1
|
Bhunia PK, Raj V, Kasturi P. The abundance change of age-regulated secreted proteins affects lifespan of C. elegans. Mech Ageing Dev 2024; 222:112003. [PMID: 39505117 DOI: 10.1016/j.mad.2024.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Proteome integrity is vital for survival and failure to maintain it results in uncontrolled protein abundances, misfolding and aggregation which cause proteotoxicity. In multicellular organisms, proteotoxic stress is communicated among tissues to maintain proteome integrity for organismal stress resistance and survival. However, the nature of these signalling molecules and their regulation in extracellular space is largely unknown. Secreted proteins are induced in response to various stresses and aging, indicating their roles in inter-tissue communication. To study the fates of age-regulated proteins with potential localization to extracellular, we analysed publicly available age-related proteome data of C. elegans. We found that abundance of majority of the proteins with signal peptides (SP) increases with age, which might result in their supersaturation and subsequent aggregation. Intriguingly, these changes are differentially regulated in the lifespan mutants. A subset of these SP proteins is also found in the cargo of extracellular vesicles. Many of these proteins are novel and functionally uncharacterized. Reducing levels of a few extracellular proteins results in increasing lifespan. This suggests that uncontrolled levels of extracellular proteins might disturb proteostasis and limit the lifespan. Overall, our findings suggest that the age-induced secreted proteins might be the potential candidates to be considered as biomarkers or for mitigating age-related pathological conditions.
Collapse
Affiliation(s)
- Prasun Kumar Bhunia
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Vishwajeet Raj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Prasad Kasturi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
| |
Collapse
|
2
|
Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol 2024; 34:646-656. [PMID: 38423854 DOI: 10.1016/j.tcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.
Collapse
Affiliation(s)
- Jack Llewellyn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
3
|
Chen YR, Harel I, Singh PP, Ziv I, Moses E, Goshtchevsky U, Machado BE, Brunet A, Jarosz DF. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate. Dev Cell 2024; 59:1892-1911.e13. [PMID: 38810654 PMCID: PMC11265985 DOI: 10.1016/j.devcel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Itamar Harel
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
5
|
Hamazaki J, Murata S. Relationships between protein degradation, cellular senescence, and organismal aging. J Biochem 2024; 175:473-480. [PMID: 38348509 PMCID: PMC11058314 DOI: 10.1093/jb/mvae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.
Collapse
Affiliation(s)
- Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| |
Collapse
|
6
|
Kumar NH, Kluever V, Barth E, Krautwurst S, Furlan M, Pelizzola M, Marz M, Fornasiero EF. Comprehensive transcriptome analysis reveals altered mRNA splicing and post-transcriptional changes in the aged mouse brain. Nucleic Acids Res 2024; 52:2865-2885. [PMID: 38471806 PMCID: PMC11014377 DOI: 10.1093/nar/gkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive understanding of molecular changes during brain aging is essential to mitigate cognitive decline and delay neurodegenerative diseases. The interpretation of mRNA alterations during brain aging is influenced by the health and age of the animal cohorts studied. Here, we carefully consider these factors and provide an in-depth investigation of mRNA splicing and dynamics in the aging mouse brain, combining short- and long-read sequencing technologies with extensive bioinformatic analyses. Our findings encompass a spectrum of age-related changes, including differences in isoform usage, decreased mRNA dynamics and a module showing increased expression of neuronal genes. Notably, our results indicate a reduced abundance of mRNA isoforms leading to nonsense-mediated RNA decay and suggest a regulatory role for RNA-binding proteins, indicating that their regulation may be altered leading to the reshaping of the aged brain transcriptome. Collectively, our study highlights the importance of studying mRNA splicing events during brain aging.
Collapse
Affiliation(s)
- Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Emanuel Barth
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Age Research, FLI, Beutenbergstraße 11, Jena 07743, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstraße 4, Leipzig 04103, Germany
- Michael Stifel Center Jena, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fuerstengraben 1, Jena 07743, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Huang H, van Waardenberg AJ, Graham ME, Anggono V, Widagdo J. Global quantitative proteomic analysis of aged mouse hippocampus. Proteomics 2024; 24:e2300276. [PMID: 38115172 DOI: 10.1002/pmic.202300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Understanding the molecular changes associated with the aged brain forms the basis for developing potential strategies for slowing cognitive decline associated with normal aging. Focusing on the hippocampus, a critical brain region involved in learning and memory, we employed tandem mass tag methodology to investigate global proteomic changes that occur in advanced-aged (20-month) versus young (3-month) C57BL/6 male mice. Our analysis revealed the upregulation of 236 proteins in the old hippocampal proteome, including those enriched within several age-related processes, such as the adaptive immune response and molecular metabolic pathways, whereas downregulated proteins (88 in total) are mainly involved in axonogenesis and growth cone-related processes. Categorizing proteins by cell-type enrichment in the brain identified a general upregulation of proteins preferentially expressed in microglia, astrocytes, and oligodendrocytes. In contrast, proteins with neuron-specific expression displayed an overall age-related downregulation. By integrating our proteomic with our previously published transcriptomic data, we discovered a mild but significant positive correlation between mRNA and protein expression changes in the aged hippocampus. Therefore, this proteomic data is a valuable additional resource for further understanding age-related molecular mechanisms.
Collapse
Affiliation(s)
- He Huang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Santinha D, Vilaça A, Estronca L, Schüler SC, Bartoli C, De Sandre-Giovannoli A, Figueiredo A, Quaas M, Pompe T, Ori A, Ferreira L. Remodeling of the Cardiac Extracellular Matrix Proteome During Chronological and Pathological Aging. Mol Cell Proteomics 2024; 23:100706. [PMID: 38141925 PMCID: PMC10828820 DOI: 10.1016/j.mcpro.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Impaired extracellular matrix (ECM) remodeling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, aging, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological aging are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodeling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) aging. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analyzed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an aging phenotype. These results extend our knowledge of the LV proteome remodeling induced by chronological and pathological aging in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodeling and the aging process of ECs, which may provide an additional layer to prevent cardiac aging.
Collapse
Affiliation(s)
- Deolinda Santinha
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Andreia Vilaça
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal; CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Luís Estronca
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal
| | - Svenja C Schüler
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, U1251, Marseille, France; Molecular genetics laboratory, La Timone children's hospital, Marseille, France
| | - Arnaldo Figueiredo
- Serviço de Urologia e Transplantação Renal, Centro Hospitalar Universitário Coimbra EPE, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maximillian Quaas
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
| | - Lino Ferreira
- Faculty of Medicine, University of Coimbra, Celas, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, Coimbra, Portugal.
| |
Collapse
|
9
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Molzahn C, Kuechler ER, Zemlyankina I, Nierves L, Ali T, Cole G, Wang J, Albu RF, Zhu M, Cashman NR, Gilch S, Karsan A, Lange PF, Gsponer J, Mayor T. Shift of the insoluble content of the proteome in the aging mouse brain. Proc Natl Acad Sci U S A 2023; 120:e2310057120. [PMID: 37906643 PMCID: PMC10636323 DOI: 10.1073/pnas.2310057120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
During aging, the cellular response to unfolded proteins is believed to decline, resulting in diminished proteostasis. In model organisms, such as Caenorhabditis elegans, proteostatic decline with age has been linked to proteome solubility shifts and the onset of protein aggregation. However, this correlation has not been extensively characterized in aging mammals. To uncover age-dependent changes in the insoluble portion of a mammalian proteome, we analyzed the detergent-insoluble fraction of mouse brain tissue by mass spectrometry. We identified a group of 171 proteins, including the small heat shock protein α-crystallin, that become enriched in the detergent-insoluble fraction obtained from old mice. To enhance our ability to detect features associated with proteins in that fraction, we complemented our data with a meta-analysis of studies reporting the detergent-insoluble proteins in various mouse models of aging and neurodegeneration. Strikingly, insoluble proteins from young and old mice are distinct in several features in our study and across the collected literature data. In younger mice, proteins are more likely to be disordered, part of membraneless organelles, and involved in RNA binding. These traits become less prominent with age, as an increased number of structured proteins enter the pellet fraction. This analysis suggests that age-related changes to proteome organization lead a group of proteins with specific features to become detergent-insoluble. Importantly, these features are not consistent with those associated with proteins driving membraneless organelle formation. We see no evidence in our system of a general increase of condensate proteins in the detergent-insoluble fraction with age.
