1
|
Sellier C, Corcia P, Vourc'h P, Dupuis L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Rev Neurol (Paris) 2024; 180:417-428. [PMID: 38609750 DOI: 10.1016/j.neurol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.
Collapse
Affiliation(s)
- C Sellier
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France
| | - P Corcia
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Centre constitutif de coordination SLA, CHU de Bretonneau, 2, boulevard Tonnelle, 37044 Tours cedex 1, France
| | - P Vourc'h
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Service de biochimie et biologie moléculaire, CHU de Tours, Tours, France
| | - L Dupuis
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Alvarez MRS, Moreno PG, Grijaldo-Alvarez SJB, Yadlapati A, Zhou Q, Narciso MP, Completo GC, Nacario RC, Rabajante JF, Heralde FM, Lebrilla CB. The effects of immortalization on the N-glycome and proteome of CDK4-transformed lung cancer cells. Glycobiology 2024; 34:cwae030. [PMID: 38579012 PMCID: PMC11041852 DOI: 10.1093/glycob/cwae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.
Collapse
Affiliation(s)
- Michael Russelle S Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Patrick Gabriel Moreno
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
| | - Sheryl Joyce B Grijaldo-Alvarez
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Anirudh Yadlapati
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Qingwen Zhou
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| | - Michelle P Narciso
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Gladys Cherisse Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Jomar F Rabajante
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, 4031, Philippines
| | - Francisco M Heralde
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, 1100, Philippines
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, 1000, Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Group, University of California, Davis, 1 Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
3
|
Riera-Tur I, Schäfer T, Hornburg D, Mishra A, da Silva Padilha M, Fernández-Mosquera L, Feigenbutz D, Auer P, Mann M, Baumeister W, Klein R, Meissner F, Raimundo N, Fernández-Busnadiego R, Dudanova I. Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity. Life Sci Alliance 2021; 5:5/3/e202101185. [PMID: 34933920 PMCID: PMC8711852 DOI: 10.26508/lsa.202101185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Using cryo-ET, cell biology, and proteomics, this study shows that aggregating proteins impair the autophagy-lysosomal pathway in neurons by sequestering a subunit of the AP-3 adaptor complex. The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like β-sheet proteins (β proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, β proteins interact with and sequester AP-3 μ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3μ1 expression ameliorates neurotoxicity caused by β proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.
Collapse
Affiliation(s)
- Irene Riera-Tur
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Tillman Schäfer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Hornburg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Experimental Systems Immunology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Archana Mishra
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Miguel da Silva Padilha
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Lorena Fernández-Mosquera
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dennis Feigenbutz
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Patrick Auer
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany.,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology Group, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Rubén Fernández-Busnadiego
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Neuropathology, University Medical Center Goettingen, Goettingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | - Irina Dudanova
- Department of Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Martinsried, Germany .,Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
4
|
Ghanawi H, Hennlein L, Zare A, Bader J, Salehi S, Hornburg D, Ji C, Sivadasan R, Drepper C, Meissner F, Mann M, Jablonka S, Briese M, Sendtner M. Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin. Nucleic Acids Res 2021; 49:12284-12305. [PMID: 34850154 PMCID: PMC8643683 DOI: 10.1093/nar/gkab1120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 01/13/2023] Open
Abstract
Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnprtm1a/tm1a) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnprtm1a/tm1a mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with γ-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context.
Collapse
Affiliation(s)
- Hanaa Ghanawi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Saeede Salehi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Daniel Hornburg
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Carsten Drepper
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg 97080, Germany
| |
Collapse
|
5
|
Deisl C, Hilgemann DW, Syeda R, Fine M. TMEM16F and dynamins control expansive plasma membrane reservoirs. Nat Commun 2021; 12:4990. [PMID: 34404808 PMCID: PMC8371123 DOI: 10.1038/s41467-021-25286-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2021] [Indexed: 11/09/2022] Open
Abstract
Cells can expand their plasma membrane laterally by unfolding membrane undulations and by exocytosis. Here, we describe a third mechanism involving invaginations held shut by the membrane adapter, dynamin. Compartments open when Ca activates the lipid scramblase, TMEM16F, anionic phospholipids escape from the cytoplasmic monolayer in exchange for neutral lipids, and dynamins relax. Deletion of TMEM16F or dynamins blocks expansion, with loss of dynamin expression generating a maximally expanded basal plasma membrane state. Re-expression of dynamin2 or its GTPase-inactivated mutant, but not a lipid binding mutant, regenerates reserve compartments and rescues expansion. Dynamin2-GFP fusion proteins form punctae that rapidly dissipate from these compartments during TMEM16F activation. Newly exposed compartments extend deeply into the cytoplasm, lack numerous organellar markers, and remain closure-competent for many seconds. Without Ca, compartments open slowly when dynamins are sequestered by cytoplasmic dynamin antibodies or when scrambling is mimicked by neutralizing anionic phospholipids and supplementing neutral lipids. Activation of Ca-permeable mechanosensitive channels via cell swelling or channel agonists opens the compartments in parallel with phospholipid scrambling. Thus, dynamins and TMEM16F control large plasma membrane reserves that open in response to lateral membrane stress and Ca influx.
Collapse
Affiliation(s)
- Christine Deisl
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, TX, USA
| | - Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, TX, USA.
| | - Ruhma Syeda
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX, USA
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, TX, USA.
- University of Texas Southwestern Medical Center, Department of Molecular Genetics, Dallas, TX, USA.
| |
Collapse
|
6
|
Soni A, Klütsch D, Hu X, Houtman J, Rund N, McCloskey A, Mertens J, Schafer ST, Amin H, Toda T. Improved Method for Efficient Generation of Functional Neurons from Murine Neural Progenitor Cells. Cells 2021; 10:1894. [PMID: 34440662 PMCID: PMC8392300 DOI: 10.3390/cells10081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Neuronal culture was used to investigate neuronal function in physiological and pathological conditions. Despite its inevitability, primary neuronal culture remained a gold standard method that requires laborious preparation, intensive training, and animal resources. To circumvent the shortfalls of primary neuronal preparations and efficiently give rise to functional neurons, we combine a neural stem cell culture method with a direct cell type-conversion approach. The lucidity of this method enables the efficient preparation of functional neurons from mouse neural progenitor cells on demand. We demonstrate that induced neurons (NPC-iNs) by this method make synaptic connections, elicit neuronal activity-dependent cellular responses, and develop functional neuronal networks. This method will provide a concise platform for functional neuronal assessments. This indeed offers a perspective for using these characterized neuronal networks for investigating plasticity mechanisms, drug screening assays, and probing the molecular and biophysical basis of neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abhinav Soni
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Diana Klütsch
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Xin Hu
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Judith Houtman
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| | - Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Tyrol, Austria;
| | - Simon T. Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Hayder Amin
- Biohybrid Neuroelectronics (BIONICS), German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (D.K.); (X.H.)
