMID: 38933693 PMCID: PMC11199400 DOI: 10.3389/fcimb.2024.1418651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Background This study unveils the intricate functional association between cyclic di-3',5'-adenylic acid (c-di-AMP) signaling, cellular bioenergetics, and the regulation of lipopolysaccharide (LPS) profile in Porphyromonas gingivalis, a Gram-negative obligate anaerobe considered as a keystone pathogen involved in the pathogenesis of chronic periodontitis. Previous research has identified variations in P. gingivalis LPS profile as a major virulence factor, yet the underlying mechanism of its modulation has remained elusive. Methods We employed a comprehensive methodological approach, combining two mutants exhibiting varying levels of c-di-AMP compared to the wild type, alongside an optimized analytical methodology that combines conventional mass spectrometry techniques with a novel approach known as FLATn. Results We demonstrate that c-di-AMP acts as a metabolic nexus, connecting bioenergetic status to nuanced shifts in fatty acid and glycosyl profiles within P. gingivalis LPS. Notably, the predicted regulator gene cdaR, serving as a potent regulator of c-di-AMP synthesis, was found essential for producing N-acetylgalactosamine and an unidentified glycolipid class associated with the LPS profile. Conclusion The multifaceted roles of c-di-AMP in bacterial physiology are underscored, emphasizing its significance in orchestrating adaptive responses to stimuli. Furthermore, our findings illuminate the significance of LPS variations and c-di-AMP signaling in determining the biological activities and immunostimulatory potential of P. gingivalis LPS, promoting a pathoadaptive strategy. The study expands the understanding of c-di-AMP pathways in Gram-negative species, laying a foundation for future investigations into the mechanisms governing variations in LPS structure at the molecular level and their implications for host-pathogen interactions.
Collapse
Affiliation(s)
- Shirin Ghods
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Asal Mohammadi
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jacob S. Hilson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, CT, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, United States
| | - Fata Moradali
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| |
Collapse
|
16
|
Anek P, Kumpangcum S, Roytrakul S, Khanongnuch C, Saenjum C, Phannachet K. Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2024; 13:536. [PMID: 38927202 PMCID: PMC11201136 DOI: 10.3390/antibiotics13060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The rising incidence of extensively drug-resistant (XDR) Klebsiella pneumoniae, including carbapenem- and colistin-resistant strains, leads to the limitation of available effective antibiotics. Miang, known as chewing tea, is produced from Camellia sinensis var. assamica or Assam tea leaves fermentation. Previous studies revealed that the extract of Miang contains various phenolic and flavonoid compounds with numerous biological activities including antibacterial activity. However, the antibacterial activity of Miang against XDR bacteria especially colistin-resistant strains had not been investigated. In this study, the compositions of phenolic and flavonoid compounds in fresh, steamed, and fermented Assam tea leaves were examined by HPLC, and their antibacterial activities were evaluated by the determination of the MIC and MBC. Pyrogallol was detected only in the extract from Miang and showed the highest activities with an MIC of 0.25 mg/mL and an MBC of 0.25-0.5 mg/mL against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli ATCC 25922, colistin-resistant E. coli, and colistin-resistant K. pneumoniae. The effects on morphology and proteomic changes in K. pneumoniae NH54 treated with Miang extract were characterized by SEM and label-free quantitative shotgun proteomics analysis. The results revealed that Miang extract caused the decrease in bacterial cell wall integrity and cell lysis. The up- and downregulated expression with approximately a 2 to >5-fold change in proteins involved in peptidoglycan synthesis and outer membrane, carbohydrate, and amino acid metabolism were identified. These findings suggested that Miang containing pyrogallol and other secondary metabolites from fermentation has potential as an alternative candidate with an antibacterial agent or natural active pharmaceutical ingredient against XDR bacteria including colistin-resistant bacteria.
Collapse
Affiliation(s)
- Pannita Anek
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (S.K.)
| | - Sutita Kumpangcum
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (S.K.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chartchai Khanongnuch
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kulwadee Phannachet
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (S.K.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Multidisciplinary Approaches to Miang, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Urakami S, Hinou H. MALDI glycotyping of O-antigens from a single colony of gram-negative bacteria. Sci Rep 2024; 14:12719. [PMID: 38830875 PMCID: PMC11148006 DOI: 10.1038/s41598-024-62729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Polypeptide-targeted MALDI-TOF MS for microbial species identification has revolutionized microbiology. However, no practical MALDI-TOF MS identification method for O-antigen polysaccharides, a major indicator for epidemiological classification within a species of gram-negative bacteria, is available. We describe a simple MALDI glycotyping method for O-antigens that simultaneously identifies the molecular mass of the repeating units and the monosaccharide composition of the O-antigen. We analyzed the Escherichia coli O1, O6, and O157-type strains. Conventional species identification based on polypeptide patterns and O-antigen polysaccharide typing can be performed in parallel from a single colony using our MALDI-TOF MS workflow. Moreover, subtyping within the same O-antigen and parallel colony-specific O-antigen determination from mixed strains, including the simultaneous identification of multiple strains-derived O-antigens within selected colony, were performed. In MALDI glycotyping of two Enterobacteriaceae strains, a Citrobacter freundii strain serologically cross-reactive with E. coli O157 gave a MALDI spectral pattern identical to E. coli O157. On the other hand, an Edwardsiella tarda strain with no reported O-antigen cross-reactivity gave a MALDI spectral pattern of unknown O-antigen repeating units. The method described in this study allows the parallel and rapid identification of microbial genera, species, and serotypes of surface polysaccharides using a single MALDI-TOF MS instrument.
