1
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|
2
|
Mintie CA, Singh CK, Ndiaye MA, Barrett-Wilt GA, Ahmad N. Identification of Molecular Targets of Dietary Grape-Mediated Chemoprevention of Ultraviolet B Skin Carcinogenesis: A Comparative Quantitative Proteomics Analysis. J Proteome Res 2019; 18:3741-3751. [PMID: 31487184 DOI: 10.1021/acs.jproteome.9b00442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We recently showed that dietary grape powder (GP) imparts considerable protection against ultraviolet B (UVB)-mediated skin carcinogenesis in SKH-1 mice. To determine molecular mechanisms of this response, we employed tandem mass tag (TMT) quantitative global proteomics approach on skin tumors from mice exposed to 180 mJ/cm2 UVB twice per week and fed control or 5% GP diet. We found 2629 proteins modulated by GP feeding, with 34 identified using stringent cutoffs (false discovery rate (FDR) q-value ≤ 0.1, fold change ≥ 1.2, p-value ≤ 0.05, ≥ 3 unique peptides). Ingenuity Pathway Analysis helped identify seven proteins involved in protein ubiquitination, including the deubiquitinase UCHL5 and 6 subunits of the 20S proteasome (PSMA1,3,4,6 and PSMB4,7). A second data set without the FDR q-value identified 239 modulated proteins, seven of which are involved in protein ubiquitination. Further, 14 proteins involved in acute phase response signaling were modulated >1.5-fold, including acute phase proteins APCS, FGA, FGB, HP, HPX, and RBP1. Evaluation of upstream regulators found inhibition of ERK1/2 phosphorylation and NF-κB p65, and an increase in IκBα in GP-treated tumors. Overall, our data suggested that GP consumption may mitigate tumorigenesis by enhancing protein ubiquitination and degradation caused by oxidative stress, and manipulates an otherwise tumor-promoting anti-inflammatory environment.
Collapse
Affiliation(s)
- Charlotte A Mintie
- Department of Dermatology , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Chandra K Singh
- Department of Dermatology , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Mary A Ndiaye
- Department of Dermatology , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Gregory A Barrett-Wilt
- Biotechnology Center , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Nihal Ahmad
- Department of Dermatology , University of Wisconsin , Madison , Wisconsin 53706 , United States.,William S. Middleton VA Medical Center , Madison , Wisconsin 53705 , United States
| |
Collapse
|
3
|
Kravchuk OI, Lyupina YV, Erokhov PA, Finoshin AD, Adameyko KI, Mishyna MY, Moiseenko AV, Sokolova OS, Orlova OV, Beljelarskaya SN, Serebryakova MV, Indeykina MI, Bugrova AE, Kononikhin AS, Mikhailov VS. Characterization of the 20S proteasome of the lepidopteran, Spodoptera frugiperda. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:840-853. [PMID: 31228587 DOI: 10.1016/j.bbapap.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Multiple complexes of 20S proteasomes with accessory factors play an essential role in proteolysis in eukaryotic cells. In this report, several forms of 20S proteasomes from extracts of Spodoptera frugiperda (Sf9) cells were separated using electrophoresis in a native polyacrylamide gel and examined for proteolytic activity in the gel and by Western blotting. Distinct proteasome bands isolated from the gel were subjected to liquid chromatography-tandem mass spectrometry and identified as free core particles (CP) and complexes of CP with one or two dimers of assembly chaperones PAC1-PAC2 and activators PA28γ or PA200. In contrast to the activators PA28γ and PA200 that regulate the access of protein substrates to the internal proteolytic chamber of CP in an ATP-independent manner, the 19S regulatory particle (RP) in 26S proteasomes performs stepwise substrate unfolding and opens the chamber gate in an ATP-dependent manner. Electron microscopic analysis suggested that spontaneous dissociation of RP in isolated 26S proteasomes leaves CPs with different gate sizes related presumably to different stages in the gate opening. The primary structure of 20S proteasome subunits in Sf9 cells was determined by a search of databases and by sequencing. The protein sequences were confirmed by mass spectrometry and verified by 2D gel electrophoresis. The relative rates of sequence divergence in the evolution of 20S proteasome subunits, the assembly chaperones and activators were determined by using bioinformatics. The data confirmed the conservation of regular CP subunits and PA28γ, a more accelerated evolution of PAC2 and PA200, and especially high divergence rates of PAC1.
Collapse
Affiliation(s)
- Oksana I Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Yulia V Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Pavel A Erokhov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Alexander D Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Kim I Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia
| | - Maryia Yu Mishyna
- M.V. Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Andrey V Moiseenko
- M.V. Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Olga S Sokolova
- M.V. Lomonosov Moscow State University, Faculty of Biology, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Olga V Orlova
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119334, Russia
| | - Svetlana N Beljelarskaya
- V.A. Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow 119334, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology MSU, 1c40 Leniniskie Gory, Moscow 119234, Russia
| | - Maria I Indeykina
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., Moscow 119334, Russia
| | - Anna E Bugrova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., Moscow 119334, Russia
| | - Alexey S Kononikhin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina str., Moscow 119334, Russia; Skolkovo Institute of Science and Technology, 3 Ulitsa Nobelya, Moscow region, Skolkovo 121205, Russia
| | - Victor S Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova str., Moscow 119334, Russia.
| |
Collapse
|
4
|
Foley HB, Sun PY, Ramirez R, So BK, Venkataraman YR, Nixon EN, Davies KJA, Edmands S. Sex-specific stress tolerance, proteolysis, and lifespan in the invertebrate Tigriopus californicus. Exp Gerontol 2019; 119:146-156. [PMID: 30738921 DOI: 10.1016/j.exger.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 11/30/2022]
Abstract
Because stress tolerance and longevity are mechanistically and phenotypically linked, the sex with higher acute stress tolerance might be expected to also live longer. On the other hand, the association between stress tolerance and lifespan may be complicated by tradeoffs between acute tolerance and long-term survival. Here we use the copepod Tigriopus californicus to test for sex differences in stress resistance, proteolytic activity and longevity. Unlike many model organisms, this species does not have sex chromosomes. However, substantial sex differences were still observed. Females were found to have superior tolerance to a range of acute stressors (high temperature, high salinity, low salinity, copper and bisphenol A (BPA)) across a variety of treatments including different populations, pure vs. hybrid crosses, and different shading environments. Upregulation of proteolytic capacity - one molecular mechanism for responding to acute stress - was also found to be sexually dimorphic. In the combined stress treatment of chronic copper exposure followed by acute heat exposure, proteolytic capacity was suppressed for males. Females, however, maintained a robust proteolytic stress response. While females consistently showed greater tolerance to short-term stress, lifespan was largely equivalent between the two sexes under both benign conditions and mild thermal stress. Our findings indicate that short-term stress tolerance does not predict long-term survival under relatively mild conditions.