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (A.S.); (J.H.); (N.R.)
| |
Collapse
|
7
|
Thelen MP, Wirth B, Kye MJ. Mitochondrial defects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol Commun 2020; 8:223. [PMID: 33353564 PMCID: PMC7754598 DOI: 10.1186/s40478-020-01101-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease characterized by loss of lower motor neurons, which leads to proximal muscle weakness and atrophy. SMA is caused by reduced survival motor neuron (SMN) protein levels due to biallelic deletions or mutations in the SMN1 gene. When SMN levels fall under a certain threshold, a plethora of cellular pathways are disturbed, including RNA processing, protein synthesis, metabolic defects, and mitochondrial function. Dysfunctional mitochondria can harm cells by decreased ATP production and increased oxidative stress due to elevated cellular levels of reactive oxygen species (ROS). Since neurons mainly produce energy via mitochondrial oxidative phosphorylation, restoring metabolic/oxidative homeostasis might rescue SMA pathology. Here, we report, based on proteome analysis, that SMA motor neurons show disturbed energy homeostasis due to dysfunction of mitochondrial complex I. This results in a lower basal ATP concentration and higher ROS production that causes an increase of protein carbonylation and impaired protein synthesis in SMA motor neurons. Counteracting these cellular impairments with pyruvate reduces elevated ROS levels, increases ATP and SMN protein levels in SMA motor neurons. Furthermore, we found that pyruvate-mediated SMN protein synthesis is mTOR-dependent. Most importantly, we showed that ROS regulates protein synthesis at the translational initiation step, which is impaired in SMA. As many neuropathies share pathological phenotypes such as dysfunctional mitochondria, excessive ROS, and impaired protein synthesis, our findings suggest new molecular interactions among these pathways. Additionally, counteracting these impairments by reducing ROS and increasing ATP might be beneficial for motor neuron survival in SMA patients.
Collapse
|
8
|
Manjunath LE, Singh A, Sahoo S, Mishra A, Padmarajan J, Basavaraju CG, Eswarappa SM. Stop codon read-through of mammalian MTCH2 leading to an unstable isoform regulates mitochondrial membrane potential. J Biol Chem 2020; 295:17009-17026. [PMID: 33028634 PMCID: PMC7863902 DOI: 10.1074/jbc.ra120.014253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3' UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3' UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through-deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ashutosh Mishra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jinsha Padmarajan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
9
|
Braems E, Swinnen B, Van Den Bosch L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 2020; 140:625-643. [PMID: 32876811 PMCID: PMC7547039 DOI: 10.1007/s00401-020-02214-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Tüshaus J, Kataka ES, Zaucha J, Frishman D, Müller SA, Lichtenthaler SF. Neuronal Differentiation of LUHMES Cells Induces Substantial Changes of the Proteome. Proteomics 2020; 21:e2000174. [PMID: 32951307 DOI: 10.1002/pmic.202000174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Neuronal cell lines are important model systems to study mechanisms of neurodegenerative diseases. One example is the Lund Human Mesencephalic (LUHMES) cell line, which can differentiate into dopaminergic-like neurons and is frequently used to study mechanisms of Parkinson's disease and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified with selected neuronal markers, but little is known about the proteome-wide protein abundance changes during differentiation. Using mass spectrometry and label-free quantification (LFQ), the proteome of differentiated and undifferentiated LUHMES cells and of primary murine midbrain neurons are compared. Neuronal differentiation induced substantial changes of the LUHMES cell proteome, with proliferation-related proteins being strongly down-regulated and neuronal and dopaminergic proteins, such as L1CAM and α-synuclein (SNCA) being up to 1,000-fold up-regulated. Several of these proteins, including MAPT and SYN1, may be useful as new markers for experimentally validating neuronal differentiation of LUHMES cells. Primary midbrain neurons are slightly more closely related to differentiated than to undifferentiated LUHMES cells, in particular with respect to the abundance of proteins related to neurodegeneration. In summary, the analysis demonstrates that differentiated LUHMES cells are a suitable model for studies on neurodegeneration and provides a resource of the proteome-wide changes during neuronal differentiation. (ProteomeXchange identifier PXD020044).
Collapse
Affiliation(s)
- Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, München, 81377, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Evans Sioma Kataka
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Maximus-von-Imhof Forum 3, Freising, 85354, Germany
| | - Jan Zaucha
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Maximus-von-Imhof Forum 3, Freising, 85354, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Maximus-von-Imhof Forum 3, Freising, 85354, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, München, 81377, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, München, 81377, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
11
|
Ng Kee Kwong KC, Gregory JM, Pal S, Chandran S, Mehta AR. Cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis: a systematic review of in vitro studies. Brain Commun 2020; 2:fcaa121. [PMID: 33094283 PMCID: PMC7566327 DOI: 10.1093/braincomms/fcaa121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Various studies have suggested that a neurotoxic cerebrospinal fluid profile could be implicated in amyotrophic lateral sclerosis. Here, we systematically review the evidence for cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis and explore its clinical correlates. We searched the following databases with no restrictions on publication date: PubMed, Embase and Web of Science. All studies that investigated cytotoxicity in vitro following exposure to cerebrospinal fluid from amyotrophic lateral sclerosis patients were considered for inclusion. Meta-analysis could not be performed, and findings were instead narratively summarized. Twenty-eight studies were included in our analysis. Both participant characteristics and study conditions including cerebrospinal fluid concentration, exposure time and culture model varied considerably across studies. Of 22 studies assessing cell viability relative to controls, 19 studies reported a significant decrease following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, while three early studies failed to observe any difference. Seven of eight studies evaluating apoptosis observed significant increases in the levels of apoptotic markers following exposure to cerebrospinal fluid from patients with amyotrophic lateral sclerosis, with the remaining study reporting a qualitative difference. Although five studies investigated the possible relationship between cerebrospinal fluid cytotoxicity and patient characteristics, such as age, gender and disease duration, none demonstrated an association with any of the factors. In conclusion, our analysis suggests that cerebrospinal fluid cytotoxicity is a feature of sporadic and possibly also of familial forms of amyotrophic lateral sclerosis. Further research is, however, required to better characterize its underlying mechanisms and to establish its possible contribution to amyotrophic lateral sclerosis pathophysiology.
Collapse
Affiliation(s)
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Centre for Brain Development and Repair, inStem, Bangalore, India
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 2019; 14:42. [PMID: 31744522 PMCID: PMC6862823 DOI: 10.1186/s13024-019-0341-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Background A subset of familial forms of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1). Mutant SOD1 proteins are susceptible to misfolding and abnormally accumulated in spinal cord, which is most severely affected in ALS. It, however, remains quite controversial whether misfolding of wild-type SOD1 is involved in more prevalent sporadic ALS (sALS) cases without SOD1 mutations. Methods Cerebrospinal fluid (CSF) from patients including sALS as well as several other neurodegenerative diseases and non-neurodegenerative diseases was examined with an immunoprecipitation assay and a sandwich ELISA using antibodies specifically recognizing misfolded SOD1. Results We found that wild-type SOD1 was misfolded in CSF from all sALS cases examined in this study. The misfolded SOD1 was also detected in CSF from a subset of Parkinson’s disease and progressive supranuclear palsy, albeit with smaller amounts than those in sALS. Furthermore, the CSF samples containing the misfolded SOD1 exhibited significant toxicity toward motor neuron-like NSC-34 cells, which was ameliorated by removal of the misfolded wild-type SOD1 with immunoprecipitation. Conclusions Taken together, we propose that misfolding of wild-type SOD1 in CSF is a common pathological process of ALS cases regardless of SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Yo-Ichi Takei
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan.,Department of Neurology, Iida Hospital, Iida, 395-8505, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.,Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
13
|
Soste M, Charmpi K, Lampert F, Gerez JA, van Oostrum M, Malinovska L, Boersema PJ, Prymaczok NC, Riek R, Peter M, Vanni S, Beyer A, Picotti P. Proteomics-Based Monitoring of Pathway Activity Reveals that Blocking Diacylglycerol Biosynthesis Rescues from Alpha-Synuclein Toxicity. Cell Syst 2019; 9:309-320.e8. [PMID: 31521608 PMCID: PMC6859835 DOI: 10.1016/j.cels.2019.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Proteinaceous inclusions containing alpha-synuclein (α-Syn) have been implicated in neuronal toxicity in Parkinson's disease, but the pathways that modulate toxicity remain enigmatic. Here, we used a targeted proteomic assay to simultaneously measure 269 pathway activation markers and proteins deregulated by α-Syn expression across a panel of 33 Saccharomyces cerevisiae strains that genetically modulate α-Syn toxicity. Applying multidimensional linear regression analysis to these data predicted Pah1, a phosphatase that catalyzes conversion of phosphatidic acid to diacylglycerol at the endoplasmic reticulum membrane, as an effector of rescue. Follow-up studies demonstrated that inhibition of Pah1 activity ameliorates the toxic effects of α-Syn, indicate that the diacylglycerol branch of lipid metabolism could enhance α-Syn neuronal cytotoxicity, and suggest a link between α-Syn toxicity and the biology of lipid droplets.
