1
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Human Genetics, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Sweeney N, Kim TY, Morrison CT, Li L, Acosta D, Liang J, Datla NV, Fitzgerald JA, Huang H, Liu X, Tan GH, Wu M, Karelina K, Bray CE, Weil ZM, Scharre DW, Serrano GE, Saito T, Saido TC, Beach TG, Kokiko-Cochran ON, Godbout JP, Johnson GVW, Fu H. Neuronal BAG3 attenuates tau hyperphosphorylation, synaptic dysfunction, and cognitive deficits induced by traumatic brain injury via the regulation of autophagy-lysosome pathway. Acta Neuropathol 2024; 148:52. [PMID: 39394356 PMCID: PMC11469979 DOI: 10.1007/s00401-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Nicholas Sweeney
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Cody T Morrison
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Liangping Li
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Diana Acosta
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Jiawen Liang
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Nithin V Datla
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Haoran Huang
- Medical Scientist Training Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Xianglan Liu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gregory Huang Tan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Chelsea E Bray
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Zachary M Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
| | | | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA.
| |
Collapse
|
3
|
Yu Y, Poulsen SA, Di Trapani G, Tonissen KF. Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. Antioxid Redox Signal 2024. [PMID: 38970427 DOI: 10.1089/ars.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | | | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| |
Collapse
|
4
|
Lin H, Sandkuhler S, Dunlea C, Rodwell-Bullock J, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. Autophagy 2024; 20:577-589. [PMID: 37899687 PMCID: PMC10936643 DOI: 10.1080/15548627.2023.2276622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Joel Rodwell-Bullock
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
5
|
Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, Jiang Y, Zhang YH. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front Endocrinol (Lausanne) 2023; 14:1172481. [PMID: 37600717 PMCID: PMC10436748 DOI: 10.3389/fendo.2023.1172481] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Normal levels of reactive oxygen species (ROS) play an important role in regulating follicular growth, angiogenesis and sex hormone synthesis in ovarian tissue. When the balance between ROS and antioxidants is disrupted, however, it can cause serious consequences of oxidative stress (OS), and the quantity and quality of oocytes will decline. Therefore, this review discusses the interrelationship between OS and premature ovarian insufficiency (POI), the potential mechanisms and the methods by which antioxidants can improve POI through controlling the level of OS. We found that OS can mediate changes in genetic materials, signal pathways, transcription factors and ovarian microenvironment, resulting in abnormal apoptosis of ovarian granulosa cells (GCs) and abnormal meiosis as well as decreased mitochondrial Deoxyribonucleic Acid(mtDNA) and other changes, thus accelerating the process of ovarian aging. However, antioxidants, mesenchymal stem cells (MSCs), biological enzymes and other antioxidants can delay the disease process of POI by reducing the ROS level in vivo.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Su-Na Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Lin H, Sandkuhler S, Dunlea C, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527546. [PMID: 36798173 PMCID: PMC9934686 DOI: 10.1101/2023.02.08.527546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially engage specific forms of MAPT and facilitate their clearance. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions were confirmed using in vitro binding assays with purified proteins. We provide direct evidence that NBR1 preferentially binds to monomeric MAPT, while SQSTM1 interacts predominantly with oligomeric MAPT, and that the co-chaperone BAG3 regulates the specificity of these interactions. Using an in vitro pulldown assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its binding to monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer's disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and lead to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| |
Collapse
|
7
|
Tedesco B, Vendredy L, Timmerman V, Poletti A. The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy 2023:1-23. [PMID: 36594740 DOI: 10.1080/15548627.2022.2160564] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Each protein must be synthesized with the correct amino acid sequence, folded into its native structure, and transported to a relevant subcellular location and protein complex. If any of these steps fail, the cell has the capacity to break down aberrant proteins to maintain protein homeostasis (also called proteostasis). All cells possess a set of well-characterized protein quality control systems to minimize protein misfolding and the damage it might cause. Autophagy, a conserved pathway for the degradation of long-lived proteins, aggregates, and damaged organelles, was initially characterized as a bulk degradation pathway. However, it is now clear that autophagy also contributes to intracellular homeostasis by selectively degrading cargo material. One of the pathways involved in the selective removal of damaged and misfolded proteins is chaperone-assisted selective autophagy (CASA). The CASA complex is composed of three main proteins (HSPA, HSPB8 and BAG3), essential to maintain protein homeostasis in muscle and neuronal cells. A failure in the CASA complex, caused by mutations in the respective coding genes, can lead to (cardio)myopathies and neurodegenerative diseases. Here, we summarize our current understanding of the CASA complex and its dynamics. We also briefly discuss how CASA complex proteins are involved in disease and may represent an interesting therapeutic target.Abbreviation ALP: autophagy lysosomal pathway; ALS: amyotrophic lateral sclerosis; AMOTL1: angiomotin like 1; ARP2/3: actin related protein 2/3; BAG: BAG cochaperone; BAG3: BAG cochaperone 3; CASA: chaperone-assisted selective autophagy; CMA: chaperone-mediated autophagy; DNAJ/HSP40: DnaJ heat shock protein family (Hsp40); DRiPs: defective ribosomal products; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK1/HRI: eukaryotic translation initiation factor 2 alpha kinase 1; GABARAP: GABA type A receptor-associated protein; HDAC6: histone deacetylase 6; HSP: heat shock protein; HSPA/HSP70: heat shock protein family A (Hsp70); HSP90: heat shock protein 90; HSPB8: heat shock protein family B (small) member 8; IPV: isoleucine-proline-valine; ISR: integrated stress response; KEAP1: kelch like ECH associated protein 1; LAMP2A: lysosomal associated membrane protein 2A; LATS1: large tumor suppressor kinase 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOC: microtubule organizing center; MTOR: mechanistic target of rapamycin kinase; NFKB/NF-κB: nuclear factor kappa B; NFE2L2: NFE2 like bZIP transcription factor 2; PLCG/PLCγ: phospholipase C gamma; polyQ: polyglutamine; PQC: protein quality control; PxxP: proline-rich; RAN translation: repeat-associated non-AUG translation; SG: stress granule; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; STK: serine/threonine kinase; SYNPO: synaptopodin; TBP: TATA-box binding protein; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPR: tetratricopeptide repeats; TSC1: TSC complex subunit 1; UBA: ubiquitin associated; UPS: ubiquitin-proteasome system; WW: tryptophan-tryptophan; WWTR1: WW domain containing transcription regulator 1; YAP1: Yes1 associated transcriptional regulator.