Collapse
Affiliation(s)
- Shogo Urakami
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hiroshi Hinou
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
18
|
Ayuti SR, Khairullah AR, Al-Arif MA, Lamid M, Warsito SH, Moses IB, Hermawan IP, Silaen OSM, Lokapirnasari WP, Aryaloka S, Ferasyi TR, Hasib A, Delima M. Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions. Open Vet J 2024; 14:1313-1329. [PMID: 39055762 PMCID: PMC11268913 DOI: 10.5455/ovj.2024.v14.i6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Salmonellosis, caused by Salmonella species, is one of the most common foodborne illnesses worldwide with an estimated 93.8 million cases and about 155,00 fatalities. In both industrialized and developing nations, Salmonellosis has been reported to be one of the most prevalent foodborne zoonoses and is linked with arrays of illness syndromes such as acute and chronic enteritis, and septicaemia. The two major and most common Salmonella species implicated in both warm-blooded and cold-blooded animals are Salmonella bongori and Salmonella enterica. To date, more than 2400 S. enterica serovars which affect both humans and animals have been identified. Salmonella is further classified into serotypes based on three primary antigenic determinants: somatic (O), flagella (H), and capsular (K). The capacity of nearly all Salmonella species to infect, multiply, and survive in human host cells with the aid of their pathogenic and virulence arsenals makes them deadly and important public health pathogens. Primarily, food-producing animals such as poultry, swine, cattle, and their products have been identified as important sources of salmonellosis. Additionally, raw fruits and vegetables are among other food types that have been linked to the spread of Salmonella spp. Based on the clinical manifestation of human salmonellosis, Salmonella strains can be categorized as either non-typhoidal Salmonella (NTS) and typhoidal Salmonella. The detection of aseptically collected Salmonella in necropsies, environmental samples, feedstuffs, rectal swabs, and food products serves as the basis for diagnosis. In developing nations, typhoid fever due to Salmonella Typhi typically results in the death of 5%-30% of those affected. The World Health Organization (WHO) calculated that there are between 16 and 17 million typhoid cases worldwide each year, with scaring 600,000 deaths as a result. The contagiousness of a Salmonella outbreak depends on the bacterial strain, serovar, growth environment, and host susceptibility. Risk factors for Salmonella infection include a variety of foods; for example, contaminated chicken, beef, and pork. Globally, there is a growing incidence and emergence of life-threatening clinical cases, especially due to multidrug-resistant (MDR) Salmonella spp, including strains exhibiting resistance to important antimicrobials such as beta-lactams, fluoroquinolones, and third-generation cephalosporins. In extreme cases, especially in situations involving very difficult-to-treat strains, death usually results. The severity of the infections resulting from Salmonella pathogens is dependent on the serovar type, host susceptibility, the type of bacterial strains, and growth environment. This review therefore aims to detail the nomenclature, etiology, history, pathogenesis, reservoir, clinical manifestations, diagnosis, epidemiology, transmission, risk factors, antimicrobial resistance, public health importance, economic impact, treatment, and control of salmonellosis.
Collapse
Affiliation(s)
- Siti Rani Ayuti
- Doctoral Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Research Center of Aceh Cattle and Local Livestock, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mohammad Anam Al-Arif
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mirni Lamid
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sunaryo Hadi Warsito
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Suhita Aryaloka
- Master Program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Center for Tropical Veterinary Studies-One Health Collaboration Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | - Mira Delima
- Department of Animal Husbandry, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
19
|
Chen J, Lin G, Ma K, Li Z, Liégeois S, Ferrandon D. A specific innate immune response silences the virulence of Pseudomonas aeruginosa in a latent infection model in the Drosophila melanogaster host. PLoS Pathog 2024; 20:e1012252. [PMID: 38833496 PMCID: PMC11178223 DOI: 10.1371/journal.ppat.1012252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.
Collapse
Affiliation(s)
- Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guiying Lin
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
20
|
Kelly SD, Duong NH, Nothof JT, Lowary TL, Whitfield C. Three-component systems represent a common pathway for extracytoplasmic addition of pentofuranose sugars into bacterial glycans. Proc Natl Acad Sci U S A 2024; 121:e2402554121. [PMID: 38748580 PMCID: PMC11127046 DOI: 10.1073/pnas.2402554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024] Open
Abstract
Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or β-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to β-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Nam Ha Duong
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Jeremy T. Nothof
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
21
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
22
|
Cho J, Song H, Yoon HC, Yoon H. Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes. J Microbiol Biotechnol 2024; 34:340-348. [PMID: 37986605 PMCID: PMC10940738 DOI: 10.4014/jmb.2308.08006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.
Collapse
Affiliation(s)
- Jeongik Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Heymin Song
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun C. Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
23
|
Haudiquet M, Le Bris J, Nucci A, Bonnin RA, Domingo-Calap P, Rocha EPC, Rendueles O. Capsules and their traits shape phage susceptibility and plasmid conjugation efficiency. Nat Commun 2024; 15:2032. [PMID: 38448399 PMCID: PMC10918111 DOI: 10.1038/s41467-024-46147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Bacterial evolution is affected by mobile genetic elements like phages and conjugative plasmids, offering new adaptive traits while incurring fitness costs. Their infection is affected by the bacterial capsule. Yet, its importance has been difficult to quantify because of the high diversity of confounding mechanisms in bacterial genomes such as anti-viral systems and surface receptor modifications. Swapping capsule loci between Klebsiella pneumoniae strains allowed us to quantify their impact on plasmid and phage infection independently of genetic background. Capsule swaps systematically invert phage susceptibility, revealing serotypes as key determinants of phage infection. Capsule types also influence conjugation efficiency in both donor and recipient cells, a mechanism shaped by capsule volume and conjugative pilus structure. Comparative genomics confirmed that more permissive serotypes in the lab correspond to the strains acquiring more conjugative plasmids in nature. The least capsule-sensitive pili (F-like) are the most frequent in the species' plasmids, and are the only ones associated with both antibiotic resistance and virulence factors, driving the convergence between virulence and antibiotics resistance in the population. These results show how traits of cellular envelopes define slow and fast lanes of infection by mobile genetic elements, with implications for population dynamics and horizontal gene transfer.
Collapse
Affiliation(s)
- Matthieu Haudiquet
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.
- Ecole Doctoral FIRE-Programme Bettencourt, CRI, Paris, France.
| | - Julie Le Bris
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005, Paris, France
| | - Amandine Nucci
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France
| | - Rémy A Bonnin
- Team Resist UMR1184 Université Paris Saclay, CEA, Inserm, Le Kremlin-Bicêtre, Paris, France
- Service de bactériologie, Hôpital Bicêtre, Université Paris Saclay, AP-HP, Le Kremlin-Bicêtre, Paris, France
- Centre National de Référence Associé de la Résistance aux Antibiotiques, Le Kremlin-Bicêtre, Paris, France
| | - Pilar Domingo-Calap
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, 46980, Paterna, Spain
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.
| | - Olaya Rendueles
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, 75015, France.
| |
Collapse
|
24
|
Kay EJ, Dooda MK, Bryant JC, Reid AJ, Wren BW, Troutman JM, Jorgenson MA. Engineering Escherichia coli for increased Und-P availability leads to material improvements in glycan expression technology. Microb Cell Fact 2024; 23:72. [PMID: 38429691 PMCID: PMC10908060 DOI: 10.1186/s12934-024-02339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Manoj K Dooda
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Joseph C Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA
| | - Amanda J Reid
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jerry M Troutman
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA.
| |
Collapse
|
25
|
Dodge GJ, Anderson AJ, He Y, Liu W, Viner R, Imperiali B. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. eLife 2024; 12:RP91125. [PMID: 38358918 PMCID: PMC10942596 DOI: 10.7554/elife.91125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge detergent-free methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from the Salmonella enterica (LT2) O-antigen biosynthesis. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for dimerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying other classes of small membrane proteins embedded in liponanoparticles beyond PGTs.
