1
|
Da Costa RT, Urquiza P, Perez MM, Du Y, Khong ML, Zheng H, Guitart-Mampel M, Elustondo PA, Scoma ER, Hambardikar V, Ueberheide B, Tanner JA, Cohen A, Pavlov EV, Haynes CM, Solesio ME. Mitochondrial inorganic polyphosphate is required to maintain proteostasis within the organelle. Front Cell Dev Biol 2024; 12:1423208. [PMID: 39050895 PMCID: PMC11266304 DOI: 10.3389/fcell.2024.1423208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The existing literature points towards the presence of robust mitochondrial mechanisms aimed at mitigating protein dyshomeostasis within the organelle. However, the precise molecular composition of these mechanisms remains unclear. Our data show that inorganic polyphosphate (polyP), a polymer well-conserved throughout evolution, is a component of these mechanisms. In mammals, mitochondria exhibit a significant abundance of polyP, and both our research and that of others have already highlighted its potent regulatory effect on bioenergetics. Given the intimate connection between energy metabolism and protein homeostasis, the involvement of polyP in proteostasis has also been demonstrated in several organisms. For example, polyP is a bacterial primordial chaperone, and its role in amyloidogenesis has already been established. Here, using mammalian models, our study reveals that the depletion of mitochondrial polyP leads to increased protein aggregation within the organelle, following stress exposure. Furthermore, mitochondrial polyP is able to bind to proteins, and these proteins differ under control and stress conditions. The depletion of mitochondrial polyP significantly affects the proteome under both control and stress conditions, while also exerting regulatory control over gene expression. Our findings suggest that mitochondrial polyP is a previously unrecognized, and potent component of mitochondrial proteostasis.
Collapse
Affiliation(s)
- Renata T. Da Costa
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pedro Urquiza
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Matheus M. Perez
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - YunGuang Du
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Mei Li Khong
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, United States
| | - Mariona Guitart-Mampel
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Pia A. Elustondo
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ernest R. Scoma
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Vedangi Hambardikar
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University-Grossman School of Medicine, New York City, NY, United States
| | - Julian A. Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong SAR, China
| | - Alejandro Cohen
- Biological Mass Spectrometry Core Facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York City, NY, United States
| | - Cole M. Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Amherst, MA, United States
| | - Maria E. Solesio
- Department of Biology, College of Arts and Sciences, Rutgers University, Camden, NJ, United States
| |
Collapse
|
2
|
Vafaei N, Mohebbi A, Rezaei Z, Heidari M, Hosseinpour S, Dehnavi AZ, Ghamari A, Salehipour M, Rabbani A, Mahdieh N, Ashrafi MR. TPP1 Variants in Iranian patients: A Novel Pathogenic Homozygous Variant Causing Neuronal Ceroid Lipofuscinosis 2. Mol Syndromol 2024; 15:30-36. [PMID: 38357261 PMCID: PMC10862320 DOI: 10.1159/000534100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction TPP1 variants have been identified as a causative agent of neuronal ceroid lipofuscinosis 2 disease, that ataxia is one of its clinical features. Therefore, here, molecular study of TPP1 variants is presented in an Iranian cohort and a novel pathogenic variant is described. Methods This investigation was conducted as a cross-sectional study in a tertiary referral hospital, Children's Medical Center, Pediatrics Center of Excellence. Clinical presentations and pedigrees were documented. Patients with cerebellar ataxia were enrolled in this study. Next-generation sequencing was applied to confirm the diagnosis. Segregation and bioinformatics analyses were also done for the variants using Sanger sequencing. Results Forty-five patients were included in our study. The mean age of onset was 104 (+55.60) months (minimum = 31 months, maximum = 216 months). The majority of cases (73.3%) were born to consanguineous parents and only 1 patient (2.2%) had an affected sibling. Of the 45 patients, only 1 patient with a novel pathogenic variant (c.1425_1425+1delinsAT, p.A476Cfs*15) in the TPP1 gene was identified. Discussion The main strength of current study is the relatively large sample size. Besides, a novel pathogenic variant could be important toward the diagnosis and management of this condition. With significant advances in various therapies, early diagnosis could improve the treatments using personalized-based medicine.
Collapse
Affiliation(s)
- Nahid Vafaei
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohebbi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatric Neurology Division, Children’s Medical Center, Pediatrics Center of Excellence, Myelin Disorders Clinic, Tehran University of Medical Sciences, Tehran, Iran
| | - Sareh Hosseinpour
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Azin Ghamari
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Salehipour
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Ali Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiogenetic Research Center, Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gardner E, Mole SE. The Genetic Basis of Phenotypic Heterogeneity in the Neuronal Ceroid Lipofuscinoses. Front Neurol 2021; 12:754045. [PMID: 34733232 PMCID: PMC8558747 DOI: 10.3389/fneur.2021.754045] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders that affect children and adults. They share some similar clinical features and the accumulation of autofluorescent storage material. Since the discovery of the first causative genes, more than 530 mutations have been identified across 13 genes in cases diagnosed with NCL. These genes encode a variety of proteins whose functions have not been fully defined; most are lysosomal enzymes, or transmembrane proteins of the lysosome or other organelles. Many mutations in these genes are associated with a typical NCL disease phenotype. However, increasing numbers of variant disease phenotypes are being described, affecting age of onset, severity or progression, and including some distinct clinical phenotypes. This data is collated by the NCL Mutation Database which allows analysis from many perspectives. This article will summarise and interpret current knowledge and understanding of their genetic basis and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Emily Gardner
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
4
|
Abstract
Lysosomes are the main degradative organelles of almost all eukaryotic cells. They fulfil a crucial function in cellular homeostasis, and impairments in lysosomal function are connected to a continuously increasing number of pathological conditions. In recent years, lysosomes are furthermore emerging as control centers of cellular metabolism, and major regulators of cellular signaling were shown to be activated at the lysosomal surface. To date, >300 proteins were demonstrated to be located in/at the lysosome, and the lysosomal proteome and interactome is constantly growing. For the identification of these proteins, and their involvement in cellular mechanisms or disease progression, mass spectrometry (MS)-based proteomics has proven its worth in a large number of studies. In this review, we are recapitulating the application of MS-based approaches for the investigation of the lysosomal proteome, and their application to a diverse set of research questions. Numerous strategies were applied for the enrichment of lysosomes or lysosomal proteins and their identification by MS-based methods. This allowed for the characterization of the lysosomal proteome, the investigation of lysosome-related disorders, the utilization of lysosomal proteins as biomarkers for diseases, and the characterization of lysosome-related cellular mechanisms. While these >60 studies provide a comprehensive picture of the lysosomal proteome across several model organisms and pathological conditions, various proteomics approaches have not been applied to lysosomes yet, and a large number of questions are still left unanswered.