Collapse
Affiliation(s)
- Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy.,Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge, University of Antwerp, Antwerpen, Belgium
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Dipartimento di Eccellenza 2018-2027, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Lin H, Tang M, Ji C, Girardi P, Cvetojevic G, Chen D, Koren SA, Johnson GVW. BAG3 Regulation of RAB35 Mediates the Endosomal Sorting Complexes Required for Transport/Endolysosome Pathway and Tau Clearance. Biol Psychiatry 2022; 92:10-24. [PMID: 35000752 PMCID: PMC9085972 DOI: 10.1016/j.biopsych.2021.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND Declining proteostasis with aging contributes to increased susceptibility to neurodegenerative diseases, including Alzheimer's disease (AD). Emerging studies implicate impairment of the endosome-lysosome pathway as a significant factor in the pathogenesis of these diseases. Previously, we demonstrated that BAG3 regulates phosphorylated tau clearance. However, we did not fully define how BAG3 regulates endogenous tau proteostasis, especially in the early stages of disease progression. METHODS Mass spectrometric analyses were performed to identify neuronal BAG3 interactors. Multiple biochemical assays were used to investigate the BAG3-HSP70-TBC1D10B (EPI64B)-RAB35-HRS regulatory networks. Live-cell imaging was used to study the dynamics of the endosomal pathway. Immunohistochemistry and immunoblotting were performed in human AD brains and in P301S tau transgenic mice with BAG3 overexpressed. RESULTS The primary group of neuronal BAG3 interactors identified are involved in the endocytic pathway. Among them were key regulators of small GTPases, such as the RAB35 GTPase-activating protein TBC1D10B. We demonstrated that a BAG3-HSP70-TBC1D10B complex attenuates the ability of TBC1D10B to inactivate RAB35. Thus, BAG3 interacts with TBC1D10B to support the activation of RAB35 and recruitment of HRS, initiating endosomal sorting complex required for transport-mediated endosomal tau clearance. Furthermore, TBC1D10B shows significantly less colocalization with BAG3 in AD brains than in age-matched controls. Overexpression of BAG3 in P301S tau transgenic mice increased the colocalization of phosphorylated tau with the endosomal sorting complex required for transport III protein CHMP2B and reduced the levels of the mutant human tau. CONCLUSIONS We identified a novel BAG3-TBC1D10B-RAB35 regulatory axis that modulates endosomal sorting complex required for transport-dependent protein degradation machinery and tau clearance. Dysregulation of BAG3 could contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gail V. W. Johnson
- Correspondence should be addressed to: Gail V.W. Johnson, PhD, Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, , +1-585-276-3740 (voice)
| |
Collapse
|
9
|
Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. J Pers Med 2022; 12:jpm12050747. [PMID: 35629169 PMCID: PMC9146583 DOI: 10.3390/jpm12050747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
HIF-1α is a master regulator of oxygen homeostasis involved in different stages of cancer development. Thus, HIF-1α inhibition represents an interesting target for anti-cancer therapy. It was recently shown that the HIF-1α interaction with NQO1 inhibits proteasomal degradation of the former, thus suggesting that targeting the stability and/or function of NQO1 could lead to the destabilization of HIF-1α as a therapeutic approach. Since the molecular interactions of NQO1 with HIF-1α are beginning to be unraveled, in this review we discuss: (1) Structure–function relationships of HIF-1α; (2) our current knowledge on the intracellular functions and stability of NQO1; (3) the pharmacological modulation of NQO1 by small ligands regarding function and stability; (4) the potential effects of genetic variability of NQO1 in HIF-1α levels and function; (5) the molecular determinants of NQO1 as a chaperone of many different proteins including cancer-associated factors such as HIF-1α, p53 and p73α. This knowledge is then further discussed in the context of potentially targeting the intracellular stability of HIF-1α by acting on its chaperone, NQO1. This could result in novel anti-cancer therapies, always considering that the substantial genetic variability in NQO1 would likely result in different phenotypic responses among individuals.
Collapse
|
10
|
Lin H, Koren SA, Cvetojevic G, Girardi P, Johnson GV. The role of BAG3 in health and disease: A "Magic BAG of Tricks". J Cell Biochem 2022; 123:4-21. [PMID: 33987872 PMCID: PMC8590707 DOI: 10.1002/jcb.29952] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023]
Abstract
The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Shon A. Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gregor Cvetojevic
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| | - Gail V.W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester NY 14642 USA
| |
Collapse
|
11
|
Luthold C, Lambert H, Guilbert SM, Rodrigue MA, Fuchs M, Varlet AA, Fradet-Turcotte A, Lavoie JN. CDK1-Mediated Phosphorylation of BAG3 Promotes Mitotic Cell Shape Remodeling and the Molecular Assembly of Mitotic p62 Bodies. Cells 2021; 10:cells10102638. [PMID: 34685619 PMCID: PMC8534064 DOI: 10.3390/cells10102638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Margit Fuchs
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Amélie Fradet-Turcotte
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Quebec, QC G1V0A6, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Quebec, QC G1V0A6, Canada
- Correspondence:
| |
Collapse
|
12
|
Sun SY, Hu XT, Yu XF, Zhang YY, Liu XH, Liu YH, Wu SH, Li YY, Cui SX, Qu XJ. Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMR-D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer. Br J Pharmacol 2021; 178:2351-2369. [PMID: 33645631 DOI: 10.1111/bph.15422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE It is well known that microsatellite instability-high (MSI-H) is associated with 5-fluorouracil (5-FU) resistance in colorectal cancer. MSI-H is the phenotype of DNA mismatch repair deficiency (MMR-D), mainly occurring due to hypermethylation of MLH1 promoter CpG island. However, the mechanisms of MMR-D/MSI-H are unclear. We aim to investigate the pathway of MMR-D/MSI-H involved in 5-FU resistance. EXPERIMENTAL APPROACH Human colorectal cancer specimens were diagnosed for MSI-H by immunohistochemistry and western blotting. Proteome microarray interactome assay was performed to screen nuclear proteins interacting with ATG5. Nuclear ATG5 and ATG5-Mis18α overexpression were analysed in ATG5high colorectal cancer bearing mice. The methylation assay determined the hypermethylation of hMLH1 promoter CpG island in freshly isolated human colorectal cancer tissue samples and HT29atg5 and SW480atg5 cancer cells. KEY RESULTS In ATG5high colorectal cancer patients, 5-FU-based therapy resulted in nuclear translocation of ATG5, leading to MSI-H. Colorectal cancer in Atg5 Tg mice demonstrated 5-FU resistance, compared to Atg5+/- and WT mice. Proteome microarray assay identified Mis18α, a protein localized on the centromere and a source for methylation of the underlying chromatin, which responded to the translocated nuclear ATG5 leading to ATG5-Mis18α conjugate overexpression. This resulted in MLH1 deficiency due to hypermethylation of hMLH1 promoter CpG island, while the deletion of nuclear Mis18α failed to induce ATG5-Mis18α complex and MMR-D/MSI-H. CONCLUSIONS AND IMPLICATIONS Nuclear ATG5 resulted in MMR-D/MSI-H through its interaction with Mis18α in ATG5high colorectal cancer cells. We suggest that ATG5-Mis18α or Mis18α may be a therapeutic target for treating colorectal cancer.
Collapse
Affiliation(s)
- Shi-Yue Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Institute of Acu-moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Tao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue-Ying Zhang
- Department of Experimental Pathology, College of Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao-Hui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan-Hang Liu
- Department of Pathology, Hospital of Bin Zhou Medical College, Binzhou, China
| | - Shu-Hua Wu
- Department of Pathology, Hospital of Bin Zhou Medical College, Binzhou, China
| | - Yang-Yang Li
- Department of Pathology, Hospital of Bin Zhou Medical College, Binzhou, China
| | - Shu-Xiang Cui
- Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Das J, Barman Mandal S. Classification of Homo sapiens gene behavior using linear discriminant analysis fused with minimum entropy mapping. Med Biol Eng Comput 2021; 59:673-691. [PMID: 33595791 DOI: 10.1007/s11517-021-02324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
Classification of Homo sapiens gene behavior employing computational biology is a recent research trend. But monitoring gene activity profile and genetic behavior from the alphabetic DNA sequence using a non-invasive method is a tremendous challenge in functional genomics. The present paper addresses such issue and attempts to differentiate Homo sapiens genes using linear discriminant analysis (LDA) method. Annotated protein coding sequences of Homo sapiens genes, collected from NCBI, are taken as test samples. Minimum entropy-based mapping (MEM) technique assists to extract highest information from the numerical DNA sequences. The proposed LDA technique has successfully classified Homo sapiens genes based on the following features: composition of hydrophilic amino acids, dominance of arginine amino acid, and magnitude and size of individual amino acids. The proposed algorithm is successfully tested on 84 Homo sapiens healthy and cancer genes of the prostate and breast cells. Classification performance of the proposed LDA technique is judged by sensitivity (89.12%), specificity (91.9%), accuracy (90.87%), F1 score (92.03%), Matthews' correlation coefficients (81.04%), and miss rate (9.12%), and it outperforms other four existing classifiers. The results are cross-validated through Rayleigh PDF and mutual information technique. Fisher test, 2-sample T-test, and relative entropy test are considered to verify the efficacy of the present classifier.
