1
|
Siegl A, Afjehi-Sadat L, Wienkoop S. Systemic long-distance sulfur transport and its role in symbiotic root nodule protein turnover. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154260. [PMID: 38701679 DOI: 10.1016/j.jplph.2024.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.
Collapse
Affiliation(s)
- Alina Siegl
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria; Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Leila Afjehi-Sadat
- Research Support Facilities, Mass Spectrometry Unit UBB, University of Vienna, Vienna, Austria
| | - Stefanie Wienkoop
- Plant-Microsymbiont Interaction Lab, Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Maleki M, Shojaeiyan A, Mokhtassi-Bidgoli A. Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC PLANT BIOLOGY 2024; 24:161. [PMID: 38429697 PMCID: PMC10908034 DOI: 10.1186/s12870-024-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Drought impairs growth, disturbs photosynthesis, and induces senescence in plants, which results in crop productivity reduction and ultimately jeopardizes human food security. The objective of this study was to determine major parameters associated with drought tolerance and recovery ability of fenugreek (Trigonella foenum-graecum L.), by examining differential biochemical and phenological responses and underlying enzyme activities as well as melatonin roles during drought stress and re-watering for two contrasting landraces. Moreover, the relative expression of three key genes involved in the biosynthesis pathway of diosgenin, including SQS, CAS, and BG, was investigated. RESULTS Depending on the conditions, drought stress enhanced the activity of antioxidant enzymes and the osmoregulating compounds, non-enzymatic antioxidants, hydrogen peroxide content, and lipid peroxidation levels in most cases. Severe drought stress accelerated flowering time in Shushtar landrace (SHR) but had no significant effects on Varamin (VR). Pretreatment with melatonin delayed flowering time in SHR and caused high drought resistance in this landrace. Furthermore, melatonin significantly enhanced drought adaptability in VR by improving plant recovery ability. DISCUSSION Based on our results plants' responses to drought stress and melatonin pretreatment were completely landrace-specific. Drought stress caused an increase in the relative expression of CAS gene and ultimately the accumulation of steroidal saponins in SHR. Melatonin compensated for the decrease in biomass production due to drought stress and finally increased steroidal saponins performance in SHR. Our study showed that melatonin can improve drought stress and recovery in fenugreek, but different factors such as genotype, melatonin concentration, and plant age should be considered.
Collapse
Affiliation(s)
- Masoud Maleki
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abdolali Shojaeiyan
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Smith AB, Ganguly DR, Moore M, Bowerman AF, Janapala Y, Shirokikh NE, Pogson BJ, Crisp PA. Dynamics of mRNA fate during light stress and recovery: from transcription to stability and translation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:818-839. [PMID: 37947266 PMCID: PMC10952913 DOI: 10.1111/tpj.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Transcript stability is an important determinant of its abundance and, consequently, translational output. Transcript destabilisation can be rapid and is well suited for modulating the cellular response. However, it is unclear the extent to which RNA stability is altered under changing environmental conditions in plants. We previously hypothesised that recovery-induced transcript destabilisation facilitated a phenomenon of rapid recovery gene downregulation (RRGD) in Arabidopsis thaliana (Arabidopsis) following light stress, based on mathematical calculations to account for ongoing transcription. Here, we test this hypothesis and investigate processes regulating transcript abundance and fate by quantifying changes in transcription, stability and translation before, during and after light stress. We adapt syringe infiltration to apply a transcriptional inhibitor to soil-grown plants in combination with stress treatments. Compared with measurements in juvenile plants and cell culture, we find reduced stability across a range of transcripts encoding proteins involved in RNA binding and processing. We also observe light-induced destabilisation of transcripts, followed by their stabilisation during recovery. We propose that this destabilisation facilitates RRGD, possibly in combination with transcriptional shut-off that was confirmed for HSP101, ROF1 and GOLS1. We also show that translation remains highly dynamic over the course of light stress and recovery, with a bias towards transcript-specific increases in ribosome association, independent of changes in total transcript abundance, after 30 min of light stress. Taken together, we provide evidence for the combinatorial regulation of transcription and stability that occurs to coordinate translation during light stress and recovery in Arabidopsis.
Collapse
Affiliation(s)
- Aaron B. Smith
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Diep R. Ganguly
- CSIRO Synthetic Biology Future Science PlatformCanberraAustralian Capital Territory2601Australia
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marten Moore
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Andrew F. Bowerman
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Yoshika Janapala
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Nikolay E. Shirokikh
- The John Curtin School of Medical Research, The Shine‐Dalgarno Centre for RNA InnovationThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Barry J. Pogson
- Research School of BiologyThe Australian National UniversityCanberraAustralian Capital Territory2601Australia
| | - Peter A. Crisp
- School of Agriculture and Food SciencesThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
4
|
Abukhalaf M, Proksch C, Thieme D, Ziegler J, Hoehenwarter W. Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions. BMC Biol 2023; 21:249. [PMID: 37940940 PMCID: PMC10634109 DOI: 10.1186/s12915-023-01739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.
Collapse
Affiliation(s)
- Mohammad Abukhalaf
- Present address: Institute for Experimental Medicine, Christian-Albrechts University Kiel, Niemannsweg 11, 24105, Kiel, Germany
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Jörg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany.
| |
Collapse
|
5
|
Doddaraju P, Dharmappa PM, Thiagarayaselvam A, Vijayaraghavareddy P, Bheemanahalli R, Basavaraddi PA, Malagondanahalli MKV, Kambalimath S, Thulasiram HV, Sreeman SM. Comprehensive analysis of physiological and metabolomic responses to drought reveals specific modulation of acquired tolerance mechanisms in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13917. [PMID: 37087573 DOI: 10.1111/ppl.13917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Mild stresses induce "acquired tolerance traits" (ATTs) that provide tolerance when stress becomes severe. Here, we identified the genetic variability in ATTs among a panel of rice germplasm accessions and demonstrated their relevance in protecting growth and productivity under water-limited conditions. Diverse approaches, including physiological screens, association mapping and metabolomics, were adopted and revealed 43 significant marker-trait associations. Nontargeted metabolomic profiling of contrasting genotypes revealed 26 "tolerance-related-induced" primary and secondary metabolites in the tolerant genotypes (AC-39000 and AC-39020) compared to the susceptible one (BPT-5204) under water-limited condition. Metabolites that help maintain cellular functions, especially Calvin cycle processes, significantly accumulated more in tolerant genotypes, which resulted in superior photosynthetic capacity and hence water use efficiency. Upregulation of the glutathione cycle intermediates explains the ROS homeostasis among the tolerant genotypes, maintaining spikelet fertility, and grain yield under stress. Bioinformatic dissection of a major effect quantitative trait locus on chromosome 8 revealed genes controlling metabolic pathways leading to the production of osmolites and antioxidants, such as GABA and raffinose. The study also led to the identification of specific trait donor genotypes that can be effectively used in translational crop improvement activities.
