1
|
Sonoda GG, Tobaruela EDC, Norenburg J, Fabi JP, Andrade SCS. Venomous Noodles: The Evolution of Toxins in Nemertea through Positive Selection and Gene Duplication. Toxins (Basel) 2023; 15:650. [PMID: 37999513 PMCID: PMC10674772 DOI: 10.3390/toxins15110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.
Collapse
Affiliation(s)
- Gabriel Gonzalez Sonoda
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
- Instituto Butantan, São Paulo 05503-900, Brazil
| | - Eric de Castro Tobaruela
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | | | - João Paulo Fabi
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
| |
Collapse
|
2
|
Gu J, Isozumi N, Gao B, Ohki S, Zhu S. Mutation-driven evolution of antibacterial function in an ancestral antifungal scaffold: Significance for peptide engineering. Front Microbiol 2022; 13:1053078. [PMID: 36532476 PMCID: PMC9751787 DOI: 10.3389/fmicb.2022.1053078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 07/02/2024] Open
Abstract
Mutation-driven evolution of novel function on an old gene has been documented in many development- and adaptive immunity-related genes but is poorly understood in immune effector molecules. Drosomycin-type antifungal peptides (DTAFPs) are a family of defensin-type effectors found in plants and ecdysozoans. Their primitive function was to control fungal infection and then co-opted for fighting against bacterial infection in plants, insects, and nematodes. This provides a model to study the structural and evolutionary mechanisms behind such functional diversification. In the present study, we determined the solution structure of mehamycin, a DTAFP from the Northern root-knot nematode Meloidogyne hapla with antibacterial activity and an 18-mer insert, and studied the mutational effect through using a mutant with the insert deleted. Mehamycin adopts an expected cysteine-stabilized α-helix and β-sheet fold in its core scaffold and the inserted region, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), forms an extended loop protruding from the scaffold. The latter folds into an amphipathic architecture stabilized by one disulfide bridge, which likely confers mehamycin a bacterial membrane permeability. Deletion of the sDBD remarkably decreased the ability but accompanying an increase in thermostability, indicative of a structure-function trade-off in the mehamycin evolution. Allosteric analysis revealed an interior interaction between the two domains, which might promote point mutations at some key sites of the core domain and ultimately give rise to the emergence of antibacterial function. Our work may be valuable in guiding protein engineering of mehamycin to improve its activity and stability.
Collapse
Affiliation(s)
- Jing Gu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Cui Y, Wang T, Hao Z, Zhang J, Zhao Y. Methionine 58 is a key residue in the modulation of BmK scorpion toxin AGP-SYPU2 activity through in silico and in vivo studies. J Biomol Struct Dyn 2022; 40:2955-2962. [PMID: 33228478 DOI: 10.1080/07391102.2020.1848626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Protein dynamic networks play an important role in the regulation of many protein systems. Some residues that are far away from the interface between proteins and their targets have a critical role in modulating the activity of some scorpion toxins. Here, conservation analysis combined with an in vivo experiment has reveals that Met58 is a key residue of BmK scorpion toxin AGP-SYPU2 in the modulation of analgesic activity. Molecular dynamics simulations clearly reveal the conformational changes that allow the loop between the β2 and β3 sheets to be exposed on the toxin surface to interact with its targets. Our results emphasize specific roles for the residue Met58 in the NC domain and our work gives valuable information for further modification of scorpion toxins to obtain new analgesic peptides with enhanced activity. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yong Cui
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi, Liaoning Province, PR China
| | - Ting Wang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| | - Zhihui Hao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, Benxi, Liaoning Province, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, PR China
| |
Collapse
|
4
|
Zhu S, Gao B, Peigneur S, Tytgat J. How a Scorpion Toxin Selectively Captures a Prey Sodium Channel: The Molecular and Evolutionary Basis Uncovered. Mol Biol Evol 2021; 37:3149-3164. [PMID: 32556211 DOI: 10.1093/molbev/msaa152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The growing resistance of insects to chemical pesticides is reducing the effectiveness of conventional methods for pest control and thus, the development of novel insecticidal agents is imperative. Scorpion toxins specific for insect voltage-gated sodium channels (Navs) have been considered as one of the most promising insecticide alternatives due to their host specificity, rapidly evoked toxicity, biodegradability, and the lack of resistance. However, they have not been developed for uses in agriculture and public health, mainly because of a limited understanding of their molecular and evolutionary basis controlling their phylogenetic selectivity. Here, we show that the traditionally defined insect-selective scorpion toxin LqhIT2 specifically captures a prey Nav through a conserved trapping apparatus comprising a three-residue-formed cavity and a structurally adjacent leucine. The former serves as a detector to recognize and bind a highly exposed channel residue conserved in insects and spiders, two major prey items for scorpions; and the latter subsequently seizes the "moving" voltage sensor via hydrophobic interactions to reduce activation energy for channel opening, demonstrating its action in an enzyme-like manner. Based on the established toxin-channel interaction model in combination with toxicity assay, we enlarged the toxic spectrum of LqhIT2 to spiders and certain other arthropods. Furthermore, we found that genetic background-dependent cavity shapes determine the species selectivity of LqhIT2-related toxins. We expect that the discovery of the trapping apparatus will improve our understanding of the evolution and design principle of Nav-targeted toxins from a diversity of arthropod predators and accelerate their uses in pest control.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Department of Toxicology and Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
5
|
Mineev KS, Kuzmenkov AI, Arseniev AS, Vassilevski AA. Structure of MeuNaTxα-1 toxin from scorpion venom highlights the importance of the nest motif. Proteins 2021; 89:1055-1060. [PMID: 33713480 DOI: 10.1002/prot.26074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/04/2021] [Accepted: 03/04/2021] [Indexed: 11/08/2022]
Abstract
Old world scorpions produce an abundance of toxins called α-NaTx, which interfere with the fast inactivation of voltage-gated sodium channels. Their selectivity to channels of mammals or insects depends on a part of toxin named the specificity module. We report here the spatial structure of a major and broadly active toxin MeuNaTxα-1 from the venom of Mesobuthus eupeus. Notably, its specificity module is markedly different from other α-NaTx with known 3D structure. Close inspection shows that its conformation is a result of an interplay between protein motifs such as the nest and niche, which eventually shape α-NaTx structural diversity.
