1
|
Narula K, Sinha A, Choudhary P, Ghosh S, Elagamey E, Sharma A, Sengupta A, Chakraborty N, Chakraborty S. Combining extracellular matrix proteome and phosphoproteome of chickpea and meta-analysis reveal novel proteoforms and evolutionary significance of clade-specific wall-associated events in plant. PLANT DIRECT 2024; 8:e572. [PMID: 38500675 PMCID: PMC10945595 DOI: 10.1002/pld3.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Extracellular matrix (ECM) plays central roles in cell architecture, innate defense and cell wall integrity (CWI) signaling. During transition to multicellularity, modular domain structures of ECM proteins and proteoforms have evolved due to continuous adaptation across taxonomic clades under different ecological niche. Although this incredible diversity has to some extent been investigated at protein level, extracellular phosphorylation events and molecular evolution of ECM proteoform families remains unexplored. We developed matrisome proteoform atlas in a grain legume, chickpea and performed meta-analyses of 74 plant matrisomes. MS/MS analysis identified 1,424 proteins and 315 phosphoproteins involved in diverse functions. Cross-species ECM protein network identified proteoforms associated with CWI maintenance system. Phylogenetic characterization of eighteen matrix protein families highlighted the role of taxon-specific paralogs and orthologs. Novel information was acquired on gene expansion and loss, co-divergence, sub functionalization and neofunctionalization during evolution. Modular networks of matrix protein families and hub proteins showed higher diversity across taxonomic clades than among organs. Furthermore, protein families differ in nonsynonymous to synonymous substitution rates. Our study pointed towards the matrix proteoform functionality, sequence divergence variation, interactions between wall remodelers and molecular evolution using a phylogenetic framework. This is the first report on comprehensive matrisome proteoform network illustrating presence of CWI signaling proteins in land plants.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Arunima Sinha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Sudip Ghosh
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Eman Elagamey
- National Institute of Plant Genome ResearchNew DelhiIndia
- Plant Pathology Research InstituteAgricultural Research Center (ARC)GizaEgypt
| | - Archana Sharma
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | | | | |
Collapse
|
2
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
3
|
Gao X, Zhang J, Li J, Wang Y, Zhang R, Du H, Yin J, Cai G, Wang R, Zhang B, Zhao Z, Zhang H, Huang J. The phosphoproteomic and interactomic landscape of qGL3/OsPPKL1-mediated brassinosteroid signaling in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1048-1063. [PMID: 34839552 DOI: 10.1111/tpj.15613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Oryza sativa L. (rice) is one of the most important crops in the world, and grain size is a major component determining rice yield. Recent studies have identified a number of grain size regulators, which are involved in phytohormone signaling, G protein signaling, the mitogen-activated protein kinase signaling pathway, the ubiquitin-proteasome pathway or transcriptional regulation. In a previous study, we cloned qGL3/OsPPKL1 encoding a rice protein phosphatase that negatively modulates brassinosteroid (BR) signaling and grain length. Here, to further explore the qGL3-mediated BR signaling network, we performed phosphoproteomic screenings using two pairs of rice materials: the indica rice cultivar 9311 and its near-isogenic line NILqgl3 and the japonica rice cultivar Dongjin and its qGL3 knockout mutant m-qgl3. Together with qGL3-interacting proteins, we constructed the qGL3-mediated network, which reveals the relationships between BR signaling and other critical signaling pathways. Transgenic plants of these network components showed BR-related alterations in plant architecture. From this network, we validated a qGL3-interacting protein, O. sativa VERNALIZATION INSENSITIVE 3-LIKE 1 (OsVIL1), and demonstrated that qGL3 dephosphorylates OsVIL1 to modulate BR signaling. The qGL3-dependent network uncovered in this study increases our understanding of BR signaling and provides a profound foundation for addressing how BR modulates plant architecture in rice.
Collapse
Affiliation(s)
- Xiuying Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Jiaqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Yuji Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Huaying Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Jing Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Guang Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Baoyi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Zhuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing, 210095, China
- Jiangsu Key Laboratory for Information Agriculture, Nanjing, 210095, China
| |
Collapse
|
4
|
Subba P, Prasad TSK. Plant Phosphoproteomics: Known Knowns, Known Unknowns, and Unknown Unknowns of an Emerging Systems Science Frontier. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:750-769. [PMID: 34882020 DOI: 10.1089/omi.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant systems science research depends on the dynamic functional maps of the biological substrates of plant phenotypes and host/environment interactions in diverse ecologies. In this context, high-resolution mass spectrometry platforms offer comprehensive insights into the molecular pathways regulated by protein phosphorylation. Reversible protein phosphorylation is a ubiquitous reaction in signal transduction mechanisms in biological systems. In contrast to human and animal biology research, a plethora of experimental options for functional mapping and regulation of plant biology are, however, not currently available. Plant phosphoproteomics is an emerging field of research that aims at addressing this gap in systems science and plant omics, and thus has a large scope to empower fundamental discoveries. To date, large-scale data-intensive identification of phosphorylation events in plants remained technically challenging. In this expert review, we present a critical analysis and overview of phosphoproteomic studies performed in the model plant Arabidopsis thaliana. We discuss the technical strategies used for the enrichment of phosphopeptides and methods used for their quantitative assessment. Various types of mass spectrometry data acquisition and fragmentation methods are also discussed. The insights gathered here can allow plant biology and systems science researchers to design high-throughput function-oriented experimental workflows that elucidate the regulatory signaling mechanisms impacting plant physiology and plant diseases.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
5
|
Tan J, Zhou Z, Feng H, Xing J, Niu Y, Deng Z. Data-Independent Acquisition-Based Proteome and Phosphoproteome Profiling Reveals Early Protein Phosphorylation and Dephosphorylation Events in Arabidopsis Seedlings upon Cold Exposure. Int J Mol Sci 2021; 22:ijms222312856. [PMID: 34884660 PMCID: PMC8657928 DOI: 10.3390/ijms222312856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/30/2023] Open
Abstract
Protein phosphorylation plays an important role in mediating signal transduction in cold response in plants. To better understand how plants sense and respond to the early temperature drop, we performed data-independent acquisition (DIA) method-based mass spectrometry analysis to profile the proteome and phosphoproteome of Arabidopsis seedlings upon cold stress in a time-course manner (10, 30 and 120 min of cold treatments). Our results showed the rapid and extensive changes at the phosphopeptide levels, but not at the protein abundance levels, indicating cold-mediated protein phosphorylation and dephosphorylation events. Alteration of over 1200 proteins at phosphopeptide levels were observed within 2 h of cold treatment, including over 140 kinases, over 40 transcriptional factors and over 40 E3 ligases, revealing the complexity of regulation of cold adaption. We summarized cold responsive phosphoproteins involved in phospholipid signaling, cytoskeleton reorganization, calcium signaling, and MAPK cascades. Cold-altered levels of 73 phosphopeptides (mostly novel cold-responsive) representing 62 proteins were validated by parallel reaction monitoring (PRM). In summary, this study furthers our understanding of the molecular mechanisms of cold adaption in plants and strongly supports that DIA coupled with PRM are valuable tools in uncovering early signaling events in plants.
Collapse
Affiliation(s)
- Jinjuan Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Hanqian Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Jiayun Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China;
| | - Yujie Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.T.); (Z.Z.); (H.F.); (Y.N.)
- Correspondence:
| |
Collapse
|
6
|
Zhang Y, Chen H, Li S, Li Y, Kanwar MK, Li B, Bai L, Xu J, Shi Y. Comparative Physiological and Proteomic Analyses Reveal the Mechanisms of Brassinolide-Mediated Tolerance to Calcium Nitrate Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:724288. [PMID: 34868110 PMCID: PMC8636057 DOI: 10.3389/fpls.2021.724288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/11/2021] [Indexed: 05/21/2023]
Abstract
Secondary salinization caused by the overaccumulation of calcium nitrate [Ca(NO3)2] in soils due to excessive fertilization has become one of the major handicaps of protected vegetable production. Brassinolide, a bioactive plant steroid hormone, plays an important role in improving abiotic stress tolerance in plants. However, whether and how brassinolide (BR) can alleviate Ca(NO3)2 stress remains elusive. Here, we investigated the effects of exogenous BR on hydroponically grown tomato (Solanum lycopersicum L.) plants under Ca(NO3)2 stress through proteomics combined with physiological studies. Proteomics analysis revealed that Ca(NO3)2 stress affected the accumulation of proteins involved in photosynthesis, stress responses, and antioxidant defense, however, exogenous BR increased the accumulation of proteins involved in chlorophyll metabolism and altered the osmotic stress responses in tomatoes under Ca(NO3)2 stress. Further physiological studies supported the results of proteomics and showed that the exogenous BR-induced alleviation of Ca(NO3)2 stress was associated with the improvement of photosynthetic efficiency, levels of soluble sugars and proteins, chlorophyll contents, and antioxidant enzyme activities, leading to the reduction in the levels of reactive oxygen species and membrane lipid peroxidation, and promotion of the recovery of photosynthetic performance, energy metabolism, and plant growth under Ca(NO3)2 stress. These results show the importance of applying BR in protected agriculture as a means for the effective management of secondary salinization.