Collapse
Affiliation(s)
- Cristen Molzahn
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Edward Leong Center for Healthy Aging, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Erich R. Kuechler
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Irina Zemlyankina
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, BCV5Z 4H4, Canada
| | - Tahir Ali
- Faculty of Veterinary Medicine and Hotchkiss Brain Institute, University of Calgary, Calgary, ABT2N 4Z6, Canada
| | - Grace Cole
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- British Columbia Cancer Research Institute, Vancouver, BCV5Z 1L3, Canada
| | - Jing Wang
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Razvan F. Albu
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Mang Zhu
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Neil R. Cashman
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Sabine Gilch
- Faculty of Veterinary Medicine and Hotchkiss Brain Institute, University of Calgary, Calgary, ABT2N 4Z6, Canada
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- British Columbia Cancer Research Institute, Vancouver, BCV5Z 1L3, Canada
| | - Philipp F. Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital Research Institute, Vancouver, BCV5Z 4H4, Canada
- British Columbia Cancer Research Institute, Vancouver, BCV5Z 1L3, Canada
| | - Jörg Gsponer
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Edward Leong Center for Healthy Aging, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| |
Collapse
|
11
|
Golding AE, Li W, Blank PS, Cologna SM, Zimmerberg J. Relative quantification of progressive changes in healthy and dysferlin-deficient mouse skeletal muscle proteomes. Muscle Nerve 2023; 68:805-816. [PMID: 37706611 DOI: 10.1002/mus.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified. METHODS Quadriceps were isolated from 6-, 18-, 42-, and 77-wk-old C57BL/6 (WT, Dysf+/+ ) and BLAJ (Dysf-/- ) mice (n = 3, 2 male/1 female or 1 male/2 female, 24 total). Whole-muscle proteomes were characterized using liquid chromatography-mass spectrometry with relative quantification using TMT10plex isobaric labeling. Principle component analysis was utilized to detect age-dependent proteomic differences over the lifespan of, and between, WT and dysferlin-deficient SM. The biological relevance of proteins with significant variation was established using Ingenuity Pathway Analysis. RESULTS Over 3200 proteins were identified between 6-, 18-, 42-, and 77-wk-old mice. In total, 46 proteins varied in aging WT SM (p < .01), while 365 varied in dysferlin-deficient SM. However, 569 proteins varied between aged-matched WT and dysferlin-deficient SM. Proteins with significant variation in expression across all comparisons followed distinct temporal trends. DISCUSSION Proteins involved in sarcolemma repair and regeneration underwent significant changes in SM over the lifespan of WT mice, while those associated with immune infiltration and inflammation were overly represented over the lifespan of dysferlin-deficient mice. The proteins identified herein are likely to contribute to our overall understanding of SM aging and dysferlinopathy disease progression.
Collapse
Affiliation(s)
- Adriana E Golding
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Tsumagari K, Sato Y, Aoyagi H, Okano H, Kuromitsu J. Proteomic characterization of aging-driven changes in the mouse brain by co-expression network analysis. Sci Rep 2023; 13:18191. [PMID: 37875604 PMCID: PMC10598061 DOI: 10.1038/s41598-023-45570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Brain aging causes a progressive decline in functional capacity and is a strong risk factor for dementias such as Alzheimer's disease. To characterize age-related proteomic changes in the brain, we used quantitative proteomics to examine brain tissues, cortex and hippocampus, of mice at three age points (3, 15, and 24 months old), and quantified more than 7000 proteins in total with high reproducibility. We found that many of the proteins upregulated with age were extracellular proteins, such as extracellular matrix proteins and secreted proteins, associated with glial cells. On the other hand, many of the significantly downregulated proteins were associated with synapses, particularly postsynaptic density, specifically in the cortex but not in the hippocampus. Our datasets will be helpful as resources for understanding the molecular basis of brain aging.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Laboratory for Integrative Genomics, Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yoshiaki Sato
- Eisai-Keio Innovation Laboratory for Dementia, Human Biology Integration Foundation, Eisai Co., Ltd., Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirofumi Aoyagi
- Eisai-Keio Innovation Laboratory for Dementia, Human Biology Integration Foundation, Eisai Co., Ltd., Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junro Kuromitsu
- Eisai-Keio Innovation Laboratory for Dementia, Human Biology Integration Foundation, Eisai Co., Ltd., Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Singh PP, Benayoun BA. Considerations for reproducible omics in aging research. NATURE AGING 2023; 3:921-930. [PMID: 37386258 PMCID: PMC10527412 DOI: 10.1038/s43587-023-00448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Technical advancements over the past two decades have enabled the measurement of the panoply of molecules of cells and tissues including transcriptomes, epigenomes, metabolomes and proteomes at unprecedented resolution. Unbiased profiling of these molecular landscapes in the context of aging can reveal important details about mechanisms underlying age-related functional decline and age-related diseases. However, the high-throughput nature of these experiments creates unique analytical and design demands for robustness and reproducibility. In addition, 'omic' experiments are generally onerous, making it crucial to effectively design them to eliminate as many spurious sources of variation as possible as well as account for any biological or technical parameter that may influence such measures. In this Perspective, we provide general guidelines on best practices in the design and analysis of omic experiments in aging research from experimental design to data analysis and considerations for long-term reproducibility and validation of such studies.
Collapse
Affiliation(s)
- Param Priya Singh
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA.
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA, USA.
- Epigenetics and Gene Regulation, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
- USC Stem Cell Initiative, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Keele GR, Zhang JG, Szpyt J, Korstanje R, Gygi SP, Churchill GA, Schweppe DK. Global and tissue-specific aging effects on murine proteomes. Cell Rep 2023; 42:112715. [PMID: 37405913 PMCID: PMC10588767 DOI: 10.1016/j.celrep.2023.112715] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Maintenance of protein homeostasis degrades with age, contributing to aging-related decline and disease. Previous studies have primarily surveyed transcriptional aging changes. To define the effects of age directly at the protein level, we perform discovery-based proteomics in 10 tissues from 20 C57BL/6J mice, representing both sexes at adult and late midlife ages (8 and 18 months). Consistent with previous studies, age-related changes in protein abundance often have no corresponding transcriptional change. Aging results in increases in immune proteins across all tissues, consistent with a global pattern of immune infiltration with age. Our protein-centric data reveal tissue-specific aging changes with functional consequences, including altered endoplasmic reticulum and protein trafficking in the spleen. We further observe changes in the stoichiometry of protein complexes with important roles in protein homeostasis, including the CCT/TriC complex and large ribosomal subunit. These data provide a foundation for understanding how proteins contribute to systemic aging across tissues.