Collapse
Affiliation(s)
- Helen B Foley
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick Y Sun
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA; Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rocio Ramirez
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Brandon K So
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Yaamini R Venkataraman
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily N Nixon
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA; Molecular & Computational Biology Division, Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA
| | - Suzanne Edmands
- Department of Biological Sciences, Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
5
|
Wang X, He Y, Ye Y, Zhao X, Deng S, He G, Zhu H, Xu N, Liang S. SILAC-based quantitative MS approach for real-time recording protein-mediated cell-cell interactions. Sci Rep 2018; 8:8441. [PMID: 29855483 PMCID: PMC5981645 DOI: 10.1038/s41598-018-26262-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/04/2018] [Indexed: 02/05/2023] Open
Abstract
In tumor microenvironment, interactions among multiple cell types are critical for cancer progression. To understand the molecular mechanisms of these complex interplays, the secreted protein analysis between malignant cancer cells and the surrounding nonmalignant stroma is a good viewpoint to investigate cell-cell interactions. Here, we developed two stable isotope labeling of amino acids in cell culture (SILAC)-based mass spectrometry (MS)/MS approaches termed spike-in SILAC and triple-SILAC to quantify changes of protein secretion level in a cell co-cultured system. Within the co-culture system of CT26 and Ana-1 cells, the spike-in SILAC and triple-SILAC MS approaches are sensitive to quantitatively measure protein secretion changes. Three representative quantified proteins (Galectin-1, Cathepsin L1 and Thrombospondin-1) by two SILAC-based MS methods were further validated by Western blotting, and the coming result matched well with SILACs’. We further applied these two SILACs to human cell lines, NCM460 and HT29 co-culture system, for evaluating the feasibility, which confirmed the spike-in and triple SILAC were capable of monitoring the changed secreted proteins of human cell lines. Considering these two strategies in time consuming, sample complexity and proteome coverage, the triple-SILAC way shows more efficiency and economy for real-time recording secreted protein levels in tumor microenvironment.
Collapse
Affiliation(s)
- Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.,Chengdu Center for Disease Control and Prevention, Chengdu, 610041, P. R. China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xinyu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Shi Deng
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, P. R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.,Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and National Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China.
| |
Collapse
|
6
|
Stastna M, Gottlieb RA, Van Eyk JE. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Expert Rev Proteomics 2017; 14:529-543. [PMID: 28532181 DOI: 10.1080/14789450.2017.1333424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Protein synthesis is the outcome of tightly regulated gene expression which is responsive to a variety of conditions. Efforts are ongoing to monitor individual stages of protein synthesis to ensure maximum efficiency and accuracy. Due to post-transcriptional regulation mechanisms, the correlation between translatome and proteome is higher than between transcriptome and proteome. However, the most accurate approach to assess the key modulators and final protein expression is directly by using proteomics. Areas covered: This review covers various proteomic strategies that were used to better understand post-transcriptional regulation, specifically during and early after translation. The methods that identify both regulatory proteins associated with translational components and newly synthesized proteins are discussed. Expert commentary: Emerging proteomic approaches make it possible to monitor protein dynamics in cells, tissues and whole animals. The ability to detect alteration in protein abundance soon after their synthesis enables earlier recognition of disease causing factors and candidates to prevent/rectify disease phenotype.
Collapse
Affiliation(s)
- Miroslava Stastna
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Advanced Clinical BioSystems Research Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,c Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i ., Brno , Czech Republic
| | - Roberta A Gottlieb
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer E Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Advanced Clinical BioSystems Research Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
7
|
Park JE, Chun SE, Reichel D, Min JS, Lee SC, Han S, Ryoo G, Oh Y, Park SH, Ryu HM, Kim KB, Lee HY, Bae SK, Bae Y, Lee W. Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: Anticancer efficacy and pharmacokinetic studies in mice. PLoS One 2017; 12:e0173247. [PMID: 28273121 PMCID: PMC5342227 DOI: 10.1371/journal.pone.0173247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 11/18/2022] Open
Abstract
Carfilzomib (CFZ) is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM). Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs) composed of biodegradable block copolymers poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic acid (CFZ-PM) and assessed its in vivo anticancer efficacy and pharmacokinetic profiles. Despite in vitro metabolic protection of CFZ, CFZ-PM did not display in vivo anticancer efficacy in mice bearing human lung cancer xenograft (H460) superior to that of the clinically used cyclodextrin-based CFZ (CFZ-CD) formulation. The plasma pharmacokinetic profiles of CFZ-PM were also comparable to those of CFZ-CD and the residual tumors that persisted in xenograft mice receiving CFZ-PM displayed an incomplete proteasome inhibition. In summary, our results showed that despite its favorable in vitro performances, the current CFZ-PM formulation did not improve in vivo anticancer efficacy and accessibility of active CFZ to solid cancer tissues over CFZ-CD. Careful consideration of the current results and potential confounding factors may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers.
Collapse
Affiliation(s)
- Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Se-Eun Chun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Derek Reichel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, South Korea
| | - Su-Chan Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Songhee Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Gongmi Ryoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yunseok Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Shin-Hyung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Heon-Min Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, South Korea
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
8
|
Song H, Xiong H, Che J, Xi QS, Huang L, Xiong HH, Zhang P. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer. ACTA ACUST UNITED AC 2016; 36:564-570. [PMID: 27465334 DOI: 10.1007/s11596-016-1626-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy.
Collapse
Affiliation(s)
- Hai Song
- Department of Scientific Research and Teaching, Tangshan People's Hospital, Tangshan, 063001, China
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Che
- National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qing-Song Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Erath S, Groettrup M. No evidence for immunoproteasomes in chicken lymphoid organs and activated lymphocytes. Immunogenetics 2014; 67:51-60. [PMID: 25403261 DOI: 10.1007/s00251-014-0814-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
The proteasome is the main protein-degrading machine within the cell, producing ligands for MHC class I molecules. It is a cylindrical multicatalytic protease complex, and the catalytic activity is mediated by the three subunits β1, β2, and β5 which possess caspase-, trypsin-, and chymotrypsin-like activities, respectively. By stimulation with interferon (IFN)-γ the replacement of these subunits by β1i, β2i, and β5i is induced leading to formation of immunoproteasomes with altered proteolytic and antigen processing properties. The genes coding for these immunosubunits are restricted to jawed vertebrates but have so far not been found in the genomes of birds, e.g., chicken, turkey, quail, black grouse and zebra finch. However, the chicken genome sequences are not completely assigned; therefore, we investigated the presence of immunoproteasome on protein level. 20S proteasome was purified from the chicken brain, blood, spleen, and bursa of Fabricius, followed by separation via two-dimensional (2D) gel electrophoresis. We analyzed the protein spots derived from the spleen and brain by mass spectrometry and could identify all 14 proteasomal subunits, but there were no differences detectable in the spot patterns. Moreover, we stimulated the chicken spleen cells with phorbol 12-myristate 13-acetate (PMA) and ionomycin aiming at the induction of immunoproteasome, but in spite of the induction of proliferation and IFN-γ, no evidence for immunoproteasome formation in chicken could be obtained. This result was substantiated by the finding that 20S proteasomes isolated from immune and non-immune tissues showed very similar peptidolytic activities. Taken together, our results indicate that chicken lack immunoproteasomes also on protein level.
