1
|
Yan Q, Gao S, Zhang X, Liu G, Chen P, Gao X, Yuan L, Tian Y, Li D, Zhang X, Zhang H. Comparative Transcriptome Analysis Reveals Mechanisms of Differential Salinity Tolerance Between Suaeda glauca and Suaeda salsa. Genes (Basel) 2024; 15:1628. [PMID: 39766895 PMCID: PMC11675990 DOI: 10.3390/genes15121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Suaeda glauca and Suaeda salsa have obvious morphological features and strongly tolerate saline-alkali environments. However, the mechanisms that lead to the differences in saline-alkali tolerance between them remain unclear. METHODS In this study, we employed comparative transcriptome analysis to investigate S. glauca and S. salsa under saline-alkali stress. RESULTS Our sequencing efforts resulted in the identification of 99,868 unigenes. We obtained 12,021 and 6227 differentially expressed genes (DEGs) from the S. glauca and S. salsa under salt stress compared with plants in the control. Notably, 1189 and 1864 were specifically upregulated DEGs in the roots and leaves of S. salsa under saline-alkali conditions, respectively. These genes were enriched in pathways such as "Plant hormone signal transduction", "Carbon metabolism" and "Starch and sucrose metabolism". Further analysis of stress-related pathways and gene expression levels revealed that key genes involved in abscisic acid (ABA) and jasmonic acid (JA) biosynthesis, ABA signal transduction, and their downstream transcription factors were upregulated in the roots of S. salsa under saline-alkali conditions. Additionally, 24 DEGs associated with stress response were identified in the roots and leaves of both species. The expression levels of these pathways and related genes were higher in S. salsa than in S. glauca, suggesting that S. salsa enhances its saline-alkali tolerance by elevating the expression of these genes. CONCLUSIONS This study provides a new research perspective for revealing the differences in saline-alkali tolerance mechanisms between S. glauca and S. salsa, bringing forth important candidate genes for studying their saline-alkali tolerance.
Collapse
Affiliation(s)
- Qidong Yan
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Q.Y.); (P.C.)
| | - Shang Gao
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Z.); (X.G.); (L.Y.); (D.L.); (X.Z.)
- Shandong Bohua High-Efficient Ecological Agriculture Science & Technology Co., Ltd., Binzhou 256506, China;
| | - Xianglun Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Z.); (X.G.); (L.Y.); (D.L.); (X.Z.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guoping Liu
- Kenli Bureau of Agriculture and Rural Affairs, Dongying 257599, China;
| | - Peitao Chen
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Q.Y.); (P.C.)
| | - Xuanyi Gao
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Z.); (X.G.); (L.Y.); (D.L.); (X.Z.)
| | - Li Yuan
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Z.); (X.G.); (L.Y.); (D.L.); (X.Z.)
| | - Yucheng Tian
- Shandong Bohua High-Efficient Ecological Agriculture Science & Technology Co., Ltd., Binzhou 256506, China;
| | - Dapeng Li
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Z.); (X.G.); (L.Y.); (D.L.); (X.Z.)
| | - Xuepeng Zhang
- Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Z.); (X.G.); (L.Y.); (D.L.); (X.Z.)
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (Q.Y.); (P.C.)
| |
Collapse
|
2
|
Qin S, Zhang Y, Tian Z. Quantitative N-glycoproteomics characterization of differential N-glycosylation in Sorghum bicolor under salinity stress. Biochem Biophys Res Commun 2024; 737:150509. [PMID: 39137587 DOI: 10.1016/j.bbrc.2024.150509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Salt stress is one of the significant environmental stresses that severely affect plant growth and development. Here, we report quantitative N-glycoproteomics characterization of differential N-glycosylation in Sorghum bicolor under low, median and high salinity stress. 21,621 intact N-glycopeptides coming from the combination of 127 N-glycan structures on 6574 N-glycosites from 5321 proteins were identified; differential N-glycosylation was observed for 682 N-glycoproteins which are mainly involved in the pathways of biosynthesis of secondary metabolites, biosynthesis of amino acids and several metabolic pathways. 41 N-glycan structures modifying on 338 N-glycopeptides from 122 glycoproteins were co-quantified and deregulated under at least one salt stress, including enzymes of energy production and carbohydrate metabolisms, cell wall organization related proteins, glycosyltransferases and so on. Intriguingly, with increasing salt concentration, there was an increase in the percentage of complex N-glycans on the altered N-glycopeptides. Furthermore, the observation of glycoproteins with distinct salt sensitivity is noteworthy, particularly the upregulated hyposensitive glycoproteins that predominantly undergo complex N-glycan modification. This is the first N-glycoproteome description of salt stress response at the intact N-glycopeptide level in sorghum and a further validation of data reported here would likely provide deeper insights into the stress physiology of this important crop plant.
Collapse
Affiliation(s)
- Shanshan Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yumiao Zhang
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Zhang S, Wang G, Yu W, Wei L, Gao C, Li D, Guo L, Yang J, Jian S, Liu N. Multi-omics analyses reveal the mechanisms underlying the responses of Casuarina equisetifolia ssp. incana to seawater atomization and encroachment stress. BMC PLANT BIOLOGY 2024; 24:854. [PMID: 39266948 PMCID: PMC11391710 DOI: 10.1186/s12870-024-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Casuarina equisetifolia trees are used as windbreaks in subtropical and tropical coastal zones, while C. equisetifolia windbreak forests can be degraded by seawater atomization (SA) and seawater encroachment (SE). To investigate the mechanisms underlying the response of C. equisetifolia to SA and SE stress, the transcriptome and metabolome of C. equisetifolia seedlings treated with control, SA, and SE treatments were analyzed. We identified 737, 3232, 3138, and 3899 differentially expressed genes (SA and SE for 2 and 24 h), and 46, 66, 62, and 65 differentially accumulated metabolites (SA and SE for 12 and 24 h). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that SA and SE stress significantly altered the expression of genes related to plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism pathways. The accumulation of metabolites associated with the biosynthetic pathways of phenylpropanoid and amino acids, as well as starch and sucrose metabolism, and glycolysis/gluconeogenesis were significantly altered in C. equisetifolia subjected to SA and SE stress. In conclusion, C. equisetifolia responds to SA and SE stress by regulating plant hormone signal transduction, plant-pathogen interaction, biosynthesis of phenylpropanoid and amino acids, starch and sucrose metabolism, and glycolysis/gluconeogenesis pathways. Compared with SA stress, C. equisetifolia had a stronger perception and response to SE stress, which required more genes and metabolites to be regulated. This study enhances our understandings of how C. equisetifolia responds to two types of seawater stresses at transcriptional and metabolic levels. It also offers a theoretical framework for effective coastal vegetation management in tropical and subtropical regions.
Collapse
Affiliation(s)
- Shike Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Guobing Wang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Weiwei Yu
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Long Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Coastal Shelterbelt Ecosystem National Observation and Research Station, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Chao Gao
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Di Li
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Lili Guo
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Jianbo Yang
- Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Nan Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Wang Y, Yang Z, Yuan B, He L, Han Y, Wang J, Wang X. Genome-wide identification of oxidosqualene cyclase genes regulating natural rubber in Taraxacum kok-saghyz. PLANTA 2024; 260:88. [PMID: 39251530 DOI: 10.1007/s00425-024-04522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
MAIN CONCLUSION Nine TkOSC genes have been identified by genome-wide screening. Among them, TkOSC4-6 might be more crucial for natural rubber biosynthesis in Taraxacum kok-saghyz roots. Taraxacum kok-saghyz Rodin (TKS) roots contain large amounts of natural rubber, inulin, and valuable metabolites. Oxidosqualene cyclase (OSC) is a key member for regulating natural rubber biosynthesis (NRB) via the triterpenoid biosynthesis pathway. To explore the functions of OSC on natural rubber producing in TKS, its gene family members were identified in TKS genome via genome-wide screening. Nine TkOSCs were identified, which were mainly distributed in the cytoplasm. Their family genes experienced a neutral selection during the evolution process. Overall sequence homology analysis OSC proteins revealed 80.23% similarity, indicating a highly degree of conservation. Pairwise comparisons showed a multiple sequence similarity ranging from 57% to 100%. Protein interaction prediction revealed that TkOSCs may interact with baruol synthase, sterol 1,4-demethylase, lupeol synthase and squalene epoxidase. Phylogenetic analysis showed that OSC family proteins belong to two branches. TkOSC promoter regions contain cis-acting elements related to plant growth, stress response, hormones response and light response. Protein accumulation analysis demonstrated that TkOSC4, TkOSC5 and TkOSC6 proteins had strong expression levels in the root, latex and plumular axis. Comparison of gene expression patterns showed TkOSC1, TkOSC4, TkOSC5, TkOSC6, TkOSC7, TkOSC8 and TkOSC9 might be important in regulating NRB. Combination of gene and protein results revealed TkOSC4-6 might be more crucial, and the data might contribute to a more profound understanding of the roles of OSCs for NRB in TKS roots.
Collapse
Affiliation(s)
- Yongfei Wang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Zhanchao Yang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Boxuan Yuan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lixia He
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Yunyi Han
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Juanying Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xuchu Wang
- Key Laboratory of Tropical Islands Ecology, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou, 571158, People's Republic of China.