Collapse
Affiliation(s)
- Pushpa Doddaraju
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Prathibha M Dharmappa
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- ICAR-Indian Institute of Horticulture Research, Bengaluru, India
| | | | | | - Raju Bheemanahalli
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Priyanka A Basavaraddi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | | | - Sumanth Kambalimath
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
6
|
Wang J, Shi D, Bai Y, Zhang T, Wu Y, Liu Z, Jiang L, Ye L, Peng Z, Yuan H, Liu Y. Comprehensive proteomic and metabolomic analysis uncover the response of okra to drought stress. PeerJ 2022; 10:e14312. [PMID: 36444379 PMCID: PMC9700456 DOI: 10.7717/peerj.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
The response of okra to drought stress is very complicated, and the molecular mechanisms underlying this process remains ambiguous up to now. In this study, different degrees of water-stress responses of okra leaf were explained by using transcriptomics and metabolomic approaches. The photosynthesis and glycometabolism in okra leaf were both adversely affected by drought stress, leading to inhibition of the carbohydrate metabolic process, and then influencing the secondary plant metabolism. Further, drought stress disturbed amino acid metabolism, especially for the tyrosine-derived pathway as well as arginine and proline metabolism, which have been shown to be significantly enriched under water withholding conditions based on multi-omics conjoint analysis (transcriptome, proteome and metabolome). In-depth analysis of the internal linkages between differentially expressed transcripts, proteins, and metabolites decidedly indicate that tyrosine metabolism could confer tolerance to drought stress by influencing carbon and nitrogen metabolism. These findings provide a whole framework of the regulation and relationships of major transcripts and peptides related to secondary metabolism, particularly, the role of critical proteins and metabolite involved in the change of amino acid metabolism in response to drought stress.
Collapse
|
7
|
Cao H, Duncan O, Millar AH. Protein turnover in the developing Triticum aestivum grain. THE NEW PHYTOLOGIST 2022; 233:1188-1201. [PMID: 34846755 PMCID: PMC9299694 DOI: 10.1111/nph.17756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Protein abundance in cereal grains is determined by the relative rates of protein synthesis and protein degradation during grain development but quantitation of these rates is lacking. Through combining in vivo stable isotope labelling and in-depth quantitative proteomics, we have measured the turnover of 1400 different types of proteins during wheat grain development. We demonstrate that there is a spatiotemporal pattern to protein turnover rates which explain part of the variation in protein abundances that is not attributable to differences in wheat gene expression. We show that c. 20% of total grain adenosine triphosphate (ATP) production is used for grain proteome biogenesis and maintenance, and nearly half of this budget is invested exclusively in storage protein synthesis. We calculate that 25% of newly synthesized storage proteins are turned over during grain development rather than stored. This approach to measure protein turnover rates at proteome scale reveals how different functional categories of grain proteins accumulate, calculates the costs of protein turnover during wheat grain development and identifies the most and the least stable proteins in the developing wheat grain.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology and School of Molecular ScienceThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
- Western Australia Proteomics FacilityThe University of Western AustraliaBayliss Building M316CrawleyWA6009Australia
| |
Collapse
|
8
|
Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R. Recent Advances for Drought Stress Tolerance in Maize ( Zea mays L.): Present Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:872566. [PMID: 35707615 PMCID: PMC9189405 DOI: 10.3389/fpls.2022.872566] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
Drought stress has severely hampered maize production, affecting the livelihood and economics of millions of people worldwide. In the future, as a result of climate change, unpredictable weather events will become more frequent hence the implementation of adaptive strategies will be inevitable. Through utilizing different genetic and breeding approaches, efforts are in progress to develop the drought tolerance in maize. The recent approaches of genomics-assisted breeding, transcriptomics, proteomics, transgenics, and genome editing have fast-tracked enhancement for drought stress tolerance under laboratory and field conditions. Drought stress tolerance in maize could be considerably improved by combining omics technologies with novel breeding methods and high-throughput phenotyping (HTP). This review focuses on maize responses against drought, as well as novel breeding and system biology approaches applied to better understand drought tolerance mechanisms and the development of drought-tolerant maize cultivars. Researchers must disentangle the molecular and physiological bases of drought tolerance features in order to increase maize yield. Therefore, the integrated investments in field-based HTP, system biology, and sophisticated breeding methodologies are expected to help increase and stabilize maize production in the face of climate change.