Collapse
Affiliation(s)
- Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
5
|
Kuk MU, Lee YH, Kim JW, Hwang SY, Park JT, Park SC. Potential Treatment of Lysosomal Storage Disease through Modulation of the Mitochondrial-Lysosomal Axis. Cells 2021; 10:cells10020420. [PMID: 33671306 PMCID: PMC7921977 DOI: 10.3390/cells10020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Lysosomal storage disease (LSD) is an inherited metabolic disorder caused by enzyme deficiency in lysosomes. Some treatments for LSD can slow progression, but there are no effective treatments to restore the pathological phenotype to normal levels. Lysosomes and mitochondria interact with each other, and this crosstalk plays a role in the maintenance of cellular homeostasis. Deficiency of lysosome enzymes in LSD impairs the turnover of mitochondrial defects, leading to deterioration of the mitochondrial respiratory chain (MRC). Cells with MRC impairment are associated with reduced lysosomal calcium homeostasis, resulting in impaired autophagic and endolysosomal function. This malicious feedback loop between lysosomes and mitochondria exacerbates LSD. In this review, we assess the interactions between mitochondria and lysosomes and propose the mitochondrial-lysosomal axis as a research target to treat LSD. The importance of the mitochondrial-lysosomal axis has been systematically characterized in several studies, suggesting that proper regulation of this axis represents an important investigative guide for the development of therapeutics for LSD. Therefore, studying the mitochondrial-lysosomal axis will not only add knowledge of the essential physiological processes of LSD, but also provide new strategies for treatment of LSD.
Collapse
Affiliation(s)
- Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Jae Won Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Su Young Hwang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (M.U.K.); (Y.H.L.); (J.W.K.); (S.Y.H.)
- Correspondence: (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| | - Sang Chul Park
- The Future Life & Society Research Center, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (J.T.P.); ; (S.C.P.); Tel.: +82-32-835-8841 (J.T.P.); +82-10-5495-9200 (S.C.P.)
| |
Collapse
|
6
|
Ponnaiyan S, Akter F, Singh J, Winter D. Comprehensive draft of the mouse embryonic fibroblast lysosomal proteome by mass spectrometry based proteomics. Sci Data 2020; 7:68. [PMID: 32103020 PMCID: PMC7044164 DOI: 10.1038/s41597-020-0399-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Lysosomes are the main degradative organelles of cells and involved in a variety of processes including the recycling of macromolecules, storage of compounds, and metabolic signaling. Despite an increasing interest in the proteomic analysis of lysosomes, no systematic study of sample preparation protocols for lysosome enriched fractions has been performed to date. In the current study, we used samples enriched for lysosomes by paramagnetic nanoparticles and systematically evaluated experimental parameters for the analysis of the lysosomal proteome. This includes different approaches for the concentration of lysosome-containing fractions; desalting of samples by solid phase extraction; fractionation of peptide samples; and different gradient lengths for LC-MS/MS analyses of unfractionated samples by data dependent and data independent acquisition. Furthermore, we evaluated four different digestion methods including filter aided sample preparation (FASP), in-gel digestion, and in-solution digestion using either RapiGest or urea. Using the combined data, we generated a benchmark lysosomal proteome data set for mouse embryonic fibroblasts as well as a spectral library for the analysis of lysosomes by data independent acquisition.
Collapse
Affiliation(s)
- Srigayatri Ponnaiyan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Fatema Akter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, 53115, Germany.
| |
Collapse
|
7
|
Álvarez JV, Bravo SB, García-Vence M, De Castro MJ, Luzardo A, Colón C, Tomatsu S, Otero-Espinar FJ, Couce ML. Proteomic Analysis in Morquio A Cells Treated with Immobilized Enzymatic Replacement Therapy on Nanostructured Lipid Systems. Int J Mol Sci 2019; 20:ijms20184610. [PMID: 31540344 PMCID: PMC6769449 DOI: 10.3390/ijms20184610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Morquio A syndrome, or mucopolysaccharidosis type IVA (MPS IVA), is a lysosomal storage disease due to mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Systemic skeletal dysplasia and the related clinical features of MPS IVA are due to disruption of cartilage and its extracellular matrix, leading to an imbalance of growth. Enzyme replacement therapy (ERT) with recombinant human GALNS, alpha elosulfase, provides a systemic treatment. However, this therapy has a limited impact on skeletal dysplasia because the infused enzyme cannot penetrate cartilage and bone. Therefore, an alternative therapeutic approach to reach the cartilage is an unmet challenge. We have developed a new drug delivery system based on a nanostructure lipid carrier with the capacity to immobilize enzymes used for ERT and to target the lysosomes. This study aimed to assess the effect of the encapsulated enzyme in this new delivery system, using in vitro proteomic technology. We found a greater internalization of the enzyme carried by nanoparticles inside the cells and an improvement of cellular protein routes previously impaired by the disease, compared with conventional ERT. This is the first qualitative and quantitative proteomic assay that demonstrates the advantages of a new delivery system to improve the MPS IVA ERT.
Collapse
Affiliation(s)
- J Víctor Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | - Susana B Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostea, Spain.
| | - María García-Vence
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostea, Spain.
| | - María J De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| | - Asteria Luzardo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, 27002 Lugo, Spain.
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - María L Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Poillet-Perez L, Xie X, Zhan L, Yang Y, Sharp DW, Hu ZS, Su X, Maganti A, Jiang C, Lu W, Zheng H, Bosenberg MW, Mehnert JM, Guo JY, Lattime E, Rabinowitz JD, White E. Autophagy maintains tumour growth through circulating arginine. Nature 2018; 563:569-573. [PMID: 30429607 PMCID: PMC6287937 DOI: 10.1038/s41586-018-0697-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/17/2018] [Indexed: 11/10/2022]
Abstract
Autophagy captures intracellular components and delivers them to lysosomes, where they are degraded and recycled to sustain metabolism and to enable survival during starvation1-5. Acute, whole-body deletion of the essential autophagy gene Atg7 in adult mice causes a systemic metabolic defect that manifests as starvation intolerance and gradual loss of white adipose tissue, liver glycogen and muscle mass1. Cancer cells also benefit from autophagy. Deletion of essential autophagy genes impairs the metabolism, proliferation, survival and malignancy of spontaneous tumours in models of autochthonous cancer6,7. Acute, systemic deletion of Atg7 or acute, systemic expression of a dominant-negative ATG4b in mice induces greater regression of KRAS-driven cancers than does tumour-specific autophagy deletion, which suggests that host autophagy promotes tumour growth1,8. Here we show that host-specific deletion of Atg7 impairs the growth of multiple allografted tumours, although not all tumour lines were sensitive to host autophagy status. Loss of autophagy in the host was associated with a reduction in circulating arginine, and the sensitive tumour cell lines were arginine auxotrophs owing to the lack of expression of the enzyme argininosuccinate synthase 1. Serum proteomic analysis identified the arginine-degrading enzyme arginase I (ARG1) in the circulation of Atg7-deficient hosts, and in vivo arginine metabolic tracing demonstrated that serum arginine was degraded to ornithine. ARG1 is predominantly expressed in the liver and can be released from hepatocytes into the circulation. Liver-specific deletion of Atg7 produced circulating ARG1, and reduced both serum arginine and tumour growth. Deletion of Atg5 in the host similarly regulated [corrected] circulating arginine and suppressed tumorigenesis, which demonstrates that this phenotype is specific to autophagy function rather than to deletion of Atg7. Dietary supplementation of Atg7-deficient hosts with arginine partially restored levels of circulating arginine and tumour growth. Thus, defective autophagy in the host leads to the release of ARG1 from the liver and the degradation of circulating arginine, which is essential for tumour growth; this identifies a metabolic vulnerability of cancer.