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
5
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
6
|
Mao P, Lin Q, Cao B, Qiao J, Wang K, Han X, Pang Y, Cao X, Jia B, Yang Q. Analysis of Tamarix chinensis Forest Characteristics, Salt Ion Distribution, and Non-Structural Carbohydrate Levels in the Yellow River Delta: A Spatial Study Based on Proximity to the Shoreline. PLANTS (BASEL, SWITZERLAND) 2024; 13:2372. [PMID: 39273856 PMCID: PMC11397120 DOI: 10.3390/plants13172372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
The distribution of vegetation in coastal wetlands is significantly influenced by soil properties. However, the mechanisms of how soil characteristics impact the physiological processes of Tamarix chinensis forests remain underexplored. This study examined changes in the soil physicochemical properties and structural attributes of natural T. chinensis forests in the Yellow River Delta with increasing distance from the shoreline. T. chinensis trees were classified into healthy, intermediate, and dying categories based on growth potential, and dynamic changes in salt ions and non-structural carbohydrates (NSCs) were investigated. Results indicated that increasing distance from the shoreline corresponded to decreased soil salinity and pH, and increased soil moisture. T. chinensis mortality rate decreased, while tree height and ground diameter increased with distance. Soil salt content was positively correlated with T. chinensis mortality, but negatively correlated with tree height and ground diameter. Trees with lower growth potential had higher Na+ but lower K+ and K+/Na+ ratio. Soil salt content was positively correlated with root and stem Na+, while soil moisture was positively correlated with leaf NSCs. These findings suggest that soil salt content and moisture significantly influence T. chinensis ion absorption and NSC accumulation, with sodium toxicity being a key factor in the spatial distribution of T. chinensis forests.
Collapse
Affiliation(s)
- Peili Mao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Qingzhi Lin
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Banghua Cao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Jiabao Qiao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Kexin Wang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Han
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanxiang Pang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaonan Cao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | - Bo Jia
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai'an 271018, China
| | | |
Collapse
|
7
|
Fan X, Lin H, Ding F, Wang M. Jasmonates Promote β-Amylase-Mediated Starch Degradation to Confer Cold Tolerance in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1055. [PMID: 38674464 PMCID: PMC11055051 DOI: 10.3390/plants13081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Cold stress severely restricts growth and development, reduces yields, and impairs quality in tomatoes (Solanum lycopersicum). Amylase-associated starch degradation and soluble sugar accumulation have been implicated in adaptation and resistance to abiotic stress. Here, we report a β-amylase (BAM) gene, SlBAM3, which plays a central role in tomato cold tolerance. The expression of SlBAM3 was triggered by cold stress. SlBAM3 knockout using the CRISPR/Cas9 system retarded starch degradation and reduced soluble sugar accumulation in tomato plants, eventually attenuating cold tolerance. Expression analysis revealed that the SlBAM3 transcript level was boosted by MeJA. Furthermore, MYC2, an essential component of the JA signaling pathway, could bind to the SlBAM3 promoter and directly activate SlBAM3 transcription, as revealed by yeast one-hybrid and dual LUC assays. In addition, the suppression of MYC2 resulted in increased starch accumulation, decreased soluble sugar content, and reduced tolerance to cold stress in tomato plants. Taken together, these findings demonstrate that JA positively regulates β-amylase-associated starch degradation through the MYC2-SlBAM3 module in tomato during cold stress. The results of the present work expand our understanding of the mechanisms underlying BAM gene activation and starch catabolism under cold stress. The regulatory module of SlBAM3 can be further utilized to breed tomato cultivars with enhanced cold tolerance.
Collapse
Affiliation(s)
| | | | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (X.F.); (H.L.)
| | - Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (X.F.); (H.L.)
| |
Collapse
|
8
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
9
|
Zhang Y, Qiao D, Zhang Z, Li Y, Shi S, Yang Y. Calcium signal regulated carbohydrate metabolism in wheat seedlings under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:123-136. [PMID: 38435855 PMCID: PMC10902238 DOI: 10.1007/s12298-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to explore the mechanism by which calcium (Ca) signal regulated carbohydrate metabolism and exogenous Ca alleviated salinity toxicity. Wheat seedlings were treated with sodium chloride (NaCl, 150 mM) alone or combined with 500 μM calcium chloride (CaCl2), lanthanum chloride (LaCl3) and/or ethylene glycol tetraacetic acid (EGTA) to primarily analyse carbohydrate starch and sucrose metabolism, as well as Ca signaling components. Treatment with NaCl, EGTA, or LaCl3 alone retarded wheat-seedling growth and decreased starch content accompanied by weakened ribulose-1,5-bisphosphate carboxylation/oxygenase (Rubisco) and Rubisco activase activities, as well as enhanced glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, alpha-amylase, and beta-amylase activities. However, it increased the sucrose level, up-regulated the sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities and TaSPS and TaSuSy expression together, but down-regulated the acid invertase (SA-Inv) and alkaline/neutral invertase (A/N-Inv) activities and TaSA-Inv and TaA/N-Inv expression. Except for unchanged A/N-Inv activities and TaA/N-Inv expression, adding CaCl2 effectively blocked the sodium salt-induced changes of these parameters, which was partially eliminated by EGTA or LaCl3 presence. Furthermore, NaCl treatment also significantly inhibited Ca-dependent protein kinases and Ca2+-ATPase activities and their gene expression in wheat leaves, which was effectively relieved by adding CaCl2. Taken together, CaCl2 application effectively alleviated the sodium salt-induced retardation of wheat-seedling growth by enhancing starch anabolism and sucrose catabolism, and intracellular Ca signal regulated the enzyme activities and gene expression of starch and sucrose metabolism in the leaves of sodium salt-stressed wheat seedlings.
Collapse
Affiliation(s)
- Ya Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Dan Qiao
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Zhe Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yaping Li
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Shuqian Shi
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yingli Yang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| |
Collapse
|
10
|
He J, Leng SY, Qin L. Growth, Physiology and Nutritional Quality of C 4 Halophyte Portulaca oleracea L. Grown Aeroponically in Different Percentages of Artificial Seawater under Different Light-Emitting Diode Spectral Qualities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3214. [PMID: 37765377 PMCID: PMC10535323 DOI: 10.3390/plants12183214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Edible halophyte Portulaca oleracea L., known as purslane, was grown in two percentages of artificial seawater (ASW) under two combined red (R) and blue (B) LED spectra. High salinity (40% ASW) negatively affected shoot productivity and leaf growth of purslane compared to those grown in 10% ASW. Photosynthetic pigment and total reduced nitrogen concentrations were significantly higher in purslane grown in 10% ASW than in 40% ASW. However, LED spectral quality did not markedly influence these parameters. Grown in 10% ASW under R/B 2.2, purslane had the highest maximum nitrate reductase activity, while those in 40% ASW under R/B 2.2 had the highest activation state. Under both light qualities, purslane had a sevenfold increase in proline concentration in 40% ASW than in 10% ASW. Total phenolic compounds' concentration was the highest in 10% ASW under R/B 0.9, while there were no significant differences in the accumulation of total soluble sugars and ascorbic acids among all plants. Antioxidant enzymes activities were lower in 40% ASW under R/B 2.2 compared to the other conditions. In conclusion, salinity affected the yield, physiology and nutritional quality of purslane. The impacts of LED spectral quality on purslane were only reflected by certain physiological and nutritional parameters.
Collapse
Affiliation(s)
- Jie He
- Natural Sciences and Science Education Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (S.Y.L.); (L.Q.)
| | | | | |
Collapse
|
11
|
Fu H, Yang Y. How Plants Tolerate Salt Stress. Curr Issues Mol Biol 2023; 45:5914-5934. [PMID: 37504290 PMCID: PMC10378706 DOI: 10.3390/cimb45070374] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Soil salinization inhibits plant growth and seriously restricts food security and agricultural development. Excessive salt can cause ionic stress, osmotic stress, and ultimately oxidative stress in plants. Plants exclude excess salt from their cells to help maintain ionic homeostasis and stimulate phytohormone signaling pathways, thereby balancing growth and stress tolerance to enhance their survival. Continuous innovations in scientific research techniques have allowed great strides in understanding how plants actively resist salt stress. Here, we briefly summarize recent achievements in elucidating ionic homeostasis, osmotic stress regulation, oxidative stress regulation, and plant hormonal responses under salt stress. Such achievements lay the foundation for a comprehensive understanding of plant salt-tolerance mechanisms.
Collapse
Affiliation(s)
- Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Mann A, Lata C, Kumar N, Kumar A, Kumar A, Sheoran P. Halophytes as new model plant species for salt tolerance strategies. FRONTIERS IN PLANT SCIENCE 2023; 14:1137211. [PMID: 37251767 PMCID: PMC10211249 DOI: 10.3389/fpls.2023.1137211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/11/2023] [Indexed: 05/31/2023]
Abstract
Soil salinity is becoming a growing issue nowadays, severely affecting the world's most productive agricultural landscapes. With intersecting and competitive challenges of shrinking agricultural lands and increasing demand for food, there is an emerging need to build resilience for adaptation to anticipated climate change and land degradation. This necessitates the deep decoding of a gene pool of crop plant wild relatives which can be accomplished through salt-tolerant species, such as halophytes, in order to reveal the underlying regulatory mechanisms. Halophytes are generally defined as plants able to survive and complete their life cycle in highly saline environments of at least 200-500 mM of salt solution. The primary criterion for identifying salt-tolerant grasses (STGs) includes the presence of salt glands on the leaf surface and the Na+ exclusion mechanism since the interaction and replacement of Na+ and K+ greatly determines the survivability of STGs in saline environments. During the last decades or so, various salt-tolerant grasses/halophytes have been explored for the mining of salt-tolerant genes and testing their efficacy to improve the limit of salt tolerance in crop plants. Still, the utility of halophytes is limited due to the non-availability of any model halophytic plant system as well as the lack of complete genomic information. To date, although Arabidopsis (Arabidopsis thaliana) and salt cress (Thellungiella halophila) are being used as model plants in most salt tolerance studies, these plants are short-lived and can tolerate salinity for a shorter duration only. Thus, identifying the unique genes for salt tolerance pathways in halophytes and their introgression in a related cereal genome for better tolerance to salinity is the need of the hour. Modern technologies including RNA sequencing and genome-wide mapping along with advanced bioinformatics programs have advanced the decoding of the whole genetic information of plants and the development of probable algorithms to correlate stress tolerance limit and yield potential. Hence, this article has been compiled to explore the naturally occurring halophytes as potential model plant species for abiotic stress tolerance and to further breed crop plants to enhance salt tolerance through genomic and molecular tools.