Collapse
Affiliation(s)
- Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Moscow, Russian Federation
| |
Collapse
|
6
|
Yousuf A, Sadeghi M, Adams DJ. Venom-Derived Peptides Inhibiting Voltage-Gated Sodium and Calcium Channels in Mammalian Sensory Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:3-19. [DOI: 10.1007/978-981-16-4254-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
van Cann M, Kuzmenkov A, Isensee J, Andreev-Andrievskiy A, Peigneur S, Khusainov G, Berkut A, Tytgat J, Vassilevski A, Hucho T. Scorpion toxin MeuNaTxα-1 sensitizes primary nociceptors by selective modulation of voltage-gated sodium channels. FEBS J 2020; 288:2418-2435. [PMID: 33051988 DOI: 10.1111/febs.15593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/14/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Venoms are a rich source of highly specific toxins, which allow the identification of novel therapeutic targets. We have now applied high content screening (HCS) microscopy to identify toxins that modulate pain sensitization signaling in primary sensory neurons of rat and elucidated the underlying mechanism. A set of venoms and fractions thereof were analyzed for their ability to activate type II protein kinase A (PKA-II) and extracellular signal-regulated kinases (ERK1/2). We identified MeuNaTxα-1, a sodium channel-selective scorpion α-toxin from Mesobuthus eupeus, which affected both PKA-II and ERK1/2. Recombinant MeuNaTxα-1 showed identical activity to the native toxin on mammalian voltage-gated sodium channels expressed in Xenopus laevis oocytes and induced thermal hyperalgesia in adult mice. The effect of MeuNaTxα-1 on sensory neurons was dose-dependent and tetrodotoxin-sensitive. Application of inhibitors and toxin mutants with altered sodium channel selectivity demonstrated that signaling activation in sensory neurons depends on NaV 1.2 isoform. Accordingly, the toxin was more potent in neurons from newborn rats, where NaV 1.2 is expressed at a higher level. Our results demonstrate that HCS microscopy-based monitoring of intracellular signaling is a novel and powerful tool to identify and characterize venoms and their toxins affecting sensory neurons.
Collapse
Affiliation(s)
- Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| | - Alexey Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| | | | | | - Georgii Khusainov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Antonina Berkut
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Alexander Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| |
Collapse
|
8
|
Zou X, Wang Y, Yu Y, He J, Zhao F, Xi C, Zhang C, Cao Z. BmK NSP, a new sodium channel activator from Buthus martensii Karsch, promotes neurite outgrowth in primary cultured spinal cord neurons. Toxicon 2020; 182:13-20. [PMID: 32353571 DOI: 10.1016/j.toxicon.2020.04.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Scorpion venom is a rich source of bioactive compounds that affect neuronal excitability by modulating the activities of various channels/receptors. In the current study, guided by a Ca2+ mobilization assay, we purified a new neuroactive peptide designated as BmK NSP (Buthus martensii Karsch neurite-stimulating peptide, MW: 7064.30 Da). The primary structure of BmK NSP was determined by Edman degradation. BmK NSP concentration-dependently elevated intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 4.18 μM in primary cultured spinal cord neurons (SCNs). Depletion of extracellular Ca2+ abolished BmK NSP-triggered Ca2+ response. Moreover, we demonstrated that BmK NSP-induced Ca2+ response was partially suppressed by the inhibitors of L-type Ca2+ channels, Na+-Ca2+ exchangers and NMDA receptors and was abolished by voltage-gated sodium channel (VGSC) blocker, tetrodotoxin. Whole-cell patch clamp recording demonstrated that BmK NSP delayed VGSC inactivation (EC50 = 1.10 μM) in SCNs. BmK NSP enhanced neurite outgrowth in a non-monotonic manner that peaked at ~30 nM in SCNs. BmK NSP-promoted neurite outgrowth was suppressed by the inhibitors of L-type Ca2+ channels, NMDA receptors, and VGSCs. Considered together, these data demonstrate that BmK NSP is a new α-scorpion toxin that enhances neurite outgrowth through main routes of Ca2+ influx. Modulation of VGSC activity by α-scorpion toxin might represent a novel strategy to regulate the neurogenesis in SCNs.