Collapse
Affiliation(s)
- Joyshri Das
- Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, India
| | - Soma Barman Mandal
- Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, India
| |
Collapse
|
14
|
Burchfiel ET, Vihervaara A, Guertin MJ, Gomez-Pastor R, Thiele DJ. Comparative interactomes of HSF1 in stress and disease reveal a role for CTCF in HSF1-mediated gene regulation. J Biol Chem 2020; 296:100097. [PMID: 33208463 PMCID: PMC7948500 DOI: 10.1074/jbc.ra120.015452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023] Open
Abstract
Heat shock transcription factor 1 (HSF1) orchestrates cellular stress protection by activating or repressing gene transcription in response to protein misfolding, oncogenic cell proliferation, and other environmental stresses. HSF1 is tightly regulated via intramolecular repressive interactions, post-translational modifications, and protein-protein interactions. How these HSF1 regulatory protein interactions are altered in response to acute and chronic stress is largely unknown. To elucidate the profile of HSF1 protein interactions under normal growth and chronic and acutely stressful conditions, quantitative proteomics studies identified interacting proteins in the response to heat shock or in the presence of a poly-glutamine aggregation protein cell-based model of Huntington's disease. These studies identified distinct protein interaction partners of HSF1 as well as changes in the magnitude of shared interactions as a function of each stressful condition. Several novel HSF1-interacting proteins were identified that encompass a wide variety of cellular functions, including roles in DNA repair, mRNA processing, and regulation of RNA polymerase II. One HSF1 partner, CTCF, interacted with HSF1 in a stress-inducible manner and functions in repression of specific HSF1 target genes. Understanding how HSF1 regulates gene repression is a crucial question, given the dysregulation of HSF1 target genes in both cancer and neurodegeneration. These studies expand our understanding of HSF1-mediated gene repression and provide key insights into HSF1 regulation via protein-protein interactions.
Collapse
Affiliation(s)
- Eileen T Burchfiel
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anniina Vihervaara
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis J Thiele
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
15
|
BAG3 Proteomic Signature under Proteostasis Stress. Cells 2020; 9:cells9112416. [PMID: 33158300 PMCID: PMC7694386 DOI: 10.3390/cells9112416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidate the dynamic and multifunctional action of BAG3 in response to stress, we established BAG3 interactomes under basal and proteostasis stress conditions by employing affinity purification combined with quantitative mass spectrometry. In addition to the identification of novel potential BAG3 interactors, we defined proteins whose interaction with BAG3 was altered upon stress. By functional annotation and protein-protein interaction enrichment analysis of the identified potential BAG3 interactors, we confirmed the multifunctionality of BAG3 and highlighted its crucial role in diverse cellular signaling pathways and processes, ensuring cellular proteostasis and cell viability. These include protein folding and degradation, gene expression, cytoskeleton dynamics (including cell cycle and transport), as well as granulostasis, in particular.
Collapse
|
16
|
SRSF3 Is a Critical Requirement for Inclusion of Exon 3 of BIS Pre-mRNA. Cells 2020; 9:cells9102325. [PMID: 33086735 PMCID: PMC7589869 DOI: 10.3390/cells9102325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
BCL-2 interacting cell death suppressor (BIS), also known as BAG3, is a multifunctional protein. Aberrant expression and mutation of BIS have been implicated in cancers and myopathy. However, there have only been a few studies on the splicing of BIS pre-mRNA. In the present study, through RT-PCR and sequencing in various cell lines and mouse tissues, we identified for the first time the presence of BIS mRNA isomers in which exon 3 or exons 2–3 are skipped. We also demonstrated that the depletion of SRSF3 promoted the skipping of exon 3 of BIS pre-mRNA in endogenous BIS and the GFP-BIS minigene. SRSF3 specifically interacts with the putative binding sites in exon 3, in which deletion promoted the skipping of exon 3 in the GFP-BIS minigene, which was comparable to the effect of SRSF knockdown. Even though acceleration of exon 3 skipping was not observed in response to various stimuli, SRSF3 depletion, accompanied by the production of a truncated BIS protein, inhibited the nuclear translocation of HSF1, which was restored by the wild-type BIS, not by exon 3-depleted BIS. Therefore, our results suggested that the maintenance of SRSF3 levels and subsequent preservation of the intact BIS protein is an important factor in modulating HSF1 localization upon cellular stress.
Collapse
|
17
|
Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie 2020; 173:33-47. [DOI: 10.1016/j.biochi.2020.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
|
18
|
Neuromuscular Diseases Due to Chaperone Mutations: A Review and Some New Results. Int J Mol Sci 2020; 21:ijms21041409. [PMID: 32093037 PMCID: PMC7073051 DOI: 10.3390/ijms21041409] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle and the nervous system depend on efficient protein quality control, and they express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin (CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by which they cause neuromuscular disease. In addition, previously unpublished results are presented, showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
Collapse
|
19
|
Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020; 209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
The members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance. In addition to BAG overexpression, BAG members are also involved in many oncogenic protein-protein interactions (PPIs). As such, either the inhibition of overloading BAGs or of specific BAG-client protein interactions could have paramount therapeutic value. In this review, we will examine the role of each BAG family member in different malignancies, focusing on their modular structure, which enables interaction with a variety of proteins to exert their pro-tumorigenic role. Lastly, critical remarks on the unmet needs for proposing effective BAG inhibitors will be pointed out.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy.
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
20
|
McDermott-Roe C, Lv W, Maximova T, Wada S, Bukowy J, Marquez M, Lai S, Shehu A, Benjamin I, Geurts A, Musunuru K. Investigation of a dilated cardiomyopathy-associated variant in BAG3 using genome-edited iPSC-derived cardiomyocytes. JCI Insight 2019; 4:128799. [PMID: 31723063 DOI: 10.1172/jci.insight.128799] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in B cell lymphoma 2-associated athanogene 3 (BAG3) are recurrently associated with dilated cardiomyopathy (DCM) and muscular dystrophy. Using isogenic genome-edited human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we examined how a DCM-causing BAG3 mutation (R477H), as well as complete loss of BAG3 (KO), impacts myofibrillar organization and chaperone networks. Although unchanged at baseline, fiber length and alignment declined markedly in R477H and KO iPSC-CMs following proteasome inhibition. RNA sequencing revealed extensive baseline changes in chaperone- and stress response protein-encoding genes, and protein levels of key BAG3 binding partners were perturbed. Molecular dynamics simulations of the BAG3-HSC70 complex predicted a partial disengagement by the R477H mutation. In line with this, BAG3-R477H bound less HSC70 than BAG3-WT in coimmunoprecipitation assays. Finally, myofibrillar disarray triggered by proteasome inhibition in R477H cells was mitigated by overexpression of the stress response protein heat shock factor 1 (HSF1). These studies reveal the importance of BAG3 in coordinating protein quality control subsystem usage within the cardiomyocyte and suggest that augmenting HSF1 activity might be beneficial as a means to mitigate proteostatic stress in the context of BAG3-associated DCM.
Collapse
Affiliation(s)
- Chris McDermott-Roe
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenjian Lv
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tania Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, USA
| | - Shogo Wada
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Bukowy
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Maribel Marquez
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shuping Lai
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, USA
| | - Ivor Benjamin
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aron Geurts
- Cardiovascular Center & Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kiran Musunuru
- Division of Cardiology and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
BAG3 deletion suppresses stem cell-like features of pancreatic ductal adenocarcinoma via translational suppression of ISG15. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:819-827. [DOI: 10.1016/j.bbamcr.2019.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 11/21/2022]
|
22
|
Wu FL, Liu Y, Zhang HN, Jiang HW, Cheng L, Guo SJ, Deng JY, Bi LJ, Zhang XE, Gao HF, Tao SC. Global Profiling of PknG Interactions Using a Human Proteome Microarray Reveals Novel Connections with CypA. Proteomics 2018; 18:e1800265. [PMID: 30281201 DOI: 10.1002/pmic.201800265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Indexed: 11/10/2022]
Abstract
Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.