Collapse
|
9
|
Ishihara H, Moraes TA, Arrivault S, Stitt M. Assessing Protein Synthesis and Degradation Rates in Arabidopsis thaliana Using Amino Acid Analysis. Curr Protoc 2021; 1:e114. [PMID: 34000100 DOI: 10.1002/cpz1.114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plants continually synthesize and degrade proteins, for example, to adjust protein content during development or during adaptation to new environments. In order to estimate global protein synthesis and degradation rates in plants, we developed a relatively simple and inexpensive method using a combination of 13 CO2 labeling and mass spectrometry-based analyses. Arabidopsis thaliana plants are subjected to a 24-hr 13 CO2 pulse followed by a 4-day 12 CO2 chase. Soluble alanine and serine from total protein and glucose from cell wall material are analyzed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and their 13 C enrichment (%) is estimated. The rate of protein synthesis during the 13 CO2 pulse experiment is defined as the rate of incorporation of labeled amino acids into proteins normalized by a correction factor for incomplete enrichment in free amino acid pools. The rate of protein degradation is estimated as the difference between the rate of protein synthesis and the relative growth rate calculated using the 13 C enrichment of glucose from cell wall material. Degradation rates are also estimated from the 12 CO2 pulse experiment. The following method description includes setting up and performing labeling experiments, preparation and measurement of samples, and calculation steps. In addition, an R script is provided for the calculations. 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Setting up the 13 CO2 labeling system and stable isotope labeling of Arabidopsis thaliana rosette leaves Basic Protocol 2: Extraction of soluble amino acids for GC-TOF-MS analysis Basic Protocol 3: Preparation of amino acids from total protein for GC-TOF-MS analysis Basic Protocol 4: Preparation of sugars from cell wall material for GC-TOF-MS analysis Basis Protocol 5: GC-TOF-MS analysis of 13 C-labeled samples and estimation of 13 C enrichment (%) Basis Protocol 6: Estimation of protein synthesis and degradation rates.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Thiago A Moraes
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
10
|
Dodig D, Božinović S, Nikolić A, Zorić M, Vančetović J, Ignjatović-Micić D, Delić N, Weigelt-Fischer K, Altmann T, Junker A. Dynamics of Maize Vegetative Growth and Drought Adaptability Using Image-Based Phenotyping Under Controlled Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:652116. [PMID: 34046050 PMCID: PMC8146906 DOI: 10.3389/fpls.2021.652116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Changes in climate are likely to have a negative impact on water availability and soil fertility in many maize-growing agricultural areas. The development of high-throughput phenotyping platforms provides a new prospect for dissecting the dynamic complex plant traits such as abiotic stress tolerance into simple components. The growth phenotypes of 20 maize (Zea mays L.) inbred lines were monitored in a non-invasive way under control, nitrogen, and water limitation as well as under combined nitrogen and water stress using an automated phenotyping system in greenhouse conditions. Thirteen biomass-related and morphophysiological traits were extracted from RGB images acquired at 33 time points covering developmental stages from leaf count 5 at the first imaging date to leaf count 10-13 at the final harvest. For these traits, genetic differences were identified and dynamic developmental trends during different maize growth stages were analyzed. The difference between control and water stress was detectable 3-10 days after the beginning of stress depending on the genotype, while the effect of limited nitrogen supply only induced subtle phenotypic effects. Phenotypic traits showed different response dynamics as well as multiple and changing interaction patterns with stress progression. The estimated biovolume, leaf area index, and color ratios were found to be stress-responsive at different stages of drought stress progression and thereby represent valuable reference indicators in the selection of drought-adaptive genotypes. Furthermore, genotypes could be grouped according to two typical growth dynamic patterns in water stress treatments by c-means clustering analysis. Inbred lines with high drought adaptability across time and development were identified and could serve as a basis for designing novel genotypes with desired, stage-specific growth phenotypes under water stress through pyramiding. Drought recovery potential may play an equal role as drought tolerance in plant drought adaptation.
Collapse
Affiliation(s)
- Dejan Dodig
- Department for Research and Development, Maize Research Institute Zemun Polje, Belgrade-Zemun, Serbia
| | - Sofija Božinović
- Department for Research and Development, Maize Research Institute Zemun Polje, Belgrade-Zemun, Serbia
| | - Ana Nikolić
- Department for Research and Development, Maize Research Institute Zemun Polje, Belgrade-Zemun, Serbia
| | - Miroslav Zorić
- Department for Maize, Institute for Field and Vegetable Crops, Novi Sad, Serbia
| | - Jelena Vančetović
- Department for Research and Development, Maize Research Institute Zemun Polje, Belgrade-Zemun, Serbia
| | - Dragana Ignjatović-Micić
- Department for Research and Development, Maize Research Institute Zemun Polje, Belgrade-Zemun, Serbia
| | - Nenad Delić
- Department for Research and Development, Maize Research Institute Zemun Polje, Belgrade-Zemun, Serbia
| | - Kathleen Weigelt-Fischer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
11
|
Castañeda V, González EM. Strategies to Apply Water-Deficit Stress: Similarities and Disparities at the Whole Plant Metabolism Level in Medicago truncatula. Int J Mol Sci 2021; 22:ijms22062813. [PMID: 33802151 PMCID: PMC8002188 DOI: 10.3390/ijms22062813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Water-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study M. truncatula plants were subjected to 250 mM NaCl as well as reduced irrigation (No-W) and 250 g/L polyethylene glycol (PEG)-6000 to induce salinity and drought stress, respectively, provoking a drop to −1.7 MPa in leaf water potential. The whole plant physiology and metabolism was explored by characterizing the stress responses at root, phloem sap and leaf organ level. PEG treatment led to some typical responses of plants to drought stress, but in addition to PEG uptake, an important impairment of nutrient uptake and a different regulation of carbon metabolism could be observed compared to No-W plants. No-W plants showed an important redistribution of antioxidants and assimilates to the root tissue, with a distinctive increase in root proline degradation and alkaline invertase activity. On the contrary, salinity provoked an increase in leaf starch and isocitrate dehydrogenase activity, suggesting key roles in the plant response to this stress. Overall, results suggest higher protection of salt-stressed shoots and non-irrigated roots through different mechanisms, including the regulation of proline and carbon metabolism, while discarding PEG as safe mimicker of drought. This raises the need to understand the effect at the whole plant level of the different strategies employed to apply water-deficit stress.
Collapse
|
12
|
Castañeda V, González EM, Wienkoop S. Phloem Sap Proteins Are Part of a Core Stress Responsive Proteome Involved in Drought Stress Adjustment. FRONTIERS IN PLANT SCIENCE 2021; 12:625224. [PMID: 33603764 PMCID: PMC7884324 DOI: 10.3389/fpls.2021.625224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
During moderate drought stress, plants can adjust by changes in the protein profiles of the different organs. Plants transport and modulate extracellular stimuli local and systemically through commonly induced inter- and intracellular reactions. However, most proteins are frequently considered, cell and organelle specific. Hence, while signaling molecules and peptides can travel systemically throughout the whole plant, it is not clear, whether protein isoforms may exist ubiquitously across organs, and what function those may have during drought regulation. By applying shotgun proteomics, we extracted a core proteome of 92 identical protein isoforms, shared ubiquitously amongst several Medicago truncatula tissues, including roots, phloem sap, petioles, and leaves. We investigated their relative distribution across the different tissues and their response to moderate drought stress. In addition, we functionally compared this plant core stress responsive proteome with the organ-specific proteomes. Our study revealed plant ubiquitous protein isoforms, mainly related to redox homeostasis and signaling and involved in protein interaction networks across the whole plant. Furthermore, about 90% of these identified core protein isoforms were significantly involved in drought stress response, indicating a crucial role of the core stress responsive proteome (CSRP) in the plant organ cross-communication, important for a long-distance stress-responsive network. Besides, the data allowed for a comprehensive characterization of the phloem proteome, revealing new insights into its function. For instance, CSRP protein levels involved in stress and redox are relatively more abundant in the phloem compared to the other tissues already under control conditions. This suggests a major role of the phloem in stress protection and antioxidant activity enabling the plants metabolic maintenance and rapid response upon moderate stress. We anticipate our study to be a starting point for future investigations of the role of the core plant proteome. Under an evolutionary perspective, CSRP would enable communication of different cells with each other and the environment being crucial for coordinated stress response of multicellular organisms.