Collapse
Affiliation(s)
- Greg J Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alyssa J Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yi He
- Thermo Fisher ScientificSan JoseUnited States
| | - Weijing Liu
- Thermo Fisher ScientificSan JoseUnited States
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
26
|
Krivoruchko AA, Zdorovenko EL, Ivanova MF, Kostina EE, Fedonenko YP, Shashkov AS, Dmitrenok AS, Ul’chenko EA, Tkachenko OV, Astankova AS, Burygin GL. Structure, Physicochemical Properties and Biological Activity of Lipopolysaccharide from the Rhizospheric Bacterium Ochrobactrum quorumnocens T1Kr02, Containing d-Fucose Residues. Int J Mol Sci 2024; 25:1970. [PMID: 38396650 PMCID: PMC10888714 DOI: 10.3390/ijms25041970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of Ochrobactrum quorumnocens T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical-chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-β-d-Fucf-(1→3)-β-d-Fucp-(1→. The structure of the periplasmic glucan coextracted with LPS was established by NMR spectroscopy and chemical methods: →2)-β-d-Glcp-(1→. Non-stoichiometric modifications were identified in both polysaccharides: 50% of d-fucofuranose residues at position 3 were O-acetylated, and 15% of d-Glcp residues at position 6 were linked with succinate. This is the first report of a polysaccharide containing both d-fucopyranose and d-fucofuranose residues. The fatty acid analysis of the LPS showed the prevalence of 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, lactobacillic, and 27-hydroxyoctacosanoic acids. The dynamic light scattering demonstrated that LPS (in an aqueous solution) formed supramolecular particles with a size of 72.2 nm and a zeta-potential of -21.5 mV. The LPS solution (10 mkg/mL) promoted the growth of potato microplants under in vitro conditions. Thus, LPS of O. quorumnocens T1Kr02 can be recommended as a promoter for plants and as a source of biotechnological production of d-fucose.
Collapse
Affiliation(s)
- Aleksandra A. Krivoruchko
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Evelina L. Zdorovenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Maria F. Ivanova
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Ekaterina E. Kostina
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Yulia P. Fedonenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 410049 Saratov, Russia
- Department of Biochemistry and Biophysics, Faculty of Biology, Saratov State University, 410012 Saratov, Russia
| | - Alexander S. Shashkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Andrey S. Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (E.L.Z.)
| | - Elizaveta A. Ul’chenko
- Department of Biomedical Products, Faculty of Chemical Pharmaceutical Technologies, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Oksana V. Tkachenko
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
| | - Anastasia S. Astankova
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | - Gennady L. Burygin
- Department of Organic and Bioorganic Chemistry, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
- Department of Plant Breeding, Selection, and Genetics, Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410012 Saratov, Russia (O.V.T.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 410049 Saratov, Russia
| |
Collapse
|
27
|
Viola RE, Parungao GG, Blumenthal RM. A growth-based assay using fluorescent protein emission to screen for S-adenosylmethionine synthetase inhibitors. Drug Dev Res 2024; 85:e22122. [PMID: 37819020 DOI: 10.1002/ddr.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, Ohio, USA
| |
Collapse
|
28
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
29
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
30
|
Halder T, Yadav SK, Yadav S. Chemical synthesis of the O-antigen repeating unit of Actinobacillus actinomycetemcomitans serotype f. Carbohydr Res 2023; 534:108977. [PMID: 37949033 DOI: 10.1016/j.carres.2023.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Herein, we report the total synthesis of the trisaccharide repeating unit of the O-antigen of Actinobacillus actinomycetemcomitans serotype f. The trisaccharide comprising of α-(1-2) and α-(1-3)-linked L-rhamnopyranosides backbone with the latter rhamnose containing a branching N-acetyl-d-galactosaminopyranoside at the C2-O via a β-glycosidic bond was synthesized by two methods. Initially, the protected trisaccharide has been synthesized by step-wise assembly of the monosaccharide building blocks and subsequently the former was synthesized by the one-pot assembly of the latter components. The synthesized trisaccharide contains an aminoethyl linker appended as an O-glycoside at the reducing end, thereby providing scope for further conjugation for different applications.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Sunil K Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
31
|
Ventero MP, Haro-Moreno JM, Molina-Pardines C, Sánchez-Bautista A, García-Rivera C, Boix V, Merino E, López-Pérez M, Rodríguez JC. Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics (Basel) 2023; 12:1619. [PMID: 37998821 PMCID: PMC10668777 DOI: 10.3390/antibiotics12111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa shows resistance to several antibiotics and often develops such resistance during patient treatment. OBJECTIVE Develop an in vitro model, using clinical isolates of P. aeruginosa, to compare the ability of the imipenem and imipenem/relebactam to generate resistant mutants to imipenem and to other antibiotics. Perform a genotypic analysis to detect how the selective pressure changes their genomes. METHODS The antibiotics resistance was studied by microdilution assays and e-test, and the genotypic study was performed by NGS. RESULTS The isolates acquired resistance to imipenem in an average of 6 days, and to imipenem/relebactam in 12 days (p value = 0.004). After 30 days of exposure, 75% of the isolates reached a MIC > 64 mg/L for imipenem and 37.5% for imipenem/relebactam (p value = 0.077). The 37.5% and the 12.5% imipenem/relebactam mutants developed resistance to piperacillin/tazobactam and ceftazidime, respectively, while the 87.5% and 37.5% of the imipenem mutants showed resistance to these drugs (p value = 0.003, p value = 0.015). The main biological processes altered by the SNPs were the glycosylation pathway, transcriptional regulation, histidine kinase response, porins, and efflux pumps. DISCUSSION The addition of relebactam delays the generation of resistance to imipenem and limits the cross-resistance to other beta-lactams. The clinical relevance of this phenomenon, which has the limitation that it has been performed in vitro, should be evaluated by stewardship programs in clinical practice, as it could be useful in controlling multi-drug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes, 38000 Grenoble, France
| | - Carmen Molina-Pardines
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Antonia Sánchez-Bautista
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Celia García-Rivera
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Vicente Boix
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Esperanza Merino
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| |
Collapse
|
32
|
Nguyen HK, Picciotti SL, Duke MM, Broberg CA, Schoenfisch MH. Nitric Oxide-Induced Morphological Changes to Bacteria. ACS Infect Dis 2023; 9:2316-2324. [PMID: 37831756 PMCID: PMC11041245 DOI: 10.1021/acsinfecdis.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Antimicrobial resistance poses a serious threat to global health, necessitating research for alternative approaches to treating infections. Nitric oxide (NO) is an endogenously produced molecule involved in multiple physiological processes, including the response to pathogens. Herein, we employed microscopy- and fluorescence-based techniques to investigate the effects of NO delivered from exogenous NO donors on the bacterial cell envelopes of pathogens, including resistant strains. Our goal was to assess the role of NO donor architecture (small molecules, oligosaccharides, dendrimers) on bacterial wall degradation to representative Gram-negative bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecium) upon treatment. Depending on the NO donor, bactericidal NO doses spanned 1.5-5.5 mM (total NO released). Transmission electron microscopy of bacteria following NO exposure indicated extensive membrane damage to Gram-negative bacteria with warping of the cellular shape and disruption of the cell wall. Among the small-molecule NO donors, those providing a more extended release (t1/2 = 120 min) resulted in greater damage to Gram-negative bacteria. In contrast, rapid NO release (t1/2 = 24 min) altered neither the morphology nor the roughness of these bacteria. For Gram-positive bacteria, NO treatments did not result in any drastic change to cellular shape or membrane integrity, despite permeation of the cell wall as measured by depolarization assays. The use of positively charged quaternary ammonium (QA)-modified NO-releasing dendrimer proved to be the only NO donor system capable of penetrating the thick peptidoglycan layer of Gram-positive bacteria.