Collapse
Affiliation(s)
| | - Xiaoqi Xie
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Le Zhan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yang Yang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Daniel W Sharp
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Anurag Maganti
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Cherry Jiang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Rutgers University, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Janice M Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Division of Medical Oncology, Developmental Therapeutics Unit, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Edmund Lattime
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joshua D Rabinowitz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
9
|
Mitchell NL, Russell KN, Wellby MP, Wicky HE, Schoderboeck L, Barrell GK, Melzer TR, Gray SJ, Hughes SM, Palmer DN. Longitudinal In Vivo Monitoring of the CNS Demonstrates the Efficacy of Gene Therapy in a Sheep Model of CLN5 Batten Disease. Mol Ther 2018; 26:2366-2378. [PMID: 30078766 PMCID: PMC6171082 DOI: 10.1016/j.ymthe.2018.07.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 02/03/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are neurodegenerative lysosomal storage diseases predominantly affecting children. Single administration of brain-directed lentiviral or recombinant single-stranded adeno-associated virus 9 (ssAAV9) vectors expressing ovine CLN5 into six pre-clinically affected sheep with a naturally occurring CLN5 NCL resulted in long-term disease attenuation. Treatment efficacy was demonstrated by non-invasive longitudinal in vivo monitoring developed to align with assessments used in human medicine. The treated sheep retained neurological and cognitive function, and one ssAAV9-treated animal has been retained and is now 57 months old, almost triple the lifespan of untreated CLN5-affected sheep. The onset of visual deficits was much delayed. Computed tomography and MRI showed that brain structures and volumes remained stable. Because gene therapy in humans is more likely to begin after clinical diagnosis, self-complementary AAV9-CLN5 was injected into the brain ventricles of four 7-month-old affected sheep already showing early clinical signs in a second trial. This also halted disease progression beyond their natural lifespan. These findings demonstrate the efficacy of CLN5 gene therapy, using three different vector platforms, in a large animal model and, thus, the prognosis for human translation.
Collapse
Affiliation(s)
- Nadia L Mitchell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; Department of Radiology, University of Otago, Christchurch 8140, New Zealand
| | - Katharina N Russell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Martin P Wellby
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Hollie E Wicky
- Department of Biochemistry, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Lucia Schoderboeck
- Department of Biochemistry, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - Graham K Barrell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch 8140, New Zealand
| | - Steven J Gray
- Gene Therapy Center and Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| | - David N Palmer
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; Department of Radiology, University of Otago, Christchurch 8140, New Zealand.
| |
Collapse
|
10
|
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
|
11
|
Lingaas F, Guttersrud OA, Arnet E, Espenes A. Neuronal ceroid lipofuscinosis in Salukis is caused by a single base pair insertion in CLN8. Anim Genet 2018; 49:52-58. [PMID: 29446145 DOI: 10.1111/age.12629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/09/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are heterogenic inherited lysosomal storage diseases that have been described in a number of species including humans, sheep, cattle, cats and a number of different dog breeds, including Salukis. Here we present a novel genetic variant associated with the disease in this particular breed of dog. In a clinical case, a Saluki developed progressive neurological signs, including disorientation, anxiety, difficulties in eating, seizures and loss of vision, and for welfare reasons, was euthanized at 22 months of age. Microscopy showed aggregation of autofluorescent storage material in the neurons of several brain regions and also in the retina. The aggregates showed positive staining with Sudan black B and periodic acid Schiff, all features consistent with NCL. Whole genome sequencing of the case and both its parents, followed by variant calling in candidate genes, identified a new variant in the CLN8 gene: a single bp insertion (c.349dupT) in exon 2, introducing an immediate stop codon (p.Glu117*). The case was homozygous for the insertion, and both parents were heterozygous. A retrospective study of a Saluki from Australia diagnosed with NCL identified this case as being homozygous for the same mutation. This is the fourth variant identified in CLN8 that causes NCL in dogs.
Collapse
Affiliation(s)
- F Lingaas
- Section of Genetics, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| | - O-A Guttersrud
- Section of Genetics, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| | - E Arnet
- Section of Genetics, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| | - A Espenes
- Section of Anatomy & Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
12
|
Cagnone M, Bardoni A, Iadarola P, Viglio S. Could Proteomics Become a Future Useful Tool to Shed Light on the Mechanisms of Rare Neurodegenerative Disorders? High Throughput 2018; 7:ht7010002. [PMID: 29485613 PMCID: PMC5876528 DOI: 10.3390/ht7010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Very often the clinical features of rare neurodegenerative disorders overlap with those of other, more common clinical disturbances. As a consequence, not only the true incidence of these disorders is underestimated, but many patients also experience a significant delay before a definitive diagnosis. Under this scenario, it appears clear that any accurate tool producing information about the pathological mechanisms of these disorders would offer a novel context for their precise identification by strongly enhancing the interpretation of symptoms. With the advent of proteomics, detection and identification of proteins in different organs/tissues, aimed at understanding whether they represent an attractive tool for monitoring alterations in these districts, has become an area of increasing interest. The aim of this report is to provide an overview of the most recent applications of proteomics as a new strategy for identifying biomarkers with a clinical utility for the investigation of rare neurodegenerative disorders.
Collapse
Affiliation(s)
- Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani", Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
13
|
Wang N, Zhang Y, Gedvilaite E, Loh JW, Lin T, Liu X, Liu CG, Kumar D, Donnelly R, Raymond K, Schuchman EH, Sleat DE, Lobel P, Xing J. Using whole-exome sequencing to investigate the genetic bases of lysosomal storage diseases of unknown etiology. Hum Mutat 2017; 38:1491-1499. [PMID: 28703315 DOI: 10.1002/humu.23291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 12/17/2022]
Abstract
Lysosomes are membrane-bound, acidic eukaryotic cellular organelles that play important roles in the degradation of macromolecules. Mutations that cause the loss of lysosomal protein function can lead to a group of disorders categorized as the lysosomal storage diseases (LSDs). Suspicion of LSD is frequently based on clinical and pathologic findings, but in some cases, the underlying genetic and biochemical defects remain unknown. Here, we performed whole-exome sequencing (WES) on 14 suspected LSD cases to evaluate the feasibility of using WES for identifying causal mutations. By examining 2,157 candidate genes potentially associated with lysosomal function, we identified eight variants in five genes as candidate disease-causing variants in four individuals. These included both known and novel mutations. Variants were corroborated by targeted sequencing and, when possible, functional assays. In addition, we identified nonsense mutations in two individuals in genes that are not known to have lysosomal function. However, mutations in these genes could have resulted in phenotypes that were diagnosed as LSDs. This study demonstrates that WES can be used to identify causal mutations in suspected LSD cases. We also demonstrate cases where a confounding clinical phenotype may potentially reflect more than one lysosomal protein defect.