Collapse
Affiliation(s)
- Veronica Castañeda
- Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
| | - Esther M. González
- Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, Pamplona, Spain
- Esther M. González,
| | - Stefanie Wienkoop
- Unit of Molecular Systems Biology, Department of Functional and Evolution Ecology, University of Vienna, Vienna, Austria
- *Correspondence: Stefanie Wienkoop,
| |
Collapse
|
13
|
Ambastha V, Sopory SK, Tripathy BC, Tiwari BS. Salt induced programmed cell death in rice: evidence from chloroplast proteome signature. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:8-27. [PMID: 32702286 DOI: 10.1071/fp19356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Soil salinity, depending on its intensity, drives a challenged plant either to death, or survival with compromised productivity. On exposure to moderate salinity, plants can often survive by sacrificing some of their cells 'in target' following a route called programmed cell death (PCD). In animals, PCD has been well characterised, and involvement of mitochondria in the execution of PCD events has been unequivocally proven. In plants, mechanistic details of the process are still in grey area. Previously, we have shown that in green tissues of rice, for salt induced PCD to occur, the presence of active chloroplasts and light are equally important. In the present work, we have characterised the chloroplast proteome in rice seedlings at 12 and 24 h after salt exposure and before the time point where the signature of PCD was observed. We identified almost 100 proteins from chloroplasts, which were divided in to 11 categories based on the biological functions in which they were involved. Our results concerning the differential expression of chloroplastic proteins revealed involvement of some novel candidates. Moreover, we observed maximum phosphorylation pattern of chloroplastic proteins at an early time point (12 h) of salt exposure.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudhir K Sopory
- Plant Molecular Biology, International Centre of Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; and Corresponding author. ; ;
| | - Budhi Sagar Tiwari
- Institute of Advanced Research, Gandhinagar, Gujrat 482007, India; and Corresponding author. ; ;
| |
Collapse
|
14
|
Tivendale ND, Hanson AD, Henry CS, Hegeman AD, Millar AH. Enzymes as Parts in Need of Replacement - and How to Extend Their Working Life. TRENDS IN PLANT SCIENCE 2020; 25:661-669. [PMID: 32526171 DOI: 10.1016/j.tplants.2020.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Enzymes catalyze reactions in vivo at different rates and each enzyme molecule has a lifetime limit before it is degraded and replaced to enable catalysis to continue. Considering these rates together as a unitless ratio of catalytic cycles until replacement (CCR) provides a new quantitative tool to assess the replacement schedule of and energy investment into enzymes as they relate to function. Here, we outline the challenges of determining CCRs and new approaches to overcome them and then assess the CCRs of selected enzymes in bacteria and plants to reveal a range of seven orders of magnitude for this ratio. Modifying CCRs in plants holds promise to lower cellular costs, to tailor enzymes for particular environments, and to breed enzyme improvements for crop productivity.
Collapse
Affiliation(s)
- Nathan D Tivendale
- ARC Centre for Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, M316, Perth, WA 6009, Australia
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, PO Box 110690, Gainesville, FL 32611-0690, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA; Computation Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Adrian D Hegeman
- Department of Horticultural Science, Department of Plant and Microbial Biology, and The Microbial and Plant Genomics Institute, University of Minnesota, 1970 Folwell Avenue, Saint Paul, MN 55108-6007, USA
| | - A Harvey Millar
- ARC Centre for Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, M316, Perth, WA 6009, Australia.
| |
Collapse
|
15
|
Lv Y, Li Y, Liu X, Xu K. Photochemistry and proteomics of ginger (Zingiber officinale Roscoe) under drought and shading. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:188-196. [PMID: 32224390 DOI: 10.1016/j.plaphy.2020.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 05/20/2023]
Abstract
Drought has become an increasingly serious ecological problem that limits crop production. However, little is known about the response of ginger (Zingiber officinale Roscoe) to drought and shading, especially with respect to photosynthetic electron transport. Here, differential proteomics was used to study the response of ginger to four experimental treatments: control, drought, 50% shading, and the combination of 50% shading and drought. Proteomic analysis suggested that ginger increased cyclic electron flow under drought stress by enhancing the expression of proteins related to photosystem I and cytochrome b6f. Shading significantly increased the expression of proteins related to the light harvesting complex, even under drought stress. In addition, shading increased the expression of proteins related to the oxygen evolution complex, plastocyanin, and ferredoxin-NADP+ reductase (FNR), thereby enhancing the efficiency of photosynthetic electron utilization. The shading and drought combination treatment appeared to enhance ginger's drought tolerance by reducing the expression of FNR and enhancing cyclic electron flow. Photosynthetic and fluorescence parameters showed that drought stress caused non-stomatal limitation of photosynthesis in ginger leaves. Drought stress also significantly reduced the quantum efficiency of photosystem II (Fv/Fm), the non-cyclic electron transfer efficiency of photosystem II (ϕPSII), and photochemical quenching (qP), while simultaneously increasing nonphotochemical quenching (NPQ). The addition of shading improved photosynthetic efficiency under drought. These results provide important baseline information on the photosynthetic mechanisms by which ginger responds to drought and shading. In addition, they provide a theoretical basis for the study of shade cultivation during the arid season.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
16
|
