1
|
Dong Y, Song X, Wang X, Wang S, He Z. The early diagnosis of Alzheimer's disease: Blood-based panel biomarker discovery by proteomics and metabolomics. CNS Neurosci Ther 2024; 30:e70060. [PMID: 39572036 PMCID: PMC11581788 DOI: 10.1111/cns.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 11/25/2024] Open
Abstract
Diagnosis and prediction of Alzheimer's disease (AD) are increasingly pressing in the early stage of the disease because the biomarker-targeted therapies may be most effective. Diagnosis of AD largely depends on the clinical symptoms of AD. Currently, cerebrospinal fluid biomarkers and neuroimaging techniques are considered for clinical detection and diagnosis. However, these clinical diagnosis results could provide indications of the middle and/or late stages of AD rather than the early stage, and another limitation is the complexity attached to limited access, cost, and perceived invasiveness. Therefore, the prediction of AD still poses immense challenges, and the development of novel biomarkers is needed for early diagnosis and urgent intervention before the onset of obvious phenotypes of AD. Blood-based biomarkers may enable earlier diagnose and aid detection and prognosis for AD because various substances in the blood are vulnerable to AD pathophysiology. The application of a systematic biological paradigm based on high-throughput techniques has demonstrated accurate alterations of molecular levels during AD onset processes, such as protein levels and metabolite levels, which may facilitate the identification of AD at an early stage. Notably, proteomics and metabolomics have been used to identify candidate biomarkers in blood for AD diagnosis. This review summarizes data on potential blood-based biomarkers identified by proteomics and metabolomics that are closest to clinical implementation and discusses the current challenges and the future work of blood-based candidates to achieve the aim of early screening for AD. We also provide an overview of early diagnosis, drug target discovery and even promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Dong
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xun Song
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| | - Xiao Wang
- Department of PharmacyShenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Jinan University, Southern University of Science and Technology)ShenzhenChina
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Health Science CenterShenzhen UniversityShenzhenChina
| | - Zhendan He
- College of PharmacyShenzhen Technology UniversityShenzhenChina
| |
Collapse
|
2
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Ma J, Guo Q, Shen MQ, Li W, Zhong QX, Qian ZM. Apolipoprotein E is required for brain iron homeostasis in mice. Redox Biol 2023; 64:102779. [PMID: 37339558 PMCID: PMC10363452 DOI: 10.1016/j.redox.2023.102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aβ42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aβ42, MDA, 8-isoprostane, IL-1β, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China; Laboratory of Neuropharmacology of Pharmacy School, and National Clinical Research Center for Aging and Medicine of Huashan Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Guo
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, 881 Yonghe Road, Nantong, Jiangsu, 226001, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Meng-Qi Shen
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Wei Li
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| | - Qi-Xin Zhong
- Department of Cardiovascular Medicine, Shenzhen Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518034, China.
| | - Zhong-Ming Qian
- Department of Neurology, Affiliated Hospital, and Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
4
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
5
|
Jain AP, Sathe G. Proteomics Landscape of Alzheimer's Disease. Proteomes 2021; 9:proteomes9010013. [PMID: 33801961 PMCID: PMC8005944 DOI: 10.3390/proteomes9010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia, and the numbers of AD patients are expected to increase as human life expectancy improves. Deposition of β-amyloid protein (Aβ) in the extracellular matrix and intracellular neurofibrillary tangles are molecular hallmarks of the disease. Since the precise pathophysiology of AD has not been elucidated yet, effective treatment is not available. Thus, understanding the disease pathology, as well as identification and development of valid biomarkers, is imperative for early diagnosis as well as for monitoring disease progression and therapeutic responses. Keeping this goal in mind several studies using quantitative proteomics platform have been carried out on both clinical specimens including the brain, cerebrospinal fluid (CSF), plasma and on animal models of AD. In this review, we summarize the mass spectrometry (MS)-based proteomics studies on AD and discuss the discovery as well as validation stages in brief to identify candidate biomarkers.