Collapse
Affiliation(s)
- Sonja Erath
- Department of Immunology, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany
| | | |
Collapse
|
10
|
Artamonova TO, Khodorkovskii MA, Tsimokha AS. Mass spectrometric analysis of affinity-purified proteasomes from the human myelogenous leukemia K562 cell line. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 40:720-34. [DOI: 10.1134/s1068162014060041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wang X, Guerrero C, Kaiser P, Huang L. Proteomics of proteasome complexes and ubiquitinated proteins. Expert Rev Proteomics 2014; 4:649-65. [DOI: 10.1586/14789450.4.5.649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Joshi SK, Kim HT, Feeley BT, Liu X. Differential ubiquitin-proteasome and autophagy signaling following rotator cuff tears and suprascapular nerve injury. J Orthop Res 2014; 32:138-44. [PMID: 24018537 PMCID: PMC3856942 DOI: 10.1002/jor.22482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/14/2013] [Indexed: 02/06/2023]
Abstract
Previous studies have evaluated role of Akt/mTOR signaling in rotator cuff muscle atrophy and determined that there was differential in signaling following tendon transection (TT) and suprascapular nerve (SSN) denervation (DN), suggesting that atrophy following TT and DN was modulated by different protein degradation pathways. In this study, two muscle proteolytic systems that have been shown to be potent regulators of muscle atrophy in other injury models, the ubiquitin-proteasome pathway and autophagy, were evaluated following TT and DN. In addition to examining protein degradation, this study assessed protein synthesis rate following these two surgical models to understand how the balance between protein degradation and synthesis results in atrophy following rotator cuff injury. In contrast to the traditional theory that protein synthesis is decreased during muscle atrophy, this study suggests that protein synthesis is up-regulated in rotator cuff muscle atrophy following both surgical models. While the ubiquitin-proteasome pathway was a major contributor to the atrophy seen following DN, autophagy was a major contributor following TT. The findings of this study suggest that protein degradation is the primary factor contributing to atrophy following rotator cuff injury. However, different proteolytic pathways are activated if SSN injury is involved.
Collapse
Affiliation(s)
- Sunil K. Joshi
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs,Department of Orthopaedic Surgery, University of California, San Francisco
| | - Hubert T. Kim
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs,Department of Orthopaedic Surgery, University of California, San Francisco
| | - Brian T. Feeley
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs,Department of Orthopaedic Surgery, University of California, San Francisco
| | - Xuhui Liu
- San Francisco Veterans Affairs Medical Center, Department of Veterans Affairs,Department of Orthopaedic Surgery, University of California, San Francisco,Corresponding author: Xuhui Liu, M.D., San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94153, Tel: 415-221-4810 x 2742, Fax: 415-750-2181,
| |
Collapse
|
13
|
Marzoni M, Castillo A, Sagona S, Citti L, Rocchiccioli S, Romboli I, Felicioli A. A proteomic approach to identify seminal plasma proteins in roosters (Gallus gallus domesticus). Anim Reprod Sci 2013; 140:216-23. [PMID: 23896393 DOI: 10.1016/j.anireprosci.2013.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/29/2022]
Abstract
Considering the interest in avian semen processing and storage, the objective of this study was to identify the domestic fowl seminal plasma proteins using two-dimensional gel electrophoresis (2-DE) and mass spectrometry MS/MS. For three times in a 4-month period, seminal plasma was obtained from semen collected from four local male chickens (Gallus gallus domesticus) and prepared for two-dimensional polyacrylamide gel electrophoresis. A total of 83 spots were detected across all gels and analyzed by MALDI-TOF/TOF. Among these spots, 17 have been successfully identified. The most intensely stained spots were recognized as serum albumin, ovotransferrin, alpha-enolase, fatty acid binding protein, thioredoxin, trypsin inhibitor CITI-1 and gallinacin-9. From these proteins, two are characteristic of avian seminal plasma, the ovotransferrin and gallinacin-9, and one is specific of the Gallus species, the chicken trypsin inhibitor CITI-1.
Collapse
Affiliation(s)
- Margherita Marzoni
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Protein glycosylation represents the most abundant extracellular posttranslational modification in multicellular organisms. These glycoproteins unequivocally comprise the major biomolecules involved in extracellular processes, such as growth factors, signaling proteins for cellular communication, enzymes, and proteases for on- and off-site processing. It is now known that altered protein glycosylation is a hallmark event in many different pathologies. Glycoproteins are found mostly in the so-called secretome, which comprises classically and nonclassically secreted proteins and protein fragments that are released from the cell surface through ectodomain shedding. Due to biological complexity and technical difficulty, comparably few studies have taken an in-depth investigation of cellular secretomes using system-wide approaches. The cellular secretomes are considered to be a valuable source of therapeutic targets and novel biomarkers. It is not surprising that many existing biomarkers, including biomarkers for breast, ovarian, prostate, and colorectal cancers are glycoproteins. Focused analysis of secreted glycoproteins could thus provide valuable information for early disease diagnosis, and surveillance. Furthermore, since most secreted proteins are glycosylated and glycosylation predominantly targets secreted proteins, the glycan/sugar moiety itself can be used as a chemical "handle" for the targeted analysis of cellular secretomes, thereby reducing sample complexity and allowing detection of low abundance proteins in proteomic workflows. This review will focus on various glycoprotein enrichment strategies that facilitate proteomics-based technologies for the quantitative analysis of cell secretomes and cell surface proteomes.
Collapse
Affiliation(s)
- Zon W Lai
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, Freiburg, Germany
| | | | | |
Collapse
|
15
|
Biron DG, Loxdale HD. Host–parasite molecular cross-talk during the manipulative process of a host by its parasite. J Exp Biol 2013; 216:148-60. [DOI: 10.1242/jeb.073825] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Summary
Many parasite taxa are able to alter a wide range of phenotypic traits of their hosts in ways that seem to improve the parasite’s chance of completing its life cycle. Host behavioural alterations are classically seen as compelling illustrations of the ‘extended phenotype’ concept, which suggests that parasite genes have phenotype effects on the host. The molecular mechanisms and the host–parasite cross-talk involved during the manipulative process of a host by its parasite are still poorly understood. In this Review, the current knowledge on proximate mechanisms related to the ‘parasite manipulation hypothesis’ is presented. Parasite genome sequences do not themselves provide a full explanation of parasite biology nor of the molecular cross-talk involved in host–parasite associations. Recently, first-generation proteomics tools have been employed to unravel some aspects of the parasite manipulation process (i.e. proximate mechanisms and evolutionary convergence) using certain model arthropod-host–parasite associations. The pioneer proteomics results obtained on the manipulative process are here highlighted, along with the many gaps in our knowledge. Candidate genes and biochemical pathways potentially involved in the parasite manipulation are presented. Finally, taking into account the environmental factors, we suggest new avenues and approaches to further explore and understand the proximate mechanisms used by parasite species to alter phenotypic traits of their hosts.