Collapse
Affiliation(s)
| | | | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
15
|
Aging Hallmarks and the Role of Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12030651. [PMID: 36978899 PMCID: PMC10044767 DOI: 10.3390/antiox12030651] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Collapse
|
16
|
Doeppner TR, Coman C, Burdusel D, Ancuta DL, Brockmeier U, Pirici DN, Yaoyun K, Hermann DM, Popa-Wagner A. Long-term treatment with chloroquine increases lifespan in middle-aged male mice possibly via autophagy modulation, proteasome inhibition and glycogen metabolism. Aging (Albany NY) 2022; 14:4195-4210. [PMID: 35609021 PMCID: PMC9186778 DOI: 10.18632/aging.204069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. Since spermidine increases autophagy, we asked if treatment with chloroquine, an inhibitor of autophagy, would shorten the lifespan of mice. Recently, chloroquine has intensively been discussed as a treatment option for COVID-19 patients. To rule out unfavorable long-term effects on longevity, we examined the effect of chronic treatment with chloroquine given in the drinking water on the lifespan and organ pathology of male middle-aged NMRI mice. We report that, surprisingly, daily treatment with chloroquine extended the median life span by 11.4% and the maximum life span of the middle-aged male NMRI mice by 11.8%. Subsequent experiments show that the chloroquine-induced lifespan elevation is associated with dose-dependent increase in LC3B-II, a marker of autophagosomes, in the liver and heart that was confirmed by transmission electron microscopy. Quite intriguingly, chloroquine treatment was also associated with a decrease in glycogenolysis in the liver suggesting a compensatory mechanism to provide energy to the cell. Accumulation of autophagosomes was paralleled by an inhibition of proteasome-dependent proteolysis in the liver and the heart as well as with decreased serum levels of insulin growth factor binding protein-3 (IGFBP3), a protein associated with longevity. We propose that inhibition of proteasome activity in conjunction with an increased number of autophagosomes and decreased levels of IGFBP3 might play a central role in lifespan extension by chloroquine in male NMRI mice.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany.,Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey.,Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
| | - Cristin Coman
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest 050096, Romania
| | - Daiana Burdusel
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, Craiova 200349, Romania
| | - Diana-Larisa Ancuta
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest 050096, Romania.,Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Ulf Brockmeier
- Vascular Neurology and Dementia, Department of Neurology, University of Medicine Essen, Essen 45147, Germany
| | - Daniel Nicolae Pirici
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, Craiova 200349, Romania
| | - Kuang Yaoyun
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dirk M Hermann
- Vascular Neurology and Dementia, Department of Neurology, University of Medicine Essen, Essen 45147, Germany
| | - Aurel Popa-Wagner
- Vascular Neurology and Dementia, Department of Neurology, University of Medicine Essen, Essen 45147, Germany.,Experimental Research Center for Normal and Pathological Aging, ARES, University of Medicine and Pharmacy Craiova, Craiova 200349, Romania
| |
Collapse
|
17
|
Kluever V, Russo B, Mandad S, Kumar NH, Alevra M, Ori A, Rizzoli SO, Urlaub H, Schneider A, Fornasiero EF. Protein lifetimes in aged brains reveal a proteostatic adaptation linking physiological aging to neurodegeneration. SCIENCE ADVANCES 2022; 8:eabn4437. [PMID: 35594347 PMCID: PMC9122331 DOI: 10.1126/sciadv.abn4437] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/07/2022] [Indexed: 05/27/2023]
Abstract
Aging is a prominent risk factor for neurodegenerative disorders (NDDs); however, the molecular mechanisms rendering the aged brain particularly susceptible to neurodegeneration remain unclear. Here, we aim to determine the link between physiological aging and NDDs by exploring protein turnover using metabolic labeling and quantitative pulse-SILAC proteomics. By comparing protein lifetimes between physiologically aged and young adult mice, we found that in aged brains protein lifetimes are increased by ~20% and that aging affects distinct pathways linked to NDDs. Specifically, a set of neuroprotective proteins are longer-lived in aged brains, while some mitochondrial proteins linked to neurodegeneration are shorter-lived. Strikingly, we observed a previously unknown alteration in proteostasis that correlates to parsimonious turnover of proteins with high biosynthetic costs, revealing an overall metabolic adaptation that preludes neurodegeneration. Our findings suggest that future therapeutic paradigms, aimed at addressing these metabolic adaptations, might be able to delay NDD onset.
Collapse
Affiliation(s)
- Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Belisa Russo
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mihai Alevra
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077 Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, DZNE Bonn, Venusberg Campus 1, 53127 Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
18
|
Pushpalatha KV, Solyga M, Nakamura A, Besse F. RNP components condense into repressive RNP granules in the aging brain. Nat Commun 2022; 13:2782. [PMID: 35589695 PMCID: PMC9120078 DOI: 10.1038/s41467-022-30066-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic RNP condensates enriched in mRNAs and proteins are found in various cell types and associated with both buffering and regulatory functions. While a clear link has been established between accumulation of aberrant RNP aggregates and progression of aging-related neurodegenerative diseases, the impact of physiological aging on neuronal RNP condensates has never been explored. Through high-resolution imaging, we uncover that RNP components progressively cluster into large yet dynamic granules in the aging Drosophila brain. We further show that age-dependent clustering is caused by an increase in the stoichiometry of the conserved helicase Me31B/DDX6, and requires PKA kinase activity. Finally, our functional analysis reveals that mRNA species recruited to RNP condensates upon aging exhibit age-dependent translational repression, indicating that co-clustering of selected mRNAs and translation regulators into repressive condensates may contribute to the specific post-transcriptional changes in gene expression observed in the course of aging. Aberrant RNA condensates are a hallmark of age-related neurodegenerative diseases. Here, the authors show that RNA condensation increases in aging Drosophila brains, triggering translation repression.
Collapse
Affiliation(s)
| | - Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
19
|
Oliviero G, Kovalchuk S, Rogowska-Wrzesinska A, Schwämmle V, Jensen ON. Distinct and diverse chromatin-proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions. eLife 2022; 11:73524. [PMID: 35259090 PMCID: PMC8933006 DOI: 10.7554/elife.73524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Temporal molecular changes in ageing mammalian organs are of relevance to disease aetiology because many age-related diseases are linked to changes in the transcriptional and epigenetic machinery that regulate gene expression. We performed quantitative proteome analysis of chromatin-enriched protein extracts to investigate the dynamics of the chromatin proteomes of the mouse brain, heart, lung, kidney, liver, and spleen at 3, 5, 10, and 15 months of age. Each organ exhibited a distinct chromatin proteome and sets of unique proteins. The brain and spleen chromatin proteomes were the most extensive, diverse, and heterogenous among the six organs. The spleen chromatin proteome appeared static during the lifespan, presenting a young phenotype that reflects the permanent alertness state and important role of this organ in physiological defence and immunity. We identified a total of 5928 proteins, including 2472 nuclear or chromatin-associated proteins across the six mouse organs. Up to 3125 proteins were quantified in each organ, demonstrating distinct and organ-specific temporal protein expression timelines and regulation at the post-translational level. Bioinformatics meta-analysis of these chromatin proteomes revealed distinct physiological and ageing-related features for each organ. Our results demonstrate the efficiency of organelle-specific proteomics for in vivo studies of a model organism and consolidate the hypothesis that chromatin-associated proteins are involved in distinct and specific physiological functions in ageing organs.
Collapse
Affiliation(s)
- Giorgio Oliviero
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sergey Kovalchuk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Williams EG, Pfister N, Roy S, Statzer C, Haverty J, Ingels J, Bohl C, Hasan M, Čuklina J, Bühlmann P, Zamboni N, Lu L, Ewald CY, Williams RW, Aebersold R. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst 2022; 13:43-57.e6. [PMID: 34666007 PMCID: PMC8776606 DOI: 10.1016/j.cels.2021.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of the BXD mouse population across age (7 to 24 months) and diet (low or high fat) to link molecular variations to metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels. Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating gene networks according to each independent variable, providing causal insight into dietary and aging effects. Candidates were cross-examined in an independent diversity outbred mouse liver dataset segregating for similar diets, with ∼80%-90% of diet-related candidate genes found in common across datasets. Together, we have developed a large multiomics resource for multivariate analysis of complex traits and demonstrate a methodology for moving from observational associations to causal connections.
Collapse
Affiliation(s)
- Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Niklas Pfister
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cyril Statzer
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Jack Haverty
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Casey Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Moaraj Hasan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Jelena Čuklina
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Peter Bühlmann
- Department of Mathematics, Seminar for Statistics, ETH Zürich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Collin Y Ewald
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; Faculty of Science, University of Zürich, Zurich, Switzerland
| |
Collapse
|
21
|
Andrews B, Murphy AE, Stofella M, Maslen S, Almeida-Souza L, Skehel JM, Skene NG, Sobott F, Frank RAW. Multidimensional dynamics of the proteome in the neurodegenerative and aging mammalian brain. Mol Cell Proteomics 2021; 21:100192. [PMID: 34979241 PMCID: PMC8816717 DOI: 10.1016/j.mcpro.2021.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/03/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
The amount of any given protein in the brain is determined by the rates of its synthesis and destruction, which are regulated by different cellular mechanisms. Here, we combine metabolic labeling in live mice with global proteomic profiling to simultaneously quantify both the flux and amount of proteins in mouse models of neurodegeneration. In multiple models, protein turnover increases were associated with increasing pathology. This method distinguishes changes in protein expression mediated by synthesis from those mediated by degradation. In the AppNL-F knockin mouse model of Alzheimer’s disease, increased turnover resulted from imbalances in both synthesis and degradation, converging on proteins associated with synaptic vesicle recycling (Dnm1, Cltc, Rims1) and mitochondria (Fis1, Ndufv1). In contrast to disease models, aging in wild-type mice caused a widespread decrease in protein recycling associated with a decrease in autophagic flux. Overall, this simple multidimensional approach enables a comprehensive mapping of proteome dynamics and identifies affected proteins in mouse models of disease and other live animal test settings. Multidimensional proteomic screen to detect imbalances in mouse models of disease. Increased proteome turnover in multiple symptomatic neurodegeneration mouse models. Healthy aging is associated with a global decrease in protein turnover.