Collapse
Affiliation(s)
- Huan K. Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599
| | | | - Magdalena M. Duke
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599
| | | | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
33
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
34
|
Abbas M, Maalej M, Nieto-Fabregat F, Thépaut M, Kleman JP, Ayala I, Molinaro A, Simorre JP, Marchetti R, Fieschi F, Laguri C. The unique 3D arrangement of macrophage galactose lectin enables Escherichia coli lipopolysaccharide recognition through two distinct interfaces. PNAS NEXUS 2023; 2:pgad310. [PMID: 37780233 PMCID: PMC10538476 DOI: 10.1093/pnasnexus/pgad310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Lipopolysaccharides are a hallmark of gram-negative bacteria, and their presence at the cell surface is key for bacterial integrity. As surface-exposed components, they are recognized by immunity C-type lectin receptors present on antigen-presenting cells. Human macrophage galactose lectin binds Escherichia coli surface that presents a specific glycan motif. Nevertheless, this high-affinity interaction occurs regardless of the integrity of its canonical calcium-dependent glycan-binding site. NMR of macrophage galactose-type lectin (MGL) carbohydrate recognition domain and complete extracellular domain revealed a glycan-binding site opposite to the canonical site. A model of trimeric macrophage galactose lectin was determined based on a combination of small-angle X-ray scattering and AlphaFold. A disulfide bond positions the carbohydrate recognition domain perpendicular to the coiled-coil domain. This unique configuration for a C-type lectin orients the six glycan sites of MGL in an ideal position to bind lipopolysaccharides at the bacterial surface with high avidity.
Collapse
Affiliation(s)
- Massilia Abbas
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
| | - Meriem Maalej
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
| | - Jean-Philippe Kleman
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
| | - Isabel Ayala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Jean-Pierre Simorre
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Naples 80126, Italy
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
- Institut Universitaire de France (IUF), Paris, France
| | - Cedric Laguri
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38000, France
| |
Collapse
|
35
|
Kimoto H, Takahashi M, Masuko M, Sato K, Hirahara Y, Iiyama M, Suzuki Y, Hashimoto T, Hayashita T. High-Throughput Analysis of Bacterial Toxic Lipopolysaccharide in Water by Dual-Wavelength Monitoring Using a Ratiometric Fluorescent Chemosensor. Anal Chem 2023; 95:12349-12357. [PMID: 37524054 PMCID: PMC10448884 DOI: 10.1021/acs.analchem.3c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Lipopolysaccharide (LPS) is a bacterial toxin that causes fever in humans. Our small-molecule chemosensor named Zn-dpa-C2OPy shows rapid ratiometric fluorescence response to LPS in water with a detection limit of 11 pM, which is lower than that of our previously reported sensor. Spectroscopic measurements (fluorescence, absorbance, 1H NMR, and fluorescence lifetime), dynamic light scattering measurements, and transmission electron microscopy observations revealed that the fluorescence response was induced by the changes in the aggregation state via multi-point recognition of LPS through hydrophobic and electrostatic interactions, in addition to the coordination between the zinc(II)-dipicolylamine moiety of the chemosensor and the phosphate group of LPS. The proposed Zn-dpa-C2OPy chemosensor was applied to an original flow injection analysis (FIA) system with a self-developed dual-wavelength fluorophotometer, and a high throughput of 36 samples per hour was achieved. These results demonstrate the feasibility of this unique methodology combining a ratiometric fluorescent chemosensor and FIA for continuous online monitoring of LPS in water.