Collapse
Affiliation(s)
- Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Haoting Chen
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Shuo Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Yang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mukesh Kumar Kanwar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Longqiang Bai
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Yu Shi
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
7
|
Conway SJ, Walcher-Chevillet CL, Salome Barbour K, Kramer EM. Brassinosteroids regulate petal spur length in Aquilegia by controlling cell elongation. ANNALS OF BOTANY 2021; 128:931-942. [PMID: 34508638 PMCID: PMC8577200 DOI: 10.1093/aob/mcab116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Aquilegia produce elongated, three-dimensional petal spurs that fill with nectar to attract pollinators. Previous studies have shown that the diversity of spur length across the Aquilegia genus is a key innovation that is tightly linked with its recent and rapid diversification into new ranges, and that evolution of increased spur lengths is achieved via anisotropic cell elongation. Previous work identified a brassinosteroid response transcription factor as being enriched in the early developing spur cup. Brassinosteroids are known to be important for cell elongation, suggesting that brassinosteroid-mediated response may be an important regulator of spur elongation and potentially a driver of spur length diversity in Aquilegia. In this study, we investigated the role of brassinosteroids in the development of the Aquilegia coerulea petal spur. METHODS We exogenously applied the biologically active brassinosteroid brassinolide to developing petal spurs to investigate spur growth under high hormone conditions. We used virus-induced gene silencing and gene expression experiments to understand the function of brassinosteroid-related transcription factors in A. coerulea petal spurs. KEY RESULTS We identified a total of three Aquilegia homologues of the BES1/BZR1 protein family and found that these genes are ubiquitously expressed in all floral tissues during development, yet, consistent with the previous RNAseq study, we found that two of these paralogues are enriched in early developing petals. Exogenously applied brassinosteroid increased petal spur length due to increased anisotropic cell elongation as well as cell division. We found that targeting of the AqBEH genes with virus-induced gene silencing resulted in shortened petals, a phenotype caused in part by a loss of cell anisotropy. CONCLUSIONS Collectively, our results support a role for brassinosteroids in anisotropic cell expansion in Aquilegia petal spurs and highlight the brassinosteroid pathway as a potential player in the diversification of petal spur length in Aquilegia.
Collapse
Affiliation(s)
- Stephanie J Conway
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| | - Cristina L Walcher-Chevillet
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- 10x Genomics Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588, USA
| | - Kate Salome Barbour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
- Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Nucleocytoplasmic trafficking and turnover mechanisms of BRASSINAZOLE RESISTANT1 in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:2101838118. [PMID: 34385302 DOI: 10.1073/pnas.2101838118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of the nucleocytoplasmic trafficking of signaling components, especially transcription factors, is a key step of signal transduction in response to extracellular stimuli. In the brassinosteroid (BR) signal transduction pathway, transcription factors from the BRASSINAZOLE RESISTANT1 (BZR1) family are essential in mediating BR-regulated gene expression. The subcellular localization and transcriptional activity of BZR1 are tightly regulated by reversible protein phosphorylation; however, the underlying mechanism is not well understood. Here, we provide evidence that both BZR1 phosphorylation and dephosphorylation occur in the nucleus and that BR-regulated nuclear localization of BZR1 is independent from its interaction with, or dephosphorylation by, protein phosphatase 2A. Using a photoconvertible fluorescent protein, Kaede, as a living tag to distinguish newly synthesized BZR1 from existing BZR1, we demonstrated that BR treatment recruits cytosolic BZR1 to the nucleus, which could explain the fast responses of plants to BR. Additionally, we obtained evidence for two types of protein turnover mechanisms that regulate BZR1 abundance in plant cells: a BR- and 26S proteosome-independent constitutive degradation mechanism and a BR-activated 26S proteosome-dependent proteolytic mechanism. Finally, treating plant cells with inhibitors of 26S proteosome induces the nuclear localization and dephosphorylation of BZR1, even in the absence of BR signaling. Based on these results, we propose a model to explain how BR signaling regulates the nucleocytoplasmic trafficking and reversible phosphorylation of BZR1.
Collapse
|
9
|
Tang XM, Guo JL, Chen L, Ho PCL. Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. J Pharm Biomed Anal 2020; 191:113609. [PMID: 32966940 DOI: 10.1016/j.jpba.2020.113609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
Different therapeutically active ingredients, from plants, animals, and mineral sources, are prescribed as traditional Chinese medicines (TCM). TCMs, from animal sources, are rich in proteins and peptides. Different advanced proteomics technologies, such as two-dimensional gel electrophoresis (2-DE), multi-dimensional liquid chromatography (MDLC), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), and isobaric tags for relative and absolute quantitation (iTRAQ), have been applied to analyze TCMs, from animal sources. This paper reviews the common proteomic techniques for analyzing animal - derived TCMs. Various scientific studies have reported the application of proteomics for locating drug targets, identifying active components, and elucidating the mechanisms of action of animal - derived TCMs. However, these researches are still at the preliminary stage. This review has also discussed the existing challenges and future directions in this field of research.
Collapse
Affiliation(s)
- Xue-Mei Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Lin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
10
|
Wang C, Zhang H, Xia Q, Yu J, Zhu D, Zhao Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110248. [PMID: 31623783 DOI: 10.1016/j.plantsci.2019.110248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Microtubule arrays play notable roles in cell division, cell movement, cell morphogenesis and signal transduction. Due to their important regulation of microtubule dynamic instability and array-ordering processes, microtubule-associated proteins have been a cutting-edge issue in research. Here, a new maize microtubule-associated protein, ZmGLR (Zea mays glutamic acid- and lysine-rich), was found. ZmGLR bundles microtubules in vitro and targets the cell membrane through an interaction between 24 conserved N-terminal amino acids and specific phosphatidylinositol phosphates (PtdInsPs). Increased Ca2+ levels in the cytoplasm lead to ZmGLR partially dissociating from the cell membrane and moving into the cytoplasm to associate with microtubule. Overexpression and RNAi of ZmGLR both resulted in misoriented microtubule arrays, which led to dwarf maize plants and curved leaves. In addition, the expression of ZmGLR was regulated by BR and auxin through ZmBES1 and ZmARF9, respectively. This study reveals that the microtubule-associated protein ZmGLR plays a crucial role in cortical microtubule reorientation and maize leaf morphogenesis.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qi Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
11
|
Zhou H, Wang X, Huo C, Wang H, An Z, Sun D, Liu J, Tang W, Zhang B. A Quantitative Proteomics Study of Early Heat-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Identified OsUBP21 as a Negative Regulator of Heat Stress Responses in Rice. Proteomics 2019; 19:e1900153. [PMID: 31491808 DOI: 10.1002/pmic.201900153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/10/2019] [Indexed: 12/11/2022]
Abstract
To understand the early heat shock (HS)-regulated cellular responses that influence the tolerance of rice plant to high environmental temperatures, two-dimensional difference gel electrophoresis (2D-DIGE) is performed to explore the early HS-regulated proteome. Multiple proteins that show abundance changes after 1 and 5 min of HS treatment are identified. Of the early HS-regulated proteins identified, the abundance of a ubiquitin-specific protease, OsUBP21, and its Arabidopsis homolog, AtUBP13, is found to be upregulated by 5 min of HS treatment. Further, knocking the expression of OsUBP21 or AtUBP13 down or out increases the tolerance of rice and Arabidopsis plants to HS stress, suggesting that the function of these ubiquitin-specific proteases in regulating plant HS responses is conserved between monocots and dicots. 2D-DIGE showed a group of proteins are differentially regulated in wild-type and ubp21 mutant after 30 min of HS treatment. Among these proteins, 11 are found to interact directly with OsUBP21; thus, they may be targets of OsUBP21. Future analyses of the roles of these OsUBP21-interacting proteins in plant HS responses will help reveal the protein ubiquitination/deubiquitination-regulated cellular responses induced by HS in rice.