Collapse
Affiliation(s)
- David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire ‘Microorganismes: Génome et Environnement’, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, F-63177 Aubiere, France
| | - Hugh D. Loxdale
- Royal Entomological Society, Chiswell Green Lane, St Albans AL2 3NS, UK
| |
Collapse
|
16
|
Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. MASS SPECTROMETRY REVIEWS 2013; 32:1-26. [PMID: 22847841 DOI: 10.1002/mas.21347] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 06/01/2023]
Abstract
The systematic analysis of biological processes requires an understanding of the quantitative expression patterns of proteins, their interacting partners and their subcellular localization. This information was formerly difficult to accrue as the relative quantification of proteins relied on antibody-based methods and other approaches with low throughput. The advent of soft ionization techniques in mass spectrometry plus advances in separation technologies has aligned protein systems biology with messenger RNA, DNA, and microarray technologies to provide data on systems as opposed to singular protein entities. Another aspect of quantitative proteomics that increases its importance for the coming few years is the significant technical developments underway both for high pressure liquid chromatography and mass spectrum devices. Hence, robustness, reproducibility and mass accuracy are still improving with every new generation of instruments. Nonetheless, the methods employed require validation and comparison to design fit for purpose experiments in advanced protein analyses. This review considers the newly developed systematic protein investigation methods and their value from the standpoint that relative or absolute protein quantification is required de rigueur in biomedical research.
Collapse
|
17
|
Lai ZW, Yan Y, Caruso F, Nice EC. Emerging techniques in proteomics for probing nano-bio interactions. ACS NANO 2012; 6:10438-10448. [PMID: 23214939 DOI: 10.1021/nn3052499] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanoengineered particles that can facilitate drug formulation and improve specificity of delivery afford exciting opportunities for improved lesion-specific therapy. Understanding and controlling the nano-bio interactions of these materials is central to future developments in this area. Mass-spectrometry-based proteomics techniques, in conjunction with other emerging technologies, are enabling novel insights into the modulation of particle surfaces by biological fluids (formation of the protein corona) and subsequent particle-induced cellular responses. In this Perspective, we summarize important recent developments using proteomics-based techniques to understand nano-bio interactions and discuss the impact of such knowledge on improving particle design.
Collapse
Affiliation(s)
- Zon W Lai
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | | | |
Collapse
|
18
|
Claydon AJ, Thom MD, Hurst JL, Beynon RJ. Protein turnover: measurement of proteome dynamics by whole animal metabolic labelling with stable isotope labelled amino acids. Proteomics 2012; 12:1194-206. [PMID: 22577021 DOI: 10.1002/pmic.201100556] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The measurement of protein turnover in tissues of intact animals is obtained by whole animal dynamic labelling studies, requiring dietary administration of precursor label. It is difficult to obtain full labelling of precursor amino acids in the diet and if partial labelling is used, calculation of the rate of turnover of each protein requires knowledge of the precursor relative isotope abundance (RIA). We describe an approach to dynamic labelling of proteins in the mouse with a commercial diet supplemented with a pure, deuterated essential amino acid. The pattern of isotopomer labelling can be used to recover the precursor RIA, and sampling of urinary secreted proteins can monitor the development of liver precursor RIA non-invasively. Time-series analysis of the labelling trajectories for individual proteins allows accurate determination of the first order rate constant for degradation. The acquisition of this parameter over multiple proteins permits turnover profiling of cellular proteins and comparisons of different tissues. The median rate of degradation of muscle protein is considerably lower than liver or kidney, with heart occupying an intermediate position.
Collapse
Affiliation(s)
- Amy J Claydon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
19
|
Xu P, Tan H, Duong DM, Yang Y, Kupsco J, Moberg KH, Li H, Jin P, Peng J. Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. J Proteome Res 2012; 11:4403-12. [PMID: 22830426 DOI: 10.1021/pr300613c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drosophila melanogaster is a common animal model for genetics studies, and quantitative proteomics studies of the fly are emerging. Here, we present in detail the development of a procedure to incorporate stable isotope-labeled amino acids into the fly proteome. In the method of stable isotope labeling with amino acids in Drosophila melanogaster (SILAC fly), flies were fed with SILAC-labeled yeast grown with modified media, enabling near complete labeling in a single generation. Biological variation in the proteome among individual flies was evaluated in a series of null experiments. We further applied the SILAC fly method to profile proteins from a model of fragile X syndrome, the most common cause of inherited mental retardation in human. The analysis identified a number of altered proteins in the disease model, including actin-binding protein profilin and microtubulin-associated protein futsch. The change of both proteins was validated by immunoblotting analysis. Moreover, we extended the SILAC fly strategy to study the dynamics of protein ubiquitination during the fly life span (from day 1 to day 30), by measuring the level of ubiquitin along with two major polyubiquitin chains (K48 and K63 linkages). The results show that the abundance of protein ubiquitination and the two major linkages do not change significantly within the measured age range. Together, the data demonstrate the application of the SILAC principle in D. melanogaster, facilitating the integration of powerful fly genomics with emerging proteomics.
Collapse
Affiliation(s)
- Ping Xu
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu L, Song HF, Zhang WG, Liu XQ, Zhu Q, Cheng XL, Yang GJ, Li A, Xiao ZC. Potential role of 20S proteasome in maintaining stem cell integrity of human bone marrow stromal cells in prolonged culture expansion. Biochem Biophys Res Commun 2012; 422:121-7. [PMID: 22564728 DOI: 10.1016/j.bbrc.2012.04.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 11/25/2022]
Abstract
Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18α-glycyrrhetinic acid (18α-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.
Collapse
Affiliation(s)
- Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
A proteomics strategy for determining the synthesis and degradation rates of individual proteins in fish. J Proteomics 2012; 75:4471-7. [PMID: 22484057 DOI: 10.1016/j.jprot.2012.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/22/2012] [Accepted: 03/16/2012] [Indexed: 11/21/2022]
Abstract
In order to study the protein dynamics in the tissues of fish we have developed a proteomics-based strategy to determine the rates of synthesis and degradation of individual proteins. We have demonstrated the feasibility of this approach by measuring the turnover of multiple isoforms of parvalbumin (β1-7) in the skeletal muscle of common carp (Cyprinus carpio). A stable isotope-labelled amino acid ([(2)H(7)] l-leucine) was administered to the carp via the diet and its incorporation into the isoforms of parvalbumin in muscle over time was monitored by LC-MS analysis of signature peptides. The relative isotope abundance was calculated and used to deconvolute the data. The β7 parvalbumin isoform had a rate of synthesis that was greater than the rate of degradation. In contrast the rate of degradation of the β5 isoform exceeded its rate of synthesis, whilst the analysis revealed that the other parvalbumin β-isoforms (β1, β2, β3, β4 and β6) had a rate of synthesis that was equal to the rate of degradation. This work has addressed a number of technical challenges and represents the first study to use proteomic approaches to measure the turnover of individual proteins in fish.