Collapse
Affiliation(s)
- Anita Mann
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Charu Lata
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Indian Institute of Wheat and Barley Research, Shimla, Himachal Pardesh, India
| | - Naresh Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- Department of Biochemistry, Eternal University, Baru Sahib, Himachal Pardesh, Ludhiana, India
| | - Ashwani Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
| | - Parvender Sheoran
- ICAR-Central Soil Salinity Research Institute, Karnl, Haryana, India
- ICAR-Agriculture Technology Application Research Center, Ludhiana, India
| |
Collapse
|
13
|
Hsieh C, Chen YH, Chang KC, Yang SY. Transcriptome analysis reveals the mechanisms for mycorrhiza-enhanced salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1072171. [PMID: 36600910 PMCID: PMC9806932 DOI: 10.3389/fpls.2022.1072171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
More than half of the global population relies on rice as a staple food, but salinization of soil presents a great threat to rice cultivation. Although previous studies have addressed the possible benefits of arbuscular mycorrhizal (AM) symbiosis for rice under salinity stress, the underlying molecular mechanisms are still unclear. In this study, we found that mycorrhizal rice had better shoot and reproductive growth and a significantly higher K+/Na+ ratio in the shoot. The reactive oxygen species (ROS) scavenging capacity in rice shoots was also improved by AM symbiosis. To elucidate the molecular mechanisms required for AM-improved salt tolerance, transcriptome analysis revealing the differentially expressed genes (DEGs) based on the response to AM symbiosis, salinity or specific tissue was performed. Thirteen percent of DEGs showed tissue-preferred responses to both AM symbiosis and salt stress and might be the key genes contributing to AM-enhanced salt tolerance. Gene Ontology (GO) enrichment analysis identified GO terms specifically appearing in this category, including cell wall, oxidoreductase activity, reproduction and ester-related terms. Interestingly, GO terms related to phosphate (Pi) homeostasis were also found, suggesting the possible role of the Pi-related signaling pathway involved in AM-enhanced salt tolerance. Intriguingly, under nonsaline conditions, AM symbiosis influenced the expression of these genes in a similar way as salinity, especially in the shoots. Overall, our results indicate that AM symbiosis may possibly use a multipronged approach to influence gene expression in a way similar to salinity, and this modification could help plants be prepared for salt stress.
Collapse
Affiliation(s)
- Chen Hsieh
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yun-Hsin Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Chieh Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Shen Y, Tu Z, Zhang Y, Zhong W, Xia H, Hao Z, Zhang C, Li H. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116024. [PMID: 36055092 DOI: 10.1016/j.jenvman.2022.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Climate change has a crucial impact on the distributions of plants, especially relict species. Hence, predicting the potential impact of climate change on the distributions of relict plants is critical for their future conservation. Liriodendron plants are relict trees, and only two natural species have survived: L. chinense and L. tulipifera. However, the extent of the impact of future climate change on the distributions of these two Liriodendron species remains unclear. Therefore, we predicted the suitable habitat distributions of two Liriodendron species under present and future climate scenarios using MaxEnt modeling. The results showed that the area of suitable habitats for two Liriodendron species would significantly decrease. However, the two relict species presented different habitat shift patterns, with a local contraction of suitable habitat for L. chinense and a northward shift in suitable habitat for L. tulipifera, indicating that changes in environmental factors will affect the distributions of these species. Among the environmental factors assessed, May precipitation induced the largest impact on the L. chinense distribution, while L. tulipifera was significantly affected by precipitation in the driest quarter. Furthermore, to explore the relationship between habitat suitability and Liriodendron stress tolerance, we analyzed six physiological indicators of stress tolerance by sampling twelve provenances of L. chinense and five provenances of L. tulipifera. The composite index of six physiological indicators was significantly negatively correlated with the habitat suitability of the species. The stress tolerance of Liriodendron plants in highly suitable areas was lower than that in areas with moderate or low suitability. Overall, these findings improve our understanding of the ecological impacts of climate change, informing future conservation efforts for Liriodendron species.
Collapse
Affiliation(s)
- Yufang Shen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yali Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weiping Zhong
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui Xia
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chengge Zhang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huogen Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
15
|
Wang D, Yang N, Zhang C, He W, Ye G, Chen J, Wei X. Transcriptome analysis reveals molecular mechanisms underlying salt tolerance in halophyte Sesuvium portulacastrum. FRONTIERS IN PLANT SCIENCE 2022; 13:973419. [PMID: 36212287 PMCID: PMC9537864 DOI: 10.3389/fpls.2022.973419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity is an important environmental problem that seriously affects plant growth and crop productivity. Phytoremediation is a cost-effective solution for reducing soil salinity and potentially converting the soils for crop production. Sesuvium portulacastrum is a typical halophyte which can grow at high salt concentrations. In order to explore the salt tolerance mechanism of S. portulacastrum, rooted cuttings were grown in a hydroponic culture containing ½ Hoagland solution with or without addition of 400 mM Na for 21 days. Root and leaf samples were taken 1 h and 21 days after Na treatment, and RNA-Seq was used to analyze transcript differences in roots and leaves of the Na-treated and control plants. A large number of differentially expressed genes (DEGs) were identified in the roots and leaves of plants grown under salt stress. Several key pathways related to salt tolerance were identified through KEGG analysis. Combined with physiological data and expression analysis, it appeared that cyclic nucleotide gated channels (CNGCs) were implicated in Na uptake and Na+/H+ exchangers (NHXs) were responsible for the extrusion and sequestration of Na, which facilitated a balance between Na+ and K+ in S. portulacastrum under salt stress. Soluble sugar and proline were identified as important osmoprotectant in salt-stressed S. portulacastrum plants. Glutathione metabolism played an important role in scavenging reactive oxygen species. Results from this study show that S. portulacastrum as a halophytic species possesses a suite of mechanisms for accumulating and tolerating a high level of Na; thus, it could be a valuable plant species used for phytoremediation of saline soils.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Nan Yang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Chaoyue Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Weihong He
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Guiping Ye
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
16
|
Wang F, Sun Z, Zhu M, Zhang Q, Sun Y, Sun W, Wu C, Li T, Zhao Y, Ma C, Zhang H, Zhao Y, Wang Z. Dissecting the Molecular Regulation of Natural Variation in Growth and Senescence of Two Eutrema salsugineum Ecotypes. Int J Mol Sci 2022; 23:ijms23116124. [PMID: 35682805 PMCID: PMC9181637 DOI: 10.3390/ijms23116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28 differentially expressed protein spots were identified in shoots and roots, respectively. The proteins identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our data revealed the evolutionary differences at the protein level between these two ecotypes. Namely, in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in the Xinjiang region.
Collapse
Affiliation(s)
- Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Zhibin Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Min Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yufei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Wei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Tongtong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| |
Collapse
|
17
|
Rodríguez-Hernández MDC, Garmendia I. Optimum growth and quality of the edible ice plant under saline conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2686-2692. [PMID: 34693528 DOI: 10.1002/jsfa.11608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ice plant is a halophyte, known for its antioxidant activity and for being a highly functional food. It is capable of increasing its contents of health-promoting compounds when subjected to certain stresses such as salinity. The objective of this work was to determine the plant's best growing conditions to achieve both an optimal production of bioactive metabolites and high crop yield. Mesembryanthemum crystallinum were grown under semi-controlled conditions and four saline treatments were applied at: 0, 100, 200 and 300 mmol L-1 sodium chloride (NaCl), respectively. RESULTS The 100 mmol L-1 NaCl treatment induced a slight increase in shoot dry weight (DW) and enhanced the leaf area. At higher salinity levels, however, the shoot biomass decreased. The concentration of starch and total proteins declined as the concentration of salt increased, while the total soluble sugars (TSS) content was lower in 100 and 300 mmol L-1 NaCl treatments. Proline increased in conditions over 100 mmol L-1 NaCl. Furthermore, plants grown with 300 mmol L-1 of NaCl presented the highest values of glutathione, ascorbic acid and vitamin C. Antioxidant enzymes activity and total phenolics increased with the severity of the salinity. CONCLUSION Ice plant accumulates high levels of health-promoting compounds when grown with 300 mmol L-1 NaCl. A high concentration of beneficial compounds, however, is detrimental to the plant's growth. Moreover, 100 mmol L-1 NaCl treatment not only improved the concentration of bioactive and antioxidant compounds but also preserved the crop yield. It could thus be interesting to promote the cultivation of this high nutritional value plant in environments of moderate salinity. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Idoia Garmendia
- Department of Earth and Environmental Sciences, University of Alicante, Alicante, Spain
| |
Collapse
|
18
|
Molecular Insights into Salinity Responsiveness in Contrasting Genotypes of Rice at the Seedling Stage. Int J Mol Sci 2022; 23:ijms23031624. [PMID: 35163547 PMCID: PMC8835730 DOI: 10.3390/ijms23031624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 01/31/2023] Open
Abstract
Salinity is one of the most common unfavorable environmental conditions that limits plant growth and development, ultimately reducing crop productivity. To investigate the underlying molecular mechanism involved in the salinity response in rice, we initially screened 238 rice cultivars after salt treatment at the seedling stage and identified two highly salt-tolerant cultivars determined by the relative damage rate parameter. The majority of cultivars (94.1%) were ranked as salt-sensitive and highly salt-sensitive. Transcriptome profiling was completed in highly salt-tolerant, moderately salt-tolerant, and salt-sensitive under water and salinity treatments at the seedling stage. Principal component analysis displayed a clear distinction among the three cultivars under control and salinity stress conditions. Several starch and sucrose metabolism-related genes were induced after salt treatment in all genotypes at the seedling stage. The results from the present study enable the identification of the ascorbate glutathione pathway, potentially participating in the process of plant response to salinity in the early growth stage. Our findings also highlight the significance of high-affinity K+ uptake transporters (HAKs) and high-affinity K+ transporters (HKTs) during salt stress responses in rice seedlings. Collectively, the cultivar-specific stress-responsive genes and pathways identified in the present study act as a useful resource for researchers interested in plant responses to salinity at the seedling stage.