Collapse
Affiliation(s)
- Martin Soste
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Konstantina Charmpi
- CECAD, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabienne Lampert
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Juan Atilio Gerez
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Liliana Malinovska
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Jonathan Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Natalia Cecilia Prymaczok
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andreas Beyer
- CECAD, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Yin YR, Sang P, Xian WD, Li X, Jiao JY, Liu L, Hozzein WN, Xiao M, Li WJ. Expression and Characteristics of Two Glucose-Tolerant GH1 β-glucosidases From Actinomadura amylolytica YIM 77502 T for Promoting Cellulose Degradation. Front Microbiol 2018; 9:3149. [PMID: 30619214 PMCID: PMC6305311 DOI: 10.3389/fmicb.2018.03149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/04/2018] [Indexed: 01/25/2023] Open
Abstract
The bioconversion of lignocellulose in various industrial processes, such as biofuel production, requires the degradation of cellulose. Actinomadura amylolytica YIM 77502T is an aerobic, Gram-positive actinomycete that can efficiently degrade crystalline cellulose by extracellular cellulases. Genomic analysis of A. amylolytica identified 9 cellulase and 11 β-glucosidase genes that could potentially encode proteins that digest cellulose. Extracellular proteome characterization of A. amylolytica cell-free culture supernatant by liquid chromatography tandem mass spectrometry analysis revealed that 4 of these cellulases and 2 of these β-glucosidases functioned during cellulose hydrolysis. Thin-layer chromatography analysis revealed extracellular β-glucosidases play a major role in carboxyl methyl cellulose (CMC) degradation of products in culture supernatants. In this study, 2 of the identified secreted β-glucosidases, AaBGL1 and AaBGL2, were functionally expressed in Escherichia coli and found to have β-glucosidase activity with wide substrate specificities, including for p-nitrophenyl β-D-glucopyranoside (pNPG), p-nitrophenyl-beta-D-cellobioside (pNPC), and cellobiose. Moreover, AaBGL1 and AaBGL2 had high tolerances for glucose. After adding these β-glucosidases to commercial cellulases, the degradation rates of CMC, Avicel, birch sawdust, and corncob powder increased by 37, 42, 33, and 9%, respectively. Overall, this work identifies an alternative potential source of β-glucosidases with potential applications in commercial cellulose utilization and the bioenergy industry.
Collapse
Affiliation(s)
- Yi-Rui Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Sang
- College of Agriculture and Biological Science, Dali University, Dali, China
| | - Wen-Dong Xian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| |
Collapse
|
15
|
Sabatier P, Saei AA, Wang S, Zubarev RA. Dynamic Proteomics Reveals High Plasticity of Cellular Proteome: Growth-Related and Drug-Induced Changes in Cancer Cells are Comparable. Proteomics 2018; 18:e1800118. [PMID: 30382632 DOI: 10.1002/pmic.201800118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/26/2018] [Indexed: 11/10/2022]
Abstract
In chemical proteomics, the changes occurring in cellular proteomes upon drug treatment are used to identify the drug targets and the mechanism of action. However, proteomes of cultured cells undergo also natural alteration associated with changes in the media, attaining a degree of confluence as well as due to cell division and cell metabolism. These changes are implicitly assumed to be smaller in magnitude than the drug-induced changes that ultimately lead to cell demise. In this study, it is shown that growth-related proteome changes in the untreated control group are comparable in magnitude to drug-induced changes over the course of 48 h treatment. In two well-characterized cancer cell lines, growth-related effects assessed with deep proteomics analysis (10 481 proteins quantified with at least two peptides) show common trends, the steady downregulation of cell division processes, and the upregulation of metabolism-related pathways. The magnitude of these variations, which are present even before reaching 100% confluence reveals unexpectedly high plasticity of the cellular proteome. This finding reinforces the need, generally accepted in theory but not always followed in practice, to use a time-matched control when measuring drug-induced proteome changes.
Collapse
Affiliation(s)
- Pierre Sabatier
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, SE, 17 177, Stockholm, Sweden
| | - Amir Ata Saei
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, SE, 17 177, Stockholm, Sweden
| | - Shiyu Wang
- Department of Biostatistics, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, SE, 17 177, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| |
Collapse
|
16
|
Broeker J, Mechelke M, Baudrexl M, Mennerich D, Hornburg D, Mann M, Schwarz WH, Liebl W, Zverlov VV. The hemicellulose-degrading enzyme system of the thermophilic bacterium Clostridium stercorarium: comparative characterisation and addition of new hemicellulolytic glycoside hydrolases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:229. [PMID: 30159029 PMCID: PMC6106730 DOI: 10.1186/s13068-018-1228-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND The bioconversion of lignocellulosic biomass in various industrial processes, such as the production of biofuels, requires the degradation of hemicellulose. Clostridium stercorarium is a thermophilic bacterium, well known for its outstanding hemicellulose-degrading capability. Its genome comprises about 50 genes for partially still uncharacterised thermostable hemicellulolytic enzymes. These are promising candidates for industrial applications. RESULTS To reveal the hemicellulose-degrading potential of 50 glycoside hydrolases, they were recombinantly produced and characterised. 46 of them were identified in the secretome of C. stercorarium cultivated on cellobiose. Xylanases Xyn11A, Xyn10B, Xyn10C, and cellulase Cel9Z were among the most abundant proteins. The secretome of C. stercorarium was active on xylan, β-glucan, xyloglucan, galactan, and glucomannan. In addition, the recombinant enzymes hydrolysed arabinan, mannan, and galactomannan. 20 enzymes are newly described, degrading xylan, galactan, arabinan, mannan, and aryl-glycosides of β-d-xylose, β-d-glucose, β-d-galactose, α-l-arabinofuranose, α-l-rhamnose, β-d-glucuronic acid, and N-acetyl-β-d-glucosamine. The activities of three enzymes with non-classified glycoside hydrolase (GH) family modules were determined. Xylanase Xyn105F and β-d-xylosidase Bxl31D showed activities not described so far for their GH families. 11 of the 13 polysaccharide-degrading enzymes were most active at pH 5.0 to pH 6.5 and at temperatures of 57-76 °C. Investigation of the substrate and product specificity of arabinoxylan-degrading enzymes revealed that only the GH10 xylanases were able to degrade arabinoxylooligosaccharides. While Xyn10C was inhibited by α-(1,2)-arabinosylations, Xyn10D showed a degradation pattern different to Xyn10B and Xyn10C. Xyn11A released longer degradation products than Xyn10B. Both tested arabinose-releasing enzymes, Arf51B and Axh43A, were able to hydrolyse single- as well as double-arabinosylated xylooligosaccharides. CONCLUSIONS The obtained results lead to a better understanding of the hemicellulose-degrading capacity of C. stercorarium and its involved enzyme systems. Despite similar average activities measured by depolymerisation tests, a closer look revealed distinctive differences in the activities and specificities within an enzyme class. This may lead to synergistic effects and influence the enzyme choice for biotechnological applications. The newly characterised glycoside hydrolases can now serve as components of an enzyme platform for industrial applications in order to reconstitute synthetic enzyme systems for complete and optimised degradation of defined polysaccharides and hemicellulose.