Collapse
Affiliation(s)
- Fan-Lin Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Agriculture, Ludong University, Yantai, 264025, P. R. China
| | - Yin Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Hai-Nan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - He-Wei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Li Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Shu-Juan Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Jiao-Yu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Li-Jun Bi
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China.,School of Stomatology and Medicine, Foshan University, Foshan, 528000, Guangdong Province, P. R. China.,TB Healthcare Biotechnology Co., Ltd., Foshan, 528000, Guangdong Province, P. R. China.,Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, 528000, Guangdong Province, P. R. China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China
| | - Hua-Fang Gao
- National Research Institute for Health and Family Planning, 100081, Beijing, P. R. China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.,School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| |
Collapse
|
23
|
Feng Y, Chen CS, Ho J, Pearce D, Hu S, Wang B, Desai P, Kim KS, Zhu H. High-Throughput Chip Assay for Investigating Escherichia coli Interaction with the Blood-Brain Barrier Using Microbial and Human Proteome Microarrays (Dual-Microarray Technology). Anal Chem 2018; 90:10958-10966. [PMID: 30106562 DOI: 10.1021/acs.analchem.8b02513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial meningitis in neonates and infants is an acute lethal disease and occurs in response to microbial exploitation of the blood-brain barrier (BBB), resulting in the intracranial inflammation. Several pathogens, such as Escherichia coli ( E. coli), can cause this devastating disease; however, the underlying molecular mechanisms by which these pathogens exploit the BBB remain incompletely understood. To identify important players on both the pathogen and host sides that govern the E. coli-BBB cell interactions, we took advantage of the E. coli and human proteome microarrays (i.e., HuProt) as an unbiased, proteome-wide tool for identification of important players on both sides. Using the E. coli proteome microarrays, we developed a unique high throughput chip-based cell probing assay to probe with fluorescent live human brain microvascular endothelial cells (HBMEC, which constitute the BBB). We identified several transmembrane proteins, which effectively bound to live HBMEC. We focused on YojI protein for further study. By probing the HuProt arrays with YojI, interferon-alpha receptor (IFNAR2) was identified as one of its binding proteins. The importance of YojI and IFNAR2 involved in E. coli-HBMEC interactions was characterized using the YojI knockout bacteria and IFNAR2-knock down HBMEC and further confirmed by E. coli binding assay in HBMEC. This study represents a new paradigm (dual-microarray technology) that enables rapid, unbiased discovery of both pathogen and host players that are involved in pathogen-host interactions for human infectious diseases in a high throughput manner.
Collapse
Affiliation(s)
- Yingzhu Feng
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , PR China.,Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States.,School of Life Sciences , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management , Tainan City 701 , Taiwan.,Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States.,Department of Biomedical Science and Engineering , National Central University , Taoyuan City 32001 , Taiwan
| | - Jessica Ho
- Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Donna Pearce
- Division of Pediatric Infectious Diseases, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21287 , United States
| | - Shaohui Hu
- Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| | - Bochu Wang
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , PR China
| | - Prashant Desai
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21231 , United States
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21287 , United States
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, School of Medicine , Johns Hopkins University , Baltimore , Maryland 21205 , United States
| |
Collapse
|
24
|
Furusawa Y, Yunoki T, Hirano T, Minagawa S, Izumi H, Mori H, Hayashi A, Tabuchi Y. Identification of genes and genetic networks associated with BAG3‑dependent cell proliferation and cell survival in human cervical cancer HeLa cells. Mol Med Rep 2018; 18:4138-4146. [PMID: 30106105 DOI: 10.3892/mmr.2018.9383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/17/2018] [Indexed: 11/05/2022] Open
Abstract
Bcl‑2‑associated athanogene (BAG) 3, is a member of the BAG protein family and a known co‑chaperone of heat shock protein (HSP) 70. BAG3 serves a role in regulating a variety of cellular functions, including cell growth, proliferation and cell death including apoptosis. BAG3 is a stress‑inducible protein, however the constitutive expression level of BAG3 is increased in cancer cells compared with healthy cells. Recent proteomics technology combined with bioinformatics has revealed that BAG3 participates in an interactome with a number of proteins other than its typical partner HSP70. The functional types represented in the interactome included nucleic acid binding proteins and transcription factors, as well as chaperones, which indicated that overexpression of BAG3 may contribute to proliferation and cell survival through the alteration of gene transcription. While an increasing number of studies have addressed the function of BAG3 as a co‑chaperone protein, BAG3‑dependent alteration of gene transcription has not been studied extensively. The present study established two BAG3 knockout human cervical cancer HeLa cell clones and addressed the role of BAG3 in cell proliferation and survival through gene transcription, using DNA microarray‑based transcriptome analysis and bioinformatics. The present study also identified two genetic networks associated with 'cellular growth and proliferation' and 'cell death and survival', which are dysregulated in the absence of BAG3, and may therefore be linked to BAG3 overexpression in cancer. These findings provide a molecular basis for understanding of BAG3‑dependent cell proliferation and survival from the aspect of alteration of gene expression.
Collapse
Affiliation(s)
- Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939‑0398, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Satsuki Minagawa
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| |
Collapse
|
25
|
Yun HH, Baek JY, Seo G, Kim YS, Ko JH, Lee JH. Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:457-465. [PMID: 29962860 PMCID: PMC6019875 DOI: 10.4196/kjpp.2018.22.4.457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ji-Ye Baek
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gwanwoo Seo
- The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju 61452, Korea
| | - Yong Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon 34141, Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon 34141, Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
26
|
Roperto S, Russo V, Rosati A, Ceccarelli DM, Munday JS, Turco MC, Roperto F. Chaperone-assisted selective autophagy in healthy and papillomavirus-associated neoplastic urothelium of cattle. Vet Microbiol 2018; 221:134-142. [PMID: 29981700 DOI: 10.1016/j.vetmic.2018.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/15/2022]
Abstract
Chaperone-assisted selective autophagy (CASA) is a newly-described selective tension-induced macroautophagy pathway mediated by Bag3 that is believed to be essential for mechanotransduction in skeletal muscle and to be an important regulator of the immune system. We investigated CASA machinery both in healthy and in fifteen papillomavirus-associated neoplastic bovine urothelium. The components of CASA complex, that comprises the molecular chaperones HspA8/Hsc70 and Hsp8B/Hsp22 and the cochaperones Bag3 and STUB1/CHIP, were studied by molecular, microscopic and submicroscopic investigations. CASA complex was found to be constitutively expressed in healthy bovine urothelium; its expression increased in urothelial cancers of cattle, namely thirteen papillary carcinomas and two papillary urothelial neoplasm of low malignant potential (PUNLMPs). We suggest that basal levels of CASA are important in the healthy urothelium which interfaces with the community of urinary microbiota thus representing an important epithelial cell-autonomous mechanism of antibacterial defense. Co-immunoprecipitation studies using an antibody against bovine papillomavirus E5 protein revealed that the oncoprotein co-localized with CASA complex in urothelial cancer cells. This suggests that infection by BPV E5 could influence cell behaviour by interfering with basal autophagy processes although this study did not conclusively show that this interaction increased the expression of CASA proteins. In neoplastic urothelium, CASA could be involved in regulating fundamental cellular processes such adhesion, migration, and proliferation and so might influence the biological behaviour of urothelial tumors in cattle.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy.