Collapse
Affiliation(s)
- Nan Wang
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Yeting Zhang
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Erika Gedvilaite
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Jui Wan Loh
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Timothy Lin
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Xiuping Liu
- Sequencing and ncRNA Program, Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Chang-Gong Liu
- Sequencing and ncRNA Program, Department of Experimental Therapeutics, The University of Texas-MD Anderson Cancer Center, Houston, Texas
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Robert Donnelly
- Molecular Resource Facility at Rutgers, New Jersey Medical School, Newark, New Jersey
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Biochemical Genetics Laboratory, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| | - Jinchuan Xing
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey.,Human Genetics Institute of New Jersey, Rutgers, the State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
14
|
Berkovic SF, Staropoli JF, Carpenter S, Oliver KL, Kmoch S, Anderson GW, Damiano JA, Hildebrand MS, Sims KB, Cotman SL, Bahlo M, Smith KR, Cadieux-Dion M, Cossette P, Jedličková I, Přistoupilová A, Mole SE. Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease). Neurology 2016; 87:579-84. [PMID: 27412140 DOI: 10.1212/wnl.0000000000002943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To critically re-evaluate cases diagnosed as adult neuronal ceroid lipofuscinosis (ANCL) in order to aid clinicopathologic diagnosis as a route to further gene discovery. METHODS Through establishment of an international consortium we pooled 47 unsolved cases regarded by referring centers as ANCL. Clinical and neuropathologic experts within the Consortium established diagnostic criteria for ANCL based on the literature to assess each case. A panel of 3 neuropathologists independently reviewed source pathologic data. Cases were given a final clinicopathologic classification of definite ANCL, probable ANCL, possible ANCL, or not ANCL. RESULTS Of the 47 cases, only 16 fulfilled the Consortium's criteria of ANCL (5 definite, 2 probable, 9 possible). Definitive alternate diagnoses were made in 10, including Huntington disease, early-onset Alzheimer disease, Niemann-Pick disease, neuroserpinopathy, prion disease, and neurodegeneration with brain iron accumulation. Six cases had features suggesting an alternate diagnosis, but no specific condition was identified; in 15, the data were inadequate for classification. Misinterpretation of normal lipofuscin as abnormal storage material was the commonest cause of misdiagnosis. CONCLUSIONS Diagnosis of ANCL remains challenging; expert pathologic analysis and recent molecular genetic advances revealed misdiagnoses in >1/3 of cases. We now have a refined group of cases that will facilitate identification of new causative genes.
Collapse
Affiliation(s)
- Samuel F Berkovic
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK.
| | - John F Staropoli
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Stirling Carpenter
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Karen L Oliver
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Stanislav Kmoch
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Glenn W Anderson
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - John A Damiano
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Michael S Hildebrand
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Katherine B Sims
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Susan L Cotman
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Melanie Bahlo
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Katherine R Smith
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Maxime Cadieux-Dion
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Patrick Cossette
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Ivana Jedličková
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | - Anna Přistoupilová
- From the Epilepsy Research Centre, Department of Medicine (S.F.B., K.L.O., J.A.D., M.S.H.), University of Melbourne, Austin Health, Heidelberg, Australia; Biogen, Inc. (J.F.S.), Cambridge, MA; Department of Pathology (S.C.), Centro Hospitalar São João, Porto, Portugal; Institute of Inherited Metabolic Disorders (S.K., I.J., A.P.), First Faculty of Medicine, Charles University in Prague; General University Hospital in Prague (S.K.), Czech Republic; Great Ormond Street Hospital for Children NHS Foundation Trust (G.W.A.), London, UK; Center for Human Genetic Research and Department of Neurology (K.B.S., S.L.C.), Harvard Medical School, Massachusetts General Hospital, Boston; Population Health and Immunity Division (M.B., K.R.S.), The Walter and Eliza Hall Institute of Medical Research; Departments of Mathematics and Statistics and Medical Biology (M.B.), University of Melbourne, Australia; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (M.C.-D., P.C.), University of Montreal, Canada; and MRC Laboratory for Cell Biology (S.E.M.), Department of Genetics, Evolution & Environment and UCL Institute of Child Health, University College London, UK
| | | | | |
Collapse
|
15
|
Di Fruscio G, Schulz A, De Cegli R, Savarese M, Mutarelli M, Parenti G, Banfi S, Braulke T, Nigro V, Ballabio A. Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway. Autophagy 2016; 11:928-38. [PMID: 26075876 PMCID: PMC4502703 DOI: 10.1080/15548627.2015.1043077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The autophagy-lysosomal pathway (ALP) regulates cell homeostasis and plays a crucial role in human diseases, such as lysosomal storage disorders (LSDs) and common neurodegenerative diseases. Therefore, the identification of DNA sequence variations in genes involved in this pathway and their association with human diseases would have a significant impact on health. To this aim, we developed Lysoplex, a targeted next-generation sequencing (NGS) approach, which allowed us to obtain a uniform and accurate coding sequence coverage of a comprehensive set of 891 genes involved in lysosomal, endocytic, and autophagic pathways. Lysoplex was successfully validated on 14 different types of LSDs and then used to analyze 48 mutation-unknown patients with a clinical phenotype of neuronal ceroid lipofuscinosis (NCL), a genetically heterogeneous subtype of LSD. Lysoplex allowed us to identify pathogenic mutations in 67% of patients, most of whom had been unsuccessfully analyzed by several sequencing approaches. In addition, in 3 patients, we found potential disease-causing variants in novel NCL candidate genes. We then compared the variant detection power of Lysoplex with data derived from public whole exome sequencing (WES) efforts. On average, a 50% higher number of validated amino acid changes and truncating variations per gene were identified. Overall, we identified 61 truncating sequence variations and 488 missense variations with a high probability to cause loss of function in a total of 316 genes. Interestingly, some loss-of-function variations of genes involved in the ALP pathway were found in homozygosity in the normal population, suggesting that their role is not essential. Thus, Lysoplex provided a comprehensive catalog of sequence variants in ALP genes and allows the assessment of their relevance in cell biology as well as their contribution to human disease.
Collapse
|
16
|
Effects of the protonophore carbonyl-cyanide m-chlorophenylhydrazone on intracytoplasmic membrane assembly in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1119-28. [DOI: 10.1016/j.bbabio.2015.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022]
|
17
|
Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta Mol Basis Dis 2015; 1852:2237-41. [PMID: 26026925 DOI: 10.1016/j.bbadis.2015.05.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders that affect children and adults and are grouped together by similar clinical features and the accumulation of autofluorescent storage material. More than a dozen genes containing over 430 mutations underlying human NCLs have been identified. These genes encode lysosomal enzymes (CLN1, CLN2, CLN10, CLN13), a soluble lysosomal protein (CLN5), a protein in the secretory pathway (CLN11), two cytoplasmic proteins that also peripherally associate with membranes (CLN4, CLN14), and many transmembrane proteins with different subcellular locations (CLN3, CLN6, CLN7, CLN8, CLN12). For most NCLs, the function of the causative gene has not been fully defined. Most of the mutations in these genes are associated with a typical disease phenotype, but some result in variable disease onset, severity, and progression, including distinct clinical phenotypes. There remain disease subgroups with unknown molecular genetic backgrounds. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)."