Collapse
Affiliation(s)
- Hiroshi Kimoto
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Moeka Takahashi
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Masakage Masuko
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
| | - Kai Sato
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
| | - Yuya Hirahara
- Graduate
School of Science and Technology, Sophia
University, Tokyo 102-8554, Japan
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Masamitsu Iiyama
- Technical
Development Division, Nomura Micro Science
Co., Ltd., Atsugi, Kanagawa 243-0021, Japan
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Takeshi Hashimoto
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
36
|
Hong Y, Qin J, Forga XB, Totsika M. Extensive Diversity in Escherichia coli Group 3 Capsules Is Driven by Recombination and Plasmid Transfer from Multiple Species. Microbiol Spectr 2023; 11:e0143223. [PMID: 37358457 PMCID: PMC10433991 DOI: 10.1128/spectrum.01432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/04/2023] [Indexed: 06/27/2023] Open
Abstract
Bacterial capsules provide protection against environmental challenges and host immunity. Historically, Escherichia coli K serotyping scheme, which relies on the hypervariable capsules, has identified around 80 K forms that fall into four distinct groups. Based on recent work by us and others, we predicted that E. coli capsular diversity is grossly underestimated. We exploited group 3 capsule gene clusters, the best genetically defined capsule group in E. coli, to analyze publicly available E. coli sequences for overlooked capsular diversity within the species. We report the discovery of seven novel group 3 clusters that fall into two distinct subgroups (3A and 3B). The majority of the 3B capsule clusters were found on plasmids, contrary to the defining feature of group 3 capsule genes localizing at the serA locus on the E. coli chromosome. Other new group 3 capsule clusters were derived from ancestral sequences through recombination events between shared genes found within the serotype variable central region 2. Intriguingly, flanking regions 1 and 3, known to be conserved areas among capsule clusters, showed considerable intra-subgroup variation in clusters from the 3B subgroup, containing genes of shared ancestry with other Enterobacteriaceae species. Variation of group 3 kps clusters within dominant E. coli lineages, including multidrug-resistant pathogenic lineages, further supports that E. coli capsules are undergoing rigorous change. Given the pivotal role of capsular polysaccharides in phage predation, our findings raise attention to the need of monitoring kps evolutionary dynamics in pathogenic E. coli in supporting phage therapy. IMPORTANCE Capsular polysaccharides protect pathogenic bacteria against environmental challenges, host immunity, and phage predations. The historical Escherichia coli K typing scheme, which relies on the hypervariable capsular polysaccharide, has identified around 80 different K forms that fall into four distinct groups. Taking advantage of the supposedly compact and genetically well-defined group 3 gene clusters, we analyzed published E. coli sequences to identify seven new gene clusters and revealed an unexpected capsular diversity. Genetic analysis revealed that group 3 gene clusters shared closely related serotype-specific region 2 and were diversified through recombination events and plasmid transfer between multiple Enterobacteriaceae species. Overall, capsular polysaccharides in E. coli are undergoing rigorous change. Given the pivotal role capsules play in phage interactions, this work highlighted the need to monitor the evolutionary dynamics of capsules in pathogenic E. coli for effective phage therapy.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Xavier Bertran Forga
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
37
|
Lu J, Li C, Zhang E, Hou S, Xiao K, Li X, Zhang L, Wang Z, Chen C, Li C, Li T. Novel Vertical Flow Immunoassay with Au@PtNPs for Rapid, Ultrasensitive, and On-Site Diagnosis of Human Brucellosis. ACS OMEGA 2023; 8:29534-29542. [PMID: 37599942 PMCID: PMC10433357 DOI: 10.1021/acsomega.3c03381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Brucellosis is an infectious zoonosis caused by Brucella with clinical symptoms of wavy fever, fatigue, and even invasion of tissues and organs in the whole body, posing a serious threat to public health around the world. Herein, a novel vertical flow immunoassay based on Au@Pt nanoparticles (Au@PtNPs-VFIA) was established for detection of Brucella IgG antibody in clinical serum samples. The testing card of Au@PtNPs-VFIA was manufactured by printing the purified Brucella LPS and goat antimouse IgG on the nitrocellulose membrane as the test-spot or control-spot, respectively. Au@PtNPs labeled with protein G (Au@PtNPs-prG) were concurrently employed as detection probes presenting visible spots and catalysts mimicking catalytic enzymes to catalyze the DAB substrate (H2O2 plus O-phenylenediamine) for deepening color development. The testing procedure of Au@PtNPs-VFIA takes 2-3 min, and the limit of detection (LOD) for Brucella antibody is 0.1 IU/mL, which is faster and more sensitive than that of Au@PtNP-based lateral flow immunoassay (Au@PtNPs-LFIA: 15 min and 1.56 IU/mL, respectively). By comparing with vertical flow immunoassay based on classic Au nanoparticles (AuNPs-VFIA), the Au@PtNPs-VFIA is 32 times or 16 times more sensitive with or without further development of DAB substrate catalysis. Au@PtNPs-VFIA did not react with the serum samples of Gram-negative bacterium infections but only weakly cross-reacted with diagnostic serum of Y. enterocolitica O9 infection. In detection of clinical samples, Au@PtNPs-VFIA was validated for possessing 98.33% sensitivity, 100% specificity, and 99.17% accuracy, which were comparable with or even better than those obtained by the Rose-Bengal plate agglutination test, serological agglutination test, AuNPs-VFIA, and Au@PtNPs-LFIA. Therefore, this newly developed Au@PtNPs-VFIA has potential for rapid, ultrasensitive, and on-site diagnosis of human Brucellosis in clinics.
Collapse
Affiliation(s)
- Jinhui Lu
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chengcheng Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Enhui Zhang
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shuiping Hou
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Microbiological
Laboratory, Guangzhou Center for Disease
Control and Prevention, Guangzhou 510440, China
| | - Ke Xiao
- Department
of laboratory Medicine, Guangdong Second
Traditional Chinese Medicine Hospital, Guangzhou 510095, China
| | - Xiaozhou Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ling Zhang
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhen Wang
- Animal
Science and Technology College, Shihezi
University, Shihezi 832002, Xinjiang, China
| | - Chuangfu Chen
- Animal
Science and Technology College, Shihezi
University, Shihezi 832002, Xinjiang, China
| | - Chengyao Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Tingting Li
- Department
of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
38
|
Hoffmann A, Pacios K, Mühlemann R, Daumke R, Frank B, Kalman F. Application of a novel chemical assay for the quantification of endotoxins in bacterial bioreactor samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123839. [PMID: 37527605 DOI: 10.1016/j.jchromb.2023.123839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
A novel chemical assay, the so-called Kdo-DMB-liquid chromatography (LC) assay, was used for the accurate and cost-effective determination of the endotoxin content in supernatants of Gram-negative bacteria bioreactor samples. During mild acid hydrolysis, the endotoxin-specific sugar acid 3-deoxy-D-manno-oct-2-ulsonic acid (Kdo) is quantitatively released. Kdo is reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) to obtain the highly fluorescent derivate Kdo-DMB. It is separated from the reaction mixture by reversed phase-(U)HPLC and detected by fluorescence. From the Kdo content the endotoxin content of the sample is calculated. For three batch cultivations of Escherichia coli K12 and a fed-batch cultivation of Pseudomonas putida KT2440, the evolution of the endotoxin content in dependence on the cultivation time was monitored. Under optimal, constant cultivation conditions a linear correlation between the endotoxin content and the easy-to-access bioreactor parameters optical density at 600 nm and dry cell weight was found for both endotoxin kinds. Under stress cultivation conditions the E. coli K12 cultivation showed a stronger increase of the endotoxin content at harvest in comparison to optimal conditions. Optical density and dry cell weight may be used for production reactors as an economic real-time estimation tool to determine the endotoxin content at different cultivation time points and conditions. The optical density can further be used to establish straightforward sample dilution schemes for endotoxin quantification in samples of unknown endotoxin content. The endotoxin content [ng mL-1] measured by the Kdo-DMB-LC assay and the endotoxin activity [EU mL-1] obtained by the compendial Limulus Amoebocyte Lysate assay show a high correlation for the bacterial bioreactor samples tested.