Collapse
Affiliation(s)
- Hangfan Zhou
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xiaolong Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chenmin Huo
- College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China
| | - Hui Wang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhichao An
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Daye Sun
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Jingze Liu
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Wenqiang Tang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Baowen Zhang
- Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| |
Collapse
|
12
|
Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics! J Proteomics 2019; 198:1-10. [DOI: 10.1016/j.jprot.2018.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 02/03/2023]
|
13
|
Gu J, Hou D, Li Y, Chao H, Zhang K, Wang H, Xiang J, Raboanatahiry N, Wang B, Li M. Integration of proteomic and genomic approaches to dissect seed germination vigor in Brassica napus seeds differing in oil content. BMC PLANT BIOLOGY 2019; 19:21. [PMID: 30634904 PMCID: PMC6329107 DOI: 10.1186/s12870-018-1624-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/28/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus, B. napus) is an important oil seed crop in the world. Previous studies showed that seed germination vigor might be correlated with seed oil content in B. napus, but the regulation mechanism for seed germination has not yet been explained clearly. Dissecting the regulation mechanism of seed germination and germination vigor is necessary. RESULTS Here, proteomic and genomic approaches were used to analyze the germination process in B. napus seeds with different oil content. The identification of 165 differentially expressed proteins (DEPs) in the germinating seeds of B. napus with high and low oil content was accomplished by two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE). The comparative proteomic results revealed that seeds with high oil content had higher metabolic activity, especially for sulfur amino acid metabolism. Thirty-one unique genes were shown to be significantly changed during germination between the seeds with high and low oil content, and thirteen of these genes were located within the confidence interval of germination-related quantitative trait locus (QTLs), which might play an important role in regulating seed germination vigor. CONCLUSIONS The present results are of importance for the understanding of the regulation mechanism for seed germination vigor in B. napus.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of New Socialist Countryside Development, Hubei Engineering University, Xiaogan, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, China
| | - Jun Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
14
|
Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:57-61. [DOI: 10.1016/j.bbapap.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
|
15
|
Feng G, Xu L, Wang J, Nie G, Bushman BS, Xie W, Yan H, Yang Z, Guan H, Huang L, Zhang X. Integration of small RNAs and transcriptome sequencing uncovers a complex regulatory network during vernalization and heading stages of orchardgrass (Dactylis glomerata L.). BMC Genomics 2018; 19:727. [PMID: 30285619 PMCID: PMC6171228 DOI: 10.1186/s12864-018-5104-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flowering is a critical reproductive process in higher plants. Timing of optimal flowering depends upon the coordination among seasonal environmental cues. For cool season grasses, such as Dactylis glomerata, vernalization induced by low temperature provides competence to initiate flowering after prolonged cold. We combined analyses of the transcriptome and microRNAs (miRNAs) to generate a comprehensive resource for regulatory miRNAs and their target circuits during vernalization and heading stages. RESULTS A total of 3,846 differentially expressed genes (DEGs) and 69 differentially expressed miRNAs were identified across five flowering stages. The expression of miR395, miR530, miR167, miR396, miR528, novel_42, novel_72, novel_107, and novel_123 demonstrated significant variations during vernalization. These miRNA targeted genes were involved in phytohormones, transmembrane transport, and plant morphogenesis in response to vernalization. The expression patterns of DEGs related to plant hormones, stress responses, energy metabolism, and signal transduction changed significantly in the transition from vegetative to reproductive phases. CONCLUSIONS Five hub genes, c136110_g1 (BRI1), c131375_g1 (BZR1), c133350_g1 (VRN1), c139830_g1 (VIN3), and c125792_g2 (FT), might play central roles in vernalization response. Our comprehensive analyses have provided a useful platform for investigating consecutive transcriptional and post-transcriptional regulation of critical phases in D. glomerata and provided insights into the genetic engineering of flowering-control in cereal crops.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Lei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32611 USA
| | - Gang Nie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | | | - Wengang Xie
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020 Gansu Province China
| | - Haidong Yan
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Zhongfu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Hao Guan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Linkai Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Xinquan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| |
Collapse
|
16
|
Tejos R, Rodriguez-Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci 2018; 131:jcs.204198. [PMID: 28687624 DOI: 10.1242/jcs.204198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023] Open
Abstract
Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We used a microarray-based approach to find regulators of the auxin-induced PIN relocation in Arabidopsis thaliana root, and identified a subset of a family of phosphatidylinositol transfer proteins (PITPs), the PATELLINs (PATLs). Here, we show that PATLs are expressed in partially overlapping cell types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests that PATLs play a redundant and crucial role in polarity and patterning in Arabidopsis.
Collapse
Affiliation(s)
- Ricardo Tejos
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, 111093 Iquique, Chile
| | - Cecilia Rodriguez-Furlán
- Plant Molecular Biology Centre, Biology Department, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile
| | - Maciej Adamowski
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Michael Sauer
- Department of Plant Physiology, University of Potsdam, D-14476 Potsdam, Germany
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Biology Department, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Haimi P, Vinskienė J, Stepulaitienė I, Baniulis D, Stanienė G, Šikšnianienė JB, Rugienius R. Patterns of low temperature induced accumulation of dehydrins in Rosaceae crops-Evidence for post-translational modification in apple. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:175-181. [PMID: 28886453 DOI: 10.1016/j.jplph.2017.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Important crop plants of Rosaceae family are often damaged during winter due to the lack of acclimation and cold hardiness. One of the cellular responses of plants to cold stress is the accumulation of dehydrin proteins. We studied the expression of dehydrins in several Rosaceae species during low temperature treatment in vitro. Microshoots of Pyrus communis, Malus×domestica, Fragaria vesca, Fragaria×ananassa, Prunus cerasus and Prunus avium cultivars were grown in low temperature conditions. Genotype -specific accumulation of dehydrins was detected by immunoblot analysis of the extracted proteins. Untargeted difference gel electrophoresis of Malus x domestica microshoots revealed an extensive accumulation of three dehydrins. In a protein phosphatase assay, MdDHN2 and MdDHN4, but not MdDHN6 proteins were found to be extensively phosphorylated. In terms of the amount of protein synthesized, dehydrins are a major protein-level adaptation mechanism to low temperature in M. x domestica. In addition to dehydrins, the induction of proteins involved in the response for oxidative stress were observed. Additionally, a Xero2 -like dehydrin of F. vesca was detected by difference gel electrophoresis and identified by nano LC-MS/MS.
Collapse
Affiliation(s)
- Perttu Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania.
| | - Jurgita Vinskienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania
| | - Inga Stepulaitienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania
| | - Gražina Stanienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania
| | - Jūratė Bronė Šikšnianienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania
| | - Rytis Rugienius
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas st. 30, Babtai LT-54333, Kaunas distr., Lithuania
| |
Collapse
|
18
|
Li Y, Jin F, Chao Q, Wang BC. Proteomics analysis reveals the molecular mechanism underlying the transition from primary to secondary growth of poplar. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:1-15. [PMID: 28284108 DOI: 10.1016/j.jplph.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/21/2023]
Abstract
Wood is the most important natural source of energy and also provides fuel and fiber. Considering the significant role of wood, it is critical to understand how wood is formed. Integration of knowledge about wood development at the cellular and molecular levels will allow more comprehensive understanding of this complex process. In the present study, we used a comparative proteomic approach to investigate the differences in protein profiles between primary and secondary growth in young poplar stems using tandem mass tag (TMT)-labeling. More than 10,816 proteins were identified, and, among these, 3106 proteins were differentially expressed during primary to secondary growth. Proteomic data were validated using a combination of histochemical staining, enzyme activity assays, and quantitative real-time PCR. Bioinformatics analysis revealed that these differentially expressed proteins are related to various metabolic pathways, mainly including signaling, phytohormones, cell cycle, cell wall, secondary metabolism, carbohydrate and energy metabolism, and protein metabolism as well as redox and stress pathways. This large proteomics dataset will be valuable for uncovering the molecular changes occurring during the transition from primary to secondary growth. Further, it provides new and accurate information for tree breeding to modify wood properties.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Feng Jin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China.