Collapse
Affiliation(s)
- Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK; UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Susan L Cotman
- Center for Human Genetic Research, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
18
|
Kohan R, Pesaola F, Guelbert N, Pons P, Oller-Ramírez AM, Rautenberg G, Becerra A, Sims K, Xin W, Cismondi IA, Noher de Halac I. The neuronal ceroid lipofuscinoses program: A translational research experience in Argentina. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2301-11. [PMID: 25976102 DOI: 10.1016/j.bbadis.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND The Argentinean program was initiated more than a decade ago as the first experience of systematic translational research focused on NCL in Latin America. The aim was to overcome misdiagnoses and underdiagnoses in the region. SUBJECTS 216 NCL suspected individuals from 8 different countries and their direct family members. METHODS Clinical assessment, enzyme testing, electron microscopy, and DNA screening. RESULTS AND DISCUSSION 1) The study confirmed NCL disease in 122 subjects. Phenotypic studies comprised epileptic seizures and movement disorders, ophthalmology, neurophysiology, image analysis, rating scales, enzyme testing, and electron microscopy, carried out under a consensus algorithm; 2) DNA screening and validation of mutations in genes PPT1 (CLN1), TPP1 (CLN2), CLN3, CLN5, CLN6, MFSD8 (CLN7), and CLN8: characterization of variant types, novel/known mutations and polymorphisms; 3) Progress of the epidemiological picture in Latin America; and 4) NCL-like pathology studies in progress. The Translational Research Program was highly efficient in addressing the misdiagnosis/underdiagnosis in the NCL disorders. The study of "orphan diseases" in a public administrated hospital should be adopted by the health systems, as it positively impacts upon the family's quality of life, the collection of epidemiological data, and triggers research advances. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
Affiliation(s)
- Romina Kohan
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Haya de la Torre s/n, 5000 Córdoba, Argentina.
| | - Favio Pesaola
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ CABA, Argentina.
| | - Norberto Guelbert
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina.
| | - Patricia Pons
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Enrique Barros, 1º piso, 5000 Córdoba, Argentina.
| | - Ana María Oller-Ramírez
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina.
| | - Gisela Rautenberg
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina.
| | - Adriana Becerra
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina.
| | - Katherine Sims
- Massachussets General Hospital, Neurology Department, Center for Genetic Research [CHGR], Boston, MA 02114, USA.
| | - Winnie Xin
- Massachussets General Hospital, Neurology Department, Center for Genetic Research [CHGR], Boston, MA 02114, USA.
| | - Inés Adriana Cismondi
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Haya de la Torre s/n, 5000 Córdoba, Argentina.
| | - Inés Noher de Halac
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ferroviarios 1250, 5014 Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Haya de la Torre s/n, 5000 Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ CABA, Argentina.
| |
Collapse
|
19
|
|
20
|
Repo H, Kuokkanen E, Oksanen E, Goldman A, Heikinheimo P. Is the bovine lysosomal phospholipase B-like protein an amidase? Proteins 2013; 82:300-11. [PMID: 23934913 DOI: 10.1002/prot.24388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 12/17/2022]
Abstract
The main function of lysosomal proteins is to degrade cellular macromolecules. We purified a novel lysosomal protein to homogeneity from bovine kidneys. By gene annotation, this protein is defined as a bovine phospholipase B-like protein 1 (bPLBD1) and, to better understand its biological function, we solved its structure at 1.9 Å resolution. We showed that bPLBD1 has uniform noncomplex-type N-glycosylation and that it localized to the lysosome. The first step in lysosomal protein transport, the initiation of mannose-6-phosphorylation by a N-acetylglucosamine-1-phosphotransferase, requires recognition of at least two distinct lysines on the protein surface. We identified candidate lysines by analyzing the structural and sequentially conserved N-glycosylation sites and lysines in bPLBD1 and in the homologous mouse PLBD2. Our model suggests that N408 is the primarily phosphorylated glycan, and K358 a key residue for N-acetylglucosamine-1-phosphotransferase recognition. Two other lysines, K334 and K342, provide the required second site for N-acetylglucosamine-1-phosphotransferase recognition. bPLBD1 is an N-terminal nucleophile (Ntn) hydrolase. By comparison with other Ntn-hydrolases, we conclude that the acyl moiety of PLBD1 substrate must be small to fit the putative binding pocket, whereas the space for the rest of the substrate is a large open cleft. Finally, as all the known substrates of Ntn-hydrolases have amide bonds, we suggest that bPLBD1 may be an amidase or peptidase instead of lipase, explaining the difficulty in finding a good substrate for any members of the PLBD family.
Collapse
Affiliation(s)
- Heidi Repo
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland; Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
21
|
Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinoses. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1827-30. [PMID: 23542453 DOI: 10.1016/j.bbadis.2013.03.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 03/01/2013] [Accepted: 03/15/2013] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders that mainly affect children and are grouped together by similar clinical features and the accumulation of autofluorescent storage material. More than a dozen genes containing nearly 400 mutations underlying human NCLs have been identified. Most of the mutations in these genes are associated with a typical disease phenotype, but some result in variable disease onset, severity and progression. There are still disease subgroups with unknown molecular genetic backgrounds. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
22
|
Kohan R, Noelia Carabelos M, Xin W, Sims K, Guelbert N, Adriana Cismondi I, Pons P, Alonso GI, Troncoso M, Witting S, Pearce DA, de Kremer RD, Oller-Ramírez AM, de Halac IN. Neuronal ceroid lipofuscinosis type CLN2: a new rationale for the construction of phenotypic subgroups based on a survey of 25 cases in South America. Gene 2013; 516:114-21. [PMID: 23266810 PMCID: PMC3855401 DOI: 10.1016/j.gene.2012.12.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022]
Abstract
Tripeptidyl-peptidase 1 (TPP1) null or residual activity occurs in neuronal ceroid lipofuscinosis (NCL) with underlying TPP1/CLN2 mutations. A survey of 25 South American CLN2 affected individuals enabled the differentiation of two phenotypes: classical late-infantile and variant juvenile, each in approximately 50% of patients, with residual TPP1 activity occurring in approximately 32%. Each individual was assigned to one of three subgroups: (I) n=11, null TPP1 activity in leukocytes; (II) n=8, residual TPP1 activity of 0.60-15.85 nmol/h/mg (nr 110-476); (III) n=6, activity not measured in leukocytes. Curvilinear bodies (CB) appeared in almost all studied CLN2 subjects; the only exceptions occurred in cases of subgroup II: two individuals had combined CBs/fingerprints (FPs), and one case had pure FPs. There were 15 mutations (4 first published in this paper, 3 previously observed in South America by our group, and 8 previously observed by others). In subgroup I, mutations were either missense or nonsense; in subgroups II and III, mutations prevailed at the non-conserved intronic site, c.887-10A>G (intron 7), and to a lesser extent at c.89+5G>C (intron 2), in heterozygous combinations. Grouping phenotypically and genetically known individuals on the basis of TPP1 activity supported the concept that residual enzyme activity underlies a protracted disease course. The prevalence of intronic mutations at non-conserved sites in subgroup II individuals indicates that some alternative splicing might allow some residual TPP1 activity.