Collapse
Affiliation(s)
- Xiaohan Zou
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yujing Wang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiyi Yu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chi Zhang
- Jiangsu Provincial Supervision & Inspection Center of Green & Degradable Materials, Nanjing Institute of Product Quality Inspection, No. 3 E. Jialingjiang Street, Nanjing, Jiangsu, 210019, China
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Zhu L, Gao B, Yuan S, Zhu S. Scorpion Toxins: Positive Selection at a Distal Site Modulates Functional Evolution at a Bioactive Site. Mol Biol Evol 2019; 36:365-375. [PMID: 30566652 PMCID: PMC6367975 DOI: 10.1093/molbev/msy223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bioactive sites of proteins are those that directly interact with their targets. In many immunity- and predation-related proteins, they frequently experience positive selection for dealing with the changes of their targets from competitors. However, some sites that are far away from the interface between proteins and their targets are also identified to evolve under positive selection. Here, we explore the evolutionary implication of such a site in scorpion α-type toxins affecting sodium (Na+) channels (abbreviated as α-ScNaTxs) using a combination of experimental and computational approaches. We found that despite no direct involvement in interaction with Na+ channels, mutations at this site by different types of amino acids led to toxicity change on both rats and insects in three α-ScNaTxs, accompanying differential effects on their structures. Molecular dynamics simulations indicated that the mutations changed the conformational dynamics of the positively selected bioactive site-containing functional regions by allosteric communication, suggesting a potential evolutionary correlation between these bioactive sites and the distant nonbioactive site. Our results reveal for the first time the cause of fast evolution at nonbioactive sites of scorpion neurotoxins, which is presumably to adapt to the change of their bioactive sites through coevolution to maintain an active conformation for channel binding. This might aid rational design of scorpion Na+ channel toxins with improved phyletic selectivity via modification of a distant nonbioactive site.
Collapse
Affiliation(s)
- Limei Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shouli Yuan
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
10
|
Bajaj S, Han J. Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Front Pharmacol 2019; 10:58. [PMID: 30863305 PMCID: PMC6399158 DOI: 10.3389/fphar.2019.00058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Ion channels play a key role in our body to regulate homeostasis and conduct electrical signals. With the help of advances in structural biology, as well as the discovery of numerous channel modulators derived from animal toxins, we are moving toward a better understanding of the function and mode of action of ion channels. Their ubiquitous tissue distribution and the physiological relevancies of their opening and closing suggest that cation channels are particularly attractive drug targets, and years of research has revealed a variety of natural toxins that bind to these channels and alter their function. In this review, we provide an introductory overview of the major cation ion channels: potassium channels, sodium channels and calcium channels, describe their venom-derived peptide modulators, and how these peptides provide great research and therapeutic value to both basic and translational medical research.
Collapse
Affiliation(s)
- Saumya Bajaj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jingyao Han
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Gu J, Gao B, Zhu S. Characterization of bi-domain drosomycin-type antifungal peptides in nematodes: An example of convergent evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:90-97. [PMID: 29894713 DOI: 10.1016/j.dci.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Drosomycin-type antifungal peptides (DTAFPs) are natural effectors of the innate immune system, which are restrictedly distributed in plants and ecdysozoans. Mehamycin is a bi-domain DTAFP (abbreviated as bDTAFP) firstly found in the Northern root-knot nematode Meloidogyne hapla. Here, we report its structural and functional features and the evolution of bDTAFPs in nematodes. Different from classical DTAFPs, mehamycin contains an insertion, called single Disulfide Bridge-linked Domain (abbreviated as sDBD), located in a loop region of the drosomycin scaffold. Despite this, recombinant mehamycin likely adopts a similar fold to drosomycin, as revealed by the circular dichroism spectral analysis. Functionally, it showed some weak activity against three species of fungi but relatively stronger activity against seven species of Gram-positive bacteria, indicative of functional diversification between mehamycin and classical DTAFPs. By computational data mining of the nematode databases, we identified polymorphic genes encoding mehamycin and a new multigene family of bDTAFPs (named roremycins) from Rotylenchulus reniformis. A combination of data suggests that the origination of sDBDs from M. hapla and R. reniformis is a consequence of convergent evolution, in which some probably suffered positive selection during evolution. Our study may be valuable in understanding the role of these unique antimicrobial peptides in the innate immunity of nematodes.
Collapse
Affiliation(s)
- Jing Gu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
12
|
Peigneur S, de Lima ME, Tytgat J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon 2018; 151:96-110. [DOI: 10.1016/j.toxicon.2018.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
13
|
Gao B, Zhu S. Mesobuthus Venom-Derived Antimicrobial Peptides Possess Intrinsic Multifunctionality and Differential Potential as Drugs. Front Microbiol 2018; 9:320. [PMID: 29599756 PMCID: PMC5863496 DOI: 10.3389/fmicb.2018.00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/09/2018] [Indexed: 11/15/2022] Open
Abstract
Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Zeng X, Li P, Chen B, Huang J, Lai R, Liu J, Rong M. Selective Closed-State Nav1.7 Blocker JZTX-34 Exhibits Analgesic Effects against Pain. Toxins (Basel) 2018; 10:toxins10020064. [PMID: 29393892 PMCID: PMC5848165 DOI: 10.3390/toxins10020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Jingzhaotoxin-34 (JZTX-34) is a selective inhibitor of tetrodotoxin-sensitive (TTX-S) sodium channels. In this study, we found that JZTX-34 selectively acted on Nav1.7 with little effect on other sodium channel subtypes including Nav1.5. If the DIIS3-S4 linker of Nav1.5 is substituted by the correspond linker of Nav1.7, the sensitivity of Nav1.5 to JZTX-34 extremely increases to 1.05 µM. Meanwhile, a mutant D816R in the DIIS3-S4 linker of Nav1.7 decreases binding affinity of Nav1.7 to JZTX-34 about 32-fold. The reverse mutant R800D at the corresponding position in Nav1.5 greatly increased its binding affinity to JZTX-34. This implies that JZTX-34 binds to DIIS3-S4 linker of Nav1.7 and the critical residue of Nav1.7 is D816. Unlike β-scorpion toxin trapping sodium channel in an open state, activity of JZTX-34 requires the sodium channel to be in a resting state. JZTX-34 exhibits an obvious analgesic effect in a rodent pain model. Especially, it shows a longer duration and is more effective than morphine in hot pain models. In a formalin-induced pain model, JZTX-34 at dose of 2 mg/kg is equipotent with morphine (5 mg/kg) in the first phase and several-fold more effective than morphine in second phase. Taken together, our data indicate that JZTX-34 releases pain by selectively binding to the domain II voltage sensor of Nav1.7 in a closed configuration.