Collapse
|
19
|
Ding G, Yang Q, Ruan X, Si T, Yuan B, Zheng W, Xie Q, Souleymane OA, Wang X. Proteomics analysis of the effects for different salt ions in leaves of true halophyte Sesuvium portulacastrum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:234-248. [PMID: 34920320 DOI: 10.1016/j.plaphy.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
Sesuvium portulacastrum is a true halophyte and shows an optimal development under moderate salinity with large amounts of salt ions in its leaves. However, the specific proteins in response to salt ions are remained unknown. In this study, comparative physiological and proteomic analyses of different leaves subject to NaCl, KCl, NaNO3 and KNO3 were performed. Chlorophyll content was decreased under the above four kinds of salt treatments. Starch and soluble sugar contents changed differently under different salt treatments. A total of 53 differentially accumulated proteins (DAPs) were identified by mass spectrometry. Among them, 13, 25, 26 and 25 DAPs were identified after exposure to KCl, NaCl, KNO3, and NaNO3, respectively. These DAPs belong to 47 unique genes, and 37 of them are involved in protein-protein interactions. These DAPs displayed different expression patterns after treating with different salt ions. Functional annotation revealed they are mainly involved in photosynthesis, carbohydrate and energy metabolism, lipid metabolism, and biosynthesis of secondary metabolites. Genes and proteins showed different expression profiles under different salt treatments. Enzyme activity analysis indicated P-ATPase was induced by KCl, NaCl and NaNO3, V-ATPase was induced by KCl and NaCl, whereas V-PPase activity was significantly increased after application of KNO3, but sharply inhibited by NaCl. These results might deepen our understanding of responsive mechanisms in the leaves of S. portulacastrum upon different salt ions.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Qian Yang
- South Subtropical Crop Research Institute, China Academy of Tropical Agricultural Sciences, China
| | - Xueyu Ruan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Tingting Si
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Boxuan Yuan
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wenwei Zheng
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ousmane Ahmat Souleymane
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Xuchu Wang
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
20
|
Nafshi R, Lezon TR. Predicting the Effects of Drug Combinations Using Probabilistic Matrix Factorization. FRONTIERS IN BIOINFORMATICS 2021; 1:708815. [PMID: 36303743 PMCID: PMC9581062 DOI: 10.3389/fbinf.2021.708815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drug development is costly and time-consuming, and developing novel practical strategies for creating more effective treatments is imperative. One possible solution is to prescribe drugs in combination. Synergistic drug combinations could allow lower doses of each constituent drug, reducing adverse reactions and drug resistance. However, it is not feasible to sufficiently test every combination of drugs for a given illness to determine promising synergistic combinations. Since there is a finite amount of time and resources available for finding synergistic combinations, a model that can identify synergistic combinations from a limited subset of all available combinations could accelerate development of therapeutics. By applying recommender algorithms, such as the low-rank matrix completion algorithm Probabilistic Matrix Factorization (PMF), it may be possible to identify synergistic combinations from partial information of the drug interactions. Here, we use PMF to predict the efficacy of two-drug combinations using the NCI ALMANAC, a robust collection of pairwise drug combinations of 104 FDA-approved anticancer drugs against 60 common cancer cell lines. We find that PMF is able predict drug combination efficacy with high accuracy from a limited set of combinations and is robust to changes in the individual training data. Moreover, we propose a new PMF-guided experimental design to detect all synergistic combinations without testing every combination.
Collapse
|
21
|
Leschevin M, Ismael M, Quero A, San Clemente H, Roulard R, Bassard S, Marcelo P, Pageau K, Jamet E, Rayon C. Physiological and Biochemical Traits of Two Major Arabidopsis Accessions, Col-0 and Ws, Under Salinity. FRONTIERS IN PLANT SCIENCE 2021; 12:639154. [PMID: 34234793 PMCID: PMC8256802 DOI: 10.3389/fpls.2021.639154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 06/01/2023]
Abstract
Salinity affects plant growth and development as shown with the glycophyte model plant, Arabidopsis thaliana (Arabidopsis). Two Arabidopsis accessions, Wassilewskija (Ws) and Columbia (Col-0), are widely used to generate mutants available from various Arabidopsis seed resources. However, these two ecotypes are known to be salt-sensitive with different degrees of tolerance. In our study, 3-week-old Col-0 and Ws plants were treated with and without 150 mM NaCl for 48, 72, or 96 h, and several physiological and biochemical traits were characterized on shoots to identify any specific traits in their tolerance to salinity. Before salt treatment was carried out, a different phenotype was observed between Col-0 and Ws, whose main inflorescence stem became elongated in contrast to Col-0, which only displayed rosette leaves. Our results showed that Col-0 and Ws were both affected by salt stress with limited growth associated with a reduction in nutrient uptake, a degradation of photosynthetic pigments, an increase in protein degradation, as well as showing changes in carbohydrate metabolism and cell wall composition. These traits were often more pronounced in Col-0 and occurred usually earlier than in Ws. Tandem Mass Tags quantitative proteomics data correlated well with the physiological and biochemical results. The Col-0 response to salt stress was specifically characterized by a greater accumulation of osmoprotectants such as anthocyanin, galactinol, and raffinose; a lower reactive oxygen detoxification capacity; and a transient reduction in galacturonic acid content. Pectin degradation was associated with an overaccumulation of the wall-associated kinase 1, WAK1, which plays a role in cell wall integrity (CWI) upon salt stress exposure. Under control conditions, Ws produced more antioxidant enzymes than Col-0. Fewer specific changes occurred in Ws in response to salt stress apart from a higher number of different fascilin-like arabinogalactan proteins and a greater abundance of expansin-like proteins, which could participate in CWI. Altogether, these data indicate that Col-0 and Ws trigger similar mechanisms to cope with salt stress, and specific changes are more likely related to the developmental stage than to their respective genetic background.
Collapse
Affiliation(s)
- Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Marwa Ismael
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Anthony Quero
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | | | - Romain Roulard
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Solène Bassard
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP Université de Picardie Jules Verne, Amiens, France
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| | - Elisabeth Jamet
- LRSV, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Catherine Rayon
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
22
|
Microtubule Dynamics Plays a Vital Role in Plant Adaptation and Tolerance to Salt Stress. Int J Mol Sci 2021; 22:ijms22115957. [PMID: 34073070 PMCID: PMC8199277 DOI: 10.3390/ijms22115957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Although recent studies suggest that the plant cytoskeleton is associated with plant stress responses, such as salt, cold, and drought, the molecular mechanism underlying microtubule function in plant salt stress response remains unclear. We performed a comparative proteomic analysis between control suspension-cultured cells (A0) and salt-adapted cells (A120) established from Arabidopsis root callus to investigate plant adaptation mechanisms to long-term salt stress. We identified 50 differentially expressed proteins (45 up- and 5 down-regulated proteins) in A120 cells compared with A0 cells. Gene ontology enrichment and protein network analyses indicated that differentially expressed proteins in A120 cells were strongly associated with cell structure-associated clusters, including cytoskeleton and cell wall biogenesis. Gene expression analysis revealed that expressions of cytoskeleton-related genes, such as FBA8, TUB3, TUB4, TUB7, TUB9, and ACT7, and a cell wall biogenesis-related gene, CCoAOMT1, were induced in salt-adapted A120 cells. Moreover, the loss-of-function mutant of Arabidopsis TUB9 gene, tub9, showed a hypersensitive phenotype to salt stress. Consistent overexpression of Arabidopsis TUB9 gene in rice transgenic plants enhanced tolerance to salt stress. Our results suggest that microtubules play crucial roles in plant adaptation and tolerance to salt stress. The modulation of microtubule-related gene expression can be an effective strategy for developing salt-tolerant crops.