Collapse
Affiliation(s)
- Jannis Broeker
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Matthias Mechelke
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Melanie Baudrexl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Denise Mennerich
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Daniel Hornburg
- Present Address: School of Medicine, Stanford University, Stanford, CA 94305 USA
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang H. Schwarz
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Wolfgang Liebl
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Vladimir V. Zverlov
- Department of Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Institute of Molecular Genetics, Russian Academy of Science, Kurchatov Sq. 2, Moscow, 123182 Russia
| |
Collapse
|
17
|
Tebaldi T, Zuccotti P, Peroni D, Köhn M, Gasperini L, Potrich V, Bonazza V, Dudnakova T, Rossi A, Sanguinetti G, Conti L, Macchi P, D'Agostino V, Viero G, Tollervey D, Hüttelmaier S, Quattrone A. HuD Is a Neural Translation Enhancer Acting on mTORC1-Responsive Genes and Counteracted by the Y3 Small Non-coding RNA. Mol Cell 2018; 71:256-270.e10. [PMID: 30029004 PMCID: PMC6060611 DOI: 10.1016/j.molcel.2018.06.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
The RNA-binding protein HuD promotes neurogenesis and favors recovery from peripheral axon injury. HuD interacts with many mRNAs, altering both stability and translation efficiency. We generated a nucleotide resolution map of the HuD RNA interactome in motor neuron-like cells, identifying HuD target sites in 1,304 mRNAs, almost exclusively in the 3' UTR. HuD binds many mRNAs encoding mTORC1-responsive ribosomal proteins and translation factors. Altered HuD expression correlates with the translation efficiency of these mRNAs and overall protein synthesis, in a mTORC1-independent fashion. The predominant HuD target is the abundant, small non-coding RNA Y3, amounting to 70% of the HuD interaction signal. Y3 functions as a molecular sponge for HuD, dynamically limiting its recruitment to polysomes and its activity as a translation and neuron differentiation enhancer. These findings uncover an alternative route to the mTORC1 pathway for translational control in motor neurons that is tunable by a small non-coding RNA.
Collapse
Affiliation(s)
- Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Paola Zuccotti
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Daniele Peroni
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Marcel Köhn
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle 06120, Germany; Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Halle 06097, Germany
| | - Lisa Gasperini
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Valentina Potrich
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Veronica Bonazza
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Tatiana Dudnakova
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Vito D'Agostino
- Centre for Integrative Biology, University of Trento, Trento 38123, Italy
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Trento 38123, Italy
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle 06120, Germany
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento 38123, Italy.
| |
Collapse
|
18
|
Abstract
Huntington's disease is caused by the expansion of a polyglutamine (polyQ) tract in the N-terminal exon of huntingtin (HttEx1), but the cellular mechanisms leading to neurodegeneration remain poorly understood. Here we present in situ structural studies by cryo-electron tomography of an established yeast model system of polyQ toxicity. We find that expression of polyQ-expanded HttEx1 results in the formation of unstructured inclusion bodies and in some cases fibrillar aggregates. This contrasts with recent findings in mammalian cells, where polyQ inclusions were exclusively fibrillar. In yeast, polyQ toxicity correlates with alterations in mitochondrial and lipid droplet morphology, which do not arise from physical interactions with inclusions or fibrils. Quantitative proteomic analysis shows that polyQ aggregates sequester numerous cellular proteins and cause a major change in proteome composition, most significantly in proteins related to energy metabolism. Thus, our data point to a multifaceted toxic gain-of-function of polyQ aggregates, driven by sequestration of endogenous proteins and mitochondrial and lipid droplet dysfunction.
Collapse
|
19
|
Hosp F, Mann M. A Primer on Concepts and Applications of Proteomics in Neuroscience. Neuron 2017; 96:558-571. [DOI: 10.1016/j.neuron.2017.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
20
|
Giai Gianetto Q, Couté Y, Bruley C, Burger T. Uses and misuses of the fudge factor in quantitative discovery proteomics. Proteomics 2017; 16:1955-60. [PMID: 27272648 DOI: 10.1002/pmic.201600132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/02/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
Selecting proteins with significant differential abundance is the cornerstone of many relative quantitative proteomics experiments. To do so, a trade-off between p-value thresholding and fold-change thresholding can be performed because of a specific parameter, named fudge factor, and classically noted s0 . We have observed that this fudge factor is routinely turned away from its original (and statistically valid) use, leading to important distortion in the distribution of p-values, jeopardizing the protein differential analysis, as well as the subsequent biological conclusion. In this article, we provide a comprehensive viewpoint on this issue, as well as some guidelines to circumvent it.
Collapse
Affiliation(s)
| | - Yohann Couté
- BIG-BGE (Université Grenoble-Alpes, CNRS, CEA, INSERM), Grenoble, France
| | - Christophe Bruley
- BIG-BGE (Université Grenoble-Alpes, CNRS, CEA, INSERM), Grenoble, France
| | - Thomas Burger
- BIG-BGE (Université Grenoble-Alpes, CNRS, CEA, INSERM), Grenoble, France
| |
Collapse
|
21
|
Ishii T, Kawakami E, Endo K, Misawa H, Watabe K. Formation and spreading of TDP-43 aggregates in cultured neuronal and glial cells demonstrated by time-lapse imaging. PLoS One 2017; 12:e0179375. [PMID: 28599005 PMCID: PMC5466347 DOI: 10.1371/journal.pone.0179375] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a main constituent of cytoplasmic aggregates in neuronal and glial cells in cases of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We have previously demonstrated that adenovirus-transduced artificial TDP-43 cytoplasmic aggregates formation is enhanced by proteasome inhibition in vitro and in vivo. However, the relationship between cytoplasmic aggregate formation and cell death remains unclear. In the present study, rat neural stem cell lines stably transfected with EGFP- or Sirius-expression vectors under the control of tubulin beta III, glial fibrillary acidic protein, or 2',3'-cyclic nucleotide 3'-phosphodiesterase promoter were differentiated into neurons, astrocytes, and oligodendrocytes, respectively, in the presence of retinoic acid. The differentiated cells were then transduced with adenoviruses expressing DsRed-tagged human wild type and C-terminal fragment TDP-43 under the condition of proteasome inhibition. Time-lapse imaging analyses revealed growing cytoplasmic aggregates in the transduced neuronal and glial cells, followed by collapse of the cell. The aggregates remained insoluble in culture media, consisted of sarkosyl-insoluble granular materials, and contained phosphorylated TDP-43. Moreover, the released aggregates were incorporated into neighboring neuronal cells, suggesting cell-to-cell spreading. The present study provides a novel tool for analyzing the detailed molecular mechanisms of TDP-43 proteinopathy in vitro.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Emiko Kawakami
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kentaro Endo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
- * E-mail: (HM); (KW)
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Tokyo, Japan
- * E-mail: (HM); (KW)
| |
Collapse
|
22
|
Valbuena GN, Tortarolo M, Bendotti C, Cantoni L, Keun HC. Altered Metabolic Profiles Associate with Toxicity in SOD1 G93A Astrocyte-Neuron Co-Cultures. Sci Rep 2017; 7:50. [PMID: 28246392 PMCID: PMC5428359 DOI: 10.1038/s41598-017-00072-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Non-cell autonomous processes involving astrocytes have been shown to contribute to motor neuron degeneration in amyotrophic lateral sclerosis. Mutant superoxide dismutase 1 (SOD1G93A) expression in astrocytes is selectively toxic to motor neurons in co-culture, even when mutant protein is expressed only in astrocytes and not in neurons. To examine metabolic changes in astrocyte-spinal neuron co-cultures, we carried out metabolomic analysis by 1H NMR spectroscopy of media from astrocyte-spinal neuron co-cultures and astrocyte-only cultures. We observed increased glucose uptake with SOD1G93A expression in all co-cultures, but while co-cultures with only SOD1G93A neurons had lower extracellular lactate, those with only SOD1G93A astrocytes exhibited the reverse. Reduced branched-chain amino acid uptake and increased accumulation of 3-methyl-2-oxovalerate were observed in co-culture with only SOD1G93A neurons while glutamate was reduced in all co-cultures expressing SOD1G93A. The shifts in these coupled processes suggest a potential block in glutamate processing that may impact motor neuron survival. We also observed metabolic alterations which may relate to oxidative stress responses. Overall, the different metabolite changes observed with the two SOD1G93A cell types highlight the role of the astrocyte-motor neuron interaction in the resulting metabolic phenotype, requiring further examination of altered met abolic pathways and their impact on motor neuron survival.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Massimo Tortarolo
- Department of Neuroscience, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy.