Collapse
Affiliation(s)
- Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
6
|
Antunes ASLM, de Almeida V, Crunfli F, Carregari VC, Martins-de-Souza D. Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:251-264. [PMID: 33725358 DOI: 10.1007/978-3-030-55035-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Psychiatric and neurodegenerative disorders such as schizophrenia (SCZ), Parkinson's disease (PD), and Alzheimer's disease (AD) continue to grow around the world with a high impact on health, social, and economic outcomes for the patient and society. Despite efforts, the etiology and pathophysiology of these disorders remain unclear. Omics technologies have contributed to the understanding of the molecular mechanisms that underlie these complex disorders and have suggested novel potential targets for treatment and diagnostics. Here, we have highlighted the unique and common pathways shared between SCZ, PD, and AD and highlight the main proteomic findings over the last 5 years using in vitro models, postmortem brain samples, and cerebrospinal fluid (CSF) or blood of patients. These studies have identified possible therapeutic targets and disease biomarkers. Further studies including target validation, the use of large sample sizes, and the integration of omics findings with bioinformatics tools are required to provide a better comprehension of pharmacological targets.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
7
|
Kalli ΕG. The Effect of Nutrients on Alzheimer’s Disease Biomarkers: A Metabolomic Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:301-308. [DOI: 10.1007/978-3-030-78787-5_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Rayaprolu S, Higginbotham L, Bagchi P, Watson CM, Zhang T, Levey AI, Rangaraju S, Seyfried NT. Systems-based proteomics to resolve the biology of Alzheimer's disease beyond amyloid and tau. Neuropsychopharmacology 2021; 46:98-115. [PMID: 32898852 PMCID: PMC7689445 DOI: 10.1038/s41386-020-00840-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
The repeated failures of amyloid-targeting therapies have challenged our narrow understanding of Alzheimer's disease (AD) pathogenesis and inspired wide-ranging investigations into the underlying mechanisms of disease. Increasing evidence indicates that AD develops from an intricate web of biochemical and cellular processes that extend far beyond amyloid and tau accumulation. This growing recognition surrounding the diversity of AD pathophysiology underscores the need for holistic systems-based approaches to explore AD pathogenesis. Here we describe how network-based proteomics has emerged as a powerful tool and how its application to the AD brain has provided an informative framework for the complex protein pathophysiology underlying the disease. Furthermore, we outline how the AD brain network proteome can be leveraged to advance additional scientific and translational efforts, including the discovery of novel protein biomarkers of disease.
Collapse
Affiliation(s)
- Sruti Rayaprolu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lenora Higginbotham
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pritha Bagchi
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Caroline M Watson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tian Zhang
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Lam S, Bayraktar A, Zhang C, Turkez H, Nielsen J, Boren J, Shoaie S, Uhlen M, Mardinoglu A. A systems biology approach for studying neurodegenerative diseases. Drug Discov Today 2020; 25:1146-1159. [PMID: 32442631 DOI: 10.1016/j.drudis.2020.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/13/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023]
Abstract
Neurodegenerative diseases (NDDs), such as Alzheimer's (AD) and Parkinson's (PD), are among the leading causes of lost years of healthy life and exert a great strain on public healthcare systems. Despite being first described more than a century ago, no effective cure exists for AD or PD. Although extensively characterised at the molecular level, traditional neurodegeneration research remains marred by narrow-sense approaches surrounding amyloid β (Aβ), tau, and α-synuclein (α-syn). A systems biology approach enables the integration of multi-omics data and informs discovery of biomarkers, drug targets, and treatment strategies. Here, we present a comprehensive timeline of high-throughput data collection, and associated biotechnological advancements and computational analysis related to AD and PD. We hereby propose that a philosophical change in the definitions of AD and PD is now needed.
Collapse
Affiliation(s)
- Simon Lam
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Abdulahad Bayraktar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, SE-413 45, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.