| |
Collapse
|
19
|
Huang G, Han M, Yao W, Wang Y. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida. PeerJ 2017; 5:e3382. [PMID: 28584713 PMCID: PMC5455292 DOI: 10.7717/peerj.3382] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022] Open
Abstract
Gerbera hybrida is a cut-flower crop of global importance, and an understanding of the mechanisms underlying petal development is vital for the continued commercial development of this plant species. Brassinosteroids (BRs), a class of phytohormones, are known to play a major role in cell expansion, but their effect on petal growth in G. hybrida is largely unexplored. In this study, we found that the brassinolide (BL), the most active BR, promotes petal growth by lengthening cells in the middle and basal regions of petals, and that this effect on petal growth was greater than that of gibberellin (GA). The RNA-seq (high-throughput cDNA sequencing) technique was employed to investigate the regulatory mechanisms by which BRs control petal growth. A global transcriptome analysis of the response to BRs in petals was conducted and target genes regulated by BR were identified. These differentially expressed genes (DEGs) include various transcription factors (TFs) that were activated during the early stage (0.5 h) of BL treatment, as well as cell wall proteins whose expression was regulated at a late stage (10 h). BR-responsive DEGs are involved in multiple plant hormone signal pathways, hormone biosynthesis and biotic and abiotic stress responses, showing that the regulation of petal growth by BRs is a complex network of processes. Thus, our study provides new insights at the transcriptional level into the molecular mechanisms of BR regulation of petal growth in G. hybrida.
Collapse
Affiliation(s)
- Gan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Meixiang Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Abstract
Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase family (approximately 5% of the protein coding genes), although the specific function for only a few dozen of these kinases is clearly established. Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes. With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
Collapse
Affiliation(s)
- Miyoshi Haruta
- University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
21
|
Hou Y, Qiu J, Wang Y, Li Z, Zhao J, Tong X, Lin H, Zhang J. A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:514. [PMID: 28439285 PMCID: PMC5383725 DOI: 10.3389/fpls.2017.00514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
The group of polyhydroxysteroid phytohormones referred to as the brassinosteroids (BRs) is known to act on plant development and the stress response. BR signal transduction relies largely on protein phosphorylation. By employing a label-free, MS (Mass Spectrometry)-based phosphoproteomic approach, we report here the largest profiling of 4,034 phosphosites on 1,900 phosphoproteins from rice young seedlings and their dynamic response to BR. 1,821 proteins, including kinases, transcription factors and core components of BR and other hormone signaling pathways, were found to be differentially phosphorylated during the BR treatment. A Western blot analysis verified the differential phosphorylation of five of these proteins, implying that the MS-based phosphoproteomic data were robust. It is proposed that the dephosphorylation of gibberellin (GA) signaling components could represent an important mechanism for the BR-regulated antagonism to GA, and that BR influences the plant architecture of rice by regulating cellulose synthesis via phosphorylation.
Collapse
Affiliation(s)
- Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Haiyan Lin
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhen, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Jian Zhang,
| |
Collapse
|
22
|
Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Sci Rep 2016; 6:34583. [PMID: 27703189 PMCID: PMC5050409 DOI: 10.1038/srep34583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
Brassinosteroids (BRs), essential plant-specific steroidal hormones, function in a wide spectrum of plant growth and development events, including seed germination. Rice is not only a monocotyledonous model plant but also one of the most important staple food crops of human beings. Rice seed germination is a decisive event for the next-generation of plant growth and successful seed germination is critical for rice yield. However, little is known about the molecular mechanisms on how BR modulates seed germination in rice. In the present study, we used isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach to study BR-regulated proteome during the early stage of seed germination. The results showed that more than 800 BR-responsive proteins were identified, including 88 reliable target proteins responsive to stimuli of both BR-deficiency and BR-insensitivity. Moreover, 90% of the 88 target proteins shared a similar expression change pattern. Gene ontology and string analysis indicated that ribosomal structural proteins, as well as proteins involved in protein biosynthesis and carbohydrate metabolisms were highly clustered. These findings not only enrich BR-regulated protein database in rice seeds, but also allow us to gain novel insights into the molecular mechanism of BR regulated seed germination.
Collapse
|
23
|
Chen F, Ren CG, Zhou T, Wei YJ, Dai CC. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea. Sci Rep 2016; 6:34735. [PMID: 27703209 PMCID: PMC5050437 DOI: 10.1038/srep34735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/15/2016] [Indexed: 02/01/2023] Open
Abstract
Endophytes and plants can establish specific long-term symbiosis through the accumulation of secondary metabolites. Previous studies have shown that the endophytic fungus Gilmaniella sp. AL12 can stimulate Atractylodes lancea to produce volatile oils. The purpose of this report is to investigate key factors involved in the stimulation of A. lancea by AL12 and reveal the mechanism. We identified the active component from AL12 as an extracellular mannan with a polymerization degree of 26–42. Differential membrane proteomics of A. lancea was performed by 2D electrophoresis. The results showed that there were significant differences in the expression of 83 proteins. Based on these results, we conclude that AL12 secreted mannan contributes to the antagonistic balance seen in interactions between AL12 and A. lancea. One portion of the mannan was degraded to mannose for hexokinase activation, promoting photosynthesis and energy metabolism, with a potential metabolic fluxes flowing towards terpenoid biosynthesis. The other portion of the mannan directly enhanced autoimmunity of A. lancea through G protein-mediated signal transduction and the mannan-binding lectin pathway. Volatile oil accumulation was ultimately promoted in subsequent defense reactions. This study provides a new perspective on the regulation of secondary metabolites by endophytic fungal elicitors in medicinal plants.
Collapse
Affiliation(s)
- Fei Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Cheng-Gang Ren
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Jia Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Wei CQ, Chien CW, Ai LF, Zhao J, Zhang Z, Li KH, Burlingame AL, Sun Y, Wang ZY. The Arabidopsis B-box protein BZS1/BBX20 interacts with HY5 and mediates strigolactone regulation of photomorphogenesis. J Genet Genomics 2016; 43:555-563. [PMID: 27523280 DOI: 10.1016/j.jgg.2016.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Plant growth is controlled by integration of hormonal and light-signaling pathways. BZS1 is a B-box zinc finger protein previously characterized as a negative regulator in the brassinosteroid (BR)-signaling pathway and a positive regulator in the light-signaling pathway. However, the mechanisms by which BZS1/BBX20 integrates light and hormonal pathways are not fully understood. Here, using a quantitative proteomic workflow, we identified several BZS1-associated proteins, including light-signaling components COP1 and HY5. Direct interactions of BZS1 with COP1 and HY5 were verified by yeast two-hybrid and co-immunoprecipitation assays. Overexpression of BZS1 causes a dwarf phenotype that is suppressed by the hy5 mutation, while overexpression of BZS1 fused with the SRDX transcription repressor domain (BZS1-SRDX) causes a long-hypocotyl phenotype similar to hy5, indicating that BZS1's function requires HY5. BZS1 positively regulates HY5 expression, whereas HY5 negatively regulates BZS1 protein level, forming a feedback loop that potentially contributes to signaling dynamics. In contrast to BR, strigolactone (SL) increases BZS1 level, whereas the SL responses of hypocotyl elongation, chlorophyll and HY5 accumulation are diminished in the BZS1-SRDX seedlings, indicating that BZS1 is involved in these SL responses. These results demonstrate that BZS1 interacts with HY5 and plays a central role in integrating light and multiple hormone signals for photomorphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Chuang-Qi Wei
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Chih-Wei Chien
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Lian-Feng Ai
- Hebei Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Shijiazhuang 050051, China
| | - Jun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhenzhen Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Center of Basic Forestry and Proteomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Discriminative gene co-expression network analysis uncovers novel modules involved in the formation of phosphate deficiency-induced root hairs in Arabidopsis. Sci Rep 2016; 6:26820. [PMID: 27220366 PMCID: PMC4879556 DOI: 10.1038/srep26820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022] Open
Abstract
Cell fate and differentiation in the Arabidopsis root epidermis are genetically defined but remain plastic to environmental signals such as limited availability of inorganic phosphate (Pi). Root hairs of Pi-deficient plants are more frequent and longer than those of plants grown under Pi-replete conditions. To dissect genes involved in Pi deficiency-induced root hair morphogenesis, we constructed a co-expression network of Pi-responsive genes against a customized database that was assembled from experiments in which differentially expressed genes that encode proteins with validated functions in root hair development were over-represented. To further filter out less relevant genes, we combined this procedure with a search for common cis-regulatory elements in the promoters of the selected genes. In addition to well-described players and processes such as auxin signalling and modifications of primary cell walls, we discovered several novel aspects in the biology of root hairs induced by Pi deficiency, including cell cycle control, putative plastid-to-nucleus signalling, pathogen defence, reprogramming of cell wall-related carbohydrate metabolism, and chromatin remodelling. This approach allows the discovery of novel of aspects of a biological process from transcriptional profiles with high sensitivity and accuracy.