Collapse
Affiliation(s)
- Romina Kohan
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba. Haya de la Torre s/n, (5000) Córdoba, Argentina
- Secretaría de Ciencia y Tecnología (SECyT), Universidad Nacional de Córdoba. Juan Filloy s/n, (5000) Córdoba, Argentina
| | - María Noelia Carabelos
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
| | - Winnie Xin
- Massachussets General Hospital, Neurogenetics DNA Diagnostic Laboratory, Simches Research Building, 5 300, 185 Cambridge St., Boston, Massachussets 02114, USA
| | - Katherine Sims
- Massachussets General Hospital, Neurogenetics DNA Diagnostic Laboratory, Simches Research Building, 5 300, 185 Cambridge St., Boston, Massachussets 02114, USA
| | - Norberto Guelbert
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
| | - Inés Adriana Cismondi
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
- Massachussets General Hospital, Neurogenetics DNA Diagnostic Laboratory, Simches Research Building, 5 300, 185 Cambridge St., Boston, Massachussets 02114, USA
| | - Patricia Pons
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Enrique Barros, 1° piso, (5000) Córdoba, Argentina
| | - Graciela Irene Alonso
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
| | - Mónica Troncoso
- Servicio de Neuropsiquiatría Infantil. Hospital Clínico San Borja Arriarán, Avenida Santa Rosa 1234, Santiago, Chile
| | - Scarlet Witting
- Servicio de Neuropsiquiatría Infantil. Hospital Clínico San Borja Arriarán, Avenida Santa Rosa 1234, Santiago, Chile
| | - David A. Pearce
- Sanford Childrens Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, USA
| | - Raquel Dodelson de Kremer
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
| | - Ana María Oller-Ramírez
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
| | - Inés Noher de Halac
- Centro de Estudio de las Metabolopatías Congénitas (CEMECO), Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba. Ferroviarios 1250, (5014) Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Av. Rivadavia 1917, C1033AAJ CABA, Argentina
| |
Collapse
|
23
|
Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1831-41. [PMID: 23274885 DOI: 10.1016/j.bbadis.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
24
|
Engelke R, Becker AC, Dengjel J. The degradative inventory of the cell: proteomic insights. Antioxid Redox Signal 2012; 17:803-12. [PMID: 22074050 DOI: 10.1089/ars.2011.4393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SIGNIFICANCE Protein degradation has been identified as being deregulated in numerous human diseases. Hence, proteins involved in proteasomal as well as lysosomal degradation are regarded as interesting potential drug targets and are thoroughly investigated in clinical studies. RECENT ADVANCES Technical advances in the field of quantitative mass spectrometry (MS)-based proteomics allow for detailed investigations of protein degradation dynamics and identifications of responsible protein-protein interaction networks enabling a systematic analysis of the degradative inventory of the cell and its underlying molecular mechanisms. CRITICAL ISSUES In the current review we outline recent technical advances and their limitations in MS-based proteomics and discuss their use for the analysis of protein dynamics involved in degradation processes. FUTURE DIRECTIONS In the next years the analysis of crosstalk between different posttranslational modifications (PTMs) will be a major focus of MS-based proteomics studies. Increasing evidence highlights the complexity of PTMs with positive and negative feedbacks being discovered. In this regard, the generation of absolute quantitative proteomic data will be essential for theoretical scientists to construct predictive network models that constitute a valuable tool for fast hypothesis testing and for explaining underlying molecular mechanisms.
Collapse
Affiliation(s)
- Rudolf Engelke
- Freiburg Institute for Advanced Studies, School of Life Science-LifeNet, University of Freiburg, Germany
| | | | | |
Collapse
|
25
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2012; 111:125-138. [PMID: 22396151 DOI: 10.1007/s11120-011-9707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | | | | | | | | |
Collapse
|
26
|
Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2011; 33:42-63. [DOI: 10.1002/humu.21624] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/29/2011] [Indexed: 12/17/2022]
|
27
|
Benitez BA, Alvarado D, Cai Y, Mayo K, Chakraverty S, Norton J, Morris JC, Sands MS, Goate A, Cruchaga C. Exome-sequencing confirms DNAJC5 mutations as cause of adult neuronal ceroid-lipofuscinosis. PLoS One 2011; 6:e26741. [PMID: 22073189 PMCID: PMC3208569 DOI: 10.1371/journal.pone.0026741] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/02/2011] [Indexed: 02/06/2023] Open
Abstract
We performed whole-exome sequencing in two autopsy-confirmed cases and an elderly unaffected control from a multigenerational family with autosomal dominant neuronal ceroid lipofuscinosis (ANCL). A novel single-nucleotide variation (c.344T>G) in the DNAJC5 gene was identified. Mutational screening in an independent family with autosomal dominant ANCL found an in-frame single codon deletion (c.346_348 delCTC) resulting in a deletion of p.Leu116del. These variants fulfill all genetic criteria for disease-causing mutations: they are found in unrelated families with the same disease, exhibit complete segregation between the mutation and the disease, and are absent in healthy controls. In addition, the associated amino acid substitutions are located in evolutionarily highly conserved residues and are predicted to functionally affect the encoded protein (CSPα). The mutations are located in a cysteine-string domain, which is required for membrane targeting/binding, palmitoylation, and oligomerization of CSPα. We performed a comprehensive in silico analysis of the functional and structural impact of both mutations on CSPα. We found that these mutations dramatically decrease the affinity of CSPα for the membrane. We did not identify any significant effect on palmitoylation status of CSPα. However, a reduction of CSPα membrane affinity may change its palmitoylation and affect proper intracellular sorting. We confirm that CSPα has a strong intrinsic aggregation propensity; however, it is not modified by the mutations. A complementary disease-network analysis suggests a potential interaction with other NCLs genes/pathways. This is the first replication study of the identification of DNAJC5 as the disease-causing gene for autosomal dominant ANCL. The identification of the novel gene in ANCL will allow us to gain a better understanding of the pathological mechanism of ANCLs and constitutes a great advance toward the development of new molecular diagnostic tests and may lead to the development of potential therapies.
Collapse
Affiliation(s)
- Bruno A. Benitez
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - David Alvarado
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America
| | - Yefei Cai
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Kevin Mayo
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Sumitra Chakraverty
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - Joanne Norton
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
| | - John C. Morris
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
| | - Mark S. Sands
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, Missouri, United States of America
| | - Alison Goate
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University, St. Louis, Missouri, United States of America
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, Missouri, United States of America
- Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
28
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2011; 108:201-214. [PMID: 21863386 DOI: 10.1007/s11120-011-9681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | | | | | | | | |
Collapse
|
29
|
Sanders DN, Kanazono S, Wininger FA, Whiting REH, Flournoy CA, Coates JR, Castaner LJ, O'Brien DP, Katz ML. A reversal learning task detects cognitive deficits in a Dachshund model of late-infantile neuronal ceroid lipofuscinosis. GENES BRAIN AND BEHAVIOR 2011; 10:798-804. [PMID: 21745338 DOI: 10.1111/j.1601-183x.2011.00718.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive lysosomal storage diseases characterized by progressive neurodegeneration and by accumulation of autofluorescent storage material in the central nervous system and other tissues. One of the most prominent clinical signs of NCL is progressive decline in cognitive function. We previously described a frame shift mutation of TPP1 in miniature long-haired Dachshunds which causes an early-onset form of NCL analogous to classical late-infantile onset NCL (CLN2) in children. Dogs homozygous for the TPP1 mutation exhibit progressive neurological signs similar to those exhibited by human patients. In order to establish biomarkers for evaluating the efficacy of ongoing therapeutic studies in this canine model, we characterized phenotypic changes in 13 dogs through 9 months of age. Cognitive function was assessed using a T-maze reversal learning (RL) task. Cognitive dysfunction was detected in affected dogs as early as 6 months of age and worsened as the disease progressed. Physical and neurological examination, funduscopy and electroretinography (ERG) were performed at regular intervals. Only the changes in ERG responses showed signs of disease progression earlier than the RL task. In the later stages of the disease clinical signs of visual and motor deficits became evident. The visual and motor deficits were not severe enough to affect the performance of dogs in the T-maze. Declining performance on the RL task is a sensitive measure of higher-order cognitive dysfunction which can serve as a useful biomarker of disease progression.