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Alessandra Rosati
- Dipartimento di Medicina Chirurgia ed Odontoiatria, Schola Medica Salernitana, Università di Salerno, Baronissi, Italy
| | - Dora M Ceccarelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - John S Munday
- Pathobiology, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Maria C Turco
- Dipartimento di Medicina Chirurgia ed Odontoiatria, Schola Medica Salernitana, Università di Salerno, Baronissi, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
27
|
The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 2018; 20:198-210. [PMID: 29358706 DOI: 10.1038/s41556-017-0024-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
The ubiquitin proteasome system and autophagy are major protein turnover mechanisms in muscle cells, which ensure stemness and muscle fibre maintenance. Muscle cells contain a high proportion of cytoskeletal proteins, which are prone to misfolding and aggregation; pathological processes that are observed in several neuromuscular diseases called proteinopathies. Despite advances in deciphering the mechanisms underlying misfolding and aggregation, little is known about how muscle cells manage cytoskeletal degradation. Here, we describe a process by which muscle cells degrade the misfolded intermediate filament proteins desmin and vimentin by the proteasome. This relies on the MTM1-UBQLN2 complex to recognize and guide these misfolded proteins to the proteasome and occurs prior to aggregate formation. Thus, our data highlight a safeguarding function of the MTM1-UBQLN2 complex that ensures cytoskeletal integrity to avoid proteotoxic aggregate formation.
Collapse
|
28
|
Im CN, Yun HH, Song B, Youn DY, Cui MN, Kim HS, Park GS, Lee JH. BIS-mediated STAT3 stabilization regulates glioblastoma stem cell-like phenotypes. Oncotarget 2018; 7:35056-70. [PMID: 27145367 PMCID: PMC5085209 DOI: 10.18632/oncotarget.9039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/16/2016] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma stem cells (GSCs) are a subpopulation of highly tumorigenic and stem-like cells that are responsible for resistance to conventional therapy. Bcl-2-intreacting cell death suppressor (BIS; also known as BAG3) is an anti-apoptotic protein that is highly expressed in human cancers with various origins, including glioblastoma. In the present study, to investigate the role of BIS in GSC subpopulation, we examined the expression profile of BIS in A172 and U87-MG glioblastoma cell lines under specific in vitro culture conditions that enrich GSC-like cells in spheres. Both BIS mRNA and protein levels significantly increased under the sphere-forming condition as compared with standard culture conditions. BIS depletion resulted in notable decreases in sphere-forming activity and was accompanied with decreases in SOX-2 expression. The expression of STAT3, a master regulator of stemness, also decreased following BIS depletion concomitant with decreases in the nuclear levels of active phosphorylated STAT3, while ectopic STAT3 overexpression resulted in recovery of sphere-forming activity in BIS-knockdown glioblastoma cells. Additionally, immunoprecipitation and confocal microscopy revealed that BIS physically interacts with STAT3. Furthermore, BIS depletion increased STAT3 ubiquitination, suggesting that BIS is necessary for STAT3 stabilization in GSC-like cells. BIS depletion also affected epithelial-to-mesenchymal transition-related genes as evidenced by decrease in SNAIL and MMP-2 expression and increase in E-cadherin expression in GSC-like cells. Our findings suggest that high levels of BIS expression might confer stem-cell-like properties on cancer cells through STAT3 stabilization, indicating that BIS is a potential target in cancer therapy.
Collapse
Affiliation(s)
- Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byunghoo Song
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Ye Youn
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mei Nu Cui
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Sug Kim
- NGS Clinical Department, Macrogen Inc., Seoul, Korea
| | - Gyeong Sin Park
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
29
|
Galdiero F, Bello AM, Spina A, Capiluongo A, Liuu S, De Marco M, Rosati A, Capunzo M, Napolitano M, Vuttariello E, Monaco M, Califano D, Turco MC, Chiappetta G, Vinh J, Chiappetta G. Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis. Oncotarget 2018; 9:8016-8026. [PMID: 29487711 PMCID: PMC5814278 DOI: 10.18632/oncotarget.23858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022] Open
Abstract
BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.
Collapse
Affiliation(s)
- Francesca Galdiero
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Anna Maria Bello
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Anna Spina
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Anna Capiluongo
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Sophie Liuu
- ESPCI ParisTech, Spectrométrie de Masse Biologique et Protéomique (SMBP), USR3149 CNRS, Paris, France
| | | | - Alessandra Rosati
- Biouniversa s.r.l., University of Salerno, Fisciano, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy
| | - Maria Napolitano
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Emilia Vuttariello
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Mario Monaco
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Daniela Califano
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Maria Caterina Turco
- Biouniversa s.r.l., University of Salerno, Fisciano, Italy.,Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy.,"SS. Giovanni di Dio e Ruggi d'Aragona-Schola Medica Salernitana", University of Salerno Hospital, Salerno, Italy
| | - Gennaro Chiappetta
- Functional Genomic Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Joëlle Vinh
- ESPCI ParisTech, Spectrométrie de Masse Biologique et Protéomique (SMBP), USR3149 CNRS, Paris, France
| | - Giovanni Chiappetta
- ESPCI ParisTech, Spectrométrie de Masse Biologique et Protéomique (SMBP), USR3149 CNRS, Paris, France
| |
Collapse
|
30
|
Lubelwana Hafver T, Wanichawan P, Manfra O, de Souza GA, Lunde M, Martinsen M, Louch WE, Sejersted OM, Carlson CR. Mapping the in vitro interactome of cardiac sodium (Na + )-calcium (Ca 2+ ) exchanger 1 (NCX1). Proteomics 2017; 17. [PMID: 28755400 DOI: 10.1002/pmic.201600417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 11/07/2022]
Abstract
The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.
Collapse
Affiliation(s)
- Tandekile Lubelwana Hafver
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pimthanya Wanichawan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo Antonio de Souza
- Department of Immunology and Centre for Immune Regulation, Oslo University Hospital HF Rikshospitalet, University of Oslo, Oslo, Norway.,The Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.,Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, UFRN, Natal, RN, Brazil
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marita Martinsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ole Mathias Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Judge LM, Perez-Bermejo JA, Truong A, Ribeiro AJ, Yoo JC, Jensen CL, Mandegar MA, Huebsch N, Kaake RM, So PL, Srivastava D, Pruitt BL, Krogan NJ, Conklin BR. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2017; 2:94623. [PMID: 28724793 DOI: 10.1172/jci.insight.94623] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.
Collapse
Affiliation(s)
- Luke M Judge
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Juan A Perez-Bermejo
- Gladstone Institutes, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Annie Truong
- Gladstone Institutes, San Francisco, California, USA
| | - Alexandre Js Ribeiro
- Gladstone Institutes, San Francisco, California, USA.,Stanford Cardiovascular Institute and Mechanical Engineering Department, and
| | - Jennie C Yoo
- Gladstone Institutes, San Francisco, California, USA
| | | | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, California, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, California, USA
| | - Deepak Srivastava
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Gladstone Institutes, San Francisco, California, USA
| | - Beth L Pruitt
- Stanford Cardiovascular Institute and Mechanical Engineering Department, and.,Bioengineering and Molecular and Cellular Physiology Departments, Stanford University, Stanford, California, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, California, USA.,Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, California, USA.,Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
32
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
33
|
Stürner E, Behl C. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease. Front Mol Neurosci 2017; 10:177. [PMID: 28680391 PMCID: PMC5478690 DOI: 10.3389/fnmol.2017.00177] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023] Open
Abstract
In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein), Huntington’s disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.