Collapse
Affiliation(s)
- Xiongzhi Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Pengpeng Li
- Life Sciences College of Nanjing Agricultural University, 210095, Jiangsu, China.
| | - Bo Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Juan Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Ren Lai
- Life Sciences College of Nanjing Agricultural University, 210095, Jiangsu, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
15
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
16
|
Kuldyushev NA, Berkut AA, Peigneur S, Tytgat J, Grishin EV, Vassilevski AA. Design of sodium channel ligands with defined selectivity - a case study in scorpion alpha-toxins. FEBS Lett 2017; 591:3414-3420. [DOI: 10.1002/1873-3468.12839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nikita A. Kuldyushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Russia
| | - Antonina A. Berkut
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Russia
| | - Steve Peigneur
- Toxicology and Pharmacology; University of Leuven; Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology; University of Leuven; Belgium
| | - Eugene V. Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
| | - Alexander A. Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
17
|
Koludarov I, Jackson TN, Brouw BOD, Dobson J, Dashevsky D, Arbuckle K, Clemente CJ, Stockdale EJ, Cochran C, Debono J, Stephens C, Panagides N, Li B, Manchadi MLR, Violette A, Fourmy R, Hendrikx I, Nouwens A, Clements J, Martelli P, Kwok HF, Fry BG. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins (Basel) 2017; 9:E242. [PMID: 28783084 PMCID: PMC5577576 DOI: 10.3390/toxins9080242] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
While snake venoms have been the subject of intense study, comparatively little work has been done on lizard venoms. In this study, we have examined the structural and functional diversification of anguimorph lizard venoms and associated toxins, and related these results to dentition and predatory ecology. Venom composition was shown to be highly variable across the 20 species of Heloderma, Lanthanotus, and Varanus included in our study. While kallikrein enzymes were ubiquitous, they were also a particularly multifunctional toxin type, with differential activities on enzyme substrates and also ability to degrade alpha or beta chains of fibrinogen that reflects structural variability. Examination of other toxin types also revealed similar variability in their presence and activity levels. The high level of venom chemistry variation in varanid lizards compared to that of helodermatid lizards suggests that venom may be subject to different selection pressures in these two families. These results not only contribute to our understanding of venom evolution but also reveal anguimorph lizard venoms to be rich sources of novel bioactive molecules with potential as drug design and development lead compounds.
Collapse
Affiliation(s)
- Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Timothy Nw Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
- Australian Venom Research Unit, School of Biomedical Sciences, Level 2 Medical Building, University of Melbourne, Victoria 3010, Australia.
| | - Bianca Op den Brouw
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Christofer J Clemente
- University of the Sunshine Coast, School of Science and Engineering, Sippy Downs, Queensland 4558, Australia.
| | | | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Carson Stephens
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | - Nadya Panagides
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | | | - Aude Violette
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Rudy Fourmy
- Alphabiotoxine Laboratory sprl, Barberie 15, 7911 Montroeul-au-bois, Belgium.
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biology, University of Queenslnd, St. Lucia QLD 4072, Australia.
| | - Judith Clements
- School of Biomedical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.
| | | | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
18
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
19
|
Israel MR, Tay B, Deuis JR, Vetter I. Sodium Channels and Venom Peptide Pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:67-116. [PMID: 28528674 DOI: 10.1016/bs.apha.2017.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.
Collapse
Affiliation(s)
- Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Bryan Tay
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
21
|
Bothriurus bonariensis scorpion venom activates voltage-dependent sodium channels in insect and mammalian nervous systems. Chem Biol Interact 2016; 258:1-9. [DOI: 10.1016/j.cbi.2016.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 01/12/2023]
|
22
|
Zhang S, Zhu L, Yu J, Xu J, Gao B, Zhou C, Zhu S. Evaluating the potential of a loop-extended scorpion toxin-like peptide as a protein scaffold. Protein Eng Des Sel 2016; 29:607-616. [PMID: 27672050 DOI: 10.1093/protein/gzw051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/06/2016] [Accepted: 08/26/2016] [Indexed: 11/14/2022] Open
Abstract
Grafting of exogenous bioactive sites or functional motifs onto structurally stable scaffolds to gain new functions represents an important research direction in protein engineering. Some engineered proteins have been developed into therapeutic drugs. MeuNaTxα-3 (abbreviated as MT-3) is a newly characterized scorpion sodium channel toxin-like peptide isolated from the venom of the scorpion Mesobuthus eupeus, which contains a rigid scaffold highly similar to classical scorpion sodium channel toxins and an extension of eight amino acids in its J-loop region. This extended loop constitutes a flexible region extruded from the scaffold and could be substituted by exogenous functional sequences. In this study, we experimentally evaluated the scaffold potential of MT-3 through grafting two small antimicrobial motifs to replace residues within the loop. Functional assays showed that the two engineered molecules exhibited elevated antimicrobial potency, as compared with the unmodified scaffold, without structural disruption, providing experimental evidence in favor of MT-3 as a promising scaffold in protein engineering.