Collapse
|
23
|
Chen L, Lu B, Liu L, Duan W, Jiang D, Li J, Zhang K, Sun H, Zhang Y, Li C, Bai Z. Melatonin promotes seed germination under salt stress by regulating ABA and GA 3 in cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:506-516. [PMID: 33773227 DOI: 10.1016/j.plaphy.2021.03.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/15/2021] [Indexed: 05/21/2023]
Abstract
Although previous studies have found that melatonin can promote seed germination, the phytohormone regulation mechanism by which exogenous melatonin mediates salt tolerance during cotton seed germination is still largely unknown. The effects of melatonin on germination traits and physiological parameters of GXM9 cotton seeds (Gossypium hirsutum L.) under three salt stress treatments (CK, germination of seeds pretreated with water alone; S, germination of seeds pretreated in 150 mM NaCl under salt stress; SM, germination of seeds pretreated in 20 μM melatonin under 150 mM NaCl solution) in the laboratory was investigated. The results showed that salt stress (150 mM) inhibited cotton seed germination and endogenous melatonin accumulation, and pretreatment with 20 μM exogenous melatonin enhanced the cotton germination rate and hypocotyl length as well as the content of endogenous melatonin during seed germination. This suggests that exogenous melatonin promotes seed germination from a morphological perspective. The contents of starch, α-amylase (EC3.3.1.1), β-galactosidase (EC3.2.1.23), abscisic acid (ABA), and gibberellin (GA) were determined simultaneously. The results showed that the α-amylase and β-galactosidase contents in the cotton seeds decreased by 56.97% and 20.18%, respectively, under salt stress compared with the control, while the starch content increased by 11.53% compared with the control at day 7. The ABA content increased by 25.18% and GA content decreased by 27.99% under salt stress compared with the control at 24 h. When exogenous melatonin was applied to the cotton seeds, the content of α-amylase and β-galactosidase increased by 121.77% and 32.76%, respectively, whereas the starch contents decreased by 13.55% compared with the S treatment at day 7. Similarly, the ABA content increased by 12.20% and the GA content increased by 4.77% at 24 h. To elucidate the molecular mechanism by which melatonin promotes seed germination under salt stress, the effects of ABA- and GA-related genes on plant hormone signal transduction were analyzed by quantitative real-time PCR and RNA sequencing. The results indicated that melatonin regulated the expression of ABA and GA genes in the plant signal transduction pathway, induced embryo root development and seed germination, and alleviated dormancy. The expression of the ABA signaling gene GhABF2 was up-regulated and GhDPBF2 was down-regulated, and the expression of GA signaling genes (e.g., GhGID1C and GhGID1B) was up-regulated by melatonin. In conclusion, melatonin enhances salt tolerance in cotton seeds by regulating ABA and GA and by mediating the expression of hormone-related genes in plant hormone signal transduction. This should help us to explore the regulatory mechanisms of cotton resistance and provide a foundation for the cultivation of new varieties.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Bin Lu
- College of Landscape and Tourism, Hebei Agricultural University, Baoding 071001, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Wenjing Duan
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Dan Jiang
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Jin Li
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation/College of Life Science, Hebei Agricultural University, Baoding, 071001, China; State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province/College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
24
|
Kaleem M, Hameed M. Functional traits for salinity tolerance in differently adapted populations of Fimbristylis complanata (Retz.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1319-1332. [PMID: 33689509 DOI: 10.1080/15226514.2021.1895718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Functional modifications in three populations of Fimbristylis complanata collected from differently salt effected habitats were evaluated. The populations were established in pots and treated with five NaCl levels (0, 100, 200, 300, and 400 mM). Population SH (collected from the highest salinities, ECe 37.94 dS m-1) exhibited better osmotic adjustment because of the higher accumulation of organic osmolytes under high salinities and was ranked as highly tolerant. Other features like an increased concentration of chlorophyll pigments ensured maintenance of photosynthetic capability, and accumulated higher K+ and Ca2+ contents that minimized the toxic effect of Na+ and maintained ion homeostasis. Salinity tolerance in the Lillah-Khewra foothills (LR) population (collected from moderately saline site, ECe 31.36 dS m-1) relied on the maintenance of shoot dry weight (SDW) and shoot and root length (RL) with a parallel accumulation of organic osmolytes and shoot Ca2+. This species is a stem succulent and can store excessive amount of salt in storage parenchyma, as indicated by the accumulation of high concentration of Na+ in shoot. The SH population, in particular, can be rated as the best for phytoremediation of salt-affected soils that accumulated more Na+ than other populations and concentration of osmolytes for turgor maintenance under high salinities. Novelty statement Fimbristylis is less explored, particularly no information available on salt tolerance of F. complanata exists in the literature.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
25
|
Plant-Growth-Promoting Bacteria Mitigating Soil Salinity Stress in Plants. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207326] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Soil deterioration has led to problems with the nutrition of the world’s population. As one of the most serious stressors, soil salinization has a negative effect on the quantity and quality of agricultural production, drawing attention to the need for environmentally friendly technologies to overcome the adverse effects. The use of plant-growth-promoting bacteria (PGPB) can be a key factor in reducing salinity stress in plants as they are already introduced in practice. Plants having halotolerant PGPB in their root surroundings improve in diverse morphological, physiological, and biochemical aspects due to their multiple plant-growth-promoting traits. These beneficial effects are related to the excretion of bacterial phytohormones and modulation of their expression, improvement of the availability of soil nutrients, and the release of organic compounds that modify plant rhizosphere and function as signaling molecules, thus contributing to the plant’s salinity tolerance. This review aims to elucidate mechanisms by which PGPB are able to increase plant tolerance under soil salinity.
Collapse
|
26
|
Ermilova E. Cold Stress Response: An Overview in Chlamydomonas. FRONTIERS IN PLANT SCIENCE 2020; 11:569437. [PMID: 33013991 PMCID: PMC7494811 DOI: 10.3389/fpls.2020.569437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Low temperature (or cold) is one of the major environmental factors that limit the growth and development of many plants. Various plant species have evolved complex mechanisms to adjust to decreased temperature. Mesophilic chlorophytes are a widely distributed group of eukaryotic photosynthetic organisms, but there is insufficient information about the key molecular processes of their cold acclimation. The best available model for studying how chlorophytes respond to and cope with variations in temperature is the unicellular green alga Chlamydomonas reinhardtii. Chlamydomonas has been widely used for decades as a model system for studying the fundamental mechanisms of the plant heat stress response. At present, unraveling novel cold-regulated events in Chlamydomonas has attracted increasing research attention. This mini-review summarizes recent progress on low-temperature-dependent processes in the model alga, while information on other photosynthetic organisms (cyanobacteria and land plants) was used to strengthen generalizations or specializations of cold-induced mechanisms in plant evolution. Here, we describe recent advances in our understanding of cold stress response in Chlamydomonas, discuss areas of controversy, and highlight potential future directions in cold acclimation research.
Collapse
|
27
|
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:850-862. [PMID: 32329163 DOI: 10.1111/plb.13124] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
Salt stress negatively affects growth and development of plants. However, it is hypothesized that plant growth-promoting endophytic bacteria can greatly alleviate the adverse effects of salinity and can promote growth and development of plants. In the present research, we aimed to isolate endophytic bacteria from halotolerant plants and evaluate their capacity for promoting crop plant growth. The bacterial endophytes were isolated from selected plants inhabiting sand dunes at Pohang beach, screened for plant growth-promoting traits and applied to rice seedlings under salt stress (NaCl; 150 mm). Out of 59 endophytic bacterial isolates, only six isolates, i.e. Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, Micrococcus yunnanensis SA2, Enterobacter tabaci SA3, resulted in a significant increase in the growth of Waito-C rice. The cultural filtrates of bacterial endophytes were tested for phytohormones, including indole-3-acetic acid, gibberellins and organic acids. Inoculation of the selected strains considerably reduced the amount of endogenous ABA in rice plants under NaCl stress, however, they increased GSH and sugar content. Similarly, these strains augmented the expression of flavin monooxygenase (OsYUCCA1) and auxin efflux carrier (OsPIN1) genes under salt stress. In conclusion, the pragmatic application of the above selected bacterial strains alleviated the adverse effects of NaCl stress and enhanced rice growth attributes by producing various phytohormones.
Collapse
Affiliation(s)
- M A Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - S Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - A L Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - A Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - R Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - S Ali
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - M Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - K-M Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - I-J Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
28
|
Do TH, Pongthai P, Ariyarathne M, Teh OK, Fujita T. AP2/ERF transcription factors regulate salt-induced chloroplast division in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2020; 133:537-548. [PMID: 32314112 DOI: 10.1007/s10265-020-01195-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/08/2020] [Indexed: 05/23/2023]
Abstract
Chloroplast division is a critical process for the maintenance of appropriate chloroplast number in plant cells. It is known that in some plant species and cell types, environmental stresses can affect chloroplast division, differentiation and morphology, however the significance and regulation of these processes are largely unknown. Here we investigated the regulation of salt stress-induced chloroplast division in protonemal cells of the moss, Physcomitrella patens, and found that, salt stress as one of the major abiotic stresses, induced chloroplast division and resulted in increased chloroplast numbers. We further identified three APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors (TFs) that were responsible for this regulation. These AP2/ERF genes were up-regulated under salt stress, and amino acid sequences and phylogenetic analyses indicated that all TFs possess only one conserved AP2 domain and likely belong to the same subgroup of ERF-B3 in the AP2/ERF superfamily. Overexpression of these TFs significantly increased the chloroplast number even in the absence of NaCl stress. On the contrary, inducible overexpression of the dominant repressor form of these TFs suppressed salt stress-induced chloroplast division. Thus, our results suggest that salt stress induced-chloroplast division is regulated through members of the AP2/ERF TF superfamily.
Collapse
Affiliation(s)
- Thi Huong Do
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Prapaporn Pongthai
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, 11210, Pathum Thani, Thailand
| | | | - Ooi-Kock Teh
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
29
|
Zou HX, Zhao D, Wen H, Li N, Qian W, Yan X. Salt stress induced differential metabolic responses in the sprouting tubers of Jerusalem artichoke (Helianthus tuberosus L.). PLoS One 2020; 15:e0235415. [PMID: 32598354 PMCID: PMC7323981 DOI: 10.1371/journal.pone.0235415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
To better understand the mechanism of inherent salt resistance in Jerusalem artichoke (Helianthus tuberosus L.), physiological and metabolic responses of tubers at the initiation stage of sprouting under different salt stress levels were evaluated in the present study. As a result, 28 metabolites were identified using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Jerusalem artichoke tubers showed minor changes in metabolic response under moderate salt stress when they had not yet sprouted, where metabolism was downregulated at the start of sprouting and then upregulated significantly after plants became autotrophic. However, mild and severe salt stress levels caused different metabolic response patterns. In addition, the accumulation of fructose and sucrose was enhanced by moderate salt stress, while glucose was highly consumed. Aspartate and asparagine showed accelerated accumulation in sprouting Jerusalem artichoke tubers that became autotrophic, suggesting the enhancement of photosynthesis by moderate salt stress.