Collapse
Affiliation(s)
- D N Sanders
- Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kohan R, Cismondi IA, Oller-Ramirez AM, Guelbert N, Anzolini TV, Alonso G, Mole SE, de Kremer DR, de Halac NI. Therapeutic approaches to the challenge of neuronal ceroid lipofuscinoses. Curr Pharm Biotechnol 2011; 12:867-83. [PMID: 21235444 PMCID: PMC3632406 DOI: 10.2174/138920111795542633] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are lysosomal storage diseases (LSDs) affecting the central nervous system (CNS), with generally recessive inheritance. They are characterized by pathological lipofuscin-like material accumulating in cells. The clinical phenotypes at all onset ages show progressive loss of vision, decreasing cognitive and motor skills, epileptic seizures and premature death, with dementia without visual loss prominent in the rarer adult forms. Eight causal genes, CLN10/CTSD, CLN1/PPT1, CLN2/TPP1, CLN3, CLN5, CLN6, CLN7/MFSD8, CLN8, with more than 265 mutations and 38 polymorphisms (http://www.ucl.ac.uk/ncl) have been described. Other NCL genes are hypothesized, including CLN4 and CLN9; CLCN6, CLCN7 and possibly SGSH are under study. Some therapeutic strategies applied to other LSDs with significant systemic involvement would not be effective in NCLs due to the necessity of passing the blood brain barrier to prevent the neurodegeneration, repair or restore the CNS functionality. There are therapies for the NCLs currently at preclinical stages and under phase 1 trials to establish safety in affected children. These approaches involve enzyme replacement, gene therapy, neural stem cell replacement, immune therapy and other pharmacological approaches. In the next decade, progress in the understanding of the natural history and the biochemical and molecular cascade of events relevant to the pathogenesis of these diseases in humans and animal models will be required to achieve significant therapeutic advances.
Collapse
Affiliation(s)
- R Kohan
- Center for the Study of Inherited Metabolic Diseases (CEMECO),Children's Hospital, Department of Medical Sciences, National University Cordoba, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arsov T, Smith K, Damiano J, Franceschetti S, Canafoglia L, Bromhead C, Andermann E, Vears D, Cossette P, Rajagopalan S, McDougall A, Sofia V, Farrell M, Aguglia U, Zini A, Meletti S, Morbin M, Mullen S, Andermann F, Mole S, Bahlo M, Berkovic S. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am J Hum Genet 2011; 88:566-73. [PMID: 21549341 DOI: 10.1016/j.ajhg.2011.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022] Open
Abstract
The molecular basis of Kufs disease is unknown, whereas a series of genes accounting for most of the childhood-onset forms of neuronal ceroid lipofuscinosis (NCL) have been identified. Diagnosis of Kufs disease is difficult because the characteristic lipopigment is largely confined to neurons and can require a brain biopsy or autopsy for final diagnosis. We mapped four families with Kufs disease for whom there was good evidence of autosomal-recessive inheritance and found two peaks on chromosome 15. Three of the families were affected by Kufs type A disease and presented with progressive myoclonus epilepsy, and one was affected by type B (presenting with dementia and motor system dysfunction). Sequencing of a candidate gene in one peak shared by all four families identified no mutations, but sequencing of CLN6, found in the second peak and shared by only the three families affected by Kufs type A disease, revealed pathogenic mutations in all three families. We subsequently sequenced CLN6 in eight other families, three of which were affected by recessive Kufs type A disease. Mutations in both CLN6 alleles were found in the three type A cases and in one family affected by unclassified Kufs disease. Mutations in CLN6 are the major cause of recessive Kufs type A disease. The phenotypic differences between variant late-infantile NCL, previously found to be caused by CLN6, and Kufs type A disease are striking; there is a much later age at onset and lack of visual involvement in the latter. Sequencing of CLN6 will provide a simple diagnostic strategy in this disorder, in which definitive identification usually requires invasive biopsy.
Collapse
|
32
|
Al-Kowari MK, Hassan S, El-Said MF, Ben-Omran T, Hedin L, Mole SE, Badii R. Neuronal ceroid lipofuscinosis in Qatar: report of a novel mutation in ceroid-lipofuscinosis, neuronal 5 in the Arab population. J Child Neurol 2011; 26:625-9. [PMID: 21447811 DOI: 10.1177/0883073810387298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study sought to genetically define the first family diagnosed with neuronal ceroid lipofuscinosis from Qatar. Onset was in late infancy (3 years), and sequencing in the affected children revealed a novel homozygous c.613C>T change in exon 3 of ceroid-lipofuscinosis, neuronal 5, corresponding to a missense mutation of a conserved amino acid, p.Pro205Ser. The clinical manifestations of the disease in this family largely resemble those of ceroid-lipofuscinosis, neuronal 5 disease, variant late infantile that was first described in Finland and include mental decline, visual deterioration, ataxia, and epileptic seizures. This description of ceroid-lipofuscinosis, neuronal 5 disease in an Arab family adds to the clinical and molecular diversity of the variant late-infantile neuronal ceroid lipofuscinoses, which were originally reported in Europe and are increasingly recognized in other populations.
Collapse
Affiliation(s)
- Moza K Al-Kowari
- Molecular Genetics Laboratory, Hamad Medical Corporation, Doha, Qatar
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.
Collapse
Affiliation(s)
- Bernd A Schröder
- Biochemical Institute, Christian-Albrechts University, Kiel, Germany.
| | | | | | | |
Collapse
|
34
|
Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2010; 68:453-74. [PMID: 20680390 DOI: 10.1007/s00018-010-0468-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.
Collapse
Affiliation(s)
- Amanda L Getty
- Sanford Children's Health Research Center, Sanford Research USD, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | |
Collapse
|
35
|
Glial fibrillary acidic protein is elevated in the lysosomal storage disease classical late-infantile neuronal ceroid lipofuscinosis, but is not a component of the storage material. Biochem J 2010; 428:355-62. [PMID: 20370715 DOI: 10.1042/bj20100128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Classical late-infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal neurodegenerative disease of children caused by mutations in TPP1, the gene encoding the lysosomal protease tripeptidyl peptidase 1. LINCL is characterized by lysosomal accumulation of storage material of which only a single protein component, subunit c of mitochondrial ATP synthase, has been well established to date. Identification of other protein constituents of the storage material could provide useful insights into the pathophysiology of disease and the natural substrates for TPP1. We have therefore initiated a proteomic analysis of storage material in brain from a LINCL mouse model. One protein, GFAP (glial fibrillary acidic protein), was found to be elevated in the LINCL mice compared with normal controls in both isolated storage bodies and a lysosome-enriched subcellular fraction that contains storage material. To determine whether GFAP accumulates within the lysosome in LINCL, we examined its intracellular distribution using subcellular fractionation and morphological methods. These experiments demonstrate that GFAP is not a component of the storage material in LINCL, suggesting that reports of GFAP storage in other NCLs may need to be re-examined. A number of other proteins were elevated in the storage material and/or lysosome-enriched fraction from the LINCL mice, but it remains unclear whether these proteins are true constituents of the storage material or, like GFAP, whether they associate with this material upon purification.