Collapse
Affiliation(s)
- Shangfei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | - Limei Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | - Jie Yu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 TongJiaXiang, 210009 Nanjing, Jiangsu, China
| | - Jun Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 TongJiaXiang, 210009 Nanjing, Jiangsu, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 TongJiaXiang, 210009 Nanjing, Jiangsu, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, 100101 Beijing, China
| |
Collapse
|
23
|
Zhu L, Peigneur S, Gao B, Zhang S, Tytgat J, Zhu S. Target-Driven Positive Selection at Hot Spots of Scorpion Toxins Uncovers Their Potential in Design of Insecticides. Mol Biol Evol 2016; 33:1907-20. [PMID: 27189560 DOI: 10.1093/molbev/msw065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Positive selection sites (PSSs), a class of amino acid sites with an excess of nonsynonymous to synonymous substitutions, are indicators of adaptive molecular evolution and have been detected in many protein families involved in a diversity of biological processes by statistical approaches. However, few studies are conducted to evaluate their functional significance and the driving force behind the evolution (i.e., agent of selection). Scorpion α-toxins are a class of multigene family of peptide neurotoxins affecting voltage-gated Na(+ )(Nav) channels, whose members exhibit differential potency and preference for insect and mammalian Nav channels. In this study, we undertook a systematical molecular dissection of nearly all the PSSs newly characterized in the Mesobuthus α-toxin family and a two-residue insertion ((19)AlaPhe(20)) located within a positively selected loop via mutational analysis of α-like MeuNaTxα-5, one member affecting both insect and mammalian Nav channels. This allows to identify hot-spot residues on its functional face involved in interaction with the receptor site of Nav channels, which comprises two PSSs (Ile(40) and Leu(41)) and the small insertion, both located on two spatially separated functional loops. Mutations at these hot-spots resulted in a remarkably decreased anti-mammalian activity in MeuNaTxα-5 with partially impaired or enhanced insecticide activity, suggesting the potential of PSSs in designing promising candidate insecticides from scorpion α-like toxins. Based on an experiment-guided toxin-channel complex model and high evolutionary variability in the receptor site of predators and prey of scorpions, we provide new evidence for target-driven adaptive evolution of scorpion toxins to deal with their targets' diversity.
Collapse
Affiliation(s)
- Limei Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shangfei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Abstract
It is long known that peptide neurotoxins derived from a diversity of venomous animals evolve by positive selection following gene duplication, yet a force that drives their adaptive evolution remains a mystery. By using maximum-likelihood models of codon substitution, we analyzed molecular adaptation in scorpion sodium channel toxins from a specific species and found ten positively selected sites, six of which are located at the core-domain of scorpion α-toxins, a region known to interact with two adjacent loops in the voltage-sensor domain (DIV) of sodium channels, as validated by our newly constructed computational model of toxin-channel complex. Despite the lack of positive selection signals in these two loops, they accumulated extensive sequence variations by relaxed purifying selection in prey and predators of scorpions. The evolutionary variability in the toxin-bound regions of sodium channels indicates that accelerated substitutions in the multigene family of scorpion toxins is a consequence of dealing with the target diversity. This work presents an example of atypical co-evolution between animal toxins and their molecular targets, in which toxins suffered from more prominent selective pressure from the channels of their competitors. Our discovery helps explain the evolutionary rationality of gene duplication of toxins in a specific venomous species.
Collapse
|
25
|
Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel. Toxins (Basel) 2015; 7:3671-87. [PMID: 26389953 PMCID: PMC4591660 DOI: 10.3390/toxins7093671] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 01/17/2023] Open
Abstract
The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, OPEN ACCESS Toxins 2015, 7 3672 BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation.
Collapse
|
26
|
Huang Y, Zhou X, Tang C, Zhang Y, Tao H, Chen P, Liu Z. Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II. Peptides 2015; 68:175-82. [PMID: 25817910 DOI: 10.1016/j.peptides.2015.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
Jingzhaotoxin-II (JZTX-II) is a 32-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom, and preferentially inhibits the fast inactivation of the voltage-gated sodium channels (VGSCs) in rat cardiac myocytes. In the present study, we elucidated the action mechanism of JZTX-II inhibiting hNav1.5, a VGSC subtype mainly distributed in human cardiac myocytes. Among the four VGSC subtypes tested, hNav1.5 was the most sensitive to JZTX-II (EC50=125±4nM). Although JZTX-II had little or no effect on steady-state inactivation of the residual currents conducted by hNav1.5, it caused a 10mV hyperpolarized shift of activation. Moreover, JZTX-II increased the recovery rate of hNav1.5 channels, which should lead to a shorter transition from the inactivation to closed state. JZTX-II dissociated from toxin-channel complex via extreme depolarization and subsequently rebound to the channel upon repolarization. Mutagenesis analyses showed that the domain IV (DIV) voltage-sensor domain (VSD) was critical for JZTX-II binding to hNav1.5 and some mutations located in S1-S2 and S3-S4 extracellular loops of hNav1.5 DIV additively reduced the toxin sensitivity of hNav1.5. Our data identified the mechanism underlying JZTX-II inhibiting hNav1.5, similar to scorpion α-toxins, involving binding to neurotoxin receptor site 3.