Collapse
Affiliation(s)
- Byron Andrews
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alan E Murphy
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, W12 0BZ, UK
| | - Michele Stofella
- Astbury Centre of Molecular Structural Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Leonardo Almeida-Souza
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; Helsinki Institute of Life Science - HiLIFE, Institute of Biotechnology and Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, 00790, Helsinki, Finland
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nathan G Skene
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, W12 0BZ, UK
| | - Frank Sobott
- Astbury Centre of Molecular Structural Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK
| | - René A W Frank
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; Astbury Centre of Molecular Structural Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
22
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
23
|
Sarkar A, Nazir A. Carrying Excess Baggage Can Slowdown Life: Protein Clearance Machineries That Go Awry During Aging and the Relevance of Maintaining Them. Mol Neurobiol 2021; 59:821-840. [PMID: 34792731 DOI: 10.1007/s12035-021-02640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Cellular homeostasis is maintained by rapid and systematic cleansing of aberrant and aggregated proteins within cells. Neurodegenerative diseases (NDs) especially Parkinson's and Alzheimer's disease are known to be associated with multiple factors, most important being impaired clearance of aggregates, resulting in the accumulation of specific aggregated protein in the brain. Protein quality control (PQC) of proteostasis network comprises proteolytic machineries and chaperones along with their regulators to ensure precise operation and maintenance of proteostasis. Such regulatory factors coordinate among each other multiple functional aspects related to proteins, including their synthesis, folding, transport, and degradation. During aging due to inevitable endogenous and external stresses, sustaining a proteome balance is a challenging task. Such stresses decline the capacity of the proteostasis network compromising the proteome integrity, affecting the fundamental physiological processes including reproductive fitness of the organism. This review focuses on highlighting proteome-wide changes during aging and the strategies for proteostasis improvements. The possibility of augmenting the proteostasis network either via genetic or pharmacological interventions may be a promising strategy towards delaying age-associated pathological consequences due to proteome disbalance, thus promoting healthy aging and prolonged longevity.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
24
|
Kallergi E, Nikoletopoulou V. Macroautophagy and normal aging of the nervous system: Lessons from animal models. Cell Stress 2021; 5:146-166. [PMID: 34708187 PMCID: PMC8490955 DOI: 10.15698/cst2021.10.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Aging represents a cumulative form of cellular stress, which is thought to challenge many aspects of proteostasis. The non-dividing, long-lived neurons are particularly vulnerable to stress, and, not surprisingly, even normal aging is highly associated with a decline in brain function in humans, as well as in other animals. Macroautophagy is a fundamental arm of the proteostasis network, safeguarding proper protein turnover during different cellular states and against diverse cellular stressors. An intricate interplay between macroautophagy and aging is beginning to unravel, with the emergence of new tools, including those for monitoring autophagy in cultured neurons and in the nervous system of different organisms in vivo. Here, we review recent findings on the impact of aging on neuronal integrity and on neuronal macroautophagy, as they emerge from studies in invertebrate and mammalian models.
Collapse
Affiliation(s)
- Emmanouela Kallergi
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
25
|
Verma K, Verma M, Chaphalkar A, Chakraborty K. Recent advances in understanding the role of proteostasis. Fac Rev 2021; 10:72. [PMID: 34632458 PMCID: PMC8483240 DOI: 10.12703/r/10-72] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance of a functional proteome is achieved through the mechanism of proteostasis that involves precise coordination between molecular machineries assisting a protein from its conception to demise. Although each organelle within a cell has its own set of proteostasis machinery, inter-organellar communication and cell non-autonomous signaling bring forth the multidimensional nature of the proteostasis network. Exposure to extrinsic and intrinsic stressors can challenge the proteostasis network, leading to the accumulation of aberrant proteins or a decline in the proteostasis components, as seen during aging and in several diseases. Here, we summarize recent advances in understanding the role of proteostasis and its regulation in aging and disease, including monogenetic and infectious diseases. We highlight some of the emerging as well as unresolved questions in proteostasis that need to be addressed to overcome pathologies associated with damaged proteins and to promote healthy aging.
Collapse
Affiliation(s)
- Kanika Verma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Monika Verma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Aseem Chaphalkar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| | - Kausik Chakraborty
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi, India
- Academy of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
26
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
27
|
Sun Y, Yu R, Guo HB, Qin H, Dang W. A quantitative yeast aging proteomics analysis reveals novel aging regulators. GeroScience 2021; 43:2573-2593. [PMID: 34241809 DOI: 10.1007/s11357-021-00412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.
Collapse
Affiliation(s)
- Yu Sun
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ruofan Yu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao-Bo Guo
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Hong Qin
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Weiwei Dang
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Gostomska-Pampuch K, Drulis-Fajdasz D, Gizak A, Wiśniewski JR, Rakus D. Absolute Proteome Analysis of Hippocampus, Cortex and Cerebellum in Aged and Young Mice Reveals Changes in Energy Metabolism. Int J Mol Sci 2021; 22:ijms22126188. [PMID: 34201282 PMCID: PMC8229959 DOI: 10.3390/ijms22126188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
Aging is associated with a general decline of cognitive functions, and it is widely accepted that this decline results from changes in the expression of proteins involved in regulation of synaptic plasticity. However, several lines of evidence have accumulated that suggest that the impaired function of the aged brain may be related to significant alterations in the energy metabolism. In the current study, we employed the label-free "Total protein approach" (TPA) method to focus on the similarities and differences in energy metabolism proteomes of young (1-month-old) and aged (22-month-old) murine brains. We quantified over 7000 proteins in each of the following three analyzed brain structures: the hippocampus, the cerebral cortex and the cerebellum. To the best of our knowledge, this is the most extensive quantitative proteomic description of energy metabolism pathways during the physiological aging of mice. The analysis demonstrates that aging does not significantly affect the abundance of total proteins in the studied brain structures, however, the levels of proteins constituting energy metabolism pathways differ significantly between young and aged mice.
Collapse
Affiliation(s)
- Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
- Correspondence: (J.R.W.); (D.R.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland; (D.D.-F.); (A.G.)
- Correspondence: (J.R.W.); (D.R.)
| |
Collapse
|
29
|
Mohammed Y, Michaud SA, Pětrošová H, Yang J, Ganguly M, Schibli D, Flenniken AM, Nutter LMJ, Adissu HA, Lloyd KCK, McKerlie C, Borchers CH. Proteotyping of knockout mouse strains reveals sex- and strain-specific signatures in blood plasma. NPJ Syst Biol Appl 2021; 7:25. [PMID: 34050187 PMCID: PMC8163790 DOI: 10.1038/s41540-021-00184-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/25/2021] [Indexed: 11/24/2022] Open
Abstract
We proteotyped blood plasma from 30 mouse knockout strains and corresponding wild-type mice from the International Mouse Phenotyping Consortium. We used targeted proteomics with internal standards to quantify 375 proteins in 218 samples. Our results provide insights into the manifested effects of each gene knockout at the plasma proteome level. We first investigated possible contamination by erythrocytes during sample preparation and labeled, in one case, up to 11 differential proteins as erythrocyte originated. Second, we showed that differences in baseline protein abundance between female and male mice were evident in all mice, emphasizing the necessity to include both sexes in basic research, target discovery, and preclinical effect and safety studies. Next, we identified the protein signature of each gene knockout and performed functional analyses for all knockout strains. Further, to demonstrate how proteome analysis identifies the effect of gene deficiency beyond traditional phenotyping tests, we provide in-depth analysis of two strains, C8a-/- and Npc2+/-. The proteins encoded by these genes are well-characterized providing good validation of our method in homozygous and heterozygous knockout mice. Ig alpha chain C region, a poorly characterized protein, was among the differentiating proteins in C8a-/-. In Npc2+/- mice, where histopathology and traditional tests failed to differentiate heterozygous from wild-type mice, our data showed significant difference in various lysosomal storage disease-related proteins. Our results demonstrate how to combine absolute quantitative proteomics with mouse gene knockout strategies to systematically study the effect of protein absence. The approach used here for blood plasma is applicable to all tissue protein extracts.