Collapse
Affiliation(s)
- Anika Hoffmann
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Kevin Pacios
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland
| | - Reto Mühlemann
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, 9000 St. Gallen, Switzerland
| | - Franka Kalman
- University of Applied Sciences and Arts Western Switzerland Valais, Institute of Life Technology, Rue de l'Industrie 23, 1950 Sion, Switzerland.
| |
Collapse
|
39
|
Sivasankar C, Hewawaduge C, Lee JH. Screening of lipid-A related genes and development of low-endotoxicity live-attenuated Salmonella gallinarum by arnT deletion that elicits immune responses and protection against fowl typhoid in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104707. [PMID: 37044268 DOI: 10.1016/j.dci.2023.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
In the present study, lipid-A gene mutants of Salmonella gallinarum (SG) were screened, and the arnT mutant exhibited optimal acidic and oxidative-stress and macrophage-survival. Modifying lipid-A by arnT-deletion resulted in significantly reduced endotoxicity, virulence, and mortality. Therefore, the arnT-deleted vaccine-candidate strain JOL2841 was constructed and demonstrated to be safe due to appropriate clearance by the chicken immune system. The reduced-endotoxicity of JOL2841 was evident from the downregulation of TNFα and IL-1β inflammatory cytokines, no inflammatory signs in organ gross-examination, and histopathological analysis. The IgY and IgA antibody titres, CD4, and CD8 T-cell population improvements, and IL-4, IL-2, and INFγ expression decipher the profound Th2 and Th1 immunogenicity. Consequently, JOL2841 exhibited prominent protection against wild-type SG challenge, as revealed by organ pathogen-load determination, organ gross-examination, and histopathological examination. Overall, the study represented the first report of arnT deficient SG resulted in negligible endotoxicity, low-virulence, safety and coordinated elicitation of humoral and cell-mediated immune response in chickens.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
40
|
Rima M, Pfennigwerth N, Cremanns M, Cirnski K, Oueslati S, Gatermann SG, d’Amélio N, Herrmann J, Müller R, Naas T. In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates. Antibiotics (Basel) 2023; 12:1265. [PMID: 37627685 PMCID: PMC10451163 DOI: 10.3390/antibiotics12081265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
The development of novel antibiotics is mandatory to curb the growing antibiotic resistance problem resulting in difficult-to-treat bacterial infections. Here, we have determined the spectrum of activity of cystobactamids and chelocardins, two novel and promising classes of molecules with different modes of action. A panel of 297 clinically relevant Gram-negative and Gram-positive isolates with different antibiotic susceptibility profiles, going from wild type to multi- or even extremely drug resistant (MDR, XDR) and including carbapenem-resistant isolates, were tested using broth microdilution assays to determine the minimal inhibitory concentrations (MICs), MIC50s and MIC90s of two cystobactamids derivatives (CN-861-2 and CN-DM-861) and two chelocardin derivatives (CHD and CDCHD). Cystobactamids revealed potent activities on the majority of tested Enterobacterales (MIC50s ranging from 0.25 to 4 µg/mL), except for Klebsiella pneumoniae isolates (MIC50s is 128 µg/mL). Pseudomonas aeruginosa and Acinetobacter baumannii showed slightly higher MIC50s (4 µg/mL and 8 µg/mL, respectively) for cystobactamids. Chelocardins inhibited the growth of Enterobacterales and Stenotrophomas maltophilia at low to moderate MICs (0.25-16 µg/mL) and the chemically modified CDCHD was active at lower MICs. A. baumannii and P. aeruginosa were less susceptible to these molecules with MICs ranging from 0.5 to 32 µg/mL. These molecules show also interesting in vitro efficacies on clinically relevant Gram-positive bacteria with MICs of 0.125-8 µg/mL for cystobactamids and 0.5-8 µg/mL for chelocardins. Taken together, the cystobactamid CN-DM-861 and chelocardin CDCHD showed interesting antibiotic activities on MDR or XDR bacteria, without cross-resistance to clinically relevant antibiotics such as carbapenems, fluoroquinolones, and colistin.
Collapse
Affiliation(s)
- Mariam Rima
- Team “Resist”, UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, INSERM, Faculty of Medicine, Université Paris-Saclay, CEA, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France; (M.R.); (S.O.)
| | - Niels Pfennigwerth
- Department of Clinical Microbiology, Ruhr-University, 44801 Bochum, Germany; (N.P.); (M.C.); (S.G.G.)
| | - Martina Cremanns
- Department of Clinical Microbiology, Ruhr-University, 44801 Bochum, Germany; (N.P.); (M.C.); (S.G.G.)
| | - Katarina Cirnski
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; (K.C.); (J.H.); (R.M.)
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124 Braunschweig, Germany
| | - Saoussen Oueslati
- Team “Resist”, UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, INSERM, Faculty of Medicine, Université Paris-Saclay, CEA, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France; (M.R.); (S.O.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| | - Sören G. Gatermann
- Department of Clinical Microbiology, Ruhr-University, 44801 Bochum, Germany; (N.P.); (M.C.); (S.G.G.)
| | - Nicola d’Amélio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, 80039 Amiens, France;
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; (K.C.); (J.H.); (R.M.)
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Pharmaceutical Biotechnology, Saarland University, 66123 Saarbrücken, Germany; (K.C.); (J.H.); (R.M.)
- German Center for Infection Research (DZIF), Partner Site Hannover, 38124 Braunschweig, Germany
| | - Thierry Naas
- Team “Resist”, UMR1184 “Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)”, INSERM, Faculty of Medicine, Université Paris-Saclay, CEA, LabEx LERMIT, 94270 Le Kremlin-Bicêtre, France; (M.R.); (S.O.)
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
41
|
Dodge GJ, Anderson AJ, He Y, Liu W, Viner R, Imperiali B. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545297. [PMID: 37398332 PMCID: PMC10312794 DOI: 10.1101/2023.06.16.545297] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from Salmonella enterica (LT2) O-antigen biosynthesis without detergent solubilization from the lipid bilayer. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for oligomerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying small membrane proteins embedded in liponanoparticles beyond PGTs.