Collapse
Affiliation(s)
- Ying Huang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xi Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Cheng Tang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yunxiao Zhang
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhonghua Liu
- College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
27
|
Tang C, Zhou X, Huang Y, Zhang Y, Hu Z, Wang M, Chen P, Liu Z, Liang S. The tarantula toxin jingzhaotoxin-XI (κ-theraphotoxin-Cj1a) regulates the activation and inactivation of the voltage-gated sodium channel Nav1.5. Toxicon 2014; 92:6-13. [DOI: 10.1016/j.toxicon.2014.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/01/2014] [Accepted: 09/09/2014] [Indexed: 01/28/2023]
|
28
|
Wu J, Gao B, Zhu S. The fungal defensin family enlarged. Pharmaceuticals (Basel) 2014; 7:866-80. [PMID: 25230677 PMCID: PMC4165938 DOI: 10.3390/ph7080866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/17/2022] Open
Abstract
Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs) will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8) according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.
Collapse
Affiliation(s)
- Jiajia Wu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Bin Gao
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
29
|
Diego-García E, Caliskan F, Tytgat J. The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides. BMC Genomics 2014; 15:295. [PMID: 24746279 PMCID: PMC4234519 DOI: 10.1186/1471-2164-15-295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Background Transcrof toxin genes of scorpion species have been published. Up to this moment, no information on the gene characterization of M. gibbosus is available. Results This study provides the first insight into gene expression in venom glands from M. gibbosus scorpion. A cDNA library was generated from the venom glands and subsequently analyzed (301 clones). Sequences from 177 high-quality ESTs were grouped as 48 Mgib sequences, of those 48 sequences, 40 (29 “singletons” and 11 “contigs”) correspond with one or more ESTs. We identified putative precursor sequences and were grouped them in different categories (39 unique transcripts, one with alternative reading frames), resulting in the identification of 12 new toxin-like and 5 antimicrobial precursors (transcripts). The analysis of the gene families revealed several new components categorized among various toxin families with effect on ion channels. Sequence analysis of a new KTx precursor provides evidence to validate a new KTx subfamily (α-KTx 27.x). A second part of this work involves the genomic organization of three Meg-chlorotoxin-like genes (ClTxs). Genomic DNA sequence reveals close similarities (presence of one same-phase intron) with the sole genomic organization of chlorotoxins ever reported (from M. martensii). Conclusions Transcriptome analysis is a powerful strategy that provides complete information of the gene expression and molecular diversity of the venom glands (telson). In this work, we generated the first catalogue of the gene expression and genomic organization of toxins from M. gibbosus. Our result represents a relevant contribution to the knowledge of toxin transcripts and complementary information related with other cell function proteins and venom peptide transcripts. The genomic organization of the chlorotoxin genes may help to understand the diversity of this gene family.
Collapse
Affiliation(s)
| | | | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Campus Gasthuisberg O& N2,PO Box 922, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Cao Z, Di Z, Wu Y, Li W. Overview of scorpion species from China and their toxins. Toxins (Basel) 2014; 6:796-815. [PMID: 24577583 PMCID: PMC3968362 DOI: 10.3390/toxins6030796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 12/29/2022] Open
Abstract
Scorpions are one of the most ancient groups of terrestrial animals. They have maintained a steady morphology over more than 400 million years of evolution. Their venom arsenals for capturing prey and defending against predators may play a critical role in their ancient and conservative appearance. In the current review, we present the scorpion fauna of China: 53 species covering five families and 12 genera. We also systematically list toxins or genes from Chinese scorpion species, involving eight species covering four families. Furthermore, we review the diverse functions of typical toxins from Chinese scorpion species, involving Na+ channel modulators, K+ channel blockers, antimicrobial peptides and protease inhibitors. Using scorpion species and their toxins from China as an example, we build the bridge between scorpion species and their toxins, which helps us to understand the molecular and functional diversity of scorpion venom arsenal, the dynamic and functional evolution of scorpion toxins, and the potential relationships of scorpion species and their toxins.
Collapse
Affiliation(s)
- Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyong Di
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Characterization of a novel BmαTX47 toxin modulating sodium channels: the crucial role of expression vectors in toxin pharmacological activity. Toxins (Basel) 2014; 6:816-29. [PMID: 24577584 PMCID: PMC3968363 DOI: 10.3390/toxins6030816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/30/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022] Open
Abstract
Long-chain scorpion toxins with four disulfide bridges exhibit various pharmacological features towards the different voltage-gated sodium channel subtypes. However, the toxin production still remains a huge challenge. Here, we reported the effects of different expression vectors on the pharmacological properties of a novel toxin BmαTX47 from the scorpion Buthus martensii Karsch. The recombinant BmαTX47 was obtained using the expression vector pET-14b and pET-28a, respectively. Pharmacological experiments showed that the recombinant BmαTX47 was a new α-scorpion toxin which could inhibit the fast inactivation of rNav1.2, mNav1.4 and hNav1.5 channels. Importantly, the different expression vectors were found to strongly affect BmαTX47 pharmacological activities while toxins were obtained by the same expression and purification procedures. When 10 µM recombinant BmαTX47 from the pET-28a vector was applied, the values of I5ms/Ipeak for rNav1.2, mNav1.4 and hNav1.5 channels were 44.12% ± 3.17%, 25.40% ± 4.89% and 65.34% ± 3.86%, respectively, which were better than those values of 11.33% ± 1.46%, 15.96% ± 1.87% and 5.24% ± 2.38% for rNav1.2, mNav1.4 and hNav1.5 channels delayed by 10 µM recombinant BmαTX47 from the pET-14b vector. The dose-response experiments further indicated the EC50 values of recombinant BmαTX47 from the pET-28a vector were 7262.9 ± 755.9 nM for rNav1.2 channel and 1005.8 ± 118.6 nM for hNav1.5 channel, respectively. Together, these findings highlighted the important role of expression vectors in scorpion toxin pharmacological properties, which would accelerate the understanding of the structure-function relationships of scorpion toxins and promote the potential application of toxins in the near future.