Collapse
|
26
|
Huo C, Zhang B, Wang H, Wang F, Liu M, Gao Y, Zhang W, Deng Z, Sun D, Tang W. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice. Mol Cell Proteomics 2016; 15:1397-411. [PMID: 26747563 DOI: 10.1074/mcp.m115.049759] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Indexed: 11/06/2022] Open
Abstract
To understand the early signaling steps that regulate cold responses in rice, two-dimensional difference gel electrophoresis (2-D DIGE)(1)was used to study early cold-regulated proteins in rice seedlings. Using mass spectrometry, 32 spots, which represent 26 unique proteins that showed an altered expression level within 5 min of cold treatment were identified. Among these proteins, Western blot analyses confirmed that the cellular phospholipase D α1 (OsPLDα1) protein level was increased as early as 1 min after cold treatment. Genetic studies showed that reducing the expression ofOsPLDα1makes rice plants more sensitive to chilling stress as well as cold acclimation increased freezing tolerance. Correspondingly, cold-regulated proteomic changes and the expression of the cold-responsive C repeat/dehydration-responsive element binding 1 (OsDREB1) family of transcription factors were inhibited in thepldα1mutant. We also found that the expression ofOsPLDα1is directly regulated by OsDREB1A. This transcriptional regulation ofOsPLDα1could provide positive feedback regulation of the cold signal transduction pathway in rice. OsPLDα1 hydrolyzes phosphatidylcholine to produce the signal molecule phosphatidic acid (PA). By lipid-overlay assay, we demonstrated that the rice cold signaling proteins, MAP kinase 6 (OsMPK6) and OsSIZ1, bind directly to PA. Taken together, our results suggest that OsPLDα1 plays a key role in transducing cold signaling in rice by producing PA and regulatingOsDREB1s' expression by OsMPK6, OsSIZ1, and possibly other PA-binding proteins.
Collapse
Affiliation(s)
- Chenmin Huo
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; ‖College of Biology Science & Engineering, Hebei University of Economics & Business, Shijiazhuang, Hebei 050061, China
| | - Baowen Zhang
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Hui Wang
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fawei Wang
- §State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Liu
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yingjie Gao
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenhua Zhang
- §State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiping Deng
- ¶State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Daye Sun
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenqiang Tang
- From the ‡Hebei Collaboration Innovation Center for Cell Signaling; Key Laboratory of Molecular and Cellular Biology of Ministry of Education; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China;
| |
Collapse
|
27
|
Mattei B, Spinelli F, Pontiggia D, De Lorenzo G. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1107. [PMID: 27532006 PMCID: PMC4969306 DOI: 10.3389/fpls.2016.01107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.
Collapse
|
28
|
Gu J, Chao H, Gan L, Guo L, Zhang K, Li Y, Wang H, Raboanatahiry N, Li M. Proteomic Dissection of Seed Germination and Seedling Establishment in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1482. [PMID: 27822216 PMCID: PMC5075573 DOI: 10.3389/fpls.2016.01482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 05/22/2023]
Abstract
The success of seed germination and establishment of a normal seedling are key determinants of plant species propagation. At present, only a few studies have focused on the genetic control of seed germination by using a proteomic approach in Brassica napus. In the present study, the protein expression pattern of seed germination was investigated using differential fluorescence two-dimensional gel electrophoresis in B. napus. One hundred and thirteen differentially expressed proteins (DEPs) that were mainly involved in storage (23.4%), energy metabolism (18.9%), protein metabolism (16.2%), defense/disease (12.6%), seed maturation (11.7%), carbohydrate metabolism (4.5%), lipid metabolism (4.5%), amino acids metabolism (3.6%), cell growth/division (3.6%), and some unclear functions (2.7%) were observed by proteomic analysis. Seventeen genes corresponding to 11 DEPs were identified within or near the associated linkage disequilibrium regions related to seed germination and vigor quantitative traits reported in B. napus in previous studies. The expression pattern of proteins showed that heterotrophic metabolism could be activated in the process of seed germination and that the onset of defense mechanisms might start during seed germination. These findings will help generate a more in-depth understanding of the mobilization of seed storage reserves and regulation mechanisms of the germination process in B. napus.
Collapse
Affiliation(s)
- Jianwei Gu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Lu Gan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Liangxing Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yonghong Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic ImprovementYangling, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal UniversityHuanggang, China
- *Correspondence: Maoteng Li
| |
Collapse
|
29
|
Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B. Role of the proteome in phytohormonal signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:1003-15. [PMID: 26721743 DOI: 10.1016/j.bbapap.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Phytohormones are orchestrators of plant growth and development. A lot of time and effort has been invested in attempting to comprehend their complex signaling pathways but despite success in elucidating some key components, molecular mechanisms in the transduction pathways are far from being resolved. The last decade has seen a boom in the analysis of phytohormone-responsive proteins. Abscisic acid, auxin, brassinosteroids, cytokinin, ethylene, gibberellins, nitric oxide, oxylipins, strigolactones, salicylic acid--all have been analyzed to various degrees. For this review, we collected data from proteome-wide analyses resulting in a list of over 2000 annotated proteins from Arabidopsis proteomics and nearly 500 manually filtered protein families merged from all the data available from different species. We present the currently accepted model of phytohormone signaling, highlight the contributions made by proteomic-based research and describe the key nodes in phytohormone signaling networks, as revealed by proteome analysis. These include ubiquitination and proteasome mediated degradation, calcium ion signaling, redox homeostasis, and phosphoproteome dynamics. Finally, we discuss potential pitfalls and future perspectives in the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
30
|
Zhu XF, Cai WH, Jung JH, Xuan YH. NH4+-mediated Protein Phosphorylation in Rice Roots. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/abcsb-2015-0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
NH4+ is an important N-source which regulates plant growth and development. However, the underlying mechanism of NH4+ uptake and its-mediated signaling is poorly understood. Here, we performed phosphoproteomic studies using the titanium dioxide (TiO2)-mediated phosphopeptides collection method together with LC-MS analysis. The results indicated that phosphorylation levels of 23 and 43 peptides/proteins involved in diverse aspects, including metabolism, transport and signaling pathway, were decreased and increased respectively after NH4+ treatment in rice roots. Among 23 proteins detected, IDD10, a key transcription factor in ammonium signaling, was identified to reduce phosphorylation level of S313 residue. Further biochemical analysis using IDD10-GFP transgenic plants and immunoprecipitation assay confirmed that NH4+ supply reduces IDD10 phosphorylation level. Phosphorylation of ammonium transporter 1;1 (AMT1;1) was increased upon NH4+ treatment. Interestingly, phosphorylation of T446, a rice specific residue against Arabidopsis was identified. It was also established that phosphorylation of T452 is conserved with T460 of Arabidopsis AMT1;1. Yeast complementation assay with transformation of phosphomimic forms of AMT1;1 (T446/D and T452/D) into 31019b strain revealed that phosphorylation at T446 and T452 residues abolished AMT1;1 activity, while their plasma membrane localization was not changed. Our analyses show that many proteins were phosphorylated or dephosphorylated by NH4+ that may provide important evidence for studying ammonium uptake and its mediated signaling by which rice growth and development are regulated.