Collapse
Affiliation(s)
- Elisabeth Stürner
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University MainzMainz, Germany
| |
Collapse
|
34
|
Wu FL, Liu Y, Jiang HW, Luan YZ, Zhang HN, He X, Xu ZW, Hou JL, Ji LY, Xie Z, Czajkowsky DM, Yan W, Deng JY, Bi LJ, Zhang XE, Tao SC. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis. Mol Cell Proteomics 2017; 16:1491-1506. [PMID: 28572091 DOI: 10.1074/mcp.m116.065771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/28/2017] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.
Collapse
Affiliation(s)
- Fan-Lin Wu
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Liu
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Wei Jiang
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Zhao Luan
- ¶State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou 500040, China
| | - Hai-Nan Zhang
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang He
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.,‖School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhao-Wei Xu
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing-Li Hou
- **Instrumental Analysis Center of Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Yun Ji
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xie
- ¶State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yatsen University, Guangzhou 500040, China
| | - Daniel M Czajkowsky
- ‖School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Yan
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiao-Yu Deng
- ‡‡State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li-Jun Bi
- §§National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,¶¶School of Stomatology and Medicine, Foshan University, Foshan 528000, Guangdong Province, China.,‖‖Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan 528000, China
| | - Xian-En Zhang
- §§National Key Laboratory of Biomacromolecules, Key Laboratory of Non-Coding RNA and Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Ce Tao
- From the ‡Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; .,§State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China.,‖School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
35
|
Manoto SL, Houreld N, Hodgkinson N, Abrahamse H. Modes of Cell Death Induced by Photodynamic Therapy Using Zinc Phthalocyanine in Lung Cancer Cells Grown as a Monolayer and Three-Dimensional Multicellular Spheroids. Molecules 2017; 22:E791. [PMID: 28509858 PMCID: PMC6154333 DOI: 10.3390/molecules22050791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) involves interaction of a photosensitizer, light, and molecular oxygen which produces singlet oxygen and subsequent tumour eradication. The development of second generation photosensitizers, such as phthalocyanines, has improved this technology. Customary monolayer cell culture techniques are, unfortunately, too simple to replicate treatment effects in vivo. Multicellular tumour spheroids may provide a better alternative since they mimic aspects of the human tumour environment. This study aimed to profile 84 genes involved in apoptosis following treatment with PDT on lung cancer cells (A549) grown in a monolayer versus three-dimensional multicellular tumour spheroids (250 and 500 μm). Gene expression profiling was performed 24 h post irradiation (680 nm; 5 J/cm²) with zinc sulfophthalocyanine (ZnPcSmix) to determine the genes involved in apoptotic cell death. In the monolayer cells, eight pro-apoptotic genes were upregulated, and two were downregulated. In the multicellular tumour spheroids (250 µm) there was upregulation of only 1 gene while there was downregulation of 56 genes. Apoptosis in the monolayer cultured cells was induced via both the intrinsic and extrinsic apoptotic pathways. However, in the multicellular tumour spheroids (250 and 500 µm) the apoptotic pathway that was followed was not conclusive.
Collapse
Affiliation(s)
- Sello L Manoto
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Nicolette Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Natasha Hodgkinson
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
36
|
Cox E, Hwang W, Uzoma I, Hu J, Guzzo CM, Jeong J, Matunis MJ, Qian J, Zhu H, Blackshaw S. Global Analysis of SUMO-Binding Proteins Identifies SUMOylation as a Key Regulator of the INO80 Chromatin Remodeling Complex. Mol Cell Proteomics 2017; 16:812-823. [PMID: 28254775 PMCID: PMC5417823 DOI: 10.1074/mcp.m116.063719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/14/2017] [Indexed: 12/23/2022] Open
Abstract
SUMOylation is a critical regulator of a broad range of cellular processes, and is thought to do so in part by modulation of protein interaction. To comprehensively identify human proteins whose interaction is modulated by SUMOylation, we developed an in vitro binding assay using human proteome microarrays to identify targets of SUMO1 and SUMO2. We then integrated these results with protein SUMOylation and protein-protein interaction data to perform network motif analysis. We focused on a single network motif we termed a SUMOmodPPI (SUMO-modulated Protein-Protein Interaction) that included the INO80 chromatin remodeling complex subunits TFPT and INO80E. We validated the SUMO-binding activity of INO80E, and showed that TFPT is a SUMO substrate both in vitro and in vivo We then demonstrated a key role for SUMOylation in mediating the interaction between these two proteins, both in vitro and in vivo By demonstrating a key role for SUMOylation in regulating the INO80 chromatin remodeling complex, this work illustrates the power of bioinformatics analysis of large data sets in predicting novel biological phenomena.
Collapse
Affiliation(s)
- Eric Cox
- From the ‡Biochemistry, Cellular and Molecular Biology Graduate Program
- §Solomon H. Snyder Department of Neuroscience
- ¶Department of Pharmacology and Molecular Sciences
| | | | - Ijeoma Uzoma
- ¶Department of Pharmacology and Molecular Sciences
| | | | - Catherine M Guzzo
- **Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Junseop Jeong
- ¶Department of Pharmacology and Molecular Sciences
- ‡‡Center for High-Throughput Biology
| | - Michael J Matunis
- **Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Heng Zhu
- ¶Department of Pharmacology and Molecular Sciences
- ‡‡Center for High-Throughput Biology
| | - Seth Blackshaw
- §Solomon H. Snyder Department of Neuroscience,
- ‡‡Center for High-Throughput Biology
- §§Institute for Cell Engineering
- ¶¶Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, Lu X, Wang Y, Zhou J, Li X, Zhang L, Wang L, Zhao Y, Zhu WG. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy 2017; 13:579-591. [PMID: 28103122 PMCID: PMC5361600 DOI: 10.1080/15548627.2016.1272742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 12/29/2022] Open
Abstract
ATG3 (autophagy-related 3) is an E2-like enzyme essential for autophagy; however, it is unknown whether it has an autophagy-independent function. Here, we report that ATG3 is a relatively stable protein in unstressed cells, but it is degraded in response to DNA-damaging agents such as etoposide or cisplatin. With mass spectrometry and a mutagenesis assay, phosphorylation of tyrosine 203 of ATG3 was identified to be a critical modification for its degradation, which was further confirmed by manipulating ATG3Y203E (phosphorylation mimic) or ATG3Y203F (phosphorylation-incompetent) in Atg3 knockout MEFs. In addition, by using a generated phospho-specific antibody we showed that phosphorylation of Y203 significantly increased upon etoposide treatment. With a specific inhibitor or siRNA, PTK2 (protein tyrosine kinase 2) was confirmed to catalyze the phosphorylation of ATG3 at Y203. Furthermore, a newly identified function of ATG3 was recognized to be associated with the promotion of DNA damage-induced mitotic catastrophe, in which ATG3 interferes with the function of BAG3, a crucial protein in the mitotic process, by binding. Finally, PTK2 inhibition-induced sustained levels of ATG3 were able to sensitize cancer cells to DNA-damaging agents. Our findings strengthen the notion that targeting PTK2 in combination with DNA-damaging agents is a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Ke Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wan Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ming Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Chaohua Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ran Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaopeng Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jingyi Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- School of Medicine, Shenzhen University, Shenzhen, China
- Peking-Tsinghua University Center for Life Science, Peking University, Beijing, China
| |
Collapse
|
38
|
Heat Shock Factor 1 Depletion Sensitizes A172 Glioblastoma Cells to Temozolomide via Suppression of Cancer Stem Cell-Like Properties. Int J Mol Sci 2017; 18:ijms18020468. [PMID: 28241425 PMCID: PMC5344000 DOI: 10.3390/ijms18020468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 01/13/2023] Open
Abstract
Heat shock factor 1 (HSF1), a transcription factor activated by various stressors, regulates proliferation and apoptosis by inducing expression of target genes, such as heat shock proteins and Bcl-2 (B-cell lymphoma 2) interacting cell death suppressor (BIS). HSF1 also directly interacts with BIS, although it is still unclear whether this interaction is critical in the regulation of glioblastoma stem cells (GSCs). In this study, we examined whether small interfering RNA-mediated BIS knockdown decreased protein levels of HSF1 and subsequent nuclear localization under GSC-like sphere (SP)-forming conditions. Consistent with BIS depletion, HSF1 knockdown also reduced sex determining region Y (SRY)-box 2 (SOX2) expression, a marker of stemness, accompanying the decrease in SP-forming ability and matrix metalloprotease 2 (MMP2) activity. When HSF1 or BIS knockdown was combined with temozolomide (TMZ) treatment, a standard drug used in glioblastoma therapy, apoptosis increased, as measured by an increase in poly (ADP-ribose) polymerase (PARP) cleavage, whereas cancer stem-like properties, such as colony-forming activity and SOX2 protein expression, decreased. Taken together, our findings suggest that targeting BIS or HSF1 could be a viable therapeutic strategy for GSCs resistant to conventional TMZ treatment.