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People’s Republic of China
| | - Dongsheng Zhao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People’s Republic of China
| | - Haihong Wen
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People’s Republic of China
| | - Nan Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People’s Republic of China
| | - Weiguo Qian
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiufeng Yan
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail:
| |
Collapse
|
30
|
Kalra I, Wang X, Cvetkovska M, Jeong J, McHargue W, Zhang R, Hüner N, Yuan JS, Morgan-Kiss R. Chlamydomonas sp. UWO 241 Exhibits High Cyclic Electron Flow and Rewired Metabolism under High Salinity. PLANT PHYSIOLOGY 2020; 183:588-601. [PMID: 32229607 PMCID: PMC7271785 DOI: 10.1104/pp.19.01280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/08/2020] [Indexed: 06/01/2023]
Abstract
The Antarctic green alga Chlamydomonas sp. UWO 241 (UWO 241) is adapted to permanent low temperatures, hypersalinity, and extreme shade. One of the most striking phenotypes of UWO 241 is an altered PSI organization and constitutive PSI cyclic electron flow (CEF). To date, little attention has been paid to CEF during long-term stress acclimation, and the consequences of sustained CEF in UWO 241 are not known. In this study, we combined photobiology, proteomics, and metabolomics to understand the underlying role of sustained CEF in high-salinity stress acclimation. High salt-grown UWO 241 exhibited increased thylakoid proton motive flux and an increased capacity for nonphotochemical quenching. Under high salt, a significant proportion of the up-regulated enzymes were associated with the Calvin-Benson-Bassham cycle, carbon storage metabolism, and protein translation. Two key enzymes of the shikimate pathway, 3-deoxy-d-arabinoheptulosonate 7-phosphate synthase and chorismate synthase, were also up-regulated, as well as indole-3-glycerol phosphate synthase, an enzyme involved in the biosynthesis of l-Trp and indole acetic acid. In addition, several compatible solutes (glycerol, Pro, and Suc) accumulated to high levels in high salt-grown UWO 241 cultures. We suggest that UWO 241 maintains constitutively high CEF through the associated PSI-cytochrome b 6 f supercomplex to support robust growth and strong photosynthetic capacity under a constant growth regime of low temperatures and high salinity.
Collapse
Affiliation(s)
- Isha Kalra
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, Ohio 45056
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Jooyeon Jeong
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | | | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Norman Hüner
- Department of Biology and Biotron Centre for Experimental Climate Change, University of Western Ontario, London N6A 3K7, Ontario, Canada
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77840
| | | |
Collapse
|
31
|
Duscha K, Martins Rodrigues C, Müller M, Wartenberg R, Fliegel L, Deitmer JW, Jung M, Zimmermann R, Neuhaus HE. 14-3-3 Proteins and Other Candidates form Protein-Protein Interactions with the Cytosolic C-terminal End of SOS1 Affecting Its Transport Activity. Int J Mol Sci 2020; 21:ijms21093334. [PMID: 32397251 PMCID: PMC7246916 DOI: 10.3390/ijms21093334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/18/2023] Open
Abstract
The plasma membrane transporter SOS1 (SALT-OVERLY SENSITIVE1) is vital for plant survival under salt stress. SOS1 activity is tightly regulated, but little is known about the underlying mechanism. SOS1 contains a cytosolic, autoinhibitory C-terminal tail (abbreviated as SOS1 C-term), which is targeted by the protein kinase SOS2 to trigger its transport activity. Here, to identify additional binding proteins that regulate SOS1 activity, we synthesized the SOS1 C-term domain and used it as bait to probe Arabidopsis thaliana cell extracts. Several 14-3-3 proteins, which function in plant salt tolerance, specifically bound to and interacted with the SOS1 C-term. Compared to wild-type plants, when exposed to salt stress, Arabidopsis plants overexpressing SOS1 C-term showed improved salt tolerance, significantly reduced Na+ accumulation in leaves, reduced induction of the salt-responsive gene WRKY25, decreased soluble sugar, starch, and proline levels, less impaired inflorescence formation and increased biomass. It appears that overexpressing SOS1 C-term leads to the sequestration of inhibitory 14-3-3 proteins, allowing SOS1 to be more readily activated and leading to increased salt tolerance. We propose that the SOS1 C-term binds to previously unknown proteins such as 14-3-3 isoforms, thereby regulating salt tolerance. This finding uncovers another regulatory layer of the plant salt tolerance program.
Collapse
Affiliation(s)
- Kerstin Duscha
- Department of Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany; (K.D.); (C.M.R.); (M.M.); (R.W.)
| | - Cristina Martins Rodrigues
- Department of Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany; (K.D.); (C.M.R.); (M.M.); (R.W.)
| | - Maria Müller
- Department of Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany; (K.D.); (C.M.R.); (M.M.); (R.W.)
| | - Ruth Wartenberg
- Department of Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany; (K.D.); (C.M.R.); (M.M.); (R.W.)
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada;
| | - Joachim W. Deitmer
- Department of Zoology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany;
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, D-66421 Homburg, Germany; (M.J.); (R.Z.)
| | - Richard Zimmermann
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, D-66421 Homburg, Germany; (M.J.); (R.Z.)
| | - H. Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany; (K.D.); (C.M.R.); (M.M.); (R.W.)
- Correspondence: ; Tel.: +49-631-2052372; Fax: +49-631-205-2600
| |
Collapse
|
32
|
Abstract
Crop loss due to soil salinization is an increasing threat to agriculture worldwide. This review provides an overview of cellular and physiological mechanisms in plant responses to salt. We place cellular responses in a time- and tissue-dependent context in order to link them to observed phases in growth rate that occur in response to stress. Recent advances in phenotyping can now functionally or genetically link cellular signaling responses, ion transport, water management, and gene expression to growth, development, and survival. Halophytes, which are naturally salt-tolerant plants, are highlighted as success stories to learn from. We emphasize that (a) filling the major knowledge gaps in salt-induced signaling pathways, (b) increasing the spatial and temporal resolution of our knowledge of salt stress responses, (c) discovering and considering crop-specific responses, and (d) including halophytes in our comparative studies are all essential in order to take our approaches to increasing crop yields in saline soils to the next level.
Collapse
Affiliation(s)
- Eva van Zelm
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
33
|
Benjamin JJ, Miras-Moreno B, Araniti F, Salehi H, Bernardo L, Parida A, Lucini L. Proteomics Revealed Distinct Responses to Salinity between the Halophytes Suaeda maritima (L.) Dumort and Salicornia brachiata (Roxb). PLANTS 2020; 9:plants9020227. [PMID: 32050637 PMCID: PMC7076546 DOI: 10.3390/plants9020227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023]
Abstract
Plant resistance to salinity stress is one of the main challenges of agriculture. The comprehension of the molecular and cellular mechanisms involved in plant tolerance to salinity can help to contrast crop losses due to high salt conditions in soil. In this study, Salicornia brachiata and Suaeda maritima, two plants with capacity to adapt to high salinity levels, were investigated at proteome level to highlight the key processes involved in their tolerance to NaCl. With this purpose, plants were treated with 200 mM NaCl as optimal concentration and 500 mM NaCl as a moderate stressing concentration for 14 days. Indeed, 200 mM NaCl did not result in an evident stress condition for both species, although photosynthesis was affected (with a general up accumulation of photosynthesis-related proteins in S. brachiata under salinity). Our findings indicate a coordinated response to salinity in both the halophytes considered, under NaCl conditions. In addition to photosynthesis, heat shock proteins and peroxidase, expansins, signaling processes, and modulation of transcription/translation were affected by salinity. Interestingly, our results suggested distinct mechanisms of tolerance to salinity between the two species considered, with S. brachiata likely having a more efficient mechanism of response to NaCl.
Collapse
Affiliation(s)
- Jenifer Joseph Benjamin
- Department of Plant molecular Biology, MS Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Taramani, Chennai 600113, India;
| | - Begoña Miras-Moreno
- Council for Agricultural Research and Economics—Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
- Correspondence: (B.M.-M.); (A.P.)
| | - Fabrizio Araniti
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, I-89124 Reggio Calabria, Italy;
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu Ali Sina University, Hamedan 65178-38695, Iran;
| | - Letizia Bernardo
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.B.); (L.L.)
| | - Ajay Parida
- Department of Plant molecular Biology, MS Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Taramani, Chennai 600113, India;
- Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 10, Odisha 751023, India
- Correspondence: (B.M.-M.); (A.P.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (L.B.); (L.L.)
| |
Collapse
|
34
|
Geng G, Li R, Stevanato P, Lv C, Lu Z, Yu L, Wang Y. Physiological and Transcriptome Analysis of Sugar Beet Reveals Different Mechanisms of Response to Neutral Salt and Alkaline Salt Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:571864. [PMID: 33193507 PMCID: PMC7604294 DOI: 10.3389/fpls.2020.571864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
The salinization and alkalization of soil are widespread environmental problems. Sugar beet (B. vulgaris L.) is a moderately salt tolerant glycophyte, but little is known about the different mechanisms of sugar beet response to salt and alkaline stresses. The aim of this study was to investigate the influence of neutral salt (NaCl:Na2SO4, 1:1) and alkaline salt (Na2CO3) treatment on physiological and transcriptome changes in sugar beet. We found that a low level of neutral salt (NaCl:Na2SO4; 1:1, Na+ 25 mM) or alkaline salt (Na2CO3, Na+ 25 mM) significantly enhanced total biomass, leaf area and photosynthesis indictors in sugar beet. Under a high concentration of alkaline salt (Na2CO3, Na+ 100 mM), the growth of plants was not significantly affected compared with the control. But a high level of neutral salt (NaCl: Na2SO4; 1:1, Na+ 100 mM) significantly inhibited plant growth and photosynthesis. Furthermore, sugar beet tends to synthesize higher levels of soluble sugar and reducing sugar to cope with high neutral salt stress, and more drastic changes in indole acetic acid (IAA) and abscisic acid (ABA) contents were detected. We used next-generation RNA-Seq technique to analyze transcriptional changes under neutral salt and alkaline salt treatment in sugar beet. Overall, 4,773 and 2,251 differentially expressed genes (DEGs) were identified in leaves and roots, respectively. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that genes involving cutin, suberine and wax biosynthesis, sesquiterpenoid and triterpenoid biosynthesis and flavonoid biosynthesis had simultaneously changed expression under low neutral salt or alkaline salt, so these genes may be related to stimulating sugar beet growth in both low salt treatments. Genes enriched in monoterpenoid biosynthesis, amino acids metabolism and starch and sucrose metabolism were specifically regulated to respond to the high alkaline salt. Meanwhile, compared with high alkaline salt, high neutral salt induced the expression change of genes involved in DNA replication, and decreased the expression of genes participating in cutin, suberine and wax biosynthesis, and linoleic acid metabolism. These results indicate the presence of different mechanisms responsible for sugar beet responses to neutral salt and alkaline salt stresses.