| |
Collapse
|
10
|
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia and there is no cure to date. Biomarkers in cerebrospinal fluid (CSF) are already included in the diagnostic work-up of symptomatic patients but markers for preclinical diagnosis and disease progression are not available. Furthermore, blood biomarkers are highly appreciated because they are minimally invasive and more accessible in primary care and in clinical studies. Mass spectrometry (MS) is an established tool for the measurement of various analytes in biological fluids such as blood. Its major strength is the high selectivity which is why it is also preferred as a reference method for immunoassays. MS has been used in several studies in the past for blood biomarker discovery and validation in AD using targeted MS such as multiple/selected reaction monitoring (MRM/SRM) or unbiased approaches (proteomics, metabolomics). In this short review, we give an overview on the status of current MS-based biomarker candidates for AD in blood plasma and serum.Plain Language Summary: Plain language summary available for this article.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
11
|
Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019; 151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
Accurate, reliable, and objective biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and related age-associated neurodegenerative disorders are urgently needed to assist in both diagnosis, particularly at early stages, and monitoring of disease progression. Technological advancements in protein detection platforms over the last few decades have resulted in a plethora of reported molecular biomarker candidates for both AD and PD; however, very few of these candidates are developed beyond the discovery phase of the biomarker development pipeline, a reflection of the current bottleneck within the field. In this review, the expanded use of selected reaction monitoring (SRM) targeted mass spectrometry will be discussed in detail as a platform for systematic verification of large panels of protein biomarker candidates prior to costly validation testing. We also advocate for the coupling of discovery-based proteomics with modern targeted MS-based approaches (e.g., SRM) within a single study in future workflows to expedite biomarker development and validation for AD and PD. It is our hope that improving the efficiency within the biomarker development process by use of an SRM pipeline may ultimately hasten the development of biomarkers that both decrease misdiagnosis of AD and PD and ultimately lead to detection at early stages of disease and objective assessment of disease progression. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- Eugene M Cilento
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lorrain Jin
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Tessandra Stewart
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Min Shi
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Lifu Sheng
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, School of Medicine, Seattle, Washington, USA.,Department of Pathology, School of Basic Medicine, Peking University Health Science Center, Peking University Third Hospital and Peking Key Laboratory for Early Diagnosis of Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
12
|
Alzheimer's disease in the omics era. Clin Biochem 2018; 59:9-16. [DOI: 10.1016/j.clinbiochem.2018.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
13
|
Wang Z, Qin W, Wei CB, Tang Y, Zhao LN, Jin HM, Li Y, Wang Q, Luan XQ, He JC, Jia J. The microRNA-1908 up-regulation in the peripheral blood cells impairs amyloid clearance by targeting ApoE. Int J Geriatr Psychiatry 2018; 33:980-986. [PMID: 29635818 DOI: 10.1002/gps.4881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/28/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To give a new insight into the mechanism of ApoE dysregulation and microRNA-1908 in Alzheimer's disease (AD). METHODS Plasma ApoE levels were measured in 20 AD patients and 20 healthy controls. THP-1 was maintained in RPMI1640 with 10% fetal bovine serum. Quantitative real-time polymerase chain reaction was performed to detect 13-microRNA and ApoE mRNA in cultured cell lines. Enzyme-linked immunosorbent assay was used to measure human ApoE in the plasma or culture medium of cell lines and also used to quantify the human Aβ42 in the culture medium of cell lines. RESULTS We found plasma ApoE level reduced in AD patients (2.28 vs 3.78 μg/mL, P < .001), and microRNA-1908 was up-regulated in AD patients and was negatively associated with plasma ApoE (r = -0.32, P = .012). In human macrophage cell line THP-1 and astrocytoma cell line U87, microRNA-1908 could inhibit the mRNA and protein levels of ApoE by targeting its 3'untranslated region. Consistently, microRNA-1908 inhibits the ApoE-mediated Aβ clearance. CONCLUSIONS Our study provides new insight into the mechanism of ApoE dysregulation in AD patients, and microRNA-1908 might be a therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Z Wang
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - W Qin
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - C B Wei
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Y Tang
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - L N Zhao
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - H M Jin
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Y Li
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Q Wang
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - X Q Luan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, ZJ, China
| | - J C He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, ZJ, China
| | - J Jia
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
14
|
The relationship between genetic polymorphisms in apolipoprotein E (ApoE) gene and osteonecrosis of the femoral head induced by steroid in Chinese Han population. Genes Genomics 2017; 40:225-231. [PMID: 29892926 DOI: 10.1007/s13258-017-0625-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022]
Abstract
Previous studies suggested that apolipoprotein E (ApoE) genetic polymorphisms (SNPs) may result in abnormal lipid metabolism. Therefore, genetic polymorphisms in ApoE may be associated with the occurrence of osteonecrosis of the femoral head (ONFH). A case control study was designed to include 580 patients with steroid-induced ONFH and 560 age- and sex-matched non steroid-induced ONFH control subjects to analyze the association between ApoE polymorphisms and susceptibility of steroid-induced ONFH. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was utilized to differentiate two genotypes SNPs (rs7412 C/T and rs429358 T/C) in ApoE gene. Both rs7412 C/T and rs429358 T/C were found to be associated with the risk of steroid-induced ONFH. However, no significant association was observed between the haplotypes T-T, T-C and C-C in ONFH. Furthermore, T allele of rs7412 and C allele of rs429358 carriers were associated with higher levels of TG in steroid-induced ONFH patients (P < 0.05). The study suggested that ApoE genetic polymorphisms conferred susceptibility to steroid-induced ONFH in Chinese Han population. However, the results need further investigation with large sample size and various populations.