Collapse
|
22
|
Claydon AJ, Ramm SA, Pennington A, Hurst JL, Stockley P, Beynon R. Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling. Mol Cell Proteomics 2012; 11:M111.014993. [PMID: 22331477 DOI: 10.1074/mcp.m111.014993] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plasticity in ejaculate composition is predicted as an adaptive response to the evolutionary selective pressure of sperm competition. However, to respond rapidly to local competitive conditions requires dynamic modulation in the production of functionally relevant ejaculate proteins. Here we combine metabolic labeling of proteins with proteomics to explore the opportunity for such modulation within mammalian ejaculates. We assessed the rate at which proteins are synthesized and incorporated in the seminal vesicles of male house mice (Mus musculus domesticus), where major seminal fluid proteins with potential roles in sperm competition are produced. We compared rates of protein turnover in the seminal vesicle with those during spermatogenesis, the timing of which is well known in mice. The subjects were fed a diet containing deuterated valine ([(2)H(8)]valine) for up to 35 days, and the incorporation of dietary-labeled amino acid into seminal vesicle- or sperm-specific proteins was assessed by liquid chromatography-mass spectrometry of samples recovered from the seminal vesicle lumen and cauda epididymis, respectively. Analyses of epididymal contents were consistent with the known duration of spermatogenesis and sperm maturation in this species and in addition revealed evidence for a subset of epididymal proteins subject to rapid turnover. For seminal vesicle proteins, incorporation of the stable isotope was evident from day 2 of labeling, reaching a plateau of labeling by day 24. Hence, even in the absence of copulation, the seminal vesicle proteins and certain epididymal proteins demonstrate considerable turnover, a response that is consonant with the capacity to rapidly modulate protein production. These techniques can now be used to assess the extent of phenotypic plasticity in mammalian ejaculate production and allocation according to social and environmental cues of sperm competition.
Collapse
Affiliation(s)
- Amy J Claydon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Lu XM, Tompkins RG, Fischman AJ. SILAM for quantitative proteomics of liver Akt1/PKBα after burn injury. Int J Mol Med 2011; 29:461-71. [PMID: 22179310 PMCID: PMC3981641 DOI: 10.3892/ijmm.2011.861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/17/2011] [Indexed: 12/27/2022] Open
Abstract
Akt1/protein kinase Bα (Akt1/PKBα) is a downstream mediator of the insulin signaling system. In this study we explored mechanism(s) for its role in burn injury. Akt1/PKBα in liver extracts from mice with burn injury fed with (2H7)-L-Leu was immunoprecipitated and isolated with SDS-PAGE. Two tryptic peptides, one in the kinase loop and a control peptide just outside of the loop were sequenced via nano-LC interfaced with quadruple time-of-flight tandem mass spectrometry (Q-TOF tandem MS). Their relative isotopologue abundances were determined by stable isotope labeling by amino acids in mammalians (SILAM). Relative quantifications based on paired heavy/light peptides were obtained in 3 steps. The first step included homogenization of mixtures of equal amounts of tissue from burned and sham-treated animals (i.e., isotope dilution) and acquisition of uncorrected data based on parent monoisotopic MS ion ratios. The second step included determination of isotopic enrichment of the kinase from burned mice on Day 7 and the third step enrichment correction of partially labeled heavy and light monoisotopic MS ion ratios for relative quantification of bioactivity (loop peptide) and expression level (control peptide). Protein synthesis and enrichment after injury were found to be dependent on tissue and turnover of individual proteins. Three heavy and light monoisotopic ion ratios for albumin peptides from burned mice indicated ~55% enrichment and ~16.7-fold downregulation. In contract, serum amyloid P had ~66% enrichment and was significantly upregulated. Akt1/PKBα had ~56% enrichment and kinase level in response to the burn injury was upregulated compared with the control peptide. However, kinase bioactivity, represented by the Cys296 peptide, was significantly reduced. Overall, we demonstrated that i) quantitative proteomics can be performed without completely labeled mice; ii) measurement of enrichment of acyl-tRNAs is unnecessary and iii) Cys296 plays an important role in kinase activity after burn injury.
Collapse
Affiliation(s)
- X-M Lu
- Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
24
|
Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Krüger M, Mann M. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res 2011; 10:5275-84. [PMID: 22050367 DOI: 10.1021/pr101183k] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The turnover of each protein in the mammalian proteome is a functionally important characteristic. Here, we employed high-resolution mass spectrometry to quantify protein dynamics in nondividing mammalian cells. The ratio of externally supplied versus endogenous amino acids to de novo protein synthesis was about 17:1. Using subsaturating SILAC labeling, we obtained accurate turnover rates of 4106 proteins in HeLa and 3528 proteins in C2C12 cells. Comparison of these human and mouse cell lines revealed a highly significant turnover correlation of protein orthologs and thus high species conservation. Functionally, we observed statistically significant trends for the turnover of phosphoproteins and gene ontology categories that showed extensive covariation between mouse and human. Likewise, the members of some protein complexes, such as the proteasome, have highly similar turnover rates. The high species conservation and the low complex variances thus imply great regulatory fine-tuning of protein turnover.