Collapse
Affiliation(s)
- Gui Geng
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Renren Li
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Legnaro, Padua, Italy
| | - Chunhua Lv
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhengyu Lu
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lihua Yu
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuguang Wang
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang,
| |
Collapse
|
35
|
Chen G, Hu J, Dong L, Zeng D, Guo L, Zhang G, Zhu L, Qian Q. The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN2. Biomolecules 2019; 10:biom10010017. [PMID: 31877655 PMCID: PMC7022601 DOI: 10.3390/biom10010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A panel of ethane-methyl-sulfonate-mutagenized japonica rice lines was grown in the presence of salinity in order to identify genes required for the expression of salinity tolerance. A highly nontolerant selection proved to harbor a mutation in FLN2, a gene which encodes fructokinase-like protein2. Exposure of wild-type rice to salinity up-regulated FLN2, while a CRISPR/Cas9-generated FLN2 knockout line was hypersensitive to the stress. Both ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the abundance of the transcript generated by a number of genes encoding components of sucrose synthesis were lower in the knockout line than in wild-type plants’ leaves, while the sucrose contents of the leaf and root were, respectively, markedly increased and decreased. That sugar partitioning to the roots was impaired in FLN2 knockout plants was confirmed by the observation that several genes involved in carbon transport were down-regulated in both the leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase, and neutral invertase activity were distinctly lower in the knockout plants’ roots than in those of wild-type plants, particularly when the plants were exposed to salinity stress. The compromised salinity tolerance exhibited by the FLN2 knockout plants was likely a consequence of an inadequate supply of the assimilate required to support growth, a problem which was rectifiable by providing an exogenous supply of sucrose. The conclusion was that FLN2, on account of its influence over sugar metabolism, is important in the context of seedling growth and the rice plant’s response to salinity stress.
Collapse
Affiliation(s)
- Guang Chen
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | | | | | | | | | | | - Li Zhu
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | - Qian Qian
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| |
Collapse
|
36
|
da Silva HA, de Oliveira DFA, Avelino AP, de Macêdo CEC, Barros-Galvão T, Voigt EL. Salt stress differentially regulates mobilisation of carbon and nitrogen reserves during seedling establishment of Pityrocarpa moniliformis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1110-1118. [PMID: 31173441 DOI: 10.1111/plb.13017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Seedling establishment is a critical step in environment colonisation by higher plants that frequently occurs under adverse conditions. Thus, we carried out an integrated analysis of seedling growth, water status, ion accumulation, reserve mobilisation, metabolite partitioning and hydrolase activity during seedling establishment of the native Caatinga species Piptadenia moniliformis (Benth.) Luckow & R.W. Jobson under salinity. Two-day-old seedlings were cultivated in vitro for 4 days in water agar (control) or supplemented with 50 or 100 mm NaCl. Biochemical determinations were performed according to standard spectrophotometric protocols. We found that 100 mm NaCl stimulated starch degradation, amylase activity and soluble sugar accumulation, but limited storage protein hydrolysis in the cotyledons of P. moniliformis seedlings. Although Na+ accumulation in the seedling affected K+ partitioning between different organs, it was not possible to associate the salt-induced changes in reserve mobilisation with Na+ toxicity, or water status, in the cotyledons. Remarkably, we found that starch content increased in the roots of P. moniliformis seedlings under 100 mm NaCl, probably in response to the toxic effects of Na+ . The mobilisation of carbon and nitrogen reserves is independently regulated in P. moniliformis seedlings under salt stress. The salt-induced delay in seedling establishment and the resulting changes in the source-sink relationship may lead to storage protein retention in the cotyledons. Possibly, the intensification of starch mobilisation in the cotyledons supported starch accumulation in the root as a potential mechanism to mitigate Na+ toxicity.
Collapse
Affiliation(s)
- H A da Silva
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - D F A de Oliveira
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - A P Avelino
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - C E C de Macêdo
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - T Barros-Galvão
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - E L Voigt
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
37
|
Zang D, Wang J, Zhang X, Liu Z, Wang Y. Arabidopsis heat shock transcription factor HSFA7b positively mediates salt stress tolerance by binding to an E-box-like motif to regulate gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5355-5374. [PMID: 31145794 PMCID: PMC6793466 DOI: 10.1093/jxb/erz261] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
Plant heat shock transcription factors (HSFs) are involved in heat and other abiotic stress responses. However, their functions in salt tolerance are little known. In this study, we characterized the function of a HSF from Arabidopsis, AtHSFA7b, in salt tolerance. AtHSFA7b is a nuclear protein with transactivation activity. ChIP-seq combined with an RNA-seq assay indicated that AtHSFA7b preferentially binds to a novel cis-acting element, termed the E-box-like motif, to regulate gene expression; it also binds to the heat shock element motif. Under salt conditions, AtHSFA7b regulates its target genes to mediate serial physiological changes, including maintaining cellular ion homeostasis, reducing water loss rate, decreasing reactive oxygen species accumulation, and adjusting osmotic potential, which ultimately leads to improved salt tolerance. Additionally, most cellulose synthase-like (CSL) and cellulose synthase (CESA) family genes were inhibited by AtHSFA7b; some of them were randomly selected for salt tolerance characterization, and they were mainly found to negatively modulate salt tolerance. By contrast, some transcription factors (TFs) were induced by AtHSFA7b; among them, we randomly identified six TFs that positively regulate salt tolerance. Thus, AtHSFA7b serves as a transactivator that positively mediates salinity tolerance mainly through binding to the E-box-like motif to regulate gene expression.
Collapse
Affiliation(s)
- Dandan Zang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jingxin Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Zhujun Liu
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
| | - Yucheng Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, China
- Correspondence:
| |
Collapse
|
38
|
Chang L, Wang L, Peng C, Tong Z, Wang D, Ding G, Xiao J, Guo A, Wang X. The chloroplast proteome response to drought stress in cassava leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:351-362. [PMID: 31422174 DOI: 10.1016/j.plaphy.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Cassava is an important tropical crop with strong resistance to drought stress. The chloroplast, the site of photosynthesis, is sensitive to stress, and the drought-response proteins in cassava chloroplasts are worthy of investigation. In this study, cassava leaves were collected for ultra-structure observation from plants subjected to different drought stress conditions. Our results showed that drought stress can promote starch accumulation in cassava chloroplasts. To evaluate changes in chloroplast proteins under different drought conditions, two-dimensional electrophoresis was performed using purified chloroplasts, which resulted in the identification of 26 unique chloroplast proteins responsive to drought stress. These drought-responsive proteins are predominantly related to photosynthesis, carbon and nitrogen metabolism, and amino acid metabolism. Among them, most photosynthesis-related proteins are downregulated, with decreases in photosynthetic parameters upon drought stress. Several proteins associated with carbon and nitrogen metabolism, including rubisco and carbonic anhydrase, were upregulated, which might promote drought tolerance in cassava by enhancing the carbohydrate conversion efficiency and protecting the plant from oxidative stress. Our proteomic data not only provide insight into the complement of proteins in cassava chloroplasts but also further our overall understanding of drought-responsive proteins in cassava chloroplasts.
Collapse
Affiliation(s)
- Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Limin Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; College of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Dan Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guohua Ding
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Junhan Xiao
- College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China; College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
39
|
Dong J, Zhao J, Zhang S, Yang T, Liu Q, Mao X, Fu H, Yang W, Liu B. Physiological and genome-wide gene expression analyses of cold-induced leaf rolling at the seedling stage in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Tian S, Guo R, Zou X, Zhang X, Yu X, Zhan Y, Ci D, Wang M, Wang Y, Si T. Priming With the Green Leaf Volatile (Z)-3-Hexeny-1-yl Acetate Enhances Salinity Stress Tolerance in Peanut ( Arachis hypogaea L.) Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:785. [PMID: 31333683 PMCID: PMC6621544 DOI: 10.3389/fpls.2019.00785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 05/17/2023]
Abstract
Green leaf volatiles play vital roles in plant biotic stress; however, their functions in plant responses to abiotic stress have not been determined. The aim of this study was to investigate the possible role of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of green leaf volatile, in alleviating the salinity stress of peanut (Arachis hypogaea L.) seedlings and the underlying physiological mechanisms governing this effect. One salt-sensitive and one salt-tolerant peanut genotype were primed with 200 μM Z-3-HAC at the 4-week-old stage before they were exposed to salinity stress. Physiological measurements showed that the primed seedlings possessed higher relative water content, net photosynthetic rate, maximal photochemical efficiency of photosystem II, activities of the antioxidant enzymes, and osmolyte accumulation under salinity conditions. Furthermore, the reactive oxygen species, electrolyte leakage, and malondialdehyde content in the third fully expanded leaves were significantly lower than in nonprimed plants. Additionally, we found that application of Z-3-HAC increased the total length, surface area, and volume of the peanut roots under salinity stress. These results indicated that the green leaf volatile Z-3-HAC protects peanut seedlings against damage from salinity stress through priming for modifications of photosynthetic apparatus, antioxidant systems, osmoregulation, and root morphology.