Liu X, Li L, Zhang B, Zeng L, Li L. AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110461. [PMID: 32234234 DOI: 10.1016/j.plantsci.2020.110461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Peanut (Arachis hypogaea L.) is an important crop that is adversely affected by drought. Post-drought growth is essential for improving peanut productivity and quality. Previous studies demonstrated that AhGLK1 (Arachis hypogaea L. Golden2-like 1) activates the expression of AhPORA to stimulate chlorophyll biosynthesis, and that AhGLK1 physically interacts with AhHDA1 (Arachis hypogaea L. histone deacetylase 1). However, the roles of the AhGLK1/AhHDA1 interaction in post-drought recovery remain to be elucidated. Herein, we report that AhHDA1 binds to AhGLK1 promoter and alters histone deacetylation levels to inhibit AhGLK1 expression. RNA-seq confirms that chlorophyll synthesis and photosynthesis-related genes are induced in AhGLK1-overexpressing, but reduced in AhGLK1 RNAi hairy roots. Furthermore, ChIP-seq shows that AhCAB (Arachis hypogaea L. chlorophyll A/B binding protein) is a target of both AhHDA1 and AhGLK1. Transactivation assays reveal that AhGLK1 activates AhCAB expression, while AhHDA1 inhibits the effect of AhGLK1 on AhCAB and AhPORA transcription. ChIP-qPCR shows that AhHDA1 and AhGLK1 bind to the promoters of AhCAB and AhPORA to regulate their expression during water stress and recovery. We propose that AhHDA1 and AhGLK1 consist of an ON/OFF switch for AhCAB and AhPORA expression during water stress and recovery. AhGLK1 activates, whereas AhHDA1 suppresses the expression of AhCAB and AhPORA.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China; Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lidan Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
17
|
Couchoud M, Salon C, Girodet S, Jeudy C, Vernoud V, Prudent M. Pea Efficiency of Post-drought Recovery Relies on the Strategy to Fine-Tune Nitrogen Nutrition. FRONTIERS IN PLANT SCIENCE 2020; 11:204. [PMID: 32174946 PMCID: PMC7056749 DOI: 10.3389/fpls.2020.00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/03/2023]
Abstract
As drought is increasingly frequent in the context of climate change it is a major constraint for crop growth and yield. The ability of plants to maintain their yield in response to drought depends not only on their ability to tolerate drought, but also on their capacity to subsequently recover. Post-stress recovery can indeed be decisive for drought resilience and yield stability. Pea (Pisum sativum), as a legume, has the capacity to fix atmospheric nitrogen through its symbiotic interaction with soil bacteria within root nodules. Biological nitrogen fixation is highly sensitive to drought which can impact plant nitrogen nutrition and growth. Our study aimed at dynamically evaluating whether the control of plant N status after drought could affect nodulated pea plant's ability to recover. Two pea genotypes, Puget and Kayanne, displaying different drought resilience abilities were compared for their capacity to tolerate to, and to recover from, a 2-weeks water-deficit period applied before flowering. Physiological processes were studied in this time-series experiment using a conceptual structure-function analysis framework focusing on whole plant carbon, nitrogen, and water fluxes combined to two 13CO2 and 15N2 labeling experiments. While Puget showed a yield decrease compared to well-watered plants, Kayanne was able to maintain its yield. During the recovery period, genotype-dependent strategies were observed. The analysis of the synchronization of carbon, nitrogen, and water related traits dynamics during the recovery period and at the whole plant level, revealed that plant growth recovery was tightly linked to N nutrition. In Puget, the initiation of new nodules after water deficit was delayed compared to control plants, and additional nodules developed, while in Kayanne the formation of nodules was both rapidly and strictly re-adjusted to plant growth needs, allowing a full recovery. Our study suggested that a rapid re-launch of N acquisition, associated with a fine-tuning of nodule formation during the post-stress period is essential for efficient drought resilience in pea leading to yield stability.
Collapse
|
18
|
Ye Z, Sangireddy SR, Yu CL, Hui D, Howe K, Fish T, Thannhauser TW, Zhou S. Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass. Proteomes 2020; 8:3. [PMID: 32092968 PMCID: PMC7151713 DOI: 10.3390/proteomes8010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.
Collapse
Affiliation(s)
- Zhujia Ye
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Chih-Li Yu
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Kevin Howe
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | - Tara Fish
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | | | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| |
Collapse
|
19
|
Du C, Chai L, Wang Z, Fan H. Response of proteome and morphological structure to short-term drought and subsequent recovery in Cucumis sativus leaves. PHYSIOLOGIA PLANTARUM 2019; 167:676-689. [PMID: 30663056 DOI: 10.1111/ppl.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Drought is the primary limitation to plant growth and yield in agricultural systems. Cucumber (Cucumis sativus) is one of the most important vegetables worldwide and has little tolerance for water deficit. To understand the drought stress response strategy of this plant, the responses of cucumber to short-term drought and rewatering were determined in this study by morphological structure and proteomic analyses. The leaf relative water content was significantly decreased under drought, and the cell structure was altered, while rewatering obviously alleviated the symptoms of water shortage and cell damage. A total of 320 and 246 proteins exhibiting significant abundance changes in response to drought and recovery, respectively, were identified. Our proteome analysis showed that 63 co-regulated proteins were shared between drought and rewatering, whereas most of the responsive proteins were unique. The proteome is adjusted through a sequence of regulatory processes including the biosynthesis of secondary metabolites and the glutathione metabolism pathway, which showed a high correlation between protein abundance profile and corresponding enzyme activity. Drought and recovery regulated different types of proteins, allowing plants to adapt to environmental stress or restore growth, respectively, which suggests that short-term drought and recovery are almost fully uncoupled processes. As an important component of the antioxidant system in plants, glutathione metabolism may be one of the main strategies for regulating antioxidant capacity during drought recovery. Our results provide useful information for further analyses of drought adaptability in cucumber plants.