Collapse
|
36
|
Schmiedt ML, Bessa C, Heine C, Ribeiro MG, Jalanko A, Kyttälä A. The neuronal ceroid lipofuscinosis protein CLN5: new insights into cellular maturation, transport, and consequences of mutations. Hum Mutat 2010; 31:356-65. [PMID: 20052765 DOI: 10.1002/humu.21195] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) represent a group of children's inherited neurodegenerative disorders caused by mutations in at least eight different genes. Mutations in the CLN5 gene result in the Finnish variant late infantile NCL characterized by gradual loss of vision, epileptic seizures, and mental deterioration. The CLN5 gene encodes a lysosomal glycoprotein of unidentified function. In this study, we have used both transient and stable expression systems for the characterization of CLN5, focusing on the localization, processing, and intracellular trafficking. We show that CLN5 is proteolytically cleaved, and that the mature polypeptide is transported to the lysosomes. Our data provide the first evidence that soluble CLN5 protein can also undergo mannose-6-phosphate receptor-independent trafficking to the lysosomes. We studied the localization and maturation of the CLN5 carrying the previously uncharacterized vLINCL disease causing mutations in HeLa cells. All analyzed disease mutations disturb the lysosomal trafficking of the mutated CLN5 proteins. The level of lysosomal targeting does not correlate, however, to disease onset, indicating that CLN5 may also function outside lysosomes. This study furthers our understanding of the basic properties of the CLN5 protein, necessary for the characterization of the consequences of disease mutations and for the planning of future therapies for vLINCL.
Collapse
Affiliation(s)
- Mia-Lisa Schmiedt
- National Institute for Health and Welfare (THL), Public Health Genomics Unit, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Xin W, Mullen TE, Kiely R, Min J, Feng X, Cao Y, O'Malley L, Shen Y, Chu-Shore C, Mole SE, Goebel HH, Sims K. CLN5 mutations are frequent in juvenile and late-onset non-Finnish patients with NCL. Neurology 2010; 74:565-71. [PMID: 20157158 DOI: 10.1212/wnl.0b013e3181cff70d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To explore a potential expansion of the phenotypic and genotypic characteristics of Finnish variant late-infantile neuronal ceroid lipofuscinosis (NCL), we screened a collection of 47 patients with clinically diagnosed NCL in whom no molecular diagnosis had been made. METHODS We used PCR amplification of genomic DNA, followed by fluorescent-labeled dideoxy-nucleotide chain termination sequencing and multiplex ligation-dependent probe amplification, to screen our cohort of patients for mutations in CLN5. We collected ethnic background, clinical, and pathologic information, as available, to clarify the breadth of CLN5 disease expression and to explore possible genotype-phenotype correlations. RESULTS We identified 10 patients with pathogenic CLN5 mutations, including 11 mutations not previously described: 4 missense, 5 out-of-frame insertion/deletion mutations, and 2 large intragenic deletions. We also documented 3 previously reported CLN5 mutations. The age at disease onset in this cohort is predominantly juvenile rather than late infantile. Importantly, we have identified 2 adult-onset patients who share a common pathogenic allele. The majority of patients presented with motor and visual impairments and not seizures. In those patients with available longitudinal data, most had progressed to global neurodevelopmental and visual failure with seizures within 1 to 4 years. CONCLUSIONS Our study suggests that CLN5 mutations 1) are more common in patients with neuronal ceroid lipofuscinosis (NCL) than previously reported, 2) are found in non-Finnish NCL patients of broad ethnic diversity, and 3) can be identified in NCL patients with disease onset in adult and juvenile epochs. CLN5 genetic testing is warranted in a wider population with clinical and pathologic features suggestive of an NCL disorder.
Collapse
Affiliation(s)
- W Xin
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, and Center for Human Genetic Research, Massachusetts General Hospital, Simches Research Building, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lull ME, Freeman WM, VanGuilder HD, Vrana KE. The use of neuroproteomics in drug abuse research. Drug Alcohol Depend 2010; 107:11-22. [PMID: 19926406 PMCID: PMC3947580 DOI: 10.1016/j.drugalcdep.2009.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 09/21/2009] [Accepted: 10/15/2009] [Indexed: 01/08/2023]
Abstract
The number of discovery proteomic studies of drug abuse has begun to increase in recent years, facilitated by the adoption of new techniques such as 2D-DIGE and iTRAQ. For these new tools to provide the greatest insight into the neurobiology of addiction, however, it is important that the addiction field has a clear understanding of the strengths, limitations, and drug abuse-specific research factors of neuroproteomic studies. This review outlines approaches for improving animal models, protein sample quality and stability, proteome fractionation, data analysis, and data sharing to maximize the insights gained from neuroproteomic studies of drug abuse. For both the behavioral researcher interested in what proteomic study results mean, and for biochemists joining the drug abuse research field, a careful consideration of these factors is needed. Similar to genomic, transcriptomic, and epigenetic methods, appropriate use of new proteomic technologies offers the potential to provide a novel and global view of the neurobiological changes underlying drug addiction. Proteomic tools may be an enabling technology to identify key proteins involved in drug abuse behaviors, with the ultimate goal of understanding the etiology of drug abuse and identifying targets for the development of therapeutic agents.
Collapse
Affiliation(s)
- Melinda E. Lull
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Willard M. Freeman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA, Functional Genomics Facility, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA,Corresponding author at: Department of Pharmacology, R130, Penn State College of Medicine, 500 University Drive, P.O. Box 850, Hershey, PA 17033, USA. Tel.: +1 717 531 8285; fax: +1 717 531 0419. (K.E. Vrana)
| |
Collapse
|
39
|
Lanucara F, Brownridge P, Young IS, Whitfield PD, Doherty MK. Degradative proteomics and disease mechanisms. Proteomics Clin Appl 2010; 4:133-42. [PMID: 21137039 DOI: 10.1002/prca.200900159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/22/2009] [Accepted: 10/08/2009] [Indexed: 02/01/2023]
Abstract
Protein degradation is a fundamental biological process, which is essential for the maintenance and regulation of normal cellular function. In humans and animals, proteins can be degraded by a number of mechanisms: the ubiquitin-proteasome system, autophagy and intracellular proteases. The advances in contemporary protein analysis means that proteomics is increasingly being used to explore these key pathways and as a means of monitoring protein degradation. The dysfunction of protein degradative pathways has been associated with the development of a number of important diseases including cancer, muscle wasting disorders and neurodegenerative diseases. This review will focus on the role of proteomics to study cellular degradative processes and how these strategies are being applied to understand the molecular basis of diseases arising from disturbances in protein degradation.
Collapse
Affiliation(s)
- Francesco Lanucara
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, UK
| | | | | | | | | |
Collapse
|