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
23
|
Development of data-independent acquisition workflows for metabolomic analysis on a quadrupole-orbitrap platform. Talanta 2017; 164:128-136. [DOI: 10.1016/j.talanta.2016.11.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022]
|
24
|
Davis S, Charles PD, He L, Mowlds P, Kessler BM, Fischer R. Expanding Proteome Coverage with CHarge Ordered Parallel Ion aNalysis (CHOPIN) Combined with Broad Specificity Proteolysis. J Proteome Res 2017; 16:1288-1299. [PMID: 28164708 PMCID: PMC5363888 DOI: 10.1021/acs.jproteome.6b00915] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The "deep" proteome has been accessible by mass spectrometry for some time. However, the number of proteins identified in cells of the same type has plateaued at ∼8000-10 000 without ID transfer from reference proteomes/data. Moreover, limited sequence coverage hampers the discrimination of protein isoforms when using trypsin as standard protease. Multienzyme approaches appear to improve sequence coverage and subsequent isoform discrimination. Here we expanded proteome and protein sequence coverage in MCF-7 breast cancer cells to an as yet unmatched depth by employing a workflow that addresses current limitations in deep proteome analysis in multiple stages: We used (i) gel-aided sample preparation (GASP) and combined trypsin/elastase digests to increase peptide orthogonality, (ii) concatenated high-pH prefractionation, and (iii) CHarge Ordered Parallel Ion aNalysis (CHOPIN), available on an Orbitrap Fusion (Lumos) mass spectrometer, to achieve 57% median protein sequence coverage in 13 728 protein groups (8949 Unigene IDs) in a single cell line. CHOPIN allows the use of both detectors in the Orbitrap on predefined precursor types that optimizes parallel ion processing, leading to the identification of a total of 179 549 unique peptides covering the deep proteome in unprecedented detail.
Collapse
Affiliation(s)
- Simon Davis
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Lin He
- Bioinformatics Solutions, Inc. , 470 Weber Street North Suite 204, Waterloo, Ontario N2L 6J2, Canada
| | - Peter Mowlds
- Thermo Fisher, Inc. , Stafford House, 1 Boundary Park, Hemel Hampstead HP2 7GE, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
25
|
Clotet S, Soler MJ, Riera M, Pascual J, Fang F, Zhou J, Batruch I, Vasiliou SK, Dimitromanolakis A, Barrios C, Diamandis EP, Scholey JW, Konvalinka A. Stable Isotope Labeling with Amino Acids (SILAC)-Based Proteomics of Primary Human Kidney Cells Reveals a Novel Link between Male Sex Hormones and Impaired Energy Metabolism in Diabetic Kidney Disease. Mol Cell Proteomics 2017; 16:368-385. [PMID: 28062795 DOI: 10.1074/mcp.m116.061903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/04/2017] [Indexed: 01/15/2023] Open
Abstract
Male sex predisposes to many kidney diseases. Considering that androgens exert deleterious effects in a variety of cell types within the kidney, we hypothesized that dihydrotestosterone (DHT) would alter the biology of the renal tubular cell by inducing changes in the proteome. We employed stable isotope labeling with amino acids (SILAC) in an indirect spike-in fashion to accurately quantify the proteome in DHT- and 17β-estradiol (EST)-treated human proximal tubular epithelial cells (PTEC). Of the 5043 quantified proteins, 76 were differentially regulated. Biological processes related to energy metabolism were significantly enriched among DHT-regulated proteins. SILAC ratios of 3 candidates representing glycolysis, N-acetylglucosamine metabolism and fatty acid β-oxidation, namely glucose-6-phosphate isomerase (GPI), glucosamine-6-phosphate-N-acetyltransferase 1 (GNPNAT1), and mitochondrial trifunctional protein subunit alpha (HADHA), were verified in vitro. In vivo, renal GPI and HADHA protein expression was significantly increased in males. Furthermore, male sex was associated with significantly higher GPI, GNPNAT1, and HADHA kidney protein expression in two different murine models of diabetes. Enrichment analysis revealed a link between our DHT-regulated proteins and oxidative stress within the diabetic kidney. This finding was validated in vivo, as we observed increased oxidative stress levels in control and diabetic male kidneys, compared with females. This in depth quantitative proteomics study of human primary PTEC response to sex hormone administration suggests that male sex hormone stimulation results in perturbed energy metabolism in kidney cells, and that this perturbation results in increased oxidative stress in the renal cortex. The proteome-level changes associated with androgens may play a crucial role in the development of structural and functional changes in the diseased kidney. With our findings, we propose a possible link between diabetic and non-diabetic kidney disease progression and male sex hormone levels. Data are available via ProteomeXchange (https://www.ebi.ac.uk/pride/archive/) with identifier PXD003811.
Collapse
Affiliation(s)
- Sergi Clotet
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003; .,§Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,**Division of Nephrology, University Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Maria Jose Soler
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Marta Riera
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Julio Pascual
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Fei Fang
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Joyce Zhou
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ihor Batruch
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada
| | - Stella K Vasiliou
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada.,‖Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5S 1A8, Canada
| | - Apostolos Dimitromanolakis
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada
| | - Clara Barrios
- From the ‡Department of Nephrology, Hospital del Mar-Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain, 08003
| | - Eleftherios P Diamandis
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1W7, Canada
| | - James W Scholey
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,**Division of Nephrology, University Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Ana Konvalinka
- §Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,**Division of Nephrology, University Health Network, Toronto, Ontario M5G 2N2, Canada
| |
Collapse
|
26
|
Geiger R, Rieckmann J, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016; 167. [PMID: 27745970 PMCID: PMC5075284 DOI: 10.1016/j.cell.2016.09.031 10.1016/j.cell.2016.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.