Collapse
Affiliation(s)
- Changxia Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Li'ang Chai
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Zhe Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Huaifu Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| |
Collapse
|
20
|
Schneider S, Schintlmeister A, Becana M, Wagner M, Woebken D, Wienkoop S. Sulfate is transported at significant rates through the symbiosome membrane and is crucial for nitrogenase biosynthesis. PLANT, CELL & ENVIRONMENT 2019; 42:1180-1189. [PMID: 30443991 PMCID: PMC6446814 DOI: 10.1111/pce.13481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
Legume-rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced ("fixed") to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20-fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant-microbe interaction that is most relevant for agriculture and soil fertility.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | | | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
- Large‐Instrument Facility for Advanced Isotope ResearchUniversity of ViennaViennaAustria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”University of ViennaViennaAustria
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
21
|
Schneider S, Turetschek R, Wedeking R, Wimmer MA, Wienkoop S. A Protein-Linger Strategy Keeps the Plant On-Hold After Rehydration of Drought-Stressed Beta vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:381. [PMID: 30984226 PMCID: PMC6449722 DOI: 10.3389/fpls.2019.00381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Most crop plants are exposed to intermittent drought periods. To cope with these continuous changes, plants need strategies to prevent themselves from exhaustive adjustment maneuvers. Drought stress recovery has been shown to be an active process, possibly involved in a drought memory effect allowing plants to better cope with recurrent aridity. An integrated understanding of the molecular processes of enhanced drought tolerance is required to tailor key networks for improved crop protection. During summer, prolonged periods of drought are the major reason for economic yield losses of sugar beet (Beta vulgaris) in Europe. A drought stress and recovery time course experiment was carried out under controlled environmental conditions. In order to find regulatory key mechanisms enabling plants to rapidly react to periodic stress events, beets were either subjected to 11 days of progressive drought, or were drought stressed for 9 days followed by gradual rewatering for 14 days. Based on physiological measurements of leaf water relations and changes in different stress indicators, plants experienced a switch from moderate to severe water stress between day 9 and 11 of drought. The leaf proteome was analyzed, revealing induced protein pre-adjustment (prior to severe stress) and putative stress endurance processes. Three key protein targets, regulatory relevant during drought stress and with lingering levels of abundance upon rewatering were further exploited through their transcript performance. These three targets consist of a jasmonate induced, a salt-stress enhanced and a phosphatidylethanolamine-binding protein. The data demonstrate delayed protein responses to stress compared to their transcripts and indicate that the lingering mechanism is post-transcriptionally regulated. A set of lingering proteins is discussed with respect to a possible involvement in drought stress acclimation and memory effects.
Collapse
Affiliation(s)
- Sebastian Schneider
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Reinhard Turetschek
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Rita Wedeking
- Institute of Crop Science and Resource Conservation – Plant Nutrition, University of Bonn, Bonn, Germany
- Environmental Safety/Ecotoxicology, Bayer AG, Crop Science Division, Monheim am Rhein, Germany
| | - Monika A. Wimmer
- Institute of Crop Science – Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Wienkoop
- Division of Molecular Systems Biology, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Meher HC, Singh G, Chawla G. Metabolic Alternations of Amino Acids, γ-Aminobutyric Acid, and Salicylic Acid in Solanum lycopersicum (L.) Following Preplanting Seedling Spray with Salicylic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12236-12248. [PMID: 30418772 DOI: 10.1021/acs.jafc.8b04098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preplanting foliar spray of salicylic acid (SA) (0.0, 5.0, and 10.0 μg/mL) to Solanum lycopersicum (L.) altered the metabolite profile of amino acids, γ-aminobutyric acid (GABA), and SA in leaf, root, and fruits. Free amino acid pools increased; bound amino acid pools reduced. In vegetative tissues, amino acid biosyntheses linked to osmo-compatibility (Pro, Leu, Val and GABA); N (Arg, Asn, Asp, Gln, and Glu); C (Pro, Ser, and Tyr); S (Cys) assimilation; stress tolerance (Ala, Gly, Hyp, His, Lys, Met, and Thr); and central metabolism (Phe, Trp, and Tyr) enhanced for 60-120 days. Concentrations of Ala, Arg, Gln, Gly, Leu, and Ser in leaf and of Asp, Cys, Glu, His, Hyp, Lys, Met, Pro, and Val in root predominated. In planta SA and GABA biosynthesis increased concurrently. SA affected GABA biosynthesis via Glu, Pro, and Arg metabolism. SA, GABA, Glu, and Pro were key canonical variables. This study first reported SA-induced metabolites promoting health (SA/GABA; Cys/Met) and palatability (Glu/Asp; Gln) in table tomato.
Collapse
Affiliation(s)
- Hari C Meher
- Indian Agricultural Research Institute , New Delhi 110012 , India
| | - Ghanendra Singh
- Indian Agricultural Research Institute , New Delhi 110012 , India
| | - Gautam Chawla
- Indian Agricultural Research Institute , New Delhi 110012 , India
| |
Collapse
|
23
|
Simova-Stoilova LP, López-Hidalgo C, Sanchez-Lucas R, Valero-Galvan J, Romero-Rodríguez C, Jorrin-Novo JV. Holm oak proteomic response to water limitation at seedling establishment stage reveals specific changes in different plant parts as well as interaction between roots and cotyledons. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:1-13. [PMID: 30348307 DOI: 10.1016/j.plantsci.2018.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 05/11/2023]
Abstract
Quercus ilex is a dominant tree species in the Mediterranean region with double economic and ecological importance and increasing use in reforestation. Seedling establishment is extremely vulnerable to environmental stresses, particularly drought. A time course study on physiological and proteomic response of holm oak to water limitation stress and recovery during early heterotrophic growth is reported. Applied stress led to diminution in plant water content and root growth, oxidative stress in roots and some alterations in the anti-oxidative protection. Plant parts differed substantially in soluble sugar and free phenolic content, and in their changes during stress and recovery. Proteomic response in holm oak roots and cotyledons was estimated using combined 1-DE/2-DE approach and protein identification by MALDI TOF-TOF PMF and MS/MS. A total of 127 differentially abundant protein species (DAPs) were identified. DAPs related to starch metabolism, lipid to sugar conversion, reserve proteins and their mobilization were typical for cotyledons. DAPs in roots were involved in sugar utilization, secondary metabolism and defense, including pathogenesis related proteins from PR-5 and PR-10 families. Results emphasize specific proteome signatures of separate plant parts as well as importance of sink-source interaction between root and cotyledon in the time course of stress and in recovery.