Collapse
|
39
|
Klimek C, Kathage B, Wördehoff J, Höhfeld J. BAG3-mediated proteostasis at a glance. J Cell Sci 2017; 130:2781-2788. [DOI: 10.1242/jcs.203679] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Cellular and organismal survival depend on the ability to maintain the proteome, even under conditions that threaten protein integrity. BCL2-associated athanogene 3 (BAG3) is essential for protein homeostasis (proteostasis) in stressed cells. Owing to its multi-domain structure, it engages in diverse processes that are crucial for proteome maintenance. BAG3 promotes the activity of molecular chaperones, sequesters and concentrates misfolded proteins, initiates autophagic disposal, and balances transcription, translation and degradation. In this Cell Science at a Glance article and the accompanying poster, we discuss the functions of this multi-functional proteostasis tool with a focus on mechanical stress protection and describe the importance of BAG3 for human physiology and pathophysiology.
Collapse
Affiliation(s)
- Christina Klimek
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | - Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | - Judith Wördehoff
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, D-53121 Bonn, Germany
| |
Collapse
|
40
|
Abstract
Evolutionarily conserved and pleiotropic, the translationally controlled tumor protein (TCTP) is a housekeeping protein present in eukaryotic organisms. It plays an important role in regulating many fundamental processes, such as cell proliferation, cell death, immune responses, and apoptosis. As a result of the pioneer work by Adam Telerman and Robert Amson, the critical role of TCTP in tumor reversion was revealed. Moreover, TCTP has emerged as a regulator of cell fate determination and a promising therapeutic target for cancers. The multifaceted action of TCTP depends on its ability to interact with different proteins. Through this interaction network, TCTP regulates diverse physiological and pathological processes in a context-dependent manner. Complete mapping of the entire sets of TCTP protein interactions (interactome) is essential to understand its various cellular functions and to lay the foundation for the rational design of TCTP-based therapeutic approaches. So far, the global profiling of the interacting partners of TCTP has rarely been performed, but many interactions have been identified in small-scale studies in a specific biological system. This chapter, based on information from protein interaction databases and the literature, illustrates current knowledge of the TCTP interactome.
Collapse
Affiliation(s)
- Siting Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
41
|
Rodríguez AE, López-Crisosto C, Peña-Oyarzún D, Salas D, Parra V, Quiroga C, Morawe T, Chiong M, Behl C, Lavandero S. BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism. Autophagy 2016; 12:287-96. [PMID: 26654586 DOI: 10.1080/15548627.2015.1124225] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was apparently specific to LC3B because other ATG protein levels were not affected. BAG3 knockdown did not affect LC3B lipidation induced by nutrient deprivation or proteasome inhibition. We concluded that BAG3 maintains the basal amount of LC3B protein by controlling the translation of its mRNA in HeLa and HEK293 cells.
Collapse
Affiliation(s)
- Andrea E Rodríguez
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Camila López-Crisosto
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Daniel Peña-Oyarzún
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Daniela Salas
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Valentina Parra
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Clara Quiroga
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Tobias Morawe
- c Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg University Mainz , Mainz , Germany
| | - Mario Chiong
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile
| | - Christian Behl
- c Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg University Mainz , Mainz , Germany
| | - Sergio Lavandero
- a Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile , Santiago , Chile.,b Center for Molecular Studies of the Cell (CEMC), Institute for Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile.,d Department of Internal Medicine (Cardiology Division) , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
42
|
McTiernan CF. Improving Left Ventricular Myocardial Function After Myocardial Infarction. JACC Basic Transl Sci 2016; 1:657-659. [PMID: 30167549 PMCID: PMC6113519 DOI: 10.1016/j.jacbts.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Charles F. McTiernan
- Reprint requests and correspondence: Dr. Charles F. McTiernan, Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Scaife 631a, 3550 Terrace Street, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
43
|
Pfammatter S, Bonneil E, Thibault P. Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry. J Proteome Res 2016; 15:4653-4665. [PMID: 27723353 DOI: 10.1021/acs.jproteome.6b00745] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative proteomics using isobaric reagent tandem mass tags (TMT) or isobaric tags for relative and absolute quantitation (iTRAQ) provides a convenient approach to compare changes in protein abundance across multiple samples. However, the analysis of complex protein digests by isobaric labeling can be undermined by the relative large proportion of co-selected peptide ions that lead to distorted reporter ion ratios and affect the accuracy and precision of quantitative measurements. Here, we investigated the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in proteomic experiments to reduce sample complexity and improve protein quantification using TMT isobaric labeling. LC-FAIMS-MS/MS analyses of human and yeast protein digests led to significant reductions in interfering ions, which increased the number of quantifiable peptides by up to 68% while significantly improving the accuracy of abundance measurements compared to that with conventional LC-MS/MS. The improvement in quantitative measurements using FAIMS is further demonstrated for the temporal profiling of protein abundance of HEK293 cells following heat shock treatment.
Collapse
Affiliation(s)
- Sibylle Pfammatter
- Institute for Research in Immunology and Cancer, ‡Department of Chemistry, Université de Montréal , C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, ‡Department of Chemistry, Université de Montréal , C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, ‡Department of Chemistry, Université de Montréal , C.P. 6128, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
44
|
Kathage B, Gehlert S, Ulbricht A, Lüdecke L, Tapia VE, Orfanos Z, Wenzel D, Bloch W, Volkmer R, Fleischmann BK, Fürst DO, Höhfeld J. The cochaperone BAG3 coordinates protein synthesis and autophagy under mechanical strain through spatial regulation of mTORC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:62-75. [PMID: 27756573 DOI: 10.1016/j.bbamcr.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
The cochaperone BAG3 is a central protein homeostasis factor in mechanically strained mammalian cells. It mediates the degradation of unfolded and damaged forms of the actin-crosslinker filamin through chaperone-assisted selective autophagy (CASA). In addition, BAG3 stimulates filamin transcription in order to compensate autophagic disposal and to maintain the actin cytoskeleton under strain. Here we demonstrate that BAG3 coordinates protein synthesis and autophagy through spatial regulation of the mammalian target of rapamycin complex 1 (mTORC1). The cochaperone utilizes its WW domain to contact a proline-rich motif in the tuberous sclerosis protein TSC1 that functions as an mTORC1 inhibitor in association with TSC2. Interaction with BAG3 results in a recruitment of TSC complexes to actin stress fibers, where the complexes act on a subpopulation of mTOR-positive vesicles associated with the cytoskeleton. Local inhibition of mTORC1 is essential to initiate autophagy at sites of filamin unfolding and damage. At the same time, BAG3-mediated sequestration of TSC1/TSC2 relieves mTORC1 inhibition in the remaining cytoplasm, which stimulates protein translation. In human muscle, an exercise-induced association of TSC1 with the cytoskeleton coincides with mTORC1 activation in the cytoplasm. The spatial regulation of mTORC1 exerted by BAG3 apparently provides the basis for a simultaneous induction of autophagy and protein synthesis to maintain the proteome under mechanical strain.