Collapse
Affiliation(s)
- Greg J. Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa J. Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yi He
- Thermo Fisher Scientific, San Jose CA 95134, USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose CA 95134, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose CA 95134, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Kelly SD, Ovchinnikova OG, Müller F, Steffen M, Braun M, Sweeney RP, Kowarik M, Follador R, Lowary TL, Serventi F, Whitfield C. Identification of a second glycoform of the clinically prevalent O1 antigen from Klebsiella pneumoniae. Proc Natl Acad Sci U S A 2023; 120:e2301302120. [PMID: 37428935 PMCID: PMC10629545 DOI: 10.1073/pnas.2301302120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
Carbapenemase and extended β-lactamase-producing Klebsiella pneumoniae isolates represent a major health threat, stimulating increasing interest in immunotherapeutic approaches for combating Klebsiella infections. Lipopolysaccharide O antigen polysaccharides offer viable targets for immunotherapeutic development, and several studies have described protection with O-specific antibodies in animal models of infection. O1 antigen is produced by almost half of clinical Klebsiella isolates. The O1 polysaccharide backbone structure is known, but monoclonal antibodies raised against the O1 antigen showed varying reactivity against different isolates that could not be explained by the known structure. Reinvestigation of the structure by NMR spectroscopy revealed the presence of the reported polysaccharide backbone (glycoform O1a), as well as a previously unknown O1b glycoform composed of the O1a backbone modified with a terminal pyruvate group. The activity of the responsible pyruvyltransferase (WbbZ) was confirmed by western immunoblotting and in vitro chemoenzymatic synthesis of the O1b terminus. Bioinformatic data indicate that almost all O1 isolates possess genes required to produce both glycoforms. We describe the presence of O1ab-biosynthesis genes in other bacterial species and report a functional O1 locus on a bacteriophage genome. Homologs of wbbZ are widespread in genetic loci for the assembly of unrelated glycostructures in bacteria and yeast. In K. pneumoniae, simultaneous production of both O1 glycoforms is enabled by the lack of specificity of the ABC transporter that exports the nascent glycan, and the data reported here provide mechanistic understanding of the capacity for evolution of antigenic diversity within an important class of biomolecules produced by many bacteria.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | | | | | - Martin Braun
- LimmaTech Biologics AG, Schlieren8952, Switzerland
| | - Ryan P. Sweeney
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | | | | | - Todd L. Lowary
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Nangang11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | | | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
43
|
Kurzylewska M, Turska-Szewczuk A, Dworaczek K, Bomba A, Drzewiecka D, Pękala-Safińska A. Immunochemical studies and gene cluster relationships of closely related O-antigens of Aeromonas hydrophila Pt679, Aeromonas popoffii A4, and Aeromonas sobria K928 strains classified into the PGO1 serogroup dominant in Polish aquaculture of carp and rainbow trout. Carbohydr Res 2023; 531:108896. [PMID: 37437416 DOI: 10.1016/j.carres.2023.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The present study included three Aeromonas sp. strains isolated from fish tissues during Motile Aeromonas Infection/Motile Aeromonas Septicaemia disease outbreaks on commercial farms, i.e.: Aeromonas hydrophila Pt679 obtained from rainbow trout as well as Aeromonas popoffii A4 (formerly Aeromonas encheleia) and Aeromonas sobria K928 both isolated from carp, which were classified into the new provisional PGO1 serogroup prevailing among aeromonads in Polish aquaculture. The structure of the O-specific polysaccharides of A4 and K928 has been previously established. Here, immunochemical studies of the O-specific polysaccharide of A. hydrophila Pt679 were undertaken. The O-specific polysaccharide was obtained from the lipopolysaccharide of A. hydrophila Pt679 after mild acid hydrolysis and separation by gel-permeation chromatography. The high-molecular-mass fraction was studied using chemical methods and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The following structure of the branched repeating unit of the O-polysaccharide from A. hydrophila Pt679 was determined: [Formula: see text] The studies indicated that O-polysaccharides from A. hydrophila Pt679, A. popoffii A4 and A. sobria K928 share similarities but they also contain unique characteristics. Western blotting and an enzyme-linked immunosorbent assay revealed that the cross-reactivity of the related O-antigens is caused by the occurrence of common structural elements, whereas additional epitopes define the specificity of the O-serotypes. For genetic relationship studies, the O-antigen gene cluster was characterized in the genome of the A. hydrophila Pt679 strain and compared with the corresponding sequences of A. popoffii A4 and A. sobria K928 and with sequences available in the databases. The composition of the regions was found to be consistent with the O-antigen structures of Aeromonas strains classified into the same PGO1 serogroup.
Collapse
Affiliation(s)
- Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Dworaczek
- Department of Genetics and Microbiology, Institute of Biological Sciences, M. Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Dominika Drzewiecka
- Laboratory of General Microbiology, Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| |
Collapse
|
44
|
Ovchinnikova OG, Treat LP, Teelucksingh T, Clarke BR, Miner TA, Whitfield C, Walker KA, Miller VL. Hypermucoviscosity Regulator RmpD Interacts with Wzc and Controls Capsular Polysaccharide Chain Length. mBio 2023; 14:e0080023. [PMID: 37140436 PMCID: PMC10294653 DOI: 10.1128/mbio.00800-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
Klebsiella pneumoniae is a leading cause of nosocomial infections, including pneumonia, bacteremia, and urinary tract infections. Treatment options are increasingly restricted by the high prevalence of resistance to frontline antibiotics, including carbapenems, and the recently identified plasmid-conferred colistin resistance. The classical pathotype (cKp) is responsible for most of the nosocomial infections observed globally, and these isolates are often multidrug resistant. The hypervirulent pathotype (hvKp) is a primary pathogen capable of causing community-acquired infections in immunocompetent hosts. The hypermucoviscosity (HMV) phenotype is strongly associated with the increased virulence of hvKp isolates. Recent studies demonstrated that HMV requires capsule (CPS) synthesis and the small protein RmpD but is not dependent on the increased amount of capsule associated with hvKp. Here, we identified the structure of the capsular and extracellular polysaccharide isolated from hvKp strain KPPR1S (serotype K2) with and without RmpD. We found that the polymer repeat unit structure is the same in both strains and that it is identical to the K2 capsule. However, the chain length of CPS produced by strains expressing rmpD demonstrates more uniform length. This property was reconstituted in CPS from Escherichia coli isolates that possess the same CPS biosynthesis pathway as K. pneumoniae but naturally lack rmpD. Furthermore, we demonstrate that RmpD binds Wzc, a conserved capsule biosynthesis protein required for CPS polymerization and export. Based on these observations, we present a model for how the interaction of RmpD with Wzc could impact CPS chain length and HMV. IMPORTANCE Infections caused by Klebsiella pneumoniae continue to be a global public health threat; the treatment of these infections is complicated by the high frequency of multidrug resistance. K. pneumoniae produces a polysaccharide capsule required for virulence. Hypervirulent isolates also have a hypermucoviscous (HMV) phenotype that increases virulence, and we recently demonstrated that a horizontally acquired gene, rmpD, is required for HMV and hypervirulence but that the identity of the polymeric product(s) in HMV isolates is uncertain. Here, we demonstrate that RmpD regulates capsule chain length and interacts with Wzc, a part of the capsule polymerization and export machinery shared by many pathogens. We further show that RmpD confers HMV and regulates capsule chain length in a heterologous host (E. coli). As Wzc is a conserved protein found in many pathogens, it is possible that RmpD-mediated HMV and increased virulence may not be restricted to K. pneumoniae.