Collapse
Affiliation(s)
- Lyudmila P Simova-Stoilova
- Dept. of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence (ceiA3), 14071 Cordoba, Spain; Plant Molecular Biology Dept., Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113 Sofia, Bulgaria.
| | - Cristina López-Hidalgo
- Dept. of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence (ceiA3), 14071 Cordoba, Spain.
| | - Rosa Sanchez-Lucas
- Dept. of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence (ceiA3), 14071 Cordoba, Spain.
| | - Jose Valero-Galvan
- Dept. of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence (ceiA3), 14071 Cordoba, Spain; Dept. Chemistry-Biology, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, 32310 Ciudad Juarez, Mexico.
| | - Cristina Romero-Rodríguez
- Dept. of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence (ceiA3), 14071 Cordoba, Spain; Technological Multidisciplinary Research Centre, National University of Asunción, Paraguay.
| | - Jesus V Jorrin-Novo
- Dept. of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence (ceiA3), 14071 Cordoba, Spain.
| |
Collapse
|
24
|
Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto G. Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone. FRONTIERS IN PLANT SCIENCE 2018; 9:819. [PMID: 29973941 PMCID: PMC6019450 DOI: 10.3389/fpls.2018.00819] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/28/2018] [Indexed: 05/08/2023]
Abstract
Aiming to mimic a more realistic field condition and to determine convergent and divergent responses of individual stresses in relation to their combination, we explored physiological, biochemical, and metabolomic alterations after drought and heat stress imposition (alone and combined) and recovery, using a drought-tolerant Eucalyptus globulus clone. When plants were exposed to drought alone, the main responses included reduced pre-dawn water potential (Ψpd) and gas exchange. This was accompanied by increases in malondialdehyde (MDA) and total glutathione, indicative of oxidative stress. Abscisic acid (ABA) levels increased while the content of jasmonic acid (JA) fell. Metabolic alterations included reductions in the levels of sugar phosphates accompanied by increases in starch and non-structural carbohydrates. Levels of α-glycerophosphate and shikimate were also reduced while free amino acids increased. On the other hand, heat alone triggered an increase in relative water content (RWC) and Ψpd. Photosynthetic rate and pigments were reduced accompanied by a reduction in water use efficiency. Heat-induced a reduction of salicylic acid (SA) and JA content. Sugar alcohols and several amino acids were enhanced by the heat treatment while starch, fructose-6-phosphate, glucose-6-phosphate, and α-glycerophosphate were reduced. Contrary to what was observed under drought, heat stress activated the shikimic acid pathway. Drought-stressed plants subject to a heat shock exhibited a sharp decrease in gas exchange, Ψpd and JA, no alterations in electrolyte leakage, MDA, starch, and pigments and increased glutathione pool in relation to control. Comparing this with drought stress alone, subjecting drought stressed plants to an additional heat stress alleviated Ψpd and MDA, maintained an increased glutathione pool and reduced starch content and non-structural carbohydrates. A novel response triggered by the combined stress was the accumulation of cinnamate. Regarding recovery, most of the parameters affected by each stress condition reversed after re-establishment of control growing conditions. These results highlight that the combination of drought and heat provides significant protection from more detrimental effects of drought-stressed eucalypts, confirming that combined stress alter plant metabolism in a novel manner that cannot be extrapolated by the sum of the different stresses applied individually.
Collapse
Affiliation(s)
- Barbara Correia
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Robert D. Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Joana Amaral
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Aurelio Gomez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
| | - Glória Pinto
- Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
Wedeking R, Maucourt M, Deborde C, Moing A, Gibon Y, Goldbach HE, Wimmer MA. 1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets. PLoS One 2018; 13:e0196102. [PMID: 29738573 PMCID: PMC5940195 DOI: 10.1371/journal.pone.0196102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/08/2018] [Indexed: 11/19/2022] Open
Abstract
Yield formation in regions with intermittent drought periods depends on the plant’s ability to recover after cessation of the stress. The present work assessed differences in metabolic recovery of leaves and roots of drought-stressed sugar beets with high temporal resolution. Plants were subjected to drought for 13 days, and rewatered for 12 days. At one to two-day intervals, plant material was harvested for untargeted 1H-NMR metabolomic profiling, targeted analyses of hexose-phosphates, starch, amino acids, nitrate and proteins, and physiological measurements including relative water content, osmotic potential, electrolyte leakage and malondialdehyde concentrations. Drought triggered changes in primary metabolism, especially increases in amino acids in both organs, but leaves and roots responded with different dynamics to rewatering. After a transient normalization of most metabolites within 8 days, a second accumulation of amino acids in leaves might indicate a stress imprint beneficial in upcoming drought events. Repair mechanisms seemed important during initial recovery and occurred at the expense of growth for at least 12 days. These results indicate that organ specific metabolic recovery responses might be related to distinct functions and concomitant disparate stress levels in above- and belowground organs. With respect to metabolism, recovery was not simply a reversal of the stress responses.
Collapse
Affiliation(s)
- Rita Wedeking
- Department of Plant Nutrition, INRES, University of Bonn, Bonn, Germany
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome Bordeaux- MetaboHUB, Centre de Génomique Fonctionnelle - IBVM, Villenave d’Ornon, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Université Bordeaux, Villenave d’Ornon, France
| | | | - Monika A. Wimmer
- Department of Plant Nutrition, INRES, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
26
|
Demir F, Niedermaier S, Villamor JG, Huesgen PF. Quantitative proteomics in plant protease substrate identification. THE NEW PHYTOLOGIST 2018; 218:936-943. [PMID: 28493421 DOI: 10.1111/nph.14587] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
Contents Summary 936 I. Introduction 936 II. The quest for plant protease substrates - proteomics to the rescue? 937 III. Quantitative proteome comparison reveals candidate substrates 938 IV. Dynamic metabolic stable isotope labeling to measure protein turnover in vivo 938 V. Terminomics - large-scale identification of protease cleavage sites 939 VI. Substrate or not substrate, that is the question 940 VII. Concluding remarks 941 Acknowledgements 941 References 941 SUMMARY: Proteolysis is a central regulatory mechanism of protein homeostasis and protein function that affects all aspects of plant life. Higher plants encode for hundreds of proteases, but their physiological substrates and hence their molecular functions remain mostly unknown. Current quantitative mass spectrometry-based proteomics enables unbiased large-scale interrogation of the proteome and its modifications. Here we provide an overview of proteomics techniques that allow profiling of changes in protein abundance, measurement of proteome turnover rates, identification of protease cleavage sites in vivo and in vitro and determination of protease sequence specificity. We discuss how these techniques can help to reveal protease substrates and determine plant protease function, illustrated by recent studies on selected plant proteases.