Collapse
Affiliation(s)
- Barbara Kathage
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Sebastian Gehlert
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Anna Ulbricht
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Laura Lüdecke
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Victor E Tapia
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Zacharias Orfanos
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Wilhelm Bloch
- German Sport University Cologne, Department of Molecular and Cellular Sport Medicine, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | - Rudolf Volkmer
- Department of Medicinal Immunology, Charité - University Medicine Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life & Brain Center, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany
| | - Jörg Höhfeld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121 Bonn, Germany.
| |
Collapse
|
45
|
Kim HY, Kim YS, Yun HH, Im CN, Ko JH, Lee JH. ERK-mediated phosphorylation of BIS regulates nuclear translocation of HSF1 under oxidative stress. Exp Mol Med 2016; 48:e260. [PMID: 27659916 PMCID: PMC5050300 DOI: 10.1038/emm.2016.84] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/28/2022] Open
Abstract
B-cell lymphoma (BCL)-2-interacting cell death suppressor (BIS) has diverse cellular functions depending on its binding partners. However, little is known about the effects of biochemical modification of BIS on its various activities under oxidative stress conditions. In this study, we showed that H2O2 reduced BIS mobility on SDS–polyacrylamide gels in a time-dependent manner via the activation of extracellular signaling-regulated kinase (ERK). The combined results of mass spectroscopy and computational prediction identified Thr285 and Ser289 in BIS as candidate residues for phosphorylation by ERK under oxidative stress conditions. Deletion of these sites resulted in a partial reduction in the H2O2-induced mobility shift relative to that of the wild-type BIS protein; overexpression of the deletion mutant sensitized A172 cells to H2O2-induced cell death without increasing the level of intracellular reactive oxygen species. Expression of the BIS deletion mutant decreased the level of heat shock protein (HSP) 70 mRNA following H2O2 treatment, which was accompanied by impaired nuclear translocation of heat shock transcription factor (HSF) 1. Co-immunoprecipitation assays revealed that the binding of wild-type BIS to HSF1 was decreased by oxidative stress, while the binding of the BIS deletion mutant to HSF1 was not affected. These results indicate that ERK-dependent phosphorylation of BIS has a role in the regulation of nuclear translocation of HSF1 likely through modulation of its interaction affinity with HSF1, which affects HSP70 expression and sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Hye Yun Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Sam Kim
- Aging Intervention Research Center, Aging Research Institute, KRIBB, Daejeon, Republic of Korea.,Korea University of Science and Technology. Daejeon, Republic of Korea
| | - Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Heon Ko
- Aging Intervention Research Center, Aging Research Institute, KRIBB, Daejeon, Republic of Korea.,Korea University of Science and Technology. Daejeon, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
46
|
Behl C. Breaking BAG: The Co-Chaperone BAG3 in Health and Disease. Trends Pharmacol Sci 2016; 37:672-688. [PMID: 27162137 DOI: 10.1016/j.tips.2016.04.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Human BAG (Bcl-2-associated athanogene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1-6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including cancer, myopathies, and neurodegeneration. The discovery of its role in selective autophagy and the description of BAG3-mediated selective macroautophagy as an adaptive mechanism to maintain cellular homeostasis, under stress as well as during aging, make BAG3 a highly interesting target for future pharmacological interventions.
Collapse
Affiliation(s)
- Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
47
|
Zhou M, Li Q, Wang R. Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem 2016; 11:738-56. [PMID: 26864455 PMCID: PMC7162211 DOI: 10.1002/cmdc.201500495] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/08/2016] [Indexed: 12/14/2022]
Abstract
Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Qing Li
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macau, 999078, People's Republic of China.
| |
Collapse
|
48
|
Zhou M, Li Q, Wang R. Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem 2016. [PMID: 26864455 DOI: 10.1002/cmdc.201500495.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Qing Li
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macau, 999078, People's Republic of China.
| |
Collapse
|
49
|
Nivon M, Fort L, Muller P, Richet E, Simon S, Guey B, Fournier M, Arrigo AP, Hetz C, Atkin JD, Kretz-Remy C. NFκB is a central regulator of protein quality control in response to protein aggregation stresses via autophagy modulation. Mol Biol Cell 2016; 27:1712-27. [PMID: 27075172 PMCID: PMC4884063 DOI: 10.1091/mbc.e15-12-0835] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/05/2016] [Indexed: 12/20/2022] Open
Abstract
NFκB is a master regulator of protein quality control. It helps the cells to survive proteotoxicity by modulating autophagy via up-regulation of BAG3 and HspB8 expression, a molecular mechanism relevant to protein conformational diseases. During cell life, proteins often misfold, depending on particular mutations or environmental changes, which may lead to protein aggregates that are toxic for the cell. Such protein aggregates are the root cause of numerous diseases called “protein conformational diseases,” such as myofibrillar myopathy and familial amyotrophic lateral sclerosis. To fight against aggregates, cells are equipped with protein quality control mechanisms. Here we report that NFκB transcription factor is activated by misincorporation of amino acid analogues into proteins, inhibition of proteasomal activity, expression of the R120G mutated form of HspB5 (associated with myofibrillar myopathy), or expression of the G985R and G93A mutated forms of superoxide dismutase 1 (linked to familial amyotrophic lateral sclerosis). This noncanonical stimulation of NFκB triggers the up-regulation of BAG3 and HspB8 expression, two activators of selective autophagy, which relocalize to protein aggregates. Then NFκB-dependent autophagy allows the clearance of protein aggregates. Thus NFκB appears as a central and major regulator of protein aggregate clearance by modulating autophagic activity. In this context, the pharmacological stimulation of this quality control pathway might represent a valuable strategy for therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Mathieu Nivon
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Loïc Fort
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Pascale Muller
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Emma Richet
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Stéphanie Simon
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Baptiste Guey
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Maëlenn Fournier
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - André-Patrick Arrigo
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, 70086 Santiago, Chile Center for Geroscience, Brain Health and Metabolism, 70086 Santiago, Chile
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carole Kretz-Remy
- Université de Lyon, 69622 Lyon, France CNRS, UMR 5310, INSERM U1217, Institut NeuroMyoGène, Université Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
50
|
Ke M, Zhang Y, Xiong Y, Saeed Y, Deng Y. Identification of protein complexes of microsomes in rat adipocytes by native gel coupled with LC-ESI-QTOF. MOLECULAR BIOSYSTEMS 2016; 12:1313-23. [PMID: 26886786 DOI: 10.1039/c5mb00707k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the composition of microsome proteins/complexes/interactions in adipocytes provides useful information for researchers related to energy metabolism disorders. The native gel coupled with LC-ESI-QTOF approach was employed here for separating protein complexes. We found a series of proteins functionally clustered in biological processes of protein metabolism, cellular carbohydrate catabolism, response to stimulus and wounding, macromolecular complex subunit organization, positive regulation of molecular function, regulation of programmed cell death and biomolecule transport. According to clustering of proteins' electrophoresis profiles across native gel fractions and bioinformatics data retrieval, protein complexes/interactions involved in protein metabolism, cellular carbohydrate catabolism, macromolecular complex subunit organization and biomolecule transport were identified. Besides, the results also revealed some functional linkages, which may provide useful information for discovering previously unknown interactions. The interaction between SSAO and ALDH2 was verified by co-immunoprecipitation. The native gel combining mass spectrometry approach appeared to be a useful tool for investigating microsome proteins and complexes to complement the traditional electrophoresis approaches. The native gel strategy together with our findings should facilitate future studies of the composition of rat adipocyte microsome protein complexes under different conditions.
Collapse
Affiliation(s)
- Ming Ke
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | | | |
Collapse
|