Collapse
|
15
|
Shin J, Song SY, Ahn HS, An BC, Choi YD, Yang EG, Na KJ, Lee ST, Park JI, Kim SY, Lee C, Lee SW. Integrative analysis for the discovery of lung cancer serological markers and validation by MRM-MS. PLoS One 2017; 12:e0183896. [PMID: 28837649 PMCID: PMC5570484 DOI: 10.1371/journal.pone.0183896] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) constitutes approximately 80% of all diagnosed lung cancers, and diagnostic markers detectable in the plasma/serum of NSCLC patients are greatly needed. In this study, we established a pipeline for the discovery of markers using 9 transcriptome datasets from publicly available databases and profiling of six lung cancer cell secretomes. Thirty-one out of 312 proteins that overlapped between two-fold differentially expressed genes and identified cell secretome proteins were detected in the pooled plasma of lung cancer patients. To quantify the candidates in the serum of NSCLC patients, multiple-reaction-monitoring mass spectrometry (MRM-MS) was performed for five candidate biomarkers. Finally, two potential biomarkers (BCHE and GPx3; AUC = 0.713 and 0.673, respectively) and one two-marker panel generated by logistic regression (BCHE/GPx3; AUC = 0.773) were identified. A validation test was performed by ELISA to evaluate the reproducibility of GPx3 and BCHE expression in an independent set of samples (BCHE and GPx3; AUC = 0.630 and 0.759, respectively, BCHE/GPx3 panel; AUC = 0.788). Collectively, these results demonstrate the feasibility of using our pipeline for marker discovery and our MRM-MS platform for verifying potential biomarkers of human diseases.
Collapse
Affiliation(s)
- Jihye Shin
- Center for Theragnosis, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul, Korea
| | - Sang-Yun Song
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanam-do, Korea
| | - Hee-Sung Ahn
- Center for Theragnosis, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
- KIST School, Korea University of Science and Technology, Daejeon, Korea
| | - Byung Chull An
- Department of Anatomy, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Hospital, Dong-gu, Gwangju, Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
| | - Kook-Joo Na
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeollanam-do, Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seodaemun-gu, Seoul, Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Buk-gu, Gwangju, Korea
| | - Seon-Young Kim
- Personalized Genomic Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
- KIST School, Korea University of Science and Technology, Daejeon, Korea
- * E-mail: (SL); (CL)
| | - Seung-won Lee
- Department of Anatomy, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Korea
- * E-mail: (SL); (CL)
| |
Collapse
|
16
|
Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:29-38. [PMID: 28441545 DOI: 10.1016/j.jchromb.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 01/21/2023]
Abstract
Following the rapid expansion of the proteomics field, the investigation of post translational modifications (PTM) has become extremely popular changing our perspective of how proteins constantly fine tune cellular functions. Reversible protein phosphorylation plays a pivotal role in virtually all biological processes in the cell and it is one the most characterized PTM up to date. During the last decade, the development of phosphoprotein/phosphopeptide enrichment strategies and mass spectrometry (MS) technology has revolutionized the field of phosphoproteomics discovering thousands of new site-specific phosphorylations and unveiling unprecedented evidence about their modulation under distinct cellular conditions. The field has expanded so rapidly that the use of traditional methods to validate and characterize the biological role of the phosphosites is not feasible any longer. Targeted MS holds great promise for becoming the method of choice to study with high precision and sensitivity already known site-specific phosphorylation events. This review summarizes the contribution of large-scale unbiased MS analyses and highlights the need of targeted MS-based approaches for follow-up investigation. Additionally, the article illustrates the biological relevance of protein phosphorylation by providing examples of disease-related phosphorylation events and emphasizes the benefits of applying targeted MS in clinics for disease diagnosis, prognosis and drug-response evaluation.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:278-286. [DOI: 10.1016/j.jchromb.2016.08.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
|
19
|
Xu H, Perreau VM, Dent KA, Bush AI, Finkelstein DI, Adlard PA. Iron Regulates Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. J Alzheimers Dis 2016; 51:471-87. [DOI: 10.3233/jad-150797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- He Xu