Collapse
|
31
|
Xiao J, Li C, Xu S, Xing L, Xu Y, Chong K. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2102-17. [PMID: 26392261 PMCID: PMC4634062 DOI: 10.1104/pp.15.00801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/17/2015] [Indexed: 05/03/2023]
Abstract
Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1's function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1's regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Lijing Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (J.X., C.L., S.X., L.X., Y.X., K.C.);National Center for Plant Gene Research, Beijing 100093, China (K.C.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (J.X., C.L., S.X.)
| |
Collapse
|
32
|
Lin LL, Hsu CL, Hu CW, Ko SY, Hsieh HL, Huang HC, Juan HF. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis. BMC Genomics 2015; 16:533. [PMID: 26187819 PMCID: PMC4506601 DOI: 10.1186/s12864-015-1753-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 07/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein phosphorylation regulated by plant hormone is involved in the coordination of fundamental plant development. Brassinosteroids (BRs), a group of phytohormones, regulated phosphorylation dynamics remains to be delineated in plants. In this study, we performed a mass spectrometry (MS)-based phosphoproteomics to conduct a global and dynamic phosphoproteome profiling across five time points of BR treatment in the period between 5 min and 12 h. MS coupling with phosphopeptide enrichment techniques has become the powerful tool for profiling protein phosphorylation. However, MS-based methods tend to have data consistency and coverage issues. To address these issues, bioinformatics approaches were used to complement the non-detected proteins and recover the dynamics of phosphorylation events. RESULTS A total of 1104 unique phosphorylated peptides from 739 unique phosphoproteins were identified. The time-dependent gene ontology (GO) analysis shows the transition of biological processes from signaling transduction to morphogenesis and stress response. The protein-protein interaction analysis found that most of identified phosphoproteins have strongly connections with known BR signaling components. The analysis by using Motif-X was performed to identify 15 enriched motifs, 11 of which correspond to 6 known kinase families. To uncover the dynamic activities of kinases, the enriched motifs were combined with phosphorylation profiles and revealed that the substrates of casein kinase 2 and mitogen-activated protein kinase were significantly phosphorylated and dephosphorylated at initial time of BR treatment, respectively. The time-dependent kinase-substrate interaction networks were constructed and showed many substrates are the downstream of other signals, such as auxin and ABA signaling. While comparing BR responsive phosphoproteome and gene expression data, we found most of phosphorylation changes were not led by gene expression changes. Our results suggested many downstream proteins of BR signaling are induced by phosphorylation via various kinases, not through transcriptional regulation. CONCLUSIONS Through a large-scale dynamic profile of phosphoproteome coupled with bioinformatics, a complicated kinase-centered network related to BR-regulated growth was deciphered. The phosphoproteins and phosphosites identified in our study provide a useful dataset for revealing signaling networks of BR regulation, and also expanded our knowledge of protein phosphorylation modification in plants as well as further deal to solve the plant growth problems.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chia-Wei Hu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Shiao-Yun Ko
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
33
|
Aryal UK, Ross ARS, Krochko JE. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings. PLoS One 2015; 10:e0130763. [PMID: 26158488 PMCID: PMC4497735 DOI: 10.1371/journal.pone.0130763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/23/2015] [Indexed: 12/19/2022] Open
Abstract
Protein phosphorylation regulates diverse cellular functions and plays a key role in the early development of plants. To complement and expand upon previous investigations of protein phosphorylation in Arabidopsis seedlings we used an alternative approach that combines protein extraction under non-denaturing conditions with immobilized metal-ion affinity chromatography (IMAC) enrichment of intact phosphoproteins in Rubisco-depleted extracts, followed by identification using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-gel trypsin digestion and analysis of selected gel spots identified 144 phosphorylated peptides and residues, of which only18 phosphopeptides and 8 phosphosites were found in the PhosPhAt 4.0 and P3DB Arabidopsis thaliana phosphorylation site databases. More than half of the 82 identified phosphoproteins were involved in carbohydrate metabolism, photosynthesis/respiration or oxidative stress response mechanisms. Enrichment of intact phosphoproteins prior to 2-DE and LC-MS/MS appears to enhance detection of phosphorylated threonine and tyrosine residues compared with methods that utilize peptide-level enrichment, suggesting that the two approaches are somewhat complementary in terms of phosphorylation site coverage. Comparing results for young seedlings with those obtained previously for mature Arabidopsis leaves identified five proteins that are differentially phosphorylated in these tissues, demonstrating the potential of this technique for investigating the dynamics of protein phosphorylation during plant development.
Collapse
Affiliation(s)
- Uma K. Aryal
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Andrew R. S. Ross
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
- * E-mail:
| | - Joan E. Krochko
- National Research Council of Canada, Saskatoon, SK, S7N 0W9, Canada
| |
Collapse
|
34
|
Meisrimler CN, Schwendke A, Lüthje S. Two-dimensional phos-tag zymograms for tracing phosphoproteins by activity in-gel staining. FRONTIERS IN PLANT SCIENCE 2015; 6:230. [PMID: 25926840 PMCID: PMC4396385 DOI: 10.3389/fpls.2015.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Protein phosphorylation is one of the most common post-translational modifications regulating many cellular processes. The phos-tag technology was combined with two-dimensional zymograms, which consisted of non-reducing IEF PAGE or NEPHGE in the first dimension and high resolution clear native electrophoresis (hrCNE) in the second dimension. The combination of these electrophoresis methods was mild enough to accomplish in-gel activity staining for Fe(III)-reductases by NADH/Fe(III)-citrate/ferrozine, 3,3'-Diaminobenzidine/H2O2 or TMB/H2O2 in the second dimension. The phos-tag zymograms can be used to investigate phosphorylation-dependent changes in enzyme activity. Phos-tag zymograms can be combined with further downstream analysis like mass spectrometry. Non-reducing IEF will resolve proteins with a pI of 3-10, whereas non-reducing NEPHGE finds application for alkaline proteins with a pI higher than eight. Advantages and disadvantages of these new methods will be discussed in detail.
Collapse
Affiliation(s)
- Claudia-Nicole Meisrimler
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
- Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie, Environnementale et de BiotechnologieSaint-Paul-lez-Durance, France
| | - Alexandra Schwendke
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| | - Sabine Lüthje
- Plant Physiology, Biocenter Klein Flottbek and Botanical Garden, University of HamburgHamburg, Germany
| |
Collapse
|
35
|
Youn JH, Kim TW. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. MOLECULAR PLANT 2015; 8:552-65. [PMID: 25655825 DOI: 10.1016/j.molp.2014.12.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/15/2014] [Accepted: 12/02/2014] [Indexed: 05/03/2023]
Abstract
The physiological importance of GSK3-like kinases in plants emerged when the functional role of plant GSK3-like kinases represented by BIN2 was first elucidated in the brassinosteroid (BR)-regulated signal transduction pathway. While early studies focused more on understanding how GSK3-like kinases regulate BR signaling, recent studies have implicated many novel substrates of GSK3-like kinases that are involved in a variety of cellular processes as well as BR signaling. Plant GSK3-like kinases play diverse roles in physiological and developmental processes such as cell growth, root and stomatal cell development, flower development, xylem differentiation, light response, and stress responses. Here, we review the progress made in recent years in understanding the versatile functions of plant GSK3-like kinases. Based on the relationship between GSK3-like kinases and their newly identified substrates, we discuss the physiological and biochemical relevance of various cellular signaling mediated by GSK3-like kinases in plants.
Collapse
Affiliation(s)
- Ji-Hyun Youn
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea; Natural Science Institute, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
36
|
Walton A, Stes E, De Smet I, Goormachtig S, Gevaert K. Plant hormone signalling through the eye of the mass spectrometer. Proteomics 2015; 15:1113-26. [DOI: 10.1002/pmic.201400403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Alan Walton
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Ive De Smet
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology; VIB, Ghent University; Ghent Belgium
- Department of Plant Biotechnology and Bioinformatics; VIB, Ghent University; Ghent Belgium
| | - Kris Gevaert
- Department of Medical Protein Research; VIB, Ghent University; Ghent Belgium
- Department of Biochemistry; VIB, Ghent University; Ghent Belgium
| |
Collapse
|
37
|
Wang X, Ma X, Wang H, Li B, Clark G, Guo Y, Roux S, Sun D, Tang W. Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels. Mol Cell Proteomics 2015; 14:686-94. [PMID: 25587034 DOI: 10.1074/mcp.m114.042697] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To understand the early signaling steps in the response of plant cells to increased environmental temperature, 2-D difference gel electrophoresis was used to study the proteins in microsomes of Arabidopsis seedlings that are regulated early during heat stress. Using mass spectrometry, 19 microsomal proteins that showed an altered expression level within 5 min after heat treatment were identified. Among these proteins, annexin 1 (AtANN1) was one of those up-regulated rapidly after heat-shock treatment. Functional studies show loss-of-function mutants for AtANN1 and its close homolog AtANN2 were more sensitive to heat-shock treatment, whereas plants overexpressing AtANN1 showed more resistance to this treatment. Correspondingly, the heat-induced expression of heat-shock proteins and heat-shock factors is inhibited in ann1/ann2 double mutant, and the heat-activated increase in cytoplasmic calcium concentration ([Ca(2+)]cyt) is greatly impaired in the ann1 mutant and almost undetectable in ann1/ann2 double mutant. Taken together these results suggest that AtANN1 is important in regulating the heat-induced increase in [Ca(2+)]cyt and in the response of Arabidopsis seedlings to heat stress.