Collapse
Affiliation(s)
- Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland,Corresponding author
| | - Jan C. Rieckmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Tobias Wolf
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Camilla Basso
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Maria Kogadeeva
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland,Corresponding author
| |
Collapse
|
27
|
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016; 167:829-842.e13. [PMID: 27745970 PMCID: PMC5075284 DOI: 10.1016/j.cell.2016.09.031] [Citation(s) in RCA: 1048] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses. Dataset on dynamic metabolome/proteome profiles of activated human naive T cells Intracellular L-arginine levels regulate several metabolic pathways in T cells T cells with increased L-arginine display enhanced survival and anti-tumor activity LiP-MS identified proteins that are structurally modified by high L-arginine levels
Collapse
|
28
|
Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A, Lojewski X, Sterneckert J, Hermann A, Shaw PJ, Ince PG, Mann M, Meissner F, Sendtner M. C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci 2016; 19:1610-1618. [PMID: 27723745 DOI: 10.1038/nn.4407] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell-derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics.
Collapse
Affiliation(s)
- Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Carsten Drepper
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Nicolas Frank
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Anna Hansel
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Xenia Lojewski
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Bertaina A, Zorzoli A, Petretto A, Barbarito G, Inglese E, Merli P, Lavarello C, Brescia LP, De Angelis B, Tripodi G, Moretta L, Locatelli F, Airoldi I. Zoledronic acid boosts γδ T-cell activity in children receiving αβ + T and CD19 + cell-depleted grafts from an HLA-haplo-identical donor. Oncoimmunology 2016; 6:e1216291. [PMID: 28344861 DOI: 10.1080/2162402x.2016.1216291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
We demonstrated that γδ T cells of patients given HLA-haploidentical HSCT after removal of αβ+ T cells and CD19+ B cells are endowed with the capacity of killing leukemia cells after ex vivo treatment with zoledronic acid (ZOL). Thus, we tested the hypothesis that infusion of ZOL in patients receiving this type of graft may enhance γδ T-cell cytotoxic activity against leukemia cells. ZOL was infused every 28 d in 43 patients; most were treated at least twice. γδ T cells before and after ZOL treatments were studied in 33 of these 43 patients, till at least 7 mo after HSCT by high-resolution mass spectrometry, flow-cytometry, and degranulation assay. An induction of Vδ2-cell differentiation, paralleled by increased cytotoxicity of both Vδ1 and Vδ2 cells against primary leukemia blasts was associated with ZOL treatment. Cytotoxic activity was further increased in Vδ2 cells, but not in Vδ1 lymphocytes in those patients given more than one treatment. Proteomic analysis of γδ T cells purified from patients showed upregulation of proteins involved in activation processes and immune response, paralleled by downregulation of proteins involved in proliferation. Moreover, a proteomic signature was identified for each ZOL treatment. Patients given three or more ZOL infusions had a better probability of survival in comparison to those given one or two treatments (86% vs. 54%, respectively, p = 0.008). Our data indicate that ZOL infusion in pediatric recipients of αβ T- and B-cell-depleted HLA-haploidentical HSCT promotes γδ T-cell differentiation and cytotoxicity and may influence the outcome of patients.
Collapse
Affiliation(s)
- A Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - A Zorzoli
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - A Petretto
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - G Barbarito
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| | - E Inglese
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - P Merli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - C Lavarello
- Core Facilities, Istituto Giannina Gaslini , Genova, Italy
| | - L P Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - B De Angelis
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - G Tripodi
- Dipartimento Ricerca Traslazionale, Medicina di Laboratorio, Diagnostica e Servizi, Istituto Giannina Gaslini , Genova, Italy
| | - L Moretta
- Area di Ricerca Immunologica, IRCCS Ospedale Bambino Gesù , Rome, Italy
| | - F Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy; Department of Pediatric Science, Università di Pavia, Pavia, Italy
| | - I Airoldi
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genova, Italy
| |
Collapse
|
30
|
Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, Orozco D, Colombo A, Tahirovic S, Michaelsen M, Schreiber F, Haupt S, Peitz M, Brüstle O, Küpper C, Klopstock T, Otto M, Ludolph AC, Arzberger T, Kuhn PH, Edbauer D. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 2016; 35:2350-2370. [PMID: 27621269 PMCID: PMC5090220 DOI: 10.15252/embj.201694221] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.
Collapse
Affiliation(s)
- Benjamin M Schwenk
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Alperen Serdaroglu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denise Orozco
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | | | - Michael Peitz
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany
| | - Clemens Küpper
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany.,Institut für Allgemeine Pathologie Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Institute for Metabolic Biochemistry LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Fasano M, Monti C, Alberio T. A systems biology-led insight into the role of the proteome in neurodegenerative diseases. Expert Rev Proteomics 2016; 13:845-55. [PMID: 27477319 DOI: 10.1080/14789450.2016.1219254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Multifactorial disorders are the result of nonlinear interactions of several factors; therefore, a reductionist approach does not appear to be appropriate. Proteomics is a global approach that can be efficiently used to investigate pathogenetic mechanisms of neurodegenerative diseases. AREAS COVERED Here, we report a general introduction about the systems biology approach and mechanistic insights recently obtained by over-representation analysis of proteomics data of cellular and animal models of Alzheimer's disease, Parkinson's disease and other neurodegenerative disorders, as well as of affected human tissues. Expert commentary: As an inductive method, proteomics is based on unbiased observations that further require validation of generated hypotheses. Pathway databases and over-representation analysis tools allow researchers to assign an expectation value to pathogenetic mechanisms linked to neurodegenerative diseases. The systems biology approach based on omics data may be the key to unravel the complex mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Mauro Fasano
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| | - Chiara Monti
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| | - Tiziana Alberio
- a Department of Science and High Technology and Center of Neuroscience , University of Insubria , Busto Arsizio , Italy
| |
Collapse
|
32
|
Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol 2016; 132:175-196. [PMID: 27164932 PMCID: PMC4947123 DOI: 10.1007/s00401-016-1575-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment available. An increasing number of genetic causes of ALS are being identified, but how these genetic defects lead to motor neuron degeneration and to which extent they affect common cellular pathways remains incompletely understood. To address these questions, we performed an interactomic analysis to identify binding partners of wild-type (WT) and ALS-associated mutant versions of ATXN2, C9orf72, FUS, OPTN, TDP-43 and UBQLN2 in neuronal cells. This analysis identified several known but also many novel binding partners of these proteins. Interactomes of WT and mutant ALS proteins were very similar except for OPTN and UBQLN2, in which mutations caused loss or gain of protein interactions. Several of the identified interactomes showed a high degree of overlap: shared binding partners of ATXN2, FUS and TDP-43 had roles in RNA metabolism; OPTN- and UBQLN2-interacting proteins were related to protein degradation and protein transport, and C9orf72 interactors function in mitochondria. To confirm that this overlap is important for ALS pathogenesis, we studied fragile X mental retardation protein (FMRP), one of the common interactors of ATXN2, FUS and TDP-43, in more detail in in vitro and in vivo model systems for FUS ALS. FMRP localized to mutant FUS-containing aggregates in spinal motor neurons and bound endogenous FUS in a direct and RNA-sensitive manner. Furthermore, defects in synaptic FMRP mRNA target expression, neuromuscular junction integrity, and motor behavior caused by mutant FUS in zebrafish embryos, could be rescued by exogenous FMRP expression. Together, these results show that interactomics analysis can provide crucial insight into ALS disease mechanisms and they link FMRP to motor neuron dysfunction caused by FUS mutations.