Collapse
Affiliation(s)
- Yassene Mohammed
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands.
| | - Sarah A Michaud
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada.
| | - Helena Pětrošová
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Juncong Yang
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David Schibli
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto, ON, Canada
- Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - K C Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California, Davis, CA, USA
| | | | - Christoph H Borchers
- Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, Jewish General Hospital, Montreal, QC, Canada.
- Department of Data Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia.
| |
Collapse
|
30
|
Yi M, Ma Y, Zhu S, Luo C, Chen Y, Wang Q, Deng H. Comparative proteomic analysis identifies biomarkers for renal aging. Aging (Albany NY) 2020; 12:21890-21903. [PMID: 33159023 PMCID: PMC7695359 DOI: 10.18632/aging.104007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Proteomics have long been applied into characterization of molecular signatures in aging. Due to different methods and instrumentations employed for proteomic analysis, inter-dataset validation needs to be performed to identify potential biomarkers for aging. In this study, we used comparative proteomics analysis to profile age-associated changes in proteome and glutathionylome in mouse kidneys. We identified 108 proteins that were differentially expressed in young and aged mouse kidneys in three different datasets; from these, 27 proteins were identified as potential renal aging biomarkers, including phosphoenolpyruvate carboxykinase (Pck1), CD5 antigen-like protein (Cd5l), aldehyde dehydrogenase 1 (Aldh1a1), and uromodulin. Our results also showed that peroxisomal proteins were significantly downregulated in aged mice, whereas IgGs were upregulated, suggesting that peroxisome deterioration might be a hallmark for renal aging. Glutathionylome analysis demonstrated that downregulation of catalase and glutaredoxin-1 (Glrx1) significantly increased protein glutathionylation in aged mice. In addition, nicotinamide mononucleotide (NMN) administration significantly increased the number of peroxisomes in aged mouse kidneys, indicating that NMN enhanced peroxisome biogenesis, and suggesting that it might be beneficial to reduce kidney injuries. Together, our data identify novel potential biomarkers for renal aging, and provide a valuable resource for understanding the age-associated changes in kidneys.
Collapse
Affiliation(s)
- Meiqi Yi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yingying Ma
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chengting Luo
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qingtao Wang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Fanjul V, Jorge I, Camafeita E, Macías Á, González‐Gómez C, Barettino A, Dorado B, Andrés‐Manzano MJ, Rivera‐Torres J, Vázquez J, López‐Otín C, Andrés V. Identification of common cardiometabolic alterations and deregulated pathways in mouse and pig models of aging. Aging Cell 2020; 19:e13203. [PMID: 32729659 PMCID: PMC7511870 DOI: 10.1111/acel.13203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the main risk factor for cardiovascular and metabolic diseases, which have become a global concern as the world population ages. These diseases and the aging process are exacerbated in Hutchinson–Gilford progeria syndrome (HGPS or progeria). Here, we evaluated the cardiometabolic disease in animal models of premature and normal aging with the aim of identifying alterations that are shared or specific to each condition. Despite differences in body composition and metabolic markers, prematurely and normally aging mice developed heart failure and similar cardiac electrical abnormalities. High‐throughput proteomics of the hearts of progeric and normally aged mice revealed altered protein oxidation and glycation, as well as dysregulated pathways regulating energy metabolism, proteostasis, gene expression, and cardiac muscle contraction. These results were corroborated in the hearts of progeric pigs, underscoring the translational potential of our findings, which could help in the design of strategies to prevent or slow age‐related cardiometabolic disease.
Collapse
Affiliation(s)
- Víctor Fanjul
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Oncología Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Inmaculada Jorge
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Cristina González‐Gómez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Ana Barettino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Beatriz Dorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - María Jesús Andrés‐Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - José Rivera‐Torres
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| | - Carlos López‐Otín
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Oncología Universidad de Oviedo Oviedo Spain
- Centro de Investigación Biomédica en Red Enfermedades Cáncer (CIBERONC) Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Spain
| |
Collapse
|
32
|
Proteomic Profile of Mouse Brain Aging Contributions to Mitochondrial Dysfunction, DNA Oxidative Damage, Loss of Neurotrophic Factor, and Synaptic and Ribosomal Proteins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5408452. [PMID: 32587661 PMCID: PMC7301248 DOI: 10.1155/2020/5408452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
The deleterious effects of aging on the brain remain to be fully elucidated. In the present study, proteomic changes of young (4-month) and aged (16-month) B6129SF2/J male mouse hippocampus and cerebral cortex were investigated by using nano liquid chromatography tandem mass spectrometry (NanoLC-ESI-MS/MS) combined with tandem mass tag (TMT) labeling technology. Compared with the young animals, 390 hippocampal proteins (121 increased and 269 decreased) and 258 cortical proteins (149 increased and 109 decreased) changed significantly in the aged mouse. Bioinformatic analysis indicated that these proteins are mainly involved in mitochondrial functions (FIS1, DRP1), oxidative stress (PRDX6, GSTP1, and GSTM1), synapses (SYT12, GLUR2), ribosome (RPL4, RPS3), cytoskeletal integrity, transcriptional regulation, and GTPase function. The mitochondrial fission-related proteins FIS1 and DRP1 were significantly increased in the hippocampus and cerebral cortex of the aged mice. Further results in the hippocampus showed that ATP content was significantly reduced in aged mice. A neurotrophin brain-derived neurotrophic factor (BNDF), a protein closely related with synaptic plasticity and memory, was also significantly decreased in the hippocampus of the aged mice, with the tendency of synaptic protein markers including complexin-2, synaptophysin, GLUR2, PSD95, NMDAR2A, and NMDAR1. More interestingly, 8-hydroxydeoxyguanosine (8-OHdG), a marker of DNA oxidative damage, increased as shown by immunofluorescence staining. In summary, we demonstrated that aging is associated with systemic changes involving mitochondrial dysfunction, energy reduction, oxidative stress, loss of neurotrophic factor, synaptic proteins, and ribosomal proteins, as well as molecular deficits involved in various physiological/pathological processes.
Collapse
|
33
|
Xu L, Gimple RC, Lau WB, Lau B, Fei F, Shen Q, Liao X, Li Y, Wang W, He Y, Feng M, Bu H, Wang W, Zhou S. THE PRESENT AND FUTURE OF THE MASS SPECTROMETRY-BASED INVESTIGATION OF THE EXOSOME LANDSCAPE. MASS SPECTROMETRY REVIEWS 2020; 39:745-762. [PMID: 32469100 DOI: 10.1002/mas.21635] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
Exosomes are critical intercellular messengers released upon the fusion of multivesicular bodies with the cellular plasma membrane that deliver their cargo in the form of extracellular vesicles. Containing numerous nonrandomly packed functional proteins, lipids, and RNAs, exosomes are vital intercellular messengers that contribute to the physiologic processes of the healthy organism. During the post-genome era, exosome-oriented proteomics have garnered great interest. Since its establishment, mass spectrometry (MS) has been indispensable for the field of proteomics research and has advanced rapidly to interrogate biological samples at a higher resolution and sensitivity. Driven by new methodologies and more advanced instrumentation, MS-based approaches have revolutionized our understanding of protein biology. As the access to online proteomics database platforms has blossomed, experimental data processing occurs with more speed and accuracy. Here, we review recent advances in the technological progress of MS-based proteomics and several new detection strategies for MS-based proteomics research. We also summarize the use of integrated online databases for proteomics research in the era of big data. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ryan C Gimple
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA.,Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Bonnie Lau
- Department of Emergency Medicine, Kaiser Permanente Santa Clara Medical Center, Affiliate of Stanford University, Stanford, CA
| | - Fan Fei
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiuhong Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China.,School of Biological Sciences, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Xiaolin Liao
- Department of Neurosurgery, Sichuan People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Min Feng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hong Bu
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
34
|
Yu Q, Xiao H, Jedrychowski MP, Schweppe DK, Navarrete-Perea J, Knott J, Rogers J, Chouchani ET, Gygi SP. Sample multiplexing for targeted pathway proteomics in aging mice. Proc Natl Acad Sci U S A 2020; 117:9723-9732. [PMID: 32332170 PMCID: PMC7211924 DOI: 10.1073/pnas.1919410117] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathway proteomics strategies measure protein expression changes in specific cellular processes that carry out related functions. Using targeted tandem mass tags-based sample multiplexing, hundreds of proteins can be quantified across 10 or more samples simultaneously. To facilitate these highly complex experiments, we introduce a strategy that provides complete control over targeted sample multiplexing experiments, termed Tomahto, and present its implementation on the Orbitrap Tribrid mass spectrometer platform. Importantly, this software monitors via the external desktop computer to the data stream and inserts optimized MS2 and MS3 scans in real time based on an application programming interface with the mass spectrometer. Hundreds of proteins of interest from diverse biological samples can be targeted and accurately quantified in a sensitive and high-throughput fashion. It achieves sensitivity comparable to, if not better than, deep fractionation and requires minimal total sample input (∼10 µg). As a proof-of-principle experiment, we selected four pathways important in metabolism- and inflammation-related processes (260 proteins/520 peptides) and measured their abundance across 90 samples (nine tissues from five old and five young mice) to explore effects of aging. Tissue-specific aging is presented here and we highlight the role of inflammation- and metabolism-related processes in white adipose tissue. We validated our approach through comparison with a global proteome survey across the tissues, work that we also provide as a general resource for the community.