Collapse
Affiliation(s)
- Xu Wang
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xiaolong Ma
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Hui Wang
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Bingjie Li
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Greg Clark
- §Department of Molecular Biosciences, University of Texas, Austin, Texas 78712
| | - Yi Guo
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Stan Roux
- §Department of Molecular Biosciences, University of Texas, Austin, Texas 78712
| | - Daye Sun
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenqiang Tang
- From the ‡Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China,
| |
Collapse
|
38
|
Steinberger B, Mayrhofer C. Principles and examples of gel-based approaches for phosphoprotein analysis. Methods Mol Biol 2015; 1295:305-21. [PMID: 25820731 DOI: 10.1007/978-1-4939-2550-6_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methods for analyzing the phosphorylation status of proteins are essential to investigate in detail key cellular processes, including signal transduction and cell metabolism. The transience of this post-translational modification and the generally low abundance of phosphoproteins require specific enrichment and/or detection steps prior to analysis. Here, we describe three gel-based approaches for the analysis of differentially expressed phosphoproteins. These approaches comprise (1) the sequential fluorescence staining of two-dimensional (2-D) gels using Pro-Q(®) Diamond and SYPRO(®) Ruby dyes to visualize and quantify phosphoproteins in total cellular lysates as well as (2) affinity enrichment of phosphoproteins in conjunction with sequential fluorescence staining of the 2-D gels and (3) affinity enrichment of proteins prior to pre-electrophoretic fluorescence labeling and 2-D gel electrophoresis.
Collapse
Affiliation(s)
- Birgit Steinberger
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
39
|
Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N. Comparative proteomics of dehydration response in the rice nucleus: new insights into the molecular basis of genotype-specific adaptation. Proteomics 2014; 13:3478-97. [PMID: 24133045 DOI: 10.1002/pmic.201300284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/10/2013] [Accepted: 09/23/2013] [Indexed: 01/04/2023]
Abstract
Dehydration is the most crucial environmental factor that considerably reduces the crop harvest index, and thus has become a concern for global agriculture. To better understand the role of nuclear proteins in water-deficit condition, a nuclear proteome was developed from a dehydration-sensitive rice cultivar IR-64 followed by its comparison with that of a dehydration-tolerant c.v. Rasi. The 2DE protein profiling of c.v. IR-64 coupled with MS/MS analysis led to the identification of 93 dehydration-responsive proteins (DRPs). Among those identified proteins, 78 were predicted to be destined to the nucleus, accounting for more than 80% of the dataset. While the detected number of protein spots in c.v. IR-64 was higher when compared with that of Rasi, the number of DRPs was found to be less. Fifty-seven percent of the DRPs were found to be common to both sensitive and tolerant cultivars, indicating significant differences between the two nuclear proteomes. Further, we constructed a functional association network of the DRPs of c.v. IR-64, which suggests that a significant number of the proteins are capable of interacting with each other. The combination of nuclear proteome and interactome analyses would elucidate stress-responsive signaling and the molecular basis of dehydration tolerance in plants.
Collapse
|
41
|
Rasinger J, Carroll T, Lundebye A, Hogstrand C. Cross-omics gene and protein expression profiling in juvenile female mice highlights disruption of calcium and zinc signalling in the brain following dietary exposure to CB-153, BDE-47, HBCD or TCDD. Toxicology 2014; 321:1-12. [DOI: 10.1016/j.tox.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
|
42
|
Wu X, Sklodowski K, Encke B, Schulze WX. A kinase-phosphatase signaling module with BSK8 and BSL2 involved in regulation of sucrose-phosphate synthase. J Proteome Res 2014; 13:3397-409. [PMID: 24924143 DOI: 10.1021/pr5003164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
External supply of sucrose to carbon-starved Arabidopsis seedlings induced changes in phosphorylation of Brassinosteroid Signaling Kinase 8 (BSK8) at two different sites. Serine S(20) lies within a phosphorylation hotspot at the N-terminal region of the protein, while S(213) is located within the kinase domain of BSK8. Upon sucrose supply phosphorylation of BSK8(S20) and BSK8(S213) showed opposite behavior with increasing phosphorylation of S(213) and decreased phosphorylation of S(20) at 5 min after sucrose supply. Here we aim to systematically analyze the effects of BSK8 mutations on downstream cellular regulatory events and characterize molecular functions of BSK8 and its phosphorylation. Comparative phosphoproteomic profiling of a bsk8 knockout mutant and wild type revealed potential targets in sucrose metabolism. Activity of sucrose-phosphate synthase (SPS) was decreased by phosphorylation at S(152), and SPS phosphorylation inversely correlated with sucrose-induced BSK8 activity. Furthermore, BSK8 was found to interact with BSL2, a Kelch-type phosphatase. On the basis of a combination of kinase activity measurements, SPS activity assays, and phosphorylation site mutations in BSK8 at S(20) and S(213), we conclude that regulation of SPS by BSK8 occurs through activation of a phosphatase that in turn may dephosphorylate SPS and thus activates the enzyme.
Collapse
Affiliation(s)
- XuNa Wu
- Max Planck Institute for Molecular Plant Physiology , Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | |
Collapse
|
43
|
Deng Z, Oses-Prieto JA, Kutschera U, Tseng TS, Hao L, Burlingame AL, Wang ZY, Briggs WR. Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 2014; 13:2524-33. [PMID: 24712693 PMCID: PMC4015686 DOI: 10.1021/pr500010z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Plants adapt to environmental light conditions by photoreceptor-mediated
physiological responses, but the mechanism by which photoreceptors
perceive and transduce the signals is still unresolved. Here, we used
2D difference gel electrophoresis (2D DIGE) and mass spectrometry
to characterize early molecular events induced by short blue light
exposures in etiolated Arabidopsis seedlings.
We observed the phosphorylation of phototropin 1 (phot1) and accumulation
of weak chloroplast movement under blue light 1 (WEB1) in the membrane
fraction after blue light irradiation. Over 50 spots could be observed
for the two rows of phot1 spots in the 2-DE gels, and eight novel
phosphorylated Ser/Thr sites were identified in the N-terminus and
Hinge 1 regions of phot1 in vivo. Blue light caused ubiquitination
of phot1, and K526 of phot1 was identified as a putative ubiquitination
site. Our study indicates that post-translational modification of
phot1 is more complex than previously reported.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Plant Biology, Carnegie Institution for Science , Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network. J Proteomics 2014; 105:58-73. [PMID: 24747304 DOI: 10.1016/j.jprot.2014.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/21/2022]
Abstract
UNLABELLED Nucleus, the control centre of eukaryotic cell, houses most of the genetic machineries required for gene expression and their regulation. Post translational modifications of proteins, particularly phosphorylation control a wide variety of cellular processes but its functional connectivity, in plants, is still elusive. This study profiled the nuclear phosphoproteome of a grain legume, chickpea, to gain better understanding of such event. Intact nuclei were isolated from 3-week-old seedlings using two independent methods, and nuclear proteins were resolved by 2-DE. In a separate set of experiments, phosphoproteins were enriched using IMAC method and resolved by 1-DE. The separated proteins were stained with phosphospecific Pro-Q Diamond stain. Proteomic analyses led to the identification of 107 putative phosphoproteins, of which 86 were non-redundant. Multiple sites of phosphorylation were predicted on several key elements, which included both regulatory and functional proteins. The analysis revealed an array of phosphoproteins, presumably involved in a variety of cellular functions, viz., protein folding (24%), signalling and gene regulation (22%), DNA replication, repair and modification (16%), and metabolism (13%), among others. These results represent the first nucleus-specific phosphoproteome map of a non-model legume, which would provide insights into the possible function of protein phosphorylation in plants. BIOLOGICAL SIGNIFICANCE Chickpea is grown over 10 million hectares of land worldwide, and global production hovers around 8.5 million metric tons annually. Despite its nutritional merits, it is often referred to as 'orphan' legume and has remained outside the realm of large-scale functional genomics studies. While current chickpea genome initiative has primarily focused on sequence information and functional annotation, proteomics analyses are limited. It is thus important to study the proteome of the cell organelle particularly the nucleus, which harbors most of the genetic information and gene expression machinery. Phosphorylation-dependent modulation of gene expression plays a vital role but the complex networks of phosphorylation are poorly understood. This inventory of nuclear phosphoproteins would provide valuable insights into the dynamic regulation of cellular phenotype through phosphorylation. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
|
45
|
Chen F, Jiang L, Zheng J, Huang R, Wang H, Hong Z, Huang Y. Identification of differentially expressed proteins and phosphorylated proteins in rice seedlings in response to strigolactone treatment. PLoS One 2014; 9:e93947. [PMID: 24699514 PMCID: PMC3974870 DOI: 10.1371/journal.pone.0093947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/11/2014] [Indexed: 11/30/2022] Open
Abstract
Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.