Collapse
|
33
|
Debaisieux S, Encheva V, Chakravarty P, Snijders AP, Schiavo G. Analysis of Signaling Endosome Composition and Dynamics Using SILAC in Embryonic Stem Cell-Derived Neurons. Mol Cell Proteomics 2016; 15:542-57. [PMID: 26685126 PMCID: PMC4739672 DOI: 10.1074/mcp.m115.051649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Neurons require efficient transport mechanisms such as fast axonal transport to ensure neuronal homeostasis and survival. Neurotrophins and their receptors are conveyed via fast axonal retrograde transport of signaling endosomes to the soma, where they elicit transcriptional responses. Despite the essential roles of signaling endosomes in neuronal differentiation and survival, little is known about their molecular identity, dynamics, and regulation. Gaining a better mechanistic understanding of these organelles and their kinetics is crucial, given the growing evidence linking vesicular trafficking deficits to neurodegeneration. Here, we exploited an affinity purification strategy using the binding fragment of tetanus neurotoxin (HCT) conjugated to monocrystalline iron oxide nanoparticles (MIONs), which in motor neurons, is transported in the same carriers as neurotrophins and their receptors. To quantitatively assess the molecular composition of HCT-containing signaling endosomes, we have developed a protocol for triple Stable Isotope Labeling with Amino acids in Cell culture (SILAC) in embryonic stem cell-derived motor neurons. After HCT internalization, retrograde carriers were magnetically isolated at different time points and subjected to mass-spectrometry and Gene Ontology analyses. This purification strategy is highly specific, as confirmed by the presence of essential regulators of fast axonal transport in the make-up of these organelles. Our results indicate that signaling endosomes undergo a rapid maturation with the acquisition of late endosome markers following a specific time-dependent kinetics. Strikingly, signaling endosomes are specifically enriched in proteins known to be involved in neurodegenerative diseases and neuroinfection. Moreover, we highlighted the presence of novel components, whose precise temporal recruitment on signaling endosomes might be essential for proper sorting and/or transport of these organelles. This study provides the first quantitative proteomic analysis of signaling endosomes isolated from motor neurons and allows the assembly of a functional map of these axonal carriers involved in long-range neuronal signaling.
Collapse
Affiliation(s)
- Solène Debaisieux
- From the ‡Molecular NeuroPathobiology Laboratory, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Vesela Encheva
- ¶Protein Analysis and Proteomics Group, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Probir Chakravarty
- §Bioinformatics and Biostatistics Group, The Francis Crick Institute, London WC2A 3LY, UK
| | - Ambrosius P Snijders
- ¶Protein Analysis and Proteomics Group, The Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Giampietro Schiavo
- From the ‡Molecular NeuroPathobiology Laboratory, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, UK;
| |
Collapse
|
34
|
An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Curr Opin Neurobiol 2016; 36:99-106. [DOI: 10.1016/j.conb.2015.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
|
35
|
Fuller HR, Mandefro B, Shirran SL, Gross AR, Kaus AS, Botting CH, Morris GE, Sareen D. Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development. Front Cell Neurosci 2016; 9:506. [PMID: 26793058 PMCID: PMC4707261 DOI: 10.3389/fncel.2015.00506] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/15/2015] [Indexed: 11/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creating their induced pluripotent stem cells (iPSCs). Quantitative mass spectrometry of these cells revealed increased expression of 63 proteins in control motor neurons compared to respective fibroblasts, whereas 30 proteins were increased in SMA motor neurons vs. their fibroblasts. Notably, UBA1 was significantly decreased in SMA motor neurons, supporting evidence for ubiquitin pathway defects. Subcellular distribution of UBA1 was predominantly cytoplasmic in SMA motor neurons in contrast to nuclear in control motor neurons; suggestive of neurodevelopmental abnormalities. Many of the proteins that were decreased in SMA motor neurons, including beta III-tubulin and UCHL1, were associated with neurodevelopment and differentiation. These neuron-specific consequences of SMN depletion were not evident in fibroblasts, highlighting the importance of iPSC technology. The proteomic profiles identified here provide a useful resource to explore the molecular consequences of reduced SMN in motor neurons, and for the identification of novel biomarker and therapeutic targets for SMA.
Collapse
Affiliation(s)
- Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic HospitalOswestry, UK; Institute for Science and Technology in Medicine, Keele UniversityStaffordshire, UK
| | - Berhan Mandefro
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA; iPSC Core, The David and Janet Polak Foundation Stem Cell Core LaboratoryLos Angeles, CA, USA
| | - Sally L Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews Fife, UK
| | - Andrew R Gross
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Anjoscha S Kaus
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Catherine H Botting
- BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews Fife, UK
| | - Glenn E Morris
- Wolfson Centre for Inherited Neuromuscular Disease, The Robert Jones and Agnes Hunt Orthopaedic HospitalOswestry, UK; Institute for Science and Technology in Medicine, Keele UniversityStaffordshire, UK
| | - Dhruv Sareen
- Board of Governors-Regenerative Medicine Institute, Cedars-Sinai Medical CenterLos Angeles, CA, USA; iPSC Core, The David and Janet Polak Foundation Stem Cell Core LaboratoryLos Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
36
|
Woerner AC, Frottin F, Hornburg D, Feng LR, Meissner F, Patra M, Tatzelt J, Mann M, Winklhofer KF, Hartl FU, Hipp MS. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 2015; 351:173-6. [DOI: 10.1126/science.aad2033] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022]
|
37
|
Lauria F, Tebaldi T, Lunelli L, Struffi P, Gatto P, Pugliese A, Brigotti M, Montanaro L, Ciribilli Y, Inga A, Quattrone A, Sanguinetti G, Viero G. RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Nucleic Acids Res 2015; 43:e153. [PMID: 26240374 PMCID: PMC4678843 DOI: 10.1093/nar/gkv781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/14/2023] Open
Abstract
Fluctuations in mRNA levels only partially contribute to determine variations in mRNA availability for translation, producing the well-known poor correlation between transcriptome and proteome data. Recent advances in microscopy now enable researchers to obtain high resolution images of ribosomes on transcripts, providing precious snapshots of translation in vivo. Here we propose RiboAbacus, a mathematical model that for the first time incorporates imaging data in a predictive model of transcript-specific ribosome densities and translational efficiencies. RiboAbacus uses a mechanistic model of ribosome dynamics, enabling the quantification of the relative importance of different features (such as codon usage and the 5′ ramp effect) in determining the accuracy of predictions. The model has been optimized in the human Hek-293 cell line to fit thousands of images of human polysomes obtained by atomic force microscopy, from which we could get a reference distribution of the number of ribosomes per mRNA with unmatched resolution. After validation, we applied RiboAbacus to three case studies of known transcriptome-proteome datasets for estimating the translational efficiencies, resulting in an increased correlation with corresponding proteomes. RiboAbacus is an intuitive tool that allows an immediate estimation of crucial translation properties for entire transcriptomes, based on easily obtainable transcript expression levels.