Collapse
Affiliation(s)
- Sidney B Cambridge
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Munich-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Wang X, Zhao Z, Luo Y, Chen G, Li Z. Gel-based proteomics analysis of the heterogeneity of 20S proteasomes from four human pancreatic cancer cell lines. Proteomics Clin Appl 2011; 5:484-92. [PMID: 21751412 DOI: 10.1002/prca.201000149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/11/2011] [Accepted: 05/30/2011] [Indexed: 11/06/2022]
Abstract
PURPOSE The 20S proteasome is a multicatalytic protein complex, which plays a major role in intracellular protein degradation. In mammalian cells, it consists of 28 subunits arranged in four stacked rings (α1-7β1-7β1-7α1-7). The aim of this study is to characterize and compare subunit composition and heterogeneity (or subtypes) of the 20S proteasome from four human pancreatic cancer cell lines. EXPERIMENTAL DESIGN To study subunit compositions and heterogeneity of 20S proteasome from human pancreatic cancer cell lines, in the present study, 20S proteasome from four different pancreatic cancer cell lines (SW1990, a human exocrine adenocarcinoma, derived from spleen metastasis; PANC-1, a human ductal carcinoma in situ; BxPC-3, a human ductal carcinoma in situ; and CFPAC-1, a human ductal adenocarcinoma, derived from liver metastasis) were subjected to a gel-based proteomics analysis, respectively. RESULTS It was found that the differences in the subunit compositions and subtypes of the 20S proteasomes among four pancreatic cancer cell lines exist. Gel-based proteomics analysis showed that more than 60 subunits spots were separated and identified by MS. Our study revealed the presence of various isoforms for each of the subunits and different subtypes of the 20S proteasome. The significant differences among four cell lines are the relative abundances of immunoproteasome subunits, β1i and β2i, indicating that different subtypes of immunoproteasome among four cell lines exist. CONCLUSIONS AND CLINICAL RELEVANCE The 20S proteasome from four human pancreatic cancer cell lines was characterized. The different expression levels of immunoproteasome subunits, β1i and β2i, indicate that the 20S proteasome may have different subtypes among four cell lines, which may be related to cancer cell property and be useful for the establishment of personalized therapy using proteasome inhibitors in future.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
26
|
Yoon SH, Reiss DJ, Bare JC, Tenenbaum D, Pan M, Slagel J, Moritz RL, Lim S, Hackett M, Menon AL, Adams MWW, Barnebey A, Yannone SM, Leigh JA, Baliga NS. Parallel evolution of transcriptome architecture during genome reorganization. Genome Res 2011; 21:1892-904. [PMID: 21750103 DOI: 10.1101/gr.122218.111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r=-0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures.
Collapse
Affiliation(s)
- Sung Ho Yoon
- Institute for Systems Biology, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
van Tijn P, Verhage MC, Hobo B, van Leeuwen FW, Fischer DF. Low levels of mutant ubiquitin are degraded by the proteasome in vivo. J Neurosci Res 2010; 88:2325-37. [PMID: 20336771 DOI: 10.1002/jnr.22396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ubiquitin-proteasome system fulfills a pivotal role in regulating intracellular protein turnover. Impairment of this system is implicated in the pathogenesis of neurodegenerative diseases characterized by ubiquitin- containing proteinaceous deposits. UBB(+1), a mutant ubiquitin, is one of the proteins accumulating in the neuropathological hallmarks of tauopathies, including Alzheimer's disease, and polyglutamine diseases. In vitro, UBB(+1) properties shift from a proteasomal ubiquitin-fusion degradation substrate at low expression levels to a proteasome inhibitor at high expression levels. Here we report on a novel transgenic mouse line (line 6663) expressing low levels of neuronal UBB(+1). In these mice, UBB(+1) protein is scarcely detectable in the neuronal cell population. Accumulation of UBB(+1) commences only after intracranial infusion of the proteasome inhibitors lactacystin or MG262, showing that, at these low expression levels, the UBB(+1) protein is a substrate for proteasomal degradation in vivo. In addition, accumulation of the protein serves as a reporter for proteasome inhibition. These findings strengthen our proposition that, in healthy brain, UBB(+1) is continuously degraded and disease-related UBB(+1) accumulation serves as an endogenous marker for proteasomal dysfunction. This novel transgenic line can give more insight into the intrinsic properties of UBB(+1) and its role in neurodegenerative disease.
Collapse
Affiliation(s)
- Paula van Tijn
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Sury MD, Chen JX, Selbach M. The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 2010; 9:2173-83. [PMID: 20525996 DOI: 10.1074/mcp.m110.000323] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is widely used to quantify protein abundance in tissue culture cells. Until now, the only multicellular organism completely labeled at the amino acid level was the laboratory mouse. The fruit fly Drosophila melanogaster is one of the most widely used small animal models in biology. Here, we show that feeding flies with SILAC-labeled yeast leads to almost complete labeling in the first filial generation. We used these "SILAC flies" to investigate sexual dimorphism of protein abundance in D. melanogaster. Quantitative proteome comparison of adult male and female flies revealed distinct biological processes specific for each sex. Using a tudor mutant that is defective for germ cell generation allowed us to differentiate between sex-specific protein expression in the germ line and somatic tissue. We identified many proteins with known sex-specific expression bias. In addition, several new proteins with a potential role in sexual dimorphism were identified. Collectively, our data show that the SILAC fly can be used to accurately quantify protein abundance in vivo. The approach is simple, fast, and cost-effective, making SILAC flies an attractive model system for the emerging field of in vivo quantitative proteomics.
Collapse
Affiliation(s)
- Matthias D Sury
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | | | |
Collapse
|
29
|
Huber JM, Tagwerker A, Heininger D, Mayer G, Rosenkranz AR, Eller K. The proteasome inhibitor Bortezomib aggravates renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297:F451-60. [DOI: 10.1152/ajprenal.90576.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bortezomib is a well-established treatment option for patients with multiple myeloma (MM). It is a selective and reversible inhibitor of the proteasome that is responsible for the degradation of many regulatory proteins that are involved in apoptosis, cell-cycle regulation, or transcription. Because patients with MM are prone to develop acute renal failure, we evaluated the influence of Bortezomib on renal ischemia-reperfusion injury (IRI). Mice were subjected to renal IRI by having the renal pedicles clamped for 30 min followed by reperfusion for 3, 24, and 48 h. Mice were either pretreated with 0.5 mg/kg body wt Bortezomib or vehicle intravenously 12 h before induction of IRI. Serum creatinine and tubular necrosis were significantly increased in Bortezomib compared with vehicle-treated mice. The inflammatory response was found to be significantly decreased in Bortezomib-treated mice as reflected by a decreased infiltration of CD4+ T cells and a significantly decreased Th1 cytokine expression in the kidneys. In contrast, apoptosis was significantly increased in kidneys of Bortezomib-treated mice compared with vehicle-treated controls. Increased numbers of TUNEL-positive cells/mm2 and increased mRNA expression of proapoptotic factors were detected in kidneys of Bortezomib-treated mice. Of note, p21, a cell senescence marker, was also significantly increased in kidneys of Bortezomib-treated mice. In summary, we provide evidence that Bortezomib worsens the outcome of renal IRI by leading to increased apoptosis of tubular cells despite decreased infiltrating T cells and proinflammatory mediators.
Collapse
|
30
|
Prevalence of transcription promoters within archaeal operons and coding sequences. Mol Syst Biol 2009; 5:285. [PMID: 19536208 PMCID: PMC2710873 DOI: 10.1038/msb.2009.42] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 05/13/2009] [Indexed: 01/21/2023] Open
Abstract
Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of approximately 64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein-DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3' ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes-events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.