Collapse
Affiliation(s)
- Fatih Demir
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Stefan Niedermaier
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Joji Grace Villamor
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Pitter Florian Huesgen
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| |
Collapse
|
27
|
Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 2018. [PMID: 29396501 DOI: 10.1038/s41598-018-20542-20547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Peanut is an important edible oil crop plant whose quality and yield are greatly affected by drought. The process and molecular mechanisms of recovery from drought are also critical to its productivity, but are currently poorly characterized. Here, we investigate the involvement of peanut AhGLK1 in recovery from drought, and in particular its relationship with AhPORA, which encodes a key enzyme in chlorophyll biosynthesis. We found that chlorophyll content, chlorophyll fluorescence, AhPORA protein level and genes related to chlorophyll biosynthesis and photosynthesis declined markedly under drought conditions, but all increased during recovery. Consistent with this, AhGLK1 expression decreased during water stress and increased when the stress was removed. When AhGLK1 was transformed into Arabidopsis glk1glk2 mutant, it increased the survival rate of the mutant during recovery from drought and fully rescued the mutant's pale-green phenotype. In addition, chlorophyll content and fluorescence, and the expression of genes related to chlorophyll biosynthesis and photosynthesis, were all increased. Bioinformatics analysis and experimental evidence suggested that AhGLK1 augments the expression of AhPORA by binding to its promoter. Our findings confirm that AhGLK1 plays a role as a transcription factor that upregulates expression of AhPORA during post-drought recovery, thereby stimulating chlorophyll biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meijuan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liangchen Su
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Siman Lian
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kui Ge
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
28
|
Liu X, Li L, Li M, Su L, Lian S, Zhang B, Li X, Ge K, Li L. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 2018; 8:2250. [PMID: 29396501 PMCID: PMC5796971 DOI: 10.1038/s41598-018-20542-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023] Open
Abstract
Peanut is an important edible oil crop plant whose quality and yield are greatly affected by drought. The process and molecular mechanisms of recovery from drought are also critical to its productivity, but are currently poorly characterized. Here, we investigate the involvement of peanut AhGLK1 in recovery from drought, and in particular its relationship with AhPORA, which encodes a key enzyme in chlorophyll biosynthesis. We found that chlorophyll content, chlorophyll fluorescence, AhPORA protein level and genes related to chlorophyll biosynthesis and photosynthesis declined markedly under drought conditions, but all increased during recovery. Consistent with this, AhGLK1 expression decreased during water stress and increased when the stress was removed. When AhGLK1 was transformed into Arabidopsis glk1glk2 mutant, it increased the survival rate of the mutant during recovery from drought and fully rescued the mutant’s pale-green phenotype. In addition, chlorophyll content and fluorescence, and the expression of genes related to chlorophyll biosynthesis and photosynthesis, were all increased. Bioinformatics analysis and experimental evidence suggested that AhGLK1 augments the expression of AhPORA by binding to its promoter. Our findings confirm that AhGLK1 plays a role as a transcription factor that upregulates expression of AhPORA during post-drought recovery, thereby stimulating chlorophyll biosynthesis and photosynthesis.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Limei Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meijuan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liangchen Su
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Siman Lian
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Baihong Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kui Ge
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
| |
Collapse
|
29
|
Pan L, Meng C, Wang J, Ma X, Fan X, Yang Z, Zhou M, Zhang X. Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress. BMC PLANT BIOLOGY 2018; 18:26. [PMID: 29378511 PMCID: PMC5789592 DOI: 10.1186/s12870-018-1239-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Annual ryegrass (Lolium multiflorum L.) is a commercially important, widely distributed forage crop that is used in the production of hay and silage worldwide. Drought has been a severe environmental constraint in its production. Nevertheless, only a handful of studies have examined the impact of short-term drought stress on annual ryegrass. The aim of this study was to explore how stress-induced core metabolic processes enhance drought tolerance, or adaptation to drought, in annual ryegrass. RESULTS We profiled the transcriptomes, proteomes, and metabolomes of two annual ryegrass genotypes: the drought-resistant genotype "Abundant 10" and drought-susceptible genotype "Adrenalin 11." We identified differentially expressed metabolites and their corresponding proteins and transcripts that are involved in 23 core metabolic processes, in response to short-term drought stress. Protein-gene-metabolite correlation networks were built to reveal the relationships between the expression of transcripts, proteins, and metabolites in drought-resistant annual ryegrass. Furthermore, integrated metabolic pathways were used to observe changes in enzymes corresponding with levels of amino acids, lipids, carbohydrate conjugates, nucleosides, alkaloids and their derivatives, and pyridines and their derivatives. The resulting omics data underscored the significance of 23 core metabolic processes on the enhancement of drought tolerance or adaptation to drought in annual ryegrass. CONCLUSIONS The regulatory networks were inferred using MCoA and correlation analysis to reveal the relationships among the expression of transcripts, proteins, and metabolites that highlight the corresponding elements of these core metabolic pathways. Our results provide valuable insight into the molecular mechanisms of drought resistance, and represent a promising strategy toward the improvement of drought tolerance in annual ryegrass.
Collapse
Affiliation(s)
- Ling Pan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chen Meng
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, USA
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Fan
- Vazyme Biotech Co., Ltd, Nanjing State Economy & Technology Development Zone, Red Maple Technology Industrial Park, Nanjing, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. THE PLANT CELL 2017; 29:207-228. [PMID: 28138016 PMCID: PMC5354193 DOI: 10.1105/tpc.16.00768] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
31
|
Wu S, Ning F, Zhang Q, Wu X, Wang W. Enhancing Omics Research of Crop Responses to Drought under Field Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:174. [PMID: 28261236 PMCID: PMC5306382 DOI: 10.3389/fpls.2017.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/27/2017] [Indexed: 05/18/2023]
|
32
|
Larrainzar E, Wienkoop S. A Proteomic View on the Role of Legume Symbiotic Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:1267. [PMID: 28769967 PMCID: PMC5513976 DOI: 10.3389/fpls.2017.01267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
Abstract
Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Stefanie Wienkoop
| |
Collapse
|