Collapse
Affiliation(s)
- Shufei Tian
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Runze Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuan Zhan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dunwei Ci
- Shandong Peanut Research Institute, Qingdao, China
| | - Minglun Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
41
|
Dong S, Beckles DM. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:80-93. [PMID: 30685652 DOI: 10.1016/j.jplph.2019.01.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/01/2019] [Accepted: 01/12/2019] [Indexed: 05/21/2023]
Abstract
Starch is a significant store of sugars, and the starch-sugar interconversion in source and sink tissues plays a profound physiological role in all plants. In this review, we discuss how changes in starch metabolism can facilitate adaptive changes in source-sink carbon allocation for protection against environmental stresses. The stress-related roles of starch are described, and published mechanisms by which starch metabolism responds to short- or long-term water deficit, salinity, or extreme temperatures are discussed. Numerous examples of starch metabolism as a stress response are also provided, focusing on studies where carbohydrates and cognate enzymes were assayed in source, sink, or both. We develop a model that integrates these findings with the theoretical and known roles of sugars and starch in various species, tissues, and developmental stages. In this model, localized starch degradation into sugars is vital to the plant cold stress response, with the sugars produced providing osmoprotection. In contrast, high starch accumulation is prominent under salinity stress, and is associated with higher assimilate allocation from source to sink. Our model explains how starch-sugar interconversion can be a convergent point for regulating carbon use in stress tolerance at the whole-plant level.
Collapse
Affiliation(s)
- Shaoyun Dong
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA 95616, USA; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Luo XW, Zhang DY, Zhu TH, Zhou XG, Peng J, Zhang SB, Liu Y. Adaptation mechanism and tolerance of Rhodopseudomonas palustris PSB-S under pyrazosulfuron-ethyl stress. BMC Microbiol 2018; 18:207. [PMID: 30526497 PMCID: PMC6286529 DOI: 10.1186/s12866-018-1361-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrazosulfuron-ethyl is a long lasting herbicide in the agro-ecosystem and its residue is toxic to crops and other non-target organisms. A better understanding of molecular basis in pyrazosulfuron-ethyl tolerant organisms will shed light on the adaptive mechanisms to this herbicide. RESULTS Pyrazosulfuron-ethyl inhibited biomass production in Rhodopseudomonas palustris PSB-S, altered cell morphology, suppressed flagella formation, and reduced pigment biosynthesis through significant suppression of carotenoids biosynthesis. A total of 1127 protein spots were detected in the two-dimensional gel electrophoresis. Among them, 72 spots representing 56 different proteins were found to be differently expressed using MALDI-TOF/TOF-MS, including 26 up- and 30 down-regulated proteins in the pyrazosulfuron-ethyl-treated PSB-S cells. The up-regulated proteins were involved predominantly in oxidative stress or energy generation pathways, while most of the down-regulated proteins were involved in the biomass biosynthesis pathway. The protein expression profiles suggested that the elongation factor G, cell division protein FtsZ, and proteins associated with the ABC transporters were crucial for R. palustris PSB-S tolerance against pyrazosulfuron-ethyl. CONCLUSION Up-regulated proteins, including elongation factor G, cell division FtsZ, ATP synthase, and superoxide dismutase, and down-regulated proteins, including ALS III and ABC transporters, as well as some unknown proteins might play roles in R. palustris PSB-S adaptation to pyrazosulfuron-ethyl induced stresses. Functional validations of these candidate proteins should help to develope transgenic crops resistant to pyrazosulfuron-ethyl.
Collapse
Affiliation(s)
- Xiang-Wen Luo
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - De-Yang Zhang
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - Teng-Hui Zhu
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546 USA
| | - Jing Peng
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| | - Song-Bai Zhang
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
| | - Yong Liu
- Key laboratory of pest management of horticultural crop of Hunan province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, No 726 Second Yuanda Road, Furong District, Changsha, 410125 Hunan province People’s Republic of China
- Plant Protection College, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
43
|
Kazachkova Y, Eshel G, Pantha P, Cheeseman JM, Dassanayake M, Barak S. Halophytism: What Have We Learnt From Arabidopsis thaliana Relative Model Systems? PLANT PHYSIOLOGY 2018; 178:972-988. [PMID: 30237204 PMCID: PMC6236594 DOI: 10.1104/pp.18.00863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 05/06/2023]
Abstract
Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis (Arabidopsis thaliana) relatives, Eutrema salsugineum and Schrenkiella parvula, have been established as transformation-competent models with various genetic resources including high-quality genome assemblies. These models have facilitated powerful comparative analyses with salt-sensitive Arabidopsis to unravel the genetic adaptations that enable a halophytic lifestyle. The aim of this review is to explore what has been learned about halophytism using E. salsugineum and S. parvula We consider evidence from physiological and molecular studies suggesting that differences in salt tolerance between related halophytes and salt-sensitive plants are associated with alterations in the regulation of basic physiological, biochemical, and molecular processes. Furthermore, we discuss how salt tolerance mechanisms of the halophytic models are reflected at the level of their genomes, where evolutionary processes such as subfunctionalization and/or neofunctionalization have altered the expression and/or functions of genes to facilitate adaptation to saline conditions. Lastly, we summarize the many areas of research still to be addressed with E. salsugineum and S. parvula as well as obstacles hindering further progress in understanding halophytism.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Gil Eshel
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John M Cheeseman
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
44
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
45
|
Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 2018; 45:1111-1124. [DOI: 10.1007/s11033-018-4262-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
46
|
Zhang J, He L, Wu Y, Ma W, Chen H, Ye Z. Comparative proteomic analysis of Pogostemon cablin leaves after continuous cropping. Protein Expr Purif 2018; 152:13-22. [PMID: 30017744 DOI: 10.1016/j.pep.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/19/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
A proteomic approach was used to understand the molecular mechanisms underlying obstacles to the continuous cropping of Pogostemon cablin. We examined differences in protein abundance between control (CK) and continuously cropped (TR) P. cablin leaves at different time points (90, 150, and 210 days after culture). Comparative analysis by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) revealed 183 differentially expressed protein spots, of which 87 proteins or isoforms were identified using mass spectrometry. Among these differentially expressed proteins (DEPs), 50 proteins or isoforms showed increased abundance and 37 proteins or isoforms showed decreased abundance in the TR sample compared with the abundance in the CK sample. Bioinformatic tools were used to analyze the DEPs. These proteins were classified into 12 categories according to clusters of orthologous groups (COG) analysis, with the majority being involved in post-translational modification, protein turnover, and chaperones, followed by carbohydrate transport and metabolism, and finally, energy production and conversion. Protein-protein interactions revealed that 18 DEPs were involved in energy metabolism, 6 DEPs were involved in stress response, and 4 DEPs were involved in amino acid biosynthesis. Continuous cropping altered the expression of proteins related to energy metabolism, carbohydrate metabolism, and amino acid metabolism in P. cablin leaves. Among these processes, the most affected was energy metabolism, which may be pivotal for resistance to continuous cropping.
Collapse
Affiliation(s)
- Junfeng Zhang
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - Liping He
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - Yougen Wu
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
| | - Wentin Ma
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - He Chen
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| | - Zhouchen Ye
- Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China
| |
Collapse
|
47
|
Gairola S, Al Shaer KI, Al Harthi EK, Mosa KA. Strengthening desert plant biotechnology research in the United Arab Emirates: a viewpoint. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:521-533. [PMID: 30042610 PMCID: PMC6041242 DOI: 10.1007/s12298-018-0551-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 05/09/2023]
Abstract
The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.
Collapse
Affiliation(s)
- Sanjay Gairola
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, University City, Sharjah, P. Box 60999, Sharjah, UAE
| | - Khawla I. Al Shaer
- Plant Molecular Biology and Biotechnology Laboratory, Sharjah Research Academy, University City, Sharjah, P. Box 60999, Sharjah, UAE
| | - Eman K. Al Harthi
- Plant Molecular Biology and Biotechnology Laboratory, Sharjah Research Academy, University City, Sharjah, P. Box 60999, Sharjah, UAE
| | - Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
48
|
Dong S, Zhang J, Beckles DM. A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Sci Rep 2018; 8:9314. [PMID: 29915332 PMCID: PMC6006365 DOI: 10.1038/s41598-018-27610-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 11/09/2022] Open
Abstract
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation.
Collapse
Affiliation(s)
- Shaoyun Dong
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA
| | - Joshua Zhang
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
49
|
Zhang A, Han D, Wang Y, Mu H, Zhang T, Yan X, Pang Q. Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. PLANTA 2018; 247:715-732. [PMID: 29185033 DOI: 10.1007/s00425-017-2818-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/18/2017] [Indexed: 05/21/2023]
Abstract
Ribosome activation and sugar metabolic process mainly act on the regulation of salt tolerance in the bioenergy crop Helianthus tuberosus L. as dissected by integrated transcriptomic and proteomic analyses. Helianthus tuberosus L. is an important halophyte plant that can survive in saline-alkali soil. It is vitally necessary to build an available genomic resource to investigate the molecular mechanisms underlying salt tolerance in H. tuberosus. De novo assembly and annotation of transcriptomes were built for H. tuberosus using a HiSeq 4000 platform. 293,823 transcripts were identified and annotated into 190,567 unigenes. In addition, iTRAQ-labeled quantitative proteomics was carried out to detect global protein profiling as a response to salt stress. Comparative omics analysis showed that 5432 genes and 43 proteins were differentially expressed in H. tuberosus under salt stress, which were enriched in the following processes: carbohydrate metabolism, ribosome activation and translation, oxidation-reduction and ion binding. The reprogramming of transcript and protein works suggested that the induced activity of ribosome and sugar signaling may endue H. tuberosus with salt tolerance. With high-quality sequencing and annotation, the obtained transcriptomics and proteomics provide a robust genomic resource for dissecting the regulatory molecular mechanism of H. tuberosus in response to salt stress.
Collapse
Affiliation(s)
- Aiqin Zhang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Dongming Han
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Huifang Mu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Tong Zhang
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
50
|
Etesami H, Beattie GA. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Front Microbiol 2018; 9:148. [PMID: 29472908 PMCID: PMC5809494 DOI: 10.3389/fmicb.2018.00148] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering & Technology, University of Tehran, Tehran, Iran
| | - Gwyn A. Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|