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang North New Area, Shenyang, Liaoning Province, P.R. China
| | - Victoria M. Perreau
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Krista A. Dent
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Paul A. Adlard
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
21
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
22
|
Sharma R, Gowda H, Chavan S, Advani J, Kelkar D, Kumar GSS, Bhattacharjee M, Chaerkady R, Prasad TSK, Pandey A, Nagaraja D, Christopher R. Proteomic Signature of Endothelial Dysfunction Identified in the Serum of Acute Ischemic Stroke Patients by the iTRAQ-Based LC–MS Approach. J Proteome Res 2015; 14:2466-79. [DOI: 10.1021/pr501324n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rakesh Sharma
- Department
of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Harsha Gowda
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Sandip Chavan
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - Jayshree Advani
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - Dhanashree Kelkar
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - G. S. Sameer Kumar
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Mitali Bhattacharjee
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Raghothama Chaerkady
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - T. S. Keshava Prasad
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
- Manipal University, Manipal 576 104, India
| | - Akhilesh Pandey
- Institute
of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Dindagur Nagaraja
- Department
of Neurology, Dharwad Institute of Mental Health and Neuro Sciences, Dharwad 580001, India
| | - Rita Christopher
- Department
of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560029, India
| |
Collapse
|
23
|
Shevchenko G, Konzer A, Musunuri S, Bergquist J. Neuroproteomics tools in clinical practice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:705-17. [PMID: 25680928 DOI: 10.1016/j.bbapap.2015.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are characterized by neuronal impairment that leads to disease-specific changes in the neuronal proteins. The early diagnosis of these disorders is difficult, thus, the need for identifying, developing and using valid clinically applicable biomarkers that meet the criteria of precision, specificity and repeatability is very vital. The application of rapidly emerging technology such as mass spectrometry (MS) in proteomics has opened new avenues to accelerate biomarker discovery, both for diagnostic as well as for prognostic purposes. This review summarizes the most recent advances in the mass spectrometry-based neuroproteomics and analyses the current and future directions in the biomarker discovery for the neurodegenerative diseases. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Anne Konzer
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
24
|
Foster MW, Thompson JW, Ledford JG, Dubois LG, Hollingsworth JW, Francisco D, Tanyaratsrisakul S, Voelker DR, Kraft M, Moseley MA, Foster WM. Identification and Quantitation of Coding Variants and Isoforms of Pulmonary Surfactant Protein A. J Proteome Res 2014; 13:3722-32. [PMID: 25025725 PMCID: PMC4123939 DOI: 10.1021/pr500307f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary surfactant protein A (SP-A), a heterooligomer of SP-A1 and SP-A2, is an important regulator of innate immunity of the lung. Nonsynonymous single nucleotide variants of SP-A have been linked to respiratory diseases, but the expressed repertoire of SP-A protein in human airway has not been investigated. Here, we used parallel trypsin and Glu-C digestion, followed by LC-MS/MS, to obtain sequence coverage of common SP-A variants and isoform-determining peptides. We further developed a SDS-PAGE-based, multiple reaction monitoring (GeLC-MRM) assay for enrichment and targeted quantitation of total SP-A, the SP-A2 isoform, and the Gln223 and Lys223 variants of SP-A, from as little as one milliliter of bronchoalveolar lavage fluid. This assay identified individuals with the three genotypes at the 223 position of SP-A2: homozygous major (Gln223/Gln223), homozygous minor (Lys223/Lys223), or heterozygous (Gln223/Lys223). More generally, our studies demonstrate the challenges inherent in distinguishing highly homologous, copurifying protein isoforms by MS and show the applicability of MRM mass spectrometry for identification and quantitation of nonsynonymous single nucleotide variants and other proteoforms in airway lining fluid.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dennis R Voelker
- ‡Department of Medicine, National Jewish Health, Denver, Colorado 80206, United States
| | | | | | | |
Collapse
|