Collapse
|
31
|
Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the Human Proteome: Determination of Protein Intracellular Stability by Dynamic SILAC. J Proteome Res 2008; 8:104-12. [DOI: 10.1021/pr800641v] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mary K. Doherty
- Proteomics and Functional Genomics Research Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZJ, United Kingdon, The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom, and Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Dean E. Hammond
- Proteomics and Functional Genomics Research Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZJ, United Kingdon, The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom, and Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael J. Clague
- Proteomics and Functional Genomics Research Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZJ, United Kingdon, The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom, and Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Simon J. Gaskell
- Proteomics and Functional Genomics Research Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZJ, United Kingdon, The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom, and Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Robert J. Beynon
- Proteomics and Functional Genomics Research Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZJ, United Kingdon, The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom, and Michael Barber Centre for Mass Spectrometry, Manchester Interdisciplinary Biocentre, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
32
|
Envelope: interactive software for modeling and fitting complex isotope distributions. BMC Bioinformatics 2008; 9:446. [PMID: 18937869 PMCID: PMC2605472 DOI: 10.1186/1471-2105-9-446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/20/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An important aspect of proteomic mass spectrometry involves quantifying and interpreting the isotope distributions arising from mixtures of macromolecules with different isotope labeling patterns. These patterns can be quite complex, in particular with in vivo metabolic labeling experiments producing fractional atomic labeling or fractional residue labeling of peptides or other macromolecules. In general, it can be difficult to distinguish the contributions of species with different labeling patterns to an experimental spectrum and difficult to calculate a theoretical isotope distribution to fit such data. There is a need for interactive and user-friendly software that can calculate and fit the entire isotope distribution of a complex mixture while comparing these calculations with experimental data and extracting the contributions from the differently labeled species. RESULTS Envelope has been developed to be user-friendly while still being as flexible and powerful as possible. Envelope can simultaneously calculate the isotope distributions for any number of different labeling patterns for a given peptide or oligonucleotide, while automatically summing these into a single overall isotope distribution. Envelope can handle fractional or complete atom or residue-based labeling, and the contribution from each different user-defined labeling pattern is clearly illustrated in the interactive display and is individually adjustable. At present, Envelope supports labeling with 2H, 13C, and 15N, and supports adjustments for baseline correction, an instrument accuracy offset in the m/z domain, and peak width. Furthermore, Envelope can display experimental data superimposed on calculated isotope distributions, and calculate a least-squares goodness of fit between the two. All of this information is displayed on the screen in a single graphical user interface. Envelope supports high-quality output of experimental and calculated distributions in PNG or PDF format. Beyond simply comparing calculated distributions to experimental data, Envelope is useful for planning or designing metabolic labeling experiments, by visualizing hypothetical isotope distributions in order to evaluate the feasibility of a labeling strategy. Envelope is also useful as a teaching tool, with its real-time display capabilities providing a straightforward way to illustrate the key variable factors that contribute to an observed isotope distribution. CONCLUSION Envelope is a powerful tool for the interactive calculation and visualization of complex isotope distributions for comparison to experimental data. It is available under the GNU General Public License from http://williamson.scripps.edu/envelope/.
Collapse
|
33
|
Sperling E, Bunner AE, Sykes MT, Williamson JR. Quantitative analysis of isotope distributions in proteomic mass spectrometry using least-squares Fourier transform convolution. Anal Chem 2008; 80:4906-17. [PMID: 18522437 DOI: 10.1021/ac800080v] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative proteomic mass spectrometry involves comparison of the amplitudes of peaks resulting from different isotope labeling patterns, including fractional atomic labeling and fractional residue labeling. We have developed a general and flexible analytical treatment of the complex isotope distributions that arise in these experiments, using Fourier transform convolution to calculate labeled isotope distributions and least-squares for quantitative comparison with experimental peaks. The degree of fractional atomic and fractional residue labeling can be determined from experimental peaks at the same time as the integrated intensity of all of the isotopomers in the isotope distribution. The approach is illustrated using data with fractional (15)N-labeling and fractional (13)C-isoleucine labeling. The least-squares Fourier transform convolution approach can be applied to many types of quantitative proteomic data, including data from stable isotope labeling by amino acids in cell culture and pulse labeling experiments.
Collapse
Affiliation(s)
- Edit Sperling
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
34
|
Baumann CG, Morris DG, Sreenan JM, Leese HJ. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol Reprod Dev 2007; 74:1345-53. [PMID: 17342740 DOI: 10.1002/mrd.20604] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been proposed that the viability of early mammalian embryos is associated with a metabolism that is "quiet" rather than "active" (Leese HJ, 2002:BioEssays 24:845-849). The data on which this hypothesis was based were largely drawn from measurements on the depletion and appearance of amino acids from the culture medium. Data on the de novo synthesis of protein in in vivo- and in vitro-derived bovine embryos, as determined from the flux of radiolabeled methionine, have provided further support of the hypothesis and are interpreted to provide a new set of testable propositions that could illuminate the molecular basis of the quiet metabolism phenotype. The propositions are based on the premise that the extent of DNA damage, and the RNA and protein content of the immature oocyte, are key factors in determining whether the zygote progresses to the blastocyst stage. We propose that stochastic events and environmental stresses determine whether the condition of the genome, transcriptome, and proteome of the zygote will support development. Several molecular components are identified that may determine the viability of a zygote, and we speculate that the cellular response to unfavorable events or excessive DNA damage may be the premature activation of the embryonic genome and of apoptosis.
Collapse
|
35
|
Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng HH, Dodgson JB, Burnside J. Functional genomics of the chicken--a model organism. Poult Sci 2007; 86:2059-94. [PMID: 17878436 DOI: 10.1093/ps/86.10.2059] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the sequencing of the genome and the development of high-throughput tools for the exploration of functional elements of the genome, the chicken has reached model organism status. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scale. Systems biology attempts to integrate functional information derived from multiple high-content data sets into a holistic view of all biological processes within a cell or organism. Generation of a large collection ( approximately 600K) of chicken expressed sequence tags, representing most tissues and developmental stages, has enabled the construction of high-density microarrays for transcriptional profiling. Comprehensive analysis of this large expressed sequence tag collection and a set of approximately 20K full-length cDNA sequences indicate that the transcriptome of the chicken represents approximately 20,000 genes. Furthermore, comparative analyses of these sequences have facilitated functional annotation of the genome and the creation of several bioinformatic resources for the chicken. Recently, about 20 papers have been published on transcriptional profiling with DNA microarrays in chicken tissues under various conditions. Proteomics is another powerful high-throughput tool currently used for examining the dynamics of protein expression in chicken tissues and fluids. Computational analyses of the chicken genome are providing new insight into the evolution of gene families in birds and other organisms. Abundant functional genomic resources now support large-scale analyses in the chicken and will facilitate identification of transcriptional mechanisms, gene networks, and metabolic or regulatory pathways that will ultimately determine the phenotype of the bird. New technologies such as marker-assisted selection, transgenics, and RNA interference offer the opportunity to modify the phenotype of the chicken to fit defined production goals. This review focuses on functional genomics in the chicken and provides a road map for large-scale exploration of the chicken genome.