Collapse
Affiliation(s)
- Fangyu Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Zonglie Hong
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
- * E-mail: (ZH); (YH)
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- * E-mail: (ZH); (YH)
| |
Collapse
|
46
|
Singh DK, Calviño M, Brauer EK, Fernandez-Pozo N, Strickler S, Yalamanchili R, Suzuki H, Aoki K, Shibata D, Stratmann JW, Popescu GV, Mueller LA, Popescu SC. The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:7-17. [PMID: 24047240 DOI: 10.1094/mpmi-08-13-0218-ta] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.
Collapse
|
47
|
Subba P, Barua P, Kumar R, Datta A, Soni KK, Chakraborty S, Chakraborty N. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J Proteome Res 2013; 12:5025-47. [PMID: 24083463 DOI: 10.1021/pr400628j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.
Collapse
Affiliation(s)
- Pratigya Subba
- National Institute of Plant Genome Research , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang C, Shang JX, Chen QX, Oses-Prieto JA, Bai MY, Yang Y, Yuan M, Zhang YL, Mu CC, Deng Z, Wei CQ, Burlingame AL, Wang ZY, Sun Y. Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Mol Cell Proteomics 2013; 12:3653-65. [PMID: 24019147 DOI: 10.1074/mcp.m113.029256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brassinosteroids (BRs) are essential phytohormones for plant growth and development. BRs are perceived by the cell surface receptor kinase BRI1, and downstream signal transduction through multiple components leads to activation of the transcription factors BZR1 and BZR2/BES1. BZR1 activity is highly controlled by BR through reversible phosphorylation, protein degradation, and nucleocytoplasmic shuttling. To further understand the molecular function of BZR1, we performed tandem affinity purification of the BZR1 complex and identified BZR1-associated proteins using mass spectrometry. These BZR1-associated proteins included several known BR signaling components, such as BIN2, BSK1, 14-3-3λ, and PP2A, as well as a large number of proteins with previously unknown functions in BR signal transduction, including the kinases MKK5 and MAPK4, histone deacetylase 19, cysteine proteinase inhibitor 6, a DEAD-box RNA helicase, cysteine endopeptidases RD21A and RD21B, calmodulin-binding transcription activator 5, ubiquitin protease 12, cyclophilin 59, and phospholipid-binding protein synaptotagmin A. Their interactions with BZR1 were confirmed by in vivo and in vitro assays. Furthermore, MKK5 was found to phosphorylate BZR1 in vitro. This study demonstrates an effective method for purifying proteins associated with low-abundance transcription factors, and identifies new BZR1-interacting proteins with potentially important roles in BR response.
Collapse
Affiliation(s)
- Chunming Wang
- Institute of Molecular Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bücherl CA, van Esse GW, Kruis A, Luchtenberg J, Westphal AH, Aker J, van Hoek A, Albrecht C, Borst JW, de Vries SC. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. PLANT PHYSIOLOGY 2013; 162:1911-25. [PMID: 23796795 PMCID: PMC3729770 DOI: 10.1104/pp.113.220152] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/21/2013] [Indexed: 05/18/2023]
Abstract
The leucine-rich repeat receptor-like kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) is the main ligand-perceiving receptor for brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana). Binding of BRs to the ectodomain of plasma membrane (PM)-located BRI1 receptors initiates an intracellular signal transduction cascade that influences various aspects of plant growth and development. Even though the major components of BR signaling have been revealed and the PM was identified as the main site of BRI1 signaling activity, the very first steps of signal transmission are still elusive. Recently, it was shown that the initiation of BR signal transduction requires the interaction of BRI1 with its SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) coreceptors. In addition, the resolved structure of the BRI1 ectodomain suggested that BRI1-ASSOCIATED KINASE1 [BAK1](SERK3) may constitute a component of the ligand-perceiving receptor complex. Therefore, we investigated the spatial correlation between BRI1 and BAK1(SERK3) in the natural habitat of both leucine-rich repeat receptor-like kinases using comparative colocalization analysis and fluorescence lifetime imaging microscopy. We show that activation of BR signaling by exogenous ligand application resulted in both elevated colocalization between BRI1 and BAK1(SERK3) and an about 50% increase of receptor heterooligomerization in the PM of live Arabidopsis root epidermal cells. However, large populations of BRI1 and BAK1(SERK3) colocalized independently of BRs. Moreover, we could visualize that approximately 7% of the BRI1 PM pool constitutively heterooligomerizes with BAK1(SERK3) in live root cells. We propose that only small populations of PM-located BRI1 and BAK1(SERK3) receptors participate in active BR signaling and that the initiation of downstream signal transduction involves preassembled BRI1-BAK1(SERK3) heterooligomers.
Collapse
Affiliation(s)
- Christoph A. Bücherl
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - G. Wilma van Esse
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Alex Kruis
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Jeroen Luchtenberg
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Adrie H. Westphal
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - José Aker
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Arie van Hoek
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Catherine Albrecht
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | - Jan Willem Borst
- Laboratory of Biochemistry (C.A.B., G.W.v.E., A.K., J.L., A.H.W., J.A., C.A., J.W.B., S.C.d.V.), Laboratory of Biophysics (A.v.H.), and Microspectroscopy Centre (A.v.H., J.W.B.), Department of Agrotechnology and Food Sciences, 6703 HA Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, 6708 PB Wageningen, The Netherlands (J.W.B.)
| | | |
Collapse
|
50
|
Lin LL, Wu CC, Huang HC, Chen HJ, Hsieh HL, Juan HF. Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays. Int J Mol Sci 2013; 14:14270-86. [PMID: 23839095 PMCID: PMC3742243 DOI: 10.3390/ijms140714270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 12/29/2022] Open
Abstract
Brassinosteroids (BRs) are endogenous plant hormones and are essential for normal plant growth and development. MicroRNAs (miRNAs) of Arabidopsis thaliana are involved in mediating cell proliferation in leaves, stress tolerance, and root development. The specifics of BR mechanisms involving miRNAs are unknown. Using customized miRNA array analysis, we identified miRNAs from A. thaliana ecotype Columbia (Col-0) regulated by 24-epibrassinolide (EBR, a highly active BR). We found that miR395a was significantly up-regulated by EBR treatment and validated its expression under these conditions. miR395a was over expressed in leaf veins and root tissues in EBR-treated miR395a promoter::GUS plants. We integrated bioinformatics methods and publicly available DNA microarray data to predict potential targets of miR395a. GUN5—a multifunctional protein involved in plant metabolic functions such as chlorophyll synthesis and the abscisic acid (ABA) pathway—was identified as a possible target. ABI4 and ABI5, both genes positively regulated by ABA, were down-regulated by EBR treatment. In summary, our results suggest that EBR regulates seedling development and root growth of A. thaliana through miR395a by suppressing GUN5 expression and its downstream signal transduction.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan; E-Mail:
| | - Chia-Chi Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (H.-C.H.); (H.-L.H.); (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-2540 (H.-L.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2367-3374 (H.-F.J.)
| | - Huai-Ju Chen
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
| | - Hsu-Liang Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (H.-C.H.); (H.-L.H.); (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-2540 (H.-L.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2367-3374 (H.-F.J.)
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan; E-Mail:
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mail:
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (H.-C.H.); (H.-L.H.); (H.-F.J.); Tel.: +886-2-2826-7357 (H.-C.H.); +886-2-3366-2540 (H.-L.H.); +886-2-3366-4536 (H.-F.J.); Fax: +886-2-2367-3374 (H.-F.J.)
| |
Collapse
|