Collapse
|
32
|
Eskandari G, Jolodar A, Seyfiabad Shapouri MR, Bahmainmehr A, Navidpour S. Production of Recombinant Alpha Neurotoxin of Scorpion Venom Mesobuthus eupeus and Analysis of its Immunogenicity. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e9666. [PMID: 24719721 PMCID: PMC3964439 DOI: 10.5812/ircmj.9666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/02/2013] [Accepted: 09/22/2013] [Indexed: 11/19/2022]
Abstract
Background: Scorpion venom is important and rich source of peptides, most of which have been widely used as pharmacological tools for unraveling structure-function relationship of various ion channels. Naturally occurring toxins can be also considered as lead compounds in the development of novel drugs. Objectives: In this context, the scorpion-derived peptide neurotoxins specific to sodium channels have shown promise as potential therapeutic targets for the treatment of various human diseases. Materials and Methods: A cDNA library from the extracted RNA was constructed using RT-PCR and semi-nested RT-PCR. DNA sequencing followed by phylogenetic analysis was applied to screen the cDNA library clones. For molecular characterization of the BMK gene we used cloning and recombinant protein expression techniques based on E.coli systems. Then we performed mice immunization and Western blot and Immunodot analyses. Results: A novel BMK neurotoxin has been cloned, expressed and characterized from the Iranian scorpion M. eupeus venom. We analyzed the recombinant BMK by immunoblotting with treated antiserum. The result showed that mice antiserum can react also with scorpion crude venom, so is able to recognize native BMK toxin. Conclusion: The newly produced recombinant protein BMK revealed to be immunogenic. Moreover, anti-BMK antibodies produced in mice were able to recognize both the recombinant BMK neurotoxin and the one in M. eupeus crude venome. Taken together, the molecular characterization and recombinant production of the Iranian scorpion M. eupeus venom component can serve as a new probe for further studies of sodium channels function and physiology. This provides a promising perspective for the future design of selective drugs, as well as for research of antivenom production.
Collapse
Affiliation(s)
- Ghafar Eskandari
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
- Corresponding Author: Ghafar Eskandari, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia. Tel: +98-37498241221, E-mail:
| | - Abbas Jolodar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chaamran Uiversity of Ahvaz, Ahvaz, IR Iran
| | | | - Ardeshir Bahmainmehr
- Department of Biotechnology-Molecular Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, IR Iran
| | - Shahrokh Navidpour
- Department Veterinary Parasitology, Razi Vaccine and Serum Research Institute, Karaj, IR Iran
| |
Collapse
|
33
|
Sunagar K, Fry BG, Jackson TNW, Casewell NR, Undheim EAB, Vidal N, Ali SA, King GF, Vasudevan K, Vasconcelos V, Antunes A. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf. PLoS One 2013; 8:e81827. [PMID: 24312363 PMCID: PMC3843689 DOI: 10.1371/journal.pone.0081827] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/17/2013] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.
Collapse
Affiliation(s)
- Kartik Sunagar
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | - Timothy N. W. Jackson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | - Nicholas R. Casewell
- Molecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor, United Kingdom
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eivind A. B. Undheim
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | - Nicolas Vidal
- Département Systématique et Evolution, Service de Systématique Moléculaire, UMR 7138, Muséum National d’Histoire Naturelle, Paris, France
| | - Syed A. Ali
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | | | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
34
|
Three-fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of snake venom toxins. Toxins (Basel) 2013; 5:2172-208. [PMID: 24253238 PMCID: PMC3847720 DOI: 10.3390/toxins5112172] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022] Open
Abstract
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx.
Collapse
|
35
|
Abstract
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon–intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.
Collapse
|
36
|
Zhu L, Peigneur S, Gao B, Tytgat J, Zhu S. Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels. Biochimie 2013; 95:1732-40. [PMID: 23743216 DOI: 10.1016/j.biochi.2013.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Abstract
α-Scorpion toxins are modulators of voltage-gated Na(+) channels (Navs), which bind to the receptor site 3 to inhibit the fast inactivation of the channels. MeuNaTxα-12 and MeuNaTxα-13 are two new α-scorpion toxin-like peptides identified by cDNA cloning from the scorpion Mesobuthus eupeus with unknown functions. Here, we report their recombinant production, oxidative refolding, structural and functional features. By in vitro renaturation from bacterial inclusion bodies and further purification through reverse phase high-performance liquid chromatography, we obtained high purity recombinant products with a native-like conformation identified by circular dichroism analysis. Two-electrode voltage clamp recordings on five cloned mammalian Nav subtypes (rNav1.1, rNav1.2, rNav1.4, rNav1.5, and mNav1.6) and the insect counterpart DmNav1, all expressed in Xenopus laevis oocytes, showed that these two peptides inhibited rapid inactivation of the sensitive Na(+) channels with significant preference for DmNav1. The half maximal effective concentrations (EC50) of MeuNaTxα-12 and MeuNaTxα-13 for this channel are 19.95 ± 2.99 nM and 65.50 ± 7.28 nM, respectively, showing 45 and 38 folds higher affinities than for rNav1.1, the most sensitive mammalian channel among the five isoforms. Our functional data confirms that these two peptides belong to the α-like scorpion toxin group. A combined analysis of the site 3 sequences and the pharmacological data illuminates the importance of the loop LD4:S5-S6 of the channel in interacting with the toxins whereas affinity variations between MeuNaTxα-12 and MeuNaTxα-13 highlight a key functional role of a cationic side chain at position 28 of MeuNaTxα-12. Successful expression together with structural and functional characterization of these two new α-like scorpion toxins lays basis for further studies of their structure-function relationship.
