1
|
Zhang L, Martin JG, Gao B, Zeng W, Couvertier S, Johnson DS. Chemoproteomic Profiling of Clickable Fumarate Probes for Target Identification and Mechanism of Action Studies. ACS Chem Biol 2025. [PMID: 39874457 DOI: 10.1021/acschembio.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins. We further perform quantitative chemoproteomics analysis for proteome-wide target identification and validate several unique and shared targets of DMF and MMF, which provide insight into the reactivity, selectivity, and target engagement of fumarates.
Collapse
Affiliation(s)
- Lu Zhang
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jeffrey G Martin
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Benbo Gao
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Weike Zeng
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shalise Couvertier
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas S Johnson
- Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
3
|
Yang JC, Chen SP, Wang YF, Chang CH, Chang KH, Fuh JL, Chow LH, Han CL, Chen YJ, Wang SJ. Cerebrospinal Fluid Proteome Map Reveals Molecular Signatures of Reversible Cerebral Vasoconstriction Syndrome. Mol Cell Proteomics 2024; 23:100794. [PMID: 38839039 PMCID: PMC11263949 DOI: 10.1016/j.mcpro.2024.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Reversible cerebral vasoconstriction syndrome (RCVS) is a complex neurovascular disorder characterized by repetitive thunderclap headaches and reversible cerebral vasoconstriction. The pathophysiological mechanism of this mysterious syndrome remains underexplored and there is no clinically available molecular biomarker. To provide insight into the pathogenesis of RCVS, this study reported the first landscape of dysregulated proteome of cerebrospinal fluid (CSF) in patients with RCVS (n = 21) compared to the age- and sex-matched controls (n = 20) using data-independent acquisition mass spectrometry. Protein-protein interaction and functional enrichment analysis were employed to construct functional protein networks using the RCVS proteome. An RCVS-CSF proteome library resource of 1054 proteins was established, which illuminated large groups of upregulated proteins enriched in the brain and blood-brain barrier (BBB). Personalized RCVS-CSF proteomic profiles from 17 RCVS patients and 20 controls reveal proteomic changes involving the complement system, adhesion molecules, and extracellular matrix, which may contribute to the disruption of BBB and dysregulation of neurovascular units. Moreover, an additional validation cohort validated a panel of biomarker candidates and a two-protein signature predicted by machine learning model to discriminate RCVS patients from controls with an area under the curve of 0.997. This study reveals the first RCVS proteome and a potential pathogenetic mechanism of BBB and neurovascular unit dysfunction. It also nominates potential biomarker candidates that are mechanistically plausible for RCVS, which may offer potential diagnostic and therapeutic opportunities beyond the clinical manifestations.
Collapse
Affiliation(s)
- Jhih-Ci Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chan-Hua Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Central University, Taoyuan, Taiwan
| | - Kun-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Department of Chemistry, Institute of Chemistry, Academia Sinica, Naitonal Tsing Hua University, Hsinchu, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lok-Hi Chow
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Bravo-Miana RDC, Arizaga-Echebarria JK, Otaegui D. Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers? Transl Neurodegener 2024; 13:32. [PMID: 38898538 PMCID: PMC11186231 DOI: 10.1186/s40035-024-00418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.
Collapse
Affiliation(s)
- Rocío Del Carmen Bravo-Miana
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Jone Karmele Arizaga-Echebarria
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Neuroscience Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
5
|
Lereim RR, Nytrova P, Guldbrandsen A, Havrdova EK, Myhr KM, Barsnes H, Berven FS. Natalizumab promotes anti-inflammatory and repair effects in multiple sclerosis. PLoS One 2024; 19:e0300914. [PMID: 38527011 PMCID: PMC10962820 DOI: 10.1371/journal.pone.0300914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system leading to demyelination and axonal loss. Relapsing-remitting multiple sclerosis (RRMS) is commonly treated by anti-inflammatory drugs, where one of the most effective drugs to date is the monoclonal antibody natalizumab. METHODS The cerebrospinal fluid (CSF) proteome was analyzed in 56 patients with RRMS before and after natalizumab treatment, using label-free mass spectrometry and a subset of the changed proteins were verified by parallel reaction monitoring in a new cohort of 20 patients, confirming the majority of observed changes. RESULTS A total of 287 differentially abundant proteins were detected including (i) the decrease of proteins with roles in immunity, such as immunoglobulin heavy constant mu, chitinase-3-like protein 1 and chitotriosidase, (ii) an increase of proteins involved in metabolism, such as lactate dehydrogenase A and B and malate-dehydrogenase cytoplasmic, and (iii) an increase of proteins associated with the central nervous system, including lactadherin and amyloid precursor protein. Comparison with the CSF-PR database provided evidence that natalizumab counters protein changes commonly observed in RRMS. Furthermore, vitamin-D binding protein and apolipoprotein 1 and 2 were unchanged during treatment with natalizumab, implying that these may be involved in disease activity unaffected by natalizumab. CONCLUSIONS Our study revealed that some of the previously suggested biomarkers for MS were affected by the natalizumab treatment while others were not. Proteins not previously suggested as biomarkers were also found affected by the treatment. In sum, the results provide new information on how the natalizumab treatment impacts the CSF proteome of MS patients, and points towards processes affected by the treatment. These findings ought to be explored further to disclose potential novel disease mechanisms and predict treatment responses.