Collapse
Affiliation(s)
- L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark 19717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Doherty MK, McLean L, Beynon RJ. Avian proteomics: advances, challenges and new technologies. Cytogenet Genome Res 2007; 117:358-69. [PMID: 17675879 DOI: 10.1159/000103199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022] Open
Abstract
Proteomics is defined as an analysis of the full complement of proteins of a cell or tissue under given conditions. Avian proteomics, or more specifically chicken proteomics, has focussed on the study of individual tissues and organs of interest to specific researchers. Researchers have looked at skeletal muscle and growth, and embryonic development and have performed initial studies in avian disease. Traditional proteomics involves identifying and cataloguing proteins in a cell and identifying relative changes in populations between two or more states, be that physiological or disease-induced states. Recent advances in proteomic technologies have included absolute quantification, proteome simplification and the ability to determine the turnover of individual proteins in a global context. This review discusses the current developments in this relatively new field, new technologies and how they may be applied to biological questions, and the challenges faced by researchers in this ever-expanding and exciting field.
Collapse
Affiliation(s)
- M K Doherty
- Protein Function Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
37
|
Burt DW, White SJ. Avian genomics in the 21st century. Cytogenet Genome Res 2007; 117:6-13. [PMID: 17675839 DOI: 10.1159/000103159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/01/2007] [Indexed: 11/19/2022] Open
Abstract
The chicken has long been an important model organism for developmental biology, as well as a major source of protein with billions of birds used in meat and egg production each year. Chicken genomics has been transformed in recent years, with the characterisation of large EST collections and most recently with the assembly of the chicken genome sequence. As the first livestock genome to be fully sequenced it leads the way for others to follow--with zebra finch later this year. The genome sequence and the availability of three million genetic polymorphisms are expected to aid the identification of genes that control traits of importance in poultry. As the first bird genome to be sequenced it is a model for the remaining 9,600 species thought to exist today. Many of the features of avian biology and organisation of the chicken genome make it an ideal model organism for phylogenetics and embryology, along with applications in agriculture and medicine. The availability of new tools such as whole-genome gene expression arrays and SNP panels, coupled with information resources on the genes and proteins are likely to enhance this position.
Collapse
Affiliation(s)
- D W Burt
- Department of Genomics and Genetics, Roslin Institute (Edinburgh), Roslin, Midlothian, UK.
| | | |
Collapse
|
38
|
Berge U, Behrens J, Rattan SIS. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci 2007; 1100:524-9. [PMID: 17460218 DOI: 10.1196/annals.1395.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal human epidermal keratinocytes (NHEK) show both the Hayflick phenomenon and differentiation in vitro. The aim of this study was to induce senescence in keratinocytes using two sugars, glucose and glyoxal. Induction of senescence in early-passage NHEK was characterized by monitoring cell morphology, short-term growth characteristics, cell proliferation, and viability assay. In addition, apoptosis, senescence-associated (SA) beta-gal activity, proteasomal activity and glycation, and glycoxidation of total proteins were determined. Our results show that a 3-day treatment with 100 mM glucose or 0.1 mM glyoxal induces in early-passage NHEK various cellular and biochemical characteristics comparable to those observed in serially subcultured late passage NHEK. Furthermore, sugar-treated prematurely aged NHEK showed impaired differentiation, as measured by the quantification of involucrin. There is preliminary evidence that a preexposure of NHEK to mild heat shock (41 degrees C, 1 h, 6 h in advance) can abrogate some of the sugar-induced negative effects, which is an example of mild stress-induced hormesis. This experimental model can be useful to study the effects of potential antiaging interventions.
Collapse
Affiliation(s)
- Ulrich Berge
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK8000 Aarhus-C, Denmark
| | | | | |
Collapse
|
39
|
Castro-Borges W, Cartwright J, Ashton PD, Braschi S, Guerra Sa R, Rodrigues V, Wilson RA, Curwen RS. The 20S proteasome ofSchistosoma mansoni: A proteomic analysis. Proteomics 2007; 7:1065-75. [PMID: 17390295 DOI: 10.1002/pmic.200600166] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteasomes are molecular machines found in virtually all cells that provide one of the mechanisms for protein turnover. We have analysed the 20S proteasome of Schistosoma mansoni, the first multimeric complex isolated from this helminth parasite. Three chromatographic steps were employed to yield a highly homogeneous preparation. 2-DE of the purified complex revealed 58 spots, of which 46 could be assigned either an alpha or a beta proteasome signature by MS. Most of the 14 transcripts (7alpha and 7beta) encoded by the parasite genome were represented by multiple spots and we suggest that this diversity is due to PTMs of subunits. For most of the isoforms, variations in pI predominated although alterations in mass were also observed. 2-DE separations of extracts from infective cercariae and blood-dwelling adult worms probed by Western blotting, using a human anti-alpha subunit antibody, revealed different patterns of reactivity, most probably in alpha3 and alpha6 subunits, on the basis of sequence conservation. This difference was rapidly lost following transformation of the cercaria to the skin schistosomulum stage, suggesting that changes in the proteasome structure, likely caused by the introduction of a new set of PTMs, precede remodelling of the parasite body prior to intravascular migration.
Collapse
|
40
|
Schmidt F, Dahlmann B, Janek K, Kloss A, Wacker M, Ackermann R, Thiede B, Jungblut PR. Comprehensive quantitative proteome analysis of 20S proteasome subtypes from rat liver by isotope coded affinity tag and 2-D gel-based approaches. Proteomics 2006; 6:4622-32. [PMID: 16858736 DOI: 10.1002/pmic.200500920] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Quantitative protein profiling is an essential part of proteomics and requires technologies that accurately, reproducibly, and comprehensively identify and quantify proteins. Over the past years, many quantitative proteomic methods have been developed. Here, 20S proteasome subtypes isolated from rat were compared by four approaches based on the combination of isotope-coded affinity tag (ICAT), 2-DE, LC and ESI and MALDI MS: (i) 2-DE, (ii) ICAT/2-DE MALDI-MS, (iii) ICAT/LC-ESI-MS, (iv) ICAT/LC-MALDI-MS. A definite qualitative advantage of 2-DE gels was the separation of all known protein species, the identification of cysteine sulfoxide of alpha-4 (RC6-IS) and N-terminal acetylation of several subunits. Furthermore, quantitative differences between the standard subunits beta-2, and beta-5 and their immunosubunits were only detected by 2-DE image analysis revealing a higher replacement of standard- by immuno-beta-subunits in subtype IV. It was obvious that for relative quantification only protein spot and mass peaks with a certain level of intensity displayed acceptable values of SD. However, ICAT in conjunction with LC/MALDI-MS was the most accurate method for quantification. The experimental data of this investigation are accessible via http://www.mpiib-berlin.mpg.de/2D-PAGE/.
Collapse
Affiliation(s)
- Frank Schmidt
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|