Collapse
Affiliation(s)
- Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Logan P. Treat
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tanisha Teelucksingh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taryn A. Miner
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kimberly A. Walker
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
45
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
46
|
Chen Q, Fan Y, Zhang B, Yan C, Zhang Q, Ke Y, Chen Z, Wang L, Shi H, Hu Y, Huang Q, Su J, Xie C, Zhang X, Zhou L, Ren J, Xu H. Capsulized Fecal Microbiota Transplantation Induces Remission in Patients with Ulcerative Colitis by Gut Microbial Colonization and Metabolite Regulation. Microbiol Spectr 2023; 11:e0415222. [PMID: 37093057 PMCID: PMC10269780 DOI: 10.1128/spectrum.04152-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.
Collapse
Affiliation(s)
- Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhao Ke
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Wang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huaxiu Shi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yiqun Hu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qingwen Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jingling Su
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xu Zhang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lixiang Zhou
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianlin Ren
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Intestinal Microbiome and Human Health, Zhongshan Hospital of Xiamen University, Xiamen, China
- Department of Digestive Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Anderson AJ, Dodge GJ, Allen KN, Imperiali B. Co-conserved sequence motifs are predictive of substrate specificity in a family of monotopic phosphoglycosyl transferases. Protein Sci 2023; 32:e4646. [PMID: 37096962 PMCID: PMC10186338 DOI: 10.1002/pro.4646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Monotopic phosphoglycosyl transferases (monoPGTs) are an expansive superfamily of enzymes that catalyze the first membrane-committed step in the biosynthesis of bacterial glycoconjugates. MonoPGTs show a strong preference for their cognate nucleotide diphospho-sugar (NDP-sugar) substrates. However, despite extensive characterization of the monoPGT superfamily through previous development of a sequence similarity network comprising >38,000 nonredundant sequences, the connection between monoPGT sequence and NDP-sugar substrate specificity has remained elusive. In this work, we structurally characterize the C-terminus of a prototypic monoPGT for the first time and show that 19 C-terminal residues play a significant structural role in a subset of monoPGTs. This new structural information facilitated the identification of co-conserved sequence "fingerprints" that predict NDP-sugar substrate specificity for this subset of monoPGTs. A Hidden Markov model was generated that correctly assigned the substrate of previously unannotated monoPGTs. Together, these structural, sequence, and biochemical analyses have delivered new insight into the determinants guiding substrate specificity of monoPGTs and have provided a strategy for assigning the NDP-sugar substrate of a subset of enzymes in the superfamily that use UDP-di-N-acetyl bacillosamine. Moving forward, this approach may be applied to identify additional sequence motifs that serve as fingerprints for monoPGTs of differing UDP-sugar substrate specificity.
Collapse
Affiliation(s)
- Alyssa J. Anderson
- Department of Biology and Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Greg J. Dodge
- Department of Biology and Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Karen N. Allen
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| | - Barbara Imperiali
- Department of Biology and Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
48
|
Dodge GJ, Bernstein HM, Imperiali B. A generalizable protocol for expression and purification of membrane-bound bacterial phosphoglycosyl transferases in liponanoparticles. Protein Expr Purif 2023; 207:106273. [PMID: 37068720 DOI: 10.1016/j.pep.2023.106273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Phosphoglycosyl transferases (PGTs) are among the first membrane-bound enzymes involved in the biosynthesis of bacterial glycoconjugates. Robust expression and purification protocols for an abundant subfamily of PGTs remains lacking. Recent advancements in detergent-free methods for membrane protein solubilization open the door for purification of difficult membrane proteins directly from cell membranes into native-like liponanoparticles. By leveraging autoinduction, in vivo SUMO tag cleavage, styrene maleic acid co-polymer liponanoparticles (SMALPs), and Strep-Tag purification, we have established a robust workflow for expression and purification of previously unobtainable PGTs. The material generated from this workflow is extremely pure and can be directly visualized by Cryogenic Electron Microscopy (CryoEM). The methods presented here promise to be generalizable to additional membrane proteins recombinantly expressed in E. coli and should be of interest to the greater membrane proteomics community.
Collapse
Affiliation(s)
- Greg J Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hannah M Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
49
|
Alexander JAN, Locher KP. Emerging structural insights into C-type glycosyltransferases. Curr Opin Struct Biol 2023; 79:102547. [PMID: 36827761 DOI: 10.1016/j.sbi.2023.102547] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Glycosyltransferases of the C superfamily (GT-Cs) are enzymes found in all domains of life. They catalyse the stepwise synthesis of oligosaccharides or the transfer of assembled glycans from lipid-linked donor substrates to acceptor proteins. The processes mediated by GT-Cs are required for C-, N- and O-linked glycosylation, all of which are essential post-translational modifications in higher-order eukaryotes. Until recently, GT-Cs were thought to share a conserved structural module of 7 transmembrane helices; however, recently determined GT-C structures revealed novel folds. Here we analyse the growing diversity of GT-C folds and discuss the emergence of two subclasses, termed GT-CA and GT-CB. Further substrate-bound structures are needed to facilitate a molecular understanding of glycan recognition and catalysis in these two subclasses.
Collapse
Affiliation(s)
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
50
|
Cho H. Assembly of Bacterial Surface Glycopolymers as an Antibiotic Target. J Microbiol 2023; 61:359-367. [PMID: 36951963 DOI: 10.1007/s12275-023-00032-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Bacterial cells are covered with various glycopolymers such as peptidoglycan (PG), lipopolysaccharides (LPS), teichoic acids, and capsules. Among these glycopolymers, PG assembly is the target of some of our most effective antibiotics, consistent with its essentiality and uniqueness to bacterial cells. Biosynthesis of other surface glycopolymers have also been acknowledged as potential targets for developing therapies to control bacterial infections, because of their importance for bacterial survival in the host environment. Moreover, biosynthesis of most surface glycopolymers are closely related to PG assembly because the same lipid carrier is shared for glycopolymer syntheses. In this review, I provide an overview of PG assembly and antibiotics that target this pathway. Then, I discuss the implications of a common lipid carrier being used for assembly of PG and other surface glycopolymers in antibiotic development.
Collapse
Affiliation(s)
- Hongbaek Cho
- Department of Biological Sciences, College of Natural Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|