Collapse
Affiliation(s)
- Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Haopeng Xiao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | | | - John Rogers
- Thermo Fisher Scientific, Rockford, IL 61101
| | - Edward T Chouchani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
35
|
Bell-Temin H, Yousefzadeh MJ, Bondarenko A, Quarles E, Jones-Laughner J, Robbins PD, Ladiges W, Niedernhofer LJ, Yates NA. Measuring biological age in mice using differential mass spectrometry. Aging (Albany NY) 2020; 11:1045-1061. [PMID: 30745468 PMCID: PMC6382423 DOI: 10.18632/aging.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
Abstract
Aging is an ill-defined process that increases the risk of morbidity and mortality. Aging is also heterogeneous meaning that biological and chronological age can differ. Here, we used unbiased differential mass spectrometry to quantify thousands of proteins in mouse liver and select those that that consistently change in expression as mice age. A panel of 14 proteins from inbred C57BL/6 mice was used to equate chronological and biological age in this reference population, against which other mice could be compared. This “biological age calculator” identified two strains of f1 hybrid mice as biologically younger than inbred mice and progeroid mice as being biologically older. In an independent validation experiment, the calculator identified mice treated with rapamycin, known to extend lifespan of mice, as 18% younger than mice fed a placebo diet. This demonstrates that it is possible to measure subtle changes in biologic age in mammals using a proteomics approach.
Collapse
Affiliation(s)
- Harris Bell-Temin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Matthew J Yousefzadeh
- Department of Molecular Medicine, The Scripps Research Institute, Florida , Jupiter, FL 33458, USA.,Department of Biochemistry, Molecular Biology and Biophysics, and the Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Ellen Quarles
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline Jones-Laughner
- Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| | - Paul D Robbins
- Department of Molecular Medicine, The Scripps Research Institute, Florida , Jupiter, FL 33458, USA.,Department of Biochemistry, Molecular Biology and Biophysics, and the Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Laura J Niedernhofer
- Department of Molecular Medicine, The Scripps Research Institute, Florida , Jupiter, FL 33458, USA.,Department of Biochemistry, Molecular Biology and Biophysics, and the Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Biomedical Mass Spectrometry Center, University of Pittsburgh Schools of the Health Sciences, Pittsburgh, PA 15261, USA
| |
Collapse
|
36
|
Yang L, Cao Y, Zhao J, Fang Y, Liu N, Zhang Y. Multidimensional Proteomics Identifies Declines in Protein Homeostasis and Mitochondria as Early Signals for Normal Aging and Age-associated Disease in Drosophila. Mol Cell Proteomics 2019; 18:2078-2088. [PMID: 31434710 PMCID: PMC6773560 DOI: 10.1074/mcp.ra119.001621] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is characterized by a gradual deterioration in proteome. However, how protein dynamics that changes with normal aging and in disease is less well understood. Here, we profiled the snapshots of aging proteome in Drosophila, from head and muscle tissues of post-mitotic somatic cells, and the testis of mitotically-active cells. Our data demonstrated that dysregulation of proteome homeostasis, or proteostasis, might be a common feature associated with age. We further used pulsed metabolic stable isotope labeling analysis to characterize protein synthesis. Interestingly, this study determined an age-modulated decline in protein synthesis with age, particularly in the pathways related to mitochondria, neurotransmission, and proteostasis. Importantly, this decline became dramatically accelerated in Pink1 mutants, a Drosophila model of human age-related Parkinson's disease. Taken together, our multidimensional proteomic study revealed tissue-specific protein dynamics with age, highlighting mitochondrial and proteostasis-related proteins. We suggest that declines in proteostasis and mitochondria early in life are critical signals prior to the onset of aging and aging-associated diseases.
Collapse
Affiliation(s)
- Lu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China.
| |
Collapse
|
37
|
Duda P, Wójcicka O, Wiśniewski JR, Rakus D. Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging. Aging (Albany NY) 2019; 10:1682-1697. [PMID: 30026405 PMCID: PMC6075443 DOI: 10.18632/aging.101501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/15/2018] [Indexed: 01/17/2023]
Abstract
Aging is believed to be the result of alterations of protein expression and accumulation of changes in biomolecules. Although there are numerous reports demonstrating changes in protein expression in brain during aging, only few of them describe global changes at the protein level. Here, we present the deepest quantitative proteomic analysis of three brain regions, hippocampus, cortex and cerebellum, in mice aged 1 or 12 months, using the total protein approach technique. In all the brain regions, both in young and middle-aged animals, we quantitatively measured over 5,200 proteins. We found that although the total protein expression in middle-aged brain structures is practically unaffected by aging, there are significant differences between young and middle-aged mice in the expression of some receptors and signaling cascade proteins proven to be significant for learning and memory formation. Our analysis demonstrates that the hippocampus is the most variable structure during natural aging and that the first symptoms of weakening of neuronal plasticity may be observed on protein level in middle-aged animals.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| | - Olga Wójcicka
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| |
Collapse
|
38
|
Rodrigues-Ribeiro L, Melo-Braga MN, Kjeldsen F, Gómez-Mendoza DP, Verano-Braga T. Assessment of protein extraction and digestion efficiency of well-established shotgun protocols for heart proteomics. Anal Biochem 2019; 578:51-59. [DOI: 10.1016/j.ab.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022]
|
39
|
Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, Hartl M, von Haeseler A, Gerner C, Raible F, Tessmar-Raible K. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. eLife 2019; 8:e41556. [PMID: 30767890 PMCID: PMC6377233 DOI: 10.7554/elife.41556] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Many marine animals, ranging from corals to fishes, synchronise reproduction to lunar cycles. In the annelid Platynereis dumerilii, this timing is orchestrated by an endogenous monthly (circalunar) clock entrained by moonlight. Whereas daily (circadian) clocks cause extensive transcriptomic and proteomic changes, the quality and quantity of regulations by circalunar clocks have remained largely elusive. By establishing a combined transcriptomic and proteomic profiling approach, we provide first systematic insight into the molecular changes in Platynereis heads between circalunar phases, and across sexual differentiation and maturation. Whereas maturation elicits large transcriptomic and proteomic changes, the circalunar clock exhibits only minor transcriptomic, but strong proteomic regulation. Our study provides a versatile extraction technique and comprehensive resources. It corroborates that circadian and circalunar clock effects are likely distinct and identifies key molecular brain signatures for reproduction, sex and circalunar clock phase. Examples include prepro-whitnin/proctolin and ependymin-related proteins as circalunar clock targets.