Collapse
Affiliation(s)
- Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata, 56/C-38123 Povo (TN), Italy
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Via Sommarive, 18-38123 Povo (TN), Italy
| | - Paolo Struffi
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Pamela Gatto
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Andrea Pugliese
- Mathematics Department, University of Trento, Via Sommarive, 14-38123 Povo (TN), Italy
| | - Maurizio Brigotti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo, 14-40126 Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via S. Giacomo, 14-40126 Bologna, Italy
| | - Yari Ciribilli
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, Via delle Regole, 101-38123 Mattarello (TN), Italy
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, Midlothian EH8 9AB, UK
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata, 56/C-38123 Povo (TN), Italy
| |
Collapse
|
38
|
Su N, Zhang C, Zhang Y, Wang Z, Fan F, Zhao M, Wu F, Gao Y, Li Y, Chen L, Tian M, Zhang T, Wen B, Sensang N, Xiong Z, Wu S, Liu S, Yang P, Zhen B, Zhu Y, He F, Xu P. Special Enrichment Strategies Greatly Increase the Efficiency of Missing Proteins Identification from Regular Proteome Samples. J Proteome Res 2015; 14:3680-92. [DOI: 10.1021/acs.jproteome.5b00481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Na Su
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Chengpu Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Institute
of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Zhiqiang Wang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education , and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Fengxu Fan
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Anhui Medical University, Hefei 230032, Anhui China
| | - Mingzhi Zhao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Feilin Wu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Life
Science College, Southwest Forestry University, Kunming 650224, China
| | - Yuan Gao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yanchang Li
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State Key
Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Miaomiao Tian
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Na Sensang
- Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia China
| | - Zhi Xiong
- Life
Science College, Southwest Forestry University, Kunming 650224, China
| | - Songfeng Wu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Pengyuan Yang
- Institute
of Biomedical Sciences, Department of Chemistry, and Zhongshan Hospital, Fudan University, 130 DongAn Road, Shanghai 200032, China
| | - Bei Zhen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yunping Zhu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Fuchu He
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ping Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education , and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Anhui Medical University, Hefei 230032, Anhui China
| |
Collapse
|
39
|
Beck S, Michalski A, Raether O, Lubeck M, Kaspar S, Goedecke N, Baessmann C, Hornburg D, Meier F, Paron I, Kulak NA, Cox J, Mann M. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics. Mol Cell Proteomics 2015; 14:2014-29. [PMID: 25991688 PMCID: PMC4587313 DOI: 10.1074/mcp.m114.047407] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far.
Collapse
Affiliation(s)
- Scarlet Beck
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | - Oliver Raether
- §Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Markus Lubeck
- §Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Niels Goedecke
- §Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Daniel Hornburg
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Florian Meier
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Igor Paron
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nils A Kulak
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Juergen Cox
- ¶Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany;
| |
Collapse
|
40
|
Tebbe A, Klammer M, Sighart S, Schaab C, Daub H. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:795-801. [PMID: 26377007 DOI: 10.1002/rcm.7160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 05/09/2023]
Abstract
RATIONALE Advanced implementations of mass spectrometry (MS)-based proteomics allow for comprehensive proteome expression profiling across many biological samples. The outcome of such studies critically depends on accurate and precise quantification, which has to be ensured for high-coverage proteome analysis possible on fast and sensitive mass spectrometers such as quadrupole orbitrap instruments. METHODS We conducted ultra-high-performance liquid chromatography (UHPLC)/MS experiments on a Q Exactive to systematically compare label-free proteome quantification across six human cancer cell lines with quantification against a shared reference mix generated by stable isotope labeling with amino acids in cell culture (super-SILAC). RESULTS Single-shot experiments identified on average about 5000 proteins in the label-free compared to about 3500 in super-SILAC experiments. Label-free quantification was slightly less precise than super-SILAC in replicate measurements, verifying previous results obtained for lower proteome coverage. Due to the higher number of quantified proteins, more significant differences were detected in label-free cell line comparisons, whereas a higher percentage of quantified proteins was identified as differentially expressed in super-SILAC experiments. Additional label-free replicate analyses effectively compensated for lower precision of quantification. Finally, peptide fractionation by high pH reversed-phase chromatography prior to LC/MS analysis further increased the robustness and precision of label-free quantification in conjunction with higher proteome coverage. CONCLUSIONS Our results benchmark and highlight the utility of label-free proteome quantification for applications such as target and biomarker discovery on state-of-the-art UHPLC/MS workflows.
Collapse
Affiliation(s)
- Andreas Tebbe
- Evotec (München) GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| | - Martin Klammer
- Evotec (München) GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| | - Stefanie Sighart
- Evotec (München) GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| | - Christoph Schaab
- Evotec (München) GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Henrik Daub
- Evotec (München) GmbH, Am Klopferspitz 19a, 82152, Martinsried, Germany
| |
Collapse
|
41
|
Valbuena GN, Rizzardini M, Cimini S, Siskos AP, Bendotti C, Cantoni L, Keun HC. Metabolomic Analysis Reveals Increased Aerobic Glycolysis and Amino Acid Deficit in a Cellular Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2015; 53:2222-40. [PMID: 25963727 PMCID: PMC4823370 DOI: 10.1007/s12035-015-9165-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Defects in energy metabolism are potential pathogenic mechanisms in amyotrophic lateral sclerosis (ALS), a rapidly fatal disease with no cure. The mechanisms through which this occurs remain elusive and their understanding may prove therapeutically useful. We used metabolomics and stable isotope tracers to examine metabolic changes in a well-characterized cell model of familial ALS, the motor neuronal NSC-34 line stably expressing human wild-type Cu/Zn superoxide dismutase (wtSOD1) or mutant G93A (G93ASOD1). Our findings indicate that wt and G93ASOD1 expression both enhanced glucose metabolism under serum deprivation. However, in wtSOD1 cells, this phenotype increased supply of amino acids for protein and glutathione synthesis, while in G93ASOD1 cells it was associated with death, aerobic glycolysis, and a broad dysregulation of amino acid homeostasis. Aerobic glycolysis was mainly due to induction of pyruvate dehydrogenase kinase 1. Our study thus provides novel insight into the role of deranged energy metabolism as a cause of poor adaptation to stress and a promoter of neural cell damage in the presence of mutant SOD1. Furthermore, the metabolic alterations we report may help explain why mitochondrial dysfunction and impairment of the endoplasmic reticulum stress response are frequently seen in ALS.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Milena Rizzardini
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Sara Cimini
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy
| | - Lavinia Cantoni
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", 20156, Milan, Italy.
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
42
|
Heegaard NHH, Østergaard O, Bahl JMC, Overgaard M, Beck HC, Rasmussen LM, Larsen MR. Important options available--from start to finish--for translating proteomics results to clinical chemistry. Proteomics Clin Appl 2015; 9:235-52. [PMID: 25472910 DOI: 10.1002/prca.201400137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022]
Abstract
In the realm of clinical chemistry, the field of clinical proteomics, that is, the application of proteomic methods for understanding mechanisms and enabling diagnosis, prediction, measurement of activity, and treatment response in disease, is first and foremost a discovery and research tool that feeds assay development downstream. Putative new assay candidates generated by proteomics discovery projects compete with well-established assays with known indications, well-described performance, and of known value in specific clinical settings. Careful attention to the many options available in the design, execution, and interpretation of clinical proteomics studies is thus necessary for translation into clinical practice. We here review and discuss important options associated with clinical proteomics endeavors stretching from the planning phases to the final use in clinical chemistry.
Collapse
Affiliation(s)
- Niels H H Heegaard
- Department of Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|