Collapse
Affiliation(s)
- Ragnhild Reehorst Lereim
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Petra Nytrova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Eva Kubala Havrdova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kjell-Morten Myhr
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Harald Barsnes
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit (CBU), Department of Informatics, University of Bergen, Bergen, Norway
| | - Frode S. Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
7
|
Gomes Moreira D, Jan A. A beginner's guide into curated analyses of open access datasets for biomarker discovery in neurodegeneration. Sci Data 2023; 10:432. [PMID: 37414779 PMCID: PMC10325954 DOI: 10.1038/s41597-023-02338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The discovery of surrogate biomarkers reflecting neuronal dysfunction in neurodegenerative diseases (NDDs) remains an active area of research. To boost these efforts, we demonstrate the utility of publicly available datasets for probing the pathogenic relevance of candidate markers in NDDs. As a starting point, we introduce the readers to several open access resources, which contain gene expression profiles and proteomics datasets from patient studies in common NDDs, including proteomics analyses of cerebrospinal fluid (CSF). Then, we illustrate the method for curated gene expression analyses across select brain regions from four cohorts of Parkinson disease patients (and from one study in common NDDs), probing glutathione biogenesis, calcium signaling and autophagy. These data are complemented by findings of select markers in CSF-based studies in NDDs. Additionally, we enclose several annotated microarray studies, and summarize reports on CSF proteomics across the NDDs, which the readers can utilize for translational purposes. We anticipate that this "beginner's guide" will benefit the research community in NDDs, and would serve as a useful educational tool.
Collapse
Affiliation(s)
- Diana Gomes Moreira
- Department of Clinical Medicine, Palle Juul-Jensens Boulevard 165, DK-8200, Aarhus N, Denmark
| | - Asad Jan
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Afridi R, Lee WH, Kim JH, Suk K. Utilizing databases for astrocyte secretome research. Expert Rev Proteomics 2023; 20:371-379. [PMID: 37978891 DOI: 10.1080/14789450.2023.2285311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Astrocytes are the most abundant cell type in the central nervous system (CNS). They play a pivotal role in supporting neuronal function and maintaining homeostasis by releasing a variety of bioactive proteins, collectively known as the astrocyte secretome. Investigating secretome provides insights into the molecular mechanisms underlying astrocyte function and dysfunction, as well as novel strategies to prevent and treat diseases affecting the CNS. AREAS COVERED Proteomics databases are a valuable resource for studying the role of astrocytes in healthy and diseased brain function, as they provide information about gene expression, protein expression, and cellular function. In this review, we discuss existing databases that are useful for astrocyte secretome research. EXPERT OPINION Astrocyte secretomics is a field that is rapidly progressing, yet the availability of dedicated databases is currently limited. To meet the increasing demand for comprehensive omics data in glia research, developing databases specifically focused on astrocyte secretome is crucial. Such databases would allow researchers to investigate the intricate molecular landscape of astrocytes and comprehend their involvement in diverse physiological and pathological processes. Expanding resources through the development of databases dedicated to the astrocyte secretome may facilitate further advancements in this field.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Mavrina E, Kimble L, Waury K, Gogishvili D, Gómez de San José N, Das S, Coppens S, Fernandes Gomes B, Mravinacová S, Wojdała AL, Bolsewig K, Bayoumy S, Burtscher F, Mohaupt P, Willemse E, Teunissen C. Multi-Omics Interdisciplinary Research Integration to Accelerate Dementia Biomarker Development (MIRIADE). Front Neurol 2022; 13:890638. [PMID: 35903119 PMCID: PMC9315267 DOI: 10.3389/fneur.2022.890638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.
Collapse
Affiliation(s)
- Ekaterina Mavrina
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leighann Kimble
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katharina Waury
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Centre for Integrative Bioinformatics VU (IBIVU) – Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dea Gogishvili
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Centre for Integrative Bioinformatics VU (IBIVU) – Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nerea Gómez de San José
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Department of Neurology, University of Ulm, Ulm, Germany
| | - Shreyasee Das
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,ADx NeuroSciences, Gent, Belgium
| | - Salomé Coppens
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, United Kingdom
| | - Bárbara Fernandes Gomes
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sára Mravinacová
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Division of Affinity Proteomics, Department of Protein Science, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Anna Lidia Wojdała
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Katharina Bolsewig
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sherif Bayoumy
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Felicia Burtscher
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pablo Mohaupt
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Institute for Regenerative Medicine and Biotherapy - Plateforme de Protéomique Clinique (IRMB-PPC), Institute for Neurosciences of Montpellier (INM), Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Eline Willemse
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte Teunissen
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,*Correspondence: Charlotte Teunissen
| | | |
Collapse
|
10
|
Abstract
SignificanceSingle-cell transcriptomics has revealed specific glial activation states associated with the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease (AD and PD). What is still needed are clinically relevant biomarkers for deciphering such glial states in AD and PD patients. To this end, we applied proteome analysis in cerebrospinal fluid (CSF) of mouse models of AD and PD pathology. This allowed us to identify a panel of glial CSF proteins that largely match the transcriptomic changes. The identified proteins can also be quantified in human CSF and show changes in AD patients, supporting their relevance as biomarker candidates to stage glial activation in patients with neurodegenerative diseases.