Collapse
Affiliation(s)
- Sven Schenk
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Stephanie C Bannister
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Fritz J Sedlazeck
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dorothea Anrather
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Bui Quang Minh
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Andrea Bileck
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Markus Hartl
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Arndt von Haeseler
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Florian Raible
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
40
|
Han J, Yi S, Zhao X, Zheng Y, Yang D, Du G, Yang XY, He QY, Sun X. Improved SILAC method for double labeling of bacterial proteome. J Proteomics 2018; 194:89-98. [PMID: 30553074 DOI: 10.1016/j.jprot.2018.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
Stable isotope labeling with amino acids in cell culture (SILAC) is a robust proteomics method with advantages such as reproducibility and easy handling. This method is popular for the analysis of mammalian cells. However, amino acid conversion in bacteria decreases the labeling efficiency and quantification accuracy, limiting the application of SILAC in bacterial proteomics to auxotrophic bacteria or to single labeling with lysine. In this study, we found that adding high concentrations of isotope-labeled (heavy) and natural (light) amino acids into SILAC minimal medium can efficiently inhibit the complicated amino acid conversions. This simple and straightforward strategy facilitated complete incorporation of amino acids into the bacterial proteome with good accuracy. High labeling efficiency can be achieved in different bacteria by slightly modifying the supplementation of amino acids in culture media, promoting the widespread application of SILAC technique in bacterial proteomics. SIGNIFICANCE: Amino acid conversion in bacteria decreases labeling efficiency, limiting the application of Stable isotope labeling with amino acids in cell culture (SILAC) in bacterial proteomics to auxotrophic bacteria or single labeling with lysine. In this study, we found that high concentrations of isotope-labeled (heavy) and natural (light) amino acids facilitate full incorporation of amino acids into the bacterial proteome with good reproducibility. This improved double labeling SILAC technique using medium supplemented with high concentrations of amino acids is suitable for quantitative proteomics research on both gram-positive and -negative bacteria, facilitating the broad application of quantitative proteomics in bacterial studies.
Collapse
Affiliation(s)
- Junlong Han
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuhong Yi
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinlu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yundan Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Donghong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gaofei Du
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Yan Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
41
|
Abstract
SIGNIFICANCE Aging is a complex trait that is influenced by a combination of genetic and environmental factors. Although many cellular and physiological changes have been described to occur with aging, the precise molecular causes of aging remain unknown. Given the biological complexity and heterogeneity of the aging process, understanding the mechanisms that underlie aging requires integration of data about age-dependent changes that occur at the molecular, cellular, tissue, and organismal levels. Recent Advances: The development of high-throughput technologies such as next-generation sequencing, proteomics, metabolomics, and automated imaging techniques provides researchers with new opportunities to understand the mechanisms of aging. Using these methods, millions of biological molecules can be simultaneously monitored during the aging process with high accuracy and specificity. CRITICAL ISSUES Although the ability to produce big data has drastically increased over the years, integration and interpreting of high-throughput data to infer regulatory relationships between biological factors and identify causes of aging remain the major challenges. In this review, we describe recent advances and survey emerging omics approaches in aging research. We then discuss their limitations and emphasize the need for the further development of methods for the integration of different types of data. FUTURE DIRECTIONS Combining omics approaches and novel methods for single-cell analysis with systems biology tools would allow building interaction networks and investigate how these networks are perturbed with aging and disease states. Together, these studies are expected to provide a better understanding of the aging process and could provide insights into the pathophysiology of many age-associated human diseases. Antioxid. Redox Signal. 29, 985-1002.
Collapse
Affiliation(s)
- Jared S Lorusso
- 1 Department of Dermatology, Boston University School of Medicine , Boston, Massachusetts
| | - Oleg A Sviderskiy
- 2 Department of Ecology and Life Safety, Samara National Research University , Samara, Russia
| | - Vyacheslav M Labunskyy
- 1 Department of Dermatology, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
42
|
Ugras S, Daniels MJ, Fazelinia H, Gould NS, Yocum AK, Luk KC, Luna E, Ding H, McKennan C, Seeholzer S, Martinez D, Evans P, Brown D, Duda JE, Ischiropoulos H. Induction of the Immunoproteasome Subunit Lmp7 Links Proteostasis and Immunity in α-Synuclein Aggregation Disorders. EBioMedicine 2018; 31:307-319. [PMID: 29759483 PMCID: PMC6014061 DOI: 10.1016/j.ebiom.2018.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 01/22/2023] Open
Abstract
Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders.
Collapse
Affiliation(s)
- Scott Ugras
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malcolm J Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Neal S Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | | | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esteban Luna
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Ding
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Chris McKennan
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Department of Statistics, University of Chicago, 60637, USA
| | - Steven Seeholzer
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Dan Martinez
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Perry Evans
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Brown
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, USA
| | - John E Duda
- Parkinson's Disease Research, Education and Clinical Center, Michael J. Crescenz VA Medical Center, USA; Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Harry Ischiropoulos
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Children's Hospital of Philadelphia Research Institute and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Hosp F, Gutiérrez-Ángel S, Schaefer MH, Cox J, Meissner F, Hipp MS, Hartl FU, Klein R, Dudanova I, Mann M. Spatiotemporal Proteomic Profiling of Huntington's Disease Inclusions Reveals Widespread Loss of Protein Function. Cell Rep 2018; 21:2291-2303. [PMID: 29166617 PMCID: PMC5714591 DOI: 10.1016/j.celrep.2017.10.097] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 01/08/2023] Open
Abstract
Aggregation of polyglutamine-expanded huntingtin exon 1 (HttEx1) in Huntington’s disease (HD) proceeds from soluble oligomers to late-stage inclusions. The nature of the aggregates and how they lead to neuronal dysfunction is not well understood. We employed mass spectrometry (MS)-based quantitative proteomics to dissect spatiotemporal mechanisms of neurodegeneration using the R6/2 mouse model of HD. Extensive remodeling of the soluble brain proteome correlated with insoluble aggregate formation during disease progression. In-depth and quantitative characterization of the aggregates uncovered an unprecedented complexity of several hundred proteins. Sequestration to aggregates depended on protein expression levels and sequence features such as low-complexity regions or coiled-coil domains. In a cell-based HD model, overexpression of a subset of the sequestered proteins in most cases rescued viability and reduced aggregate size. Our spatiotemporally resolved proteome resource of HD progression indicates that widespread loss of cellular protein function contributes to aggregate-mediated toxicity. Spatiotemporally resolved brain proteome of wild-type and HD mice Quantitative characterization of huntingtin inclusion bodies in vivo Sequestration correlates with protein expression levels and specific sequence features Resupplying sequestered proteins ameliorates HTT-induced toxicity and inclusion size
Collapse
Affiliation(s)
- Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sara Gutiérrez-Ángel
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Martin H Schaefer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jürgen Cox
- Computational Systems Biochemistry Laboratory, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology Laboratory, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - F-Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Rüdiger Klein
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany
| | - Irina Dudanova
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
44
|
Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Bellier JP, Makpol S, Ngah WZW, Damanhuri HA, Tooyama I. Proteome profiling in the hippocampus, medial prefrontal cortex, and striatum of aging rat. Exp Gerontol 2018; 111:53-64. [PMID: 29981398 DOI: 10.1016/j.exger.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 01/03/2023]
Abstract
Decrease in multiple functions occurs in the brain with aging, all of which can contribute to age-related cognitive and locomotor impairments. Brain atrophy specifically in hippocampus, medial prefrontal cortex (mPFC), and striatum, can contribute to this age-associated decline in function. Our recent metabolomics analysis showed age-related changes in these brain regions. To further understand the aging processes, analysis using a proteomics approach was carried out. This study was conducted to identify proteome profiles in the hippocampus, mPFC, and striatum of 14-, 18-, 23-, and 27-month-old rats. Proteomics analysis using ultrahigh performance liquid chromatography coupled with Q Exactive HF Orbitrap mass spectrometry identified 1074 proteins in the hippocampus, 871 proteins in the mPFC, and 241 proteins in the striatum. Of these proteins, 97 in the hippocampus, 25 in mPFC, and 5 in striatum were differentially expressed with age. The altered proteins were classified into three ontologies (cellular component, molecular function, and biological process) containing 44, 38, and 35 functional groups in the hippocampus, mPFC, and striatum, respectively. Most of these altered proteins participate in oxidative phosphorylation (e.g. cytochrome c oxidase and ATP synthase), glutathione metabolism (e.g. peroxiredoxins), or calcium signaling pathway (e.g. protein S100B and calmodulin). The most prominent changes were observed in the oldest animals. These results suggest that alterations in oxidative phosphorylation, glutathione metabolism, and calcium signaling pathway are involved in cognitive and locomotor impairments in aging.