Collapse
Affiliation(s)
- Limei Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest, Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
37
|
Chugunov AO, Koromyslova AD, Berkut AA, Peigneur S, Tytgat J, Polyansky AA, Pentkovsky VM, Vassilevski AA, Grishin EV, Efremov RG. Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels. J Biol Chem 2013; 288:19014-27. [PMID: 23637230 DOI: 10.1074/jbc.m112.431650] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.
Collapse
Affiliation(s)
- Anton O Chugunov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Durek T, Vetter I, Wang CIA, Motin L, Knapp O, Adams DJ, Lewis RJ, Alewood PF. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1. ACS Chem Biol 2013; 8:1215-22. [PMID: 23527544 DOI: 10.1021/cb400012k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.
Collapse
Affiliation(s)
- Thomas Durek
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Irina Vetter
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Ching-I Anderson Wang
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Leonid Motin
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - Oliver Knapp
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - David J. Adams
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - Richard J. Lewis
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Paul F. Alewood
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| |
Collapse
|
39
|
Molecular cloning and biochemical characterization of the first Na(+)-channel α-type toxin peptide (Acra4) from Androctonus crassicauda scorpion venom. Biochimie 2013; 95:1216-22. [PMID: 23395751 DOI: 10.1016/j.biochi.2013.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
Due to the medical importance played in Turkey by stings of the scorpion Androctonus crassicauda, its venom has been studied with more attention. In this communication we report a new toxic peptide, named Acra4, because it is the fourth peptide completely characterized from venom of this scorpion. The peptide contains 64 amino acid residues stabilized by four disulfide bridges, with a molecular weight of 6937 Da. Purification of the lethal peptide was performed by three steps of high performance liquid chromatography (HPLC) separations, and the molecular weight was determined by mass spectrometry analysis and the full amino acid sequence was obtained by direct Edman degradation in conjunction with gene cloning. The LD50 of Acra4 was 50.5 ng/20 g mouse body weight (95% confidence intervals from 48.8 to 52.2 ng/20 g mouse body weight). Additionally, from a sample of cDNA of A. crassicauda four genes were cloned displaying sequence similarities to known scorpion toxins, and are reported here as potentially toxic peptides, named Acra5 to Acra8. Electrophysiological studies of Acra4 were performed using Na(+)-channels expressed in F11 cell culture, by patch-clamp recordings. This is the first time that such peptide from A. crassicauda having a specific Na(+)-channel α-type effect is reported. Its affinity toward Na(+)-channels in F11 cell line is in the order of 1 μM concentration.
Collapse
|
40
|
Nie Y, Zeng XC, Yang Y, Luo F, Luo X, Wu S, Zhang L, Zhou J. A novel class of antimicrobial peptides from the scorpion Heterometrus spinifer. Peptides 2012; 38:389-94. [PMID: 23000095 DOI: 10.1016/j.peptides.2012.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022]
Abstract
The venom peptides from the scorpion Heterometrus spinifer have been poorly characterized so far. Here, we identified a novel class of antimicrobial peptides from the venom gland of H. spinifer, which were referred to as HsAp, HsAp2, HsAp3 and HsAp4, respectively. Each of the four peptides consists of 29 amino acid residues, and is cationic and weakly amphipathic. They display no significant homology to any other known peptides, and thus represent a new family of venom peptides from scorpions. Antimicrobial assay showed that HsAp is able to inhibit the growth of both Gram-negative and Gram-positive bacteria with the MIC values of 11.8-51.2 μM. HsAp is also able to inhibit the growth of the tested fungus. Genomic analysis indicated that the genes of all the four peptides are intronless. Our studies expand the families of antimicrobial peptides from scorpions.
Collapse
Affiliation(s)
- Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang X, Jimenez-Vargas JM, Xu C, Possani LD, Zhu S. Positive selection-guided mutational analysis revealing two key functional sites of scorpion ERG K(+) channel toxins. Biochem Biophys Res Commun 2012; 429:111-6. [PMID: 23103547 DOI: 10.1016/j.bbrc.2012.10.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Scorpion γ-KTx toxins are important molecular tools for studying physiological and pharmacological functions of human ether-á-go-go related gene (hERG) K(+) channels. To pinpoint functional residues of this class of toxins involved in channel binding, we employed a combined approach that integrates evolutionary information and site-directed mutagenesis. Among three positively selected sites (PSSs) identified here, two (Gln18 and Met35) were found to be associated with the toxin's function because their changes significantly decreased the potency of ErgTx1 (also called CnErg1) on hERG1 channel. On the contrary, no potency alteration was observed at the third PSS (Ala42) when the mutation was introduced, which could be due to its location far from the functional surface of the toxin. Our strategy will accelerate the research of structure-function relationship of scorpion K(+) channel toxins.
Collapse
Affiliation(s)
- Xueli Wang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
42
|
Accelerated evolution and functional divergence of scorpion short-chain K+ channel toxins after speciation. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:238-45. [DOI: 10.1016/j.cbpb.2012.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
|