Collapse
Affiliation(s)
- Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - Jean Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| |
Collapse
|
45
|
Drulis‐Fajdasz D, Gizak A, Wójtowicz T, Wiśniewski JR, Rakus D. Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia 2018; 66:1481-1495. [PMID: 29493012 PMCID: PMC6001795 DOI: 10.1002/glia.23319] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lactate derived from astrocytic glycogen has been shown to support memory formation in hippocampi of young animals, inhibiting it in old animals. Here we show, using quantitative mass spectrometry-based proteomics, immunofluorescence, and qPCR that aging is associated with an increase of glycogen metabolism enzymes concentration and shift in their localization from astrocytes to neurons. These changes are accompanied with reorganization of hippocampal energy metabolism which is manifested by elevated capacity of aging neurons to oxidize glucose in glycolysis and mitochondria, and decreased ability for fatty acids utilization. Our observations suggest that astrocyte-to-neuron lactate shuttle may operate in young hippocampi, however, during aging neurons become independent on astrocytic lactate and the metabolic crosstalk between the brain's cells is disrupted.
Collapse
Affiliation(s)
- Dominika Drulis‐Fajdasz
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| | - Tomasz Wójtowicz
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal TransductionMax‐Planck‐Institute of Biochemistry, Am Klopferspitz 18Martinsried82152Germany
| | - Dariusz Rakus
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| |
Collapse
|
46
|
Reisz JA, Barrett AS, Nemkov T, Hansen KC, D'Alessandro A. When nature's robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies. Expert Rev Proteomics 2018; 15:293-309. [PMID: 29540077 PMCID: PMC6174679 DOI: 10.1080/14789450.2018.1453362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.
Collapse
Affiliation(s)
- Julie A Reisz
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Alexander S Barrett
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Travis Nemkov
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Kirk C Hansen
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
47
|
Stolle S, Ciapaite J, Reijne AC, Talarovicova A, Wolters JC, Aguirre-Gamboa R, van der Vlies P, de Lange K, Neerincx PB, van der Vries G, Deelen P, Swertz MA, Li Y, Bischoff R, Permentier HP, Horvatovitch PL, Groen AK, van Dijk G, Reijngoud DJ, Bakker BM. Running-wheel activity delays mitochondrial respiratory flux decline in aging mouse muscle via a post-transcriptional mechanism. Aging Cell 2018; 17. [PMID: 29120091 PMCID: PMC5770778 DOI: 10.1111/acel.12700] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 12/19/2022] Open
Abstract
Loss of mitochondrial respiratory flux is a hallmark of skeletal muscle aging, contributing to a progressive decline of muscle strength. Endurance exercise alleviates the decrease in respiratory flux, both in humans and in rodents. Here, we dissect the underlying mechanism of mitochondrial flux decline by integrated analysis of the molecular network. Mice were given a lifelong ad libitum low-fat or high-fat sucrose diet and were further divided into sedentary and running-wheel groups. At 6, 12, 18 and 24 months, muscle weight, triglyceride content and mitochondrial respiratory flux were analysed. Subsequently, transcriptome was measured by RNA-Seq and proteome by targeted LC-MS/MS analysis with 13 C-labelled standards. In the sedentary groups, mitochondrial respiratory flux declined with age. Voluntary running protected the mitochondrial respiratory flux until 18 months of age. Beyond this time point, all groups converged. Regulation Analysis of flux, proteome and transcriptome showed that the decline of flux was equally regulated at the proteomic and at the metabolic level, while regulation at the transcriptional level was marginal. Proteomic regulation was most prominent at the beginning and at the end of the pathway, namely at the pyruvate dehydrogenase complex and at the synthesis and transport of ATP. Further proteomic regulation was scattered across the entire pathway, revealing an effective multisite regulation. Finally, reactions regulated at the protein level were highly overlapping between the four experimental groups, suggesting a common, post-transcriptional mechanism of muscle aging.
Collapse
Affiliation(s)
- Sarah Stolle
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
| | - Jolita Ciapaite
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
| | - Aaffien C. Reijne
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
- Department of Behavioral Neuroscience; Groningen Institute for Evolutionary Life Sciences (GELIFES); University of Groningen; Groningen The Netherlands
| | - Alzbeta Talarovicova
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
| | - Justina C. Wolters
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
- Department of Pharmacy, Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| | - Raúl Aguirre-Gamboa
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Pieter van der Vlies
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Kim de Lange
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Pieter B. Neerincx
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Gerben van der Vries
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Patrick Deelen
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Morris A. Swertz
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Genomics Coordination Center; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Yang Li
- Department of Genetics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
| | - Rainer Bischoff
- Department of Pharmacy, Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| | - Hjalmar P. Permentier
- Department of Pharmacy, Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| | - Peter L. Horvatovitch
- Department of Pharmacy, Analytical Biochemistry; University of Groningen; Groningen The Netherlands
| | - Albert K. Groen
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
- Department of Vascular Medicine; Amsterdam Medical Center; Amsterdam The Netherlands
| | - Gertjan van Dijk
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
- Department of Behavioral Neuroscience; Groningen Institute for Evolutionary Life Sciences (GELIFES); University of Groningen; Groningen The Netherlands
- Centre for Isotope Research; University of Groningen; Groningen The Netherlands
| | - Dirk-Jan Reijngoud
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
| | - Barbara M. Bakker
- Section Systems Medicine of Metabolism and Signaling; Laboratory of Pediatrics; University of Groningen; University Medical Center Groningen; Groningen The Netherlands
- Systems Biology Centre for Energy Metabolism and Ageing; University of Groningen; Groningen The Netherlands
| |
Collapse
|
48
|
Feist PE, Loughran EA, Stack MS, Hummon AB. Quantitative proteomic analysis of murine white adipose tissue for peritoneal cancer metastasis. Anal Bioanal Chem 2017; 410:1583-1594. [PMID: 29282499 DOI: 10.1007/s00216-017-0813-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Cancer metastasis risk increases in older individuals, but the mechanisms for this risk increase are unclear. Many peritoneal cancers, including ovarian cancer, preferentially metastasize to peritoneal fat depots. However, there is a dearth of studies exploring aged peritoneal adipose tissue in the context of cancer. Because adipose tissue produces signals which influence several diseases including cancer, proteomics of adipose tissue in aged and young mice may provide insight into metastatic mechanisms. We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. We identified 2308 protein groups and quantified 2167 groups, among which several protein groups showed twofold or greater abundance differences between the aged and young cohorts. Cancer-related gene products previously identified as significant in another age-related study were found altered in this study. Several gene products known to suppress proliferation and cellular invasion were found downregulated in the aged cohort, including R-Ras, Arid1a, and heat shock protein β1. In addition, multiple protein groups were identified within single cohorts, including the proteins Cd11a, Stat3, and Ptk2b. These data suggest that adipose tissue is a strong candidate for analysis to identify possible contributors to cancer metastasis in older subjects. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged. Graphical abstract We analyzed mesenteric, omental, and uterine adipose tissue groups from the peritoneal cavities of young and aged C57BL/6J mouse cohorts with a low-fraction SDS-PAGE gelLC-MS/MS method. These fat depots are preferential sites for many peritoneal cancers. The results of this study, the first of its kind using uterine adipose tissue, contribute to the understanding of the role of adipose tissue in age-related alteration of oncogenic pathways, which may help elucidate the mechanisms of increased metastatic tumor burden in the aged.
Collapse
Affiliation(s)
- Peter E Feist
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Elizabeth A Loughran
- Integrated Biomedical Sciences Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 140B McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
49
|
Fang X, Bogomolovas J, Wu T, Zhang W, Liu C, Veevers J, Stroud MJ, Zhang Z, Ma X, Mu Y, Lao DH, Dalton ND, Gu Y, Wang C, Wang M, Liang Y, Lange S, Ouyang K, Peterson KL, Evans SM, Chen J. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. J Clin Invest 2017; 127:3189-3200. [PMID: 28737513 DOI: 10.1172/jci94310] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.
Collapse
Affiliation(s)
- Xi Fang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Julius Bogomolovas
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tongbin Wu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Wei Zhang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Canzhao Liu
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | | | - Zhiyuan Zhang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxin Mu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Dieu-Hung Lao
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Yusu Gu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Celine Wang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Michael Wang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Yan Liang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Stephan Lange
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Sylvia M Evans
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pharmacology and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Ju Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
50
|
Hoffman JM, Lyu Y, Pletcher SD, Promislow DEL. Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem 2017; 61:379-388. [PMID: 28698311 PMCID: PMC5743054 DOI: 10.1042/ebc20160083] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible 'biomarkers', which are predictors of one's biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying 'endophenotypes' in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd CH464, Birmingham, AL 35294, U.S.A
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Box 357705, 1959 NE Pacific Street, Seattle, Washington 98195, U.S.A.
- Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A
| |
Collapse
|