Collapse
|
11
|
Dayon L, Cominetti O, Affolter M. Proteomics of Human Biological Fluids for Biomarker Discoveries: Technical Advances and Recent Applications. Expert Rev Proteomics 2022; 19:131-151. [PMID: 35466824 DOI: 10.1080/14789450.2022.2070477] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biological fluids are routine samples for diagnostic testing and monitoring. Blood samples are typically measured because of their moderate collection invasiveness and high information content on health and disease. Several body fluids, such as cerebrospinal fluid (CSF), are also studied and suited to specific pathologies. Over the last two decades proteomics has quested to identify protein biomarkers but with limited success. Recent technologies and refined pipelines have accelerated the profiling of human biological fluids. AREAS COVERED We review proteomic technologies for the identification of biomarkers. Those are based on antibodies/aptamers arrays or mass spectrometry (MS), but new ones are emerging. Advances in scalability and throughput have allowed to better design studies and cope with the limited sample size that had until now prevailed due to technological constraints. With these enablers, plasma/serum, CSF, saliva, tears, urine, and milk proteomes have been further profiled; we provide a non-exhaustive picture of some recent highlights (mainly covering literature from last five years in the Scopus database) using MS-based proteomics. EXPERT OPINION While proteomics has been in the shadow of genomics for years, proteomic tools and methodologies have reached a certain maturity. They are better suited to discover innovative and robust biofluid biomarkers.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Wojdała AL, Chiasserini D, Bellomo G, Paciotti S, Gaetani L, Paoletti FP, Parnetti L. Phosphatidylethanolamine Binding Protein 1 (PEBP1) in Alzheimer's Disease: ELISA Development and Clinical Validation. J Alzheimers Dis 2022; 88:1459-1468. [PMID: 35786656 PMCID: PMC9484123 DOI: 10.3233/jad-220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phosphatidylethanolamine binding protein 1 (PEBP1) is a multifunctional protein, mainly known for its specific binding of phosphatidylethanolamine and the ability to suppress the Raf1-MAPK pathway. Its potential role as an Alzheimer's disease (AD) biomarker has been proposed in several studies. However, evaluation of its discriminative value in clinical cohorts is missing. OBJECTIVE We aimed to develop a new immunoassay for the measurement of PEBP1 in cerebrospinal fluid (CSF) and assess the possible role of this protein as AD biomarker. METHODS We developed a sandwich enzyme-linked immunosorbent assay (ELISA) for detection of PEBP1 in CSF and performed a technical and a clinical validation on two well-characterized cohorts. The first cohort included 14 mild cognitive impairment due to AD (MCI-AD) and 11 other neurological diseases (OND) patients. The second, larger cohort, included 25 MCI-AD, 29 AD dementia (AD-dem), and 21 OND patients. RESULTS PEBP1 is highly sensitive to pre-analytical conditions, especially to prolonged storage at room temperature or 4°C. Analysis of the first cohort showed a trend of an increase of PEBP1 level in MCI-AD patients versus OND subjects. Analysis of the second cohort did not show significant differences among diagnostic groups. Weak, positive correlation was found between CSF PEBP1 and t-tau, p-tau, and Aβ40 in the AD-dem group. CONCLUSION A novel ELISA for the detection of PEBP1 in CSF was developed. Further research is needed to assess the potential of PEBP1 in AD diagnostics. The observed dependence of the PEBP1 signal on operating procedures encourages its potential application as CSF quality control.
Collapse
Affiliation(s)
- Anna Lidia Wojdała
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Thompson AG, Oeckl P, Feneberg E, Bowser R, Otto M, Fischer R, Kessler B, Turner MR. Advancing mechanistic understanding and biomarker development in amyotrophic lateral sclerosis. Expert Rev Proteomics 2021; 18:977-994. [PMID: 34758687 DOI: 10.1080/14789450.2021.2004890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Proteomic analysis has contributed significantly to the study of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has helped to define the pathological change common to nearly all cases, namely intracellular aggregates of phosphorylated TDP-43, shifting the focus of pathogenesis in ALS toward RNA biology. Proteomics has also uniquely underpinned the delineation of disease mechanisms in model systems and has been central to recent advances in human ALS biomarker development. AREAS COVERED The contribution of proteomics to understanding the cellular pathological changes, disease mechanisms, and biomarker development in ALS are covered. EXPERT OPINION Proteomics has delivered unique insights into the pathogenesis of ALS and advanced the goal of objective measurements of disease activity to improve therapeutic trials. Further developments in sensitivity and quantification are expected, with application to the presymptomatic phase of human disease offering the hope of prevention strategies.
Collapse
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (Dzne e.V.), Ulm, Germany
| | - Emily Feneberg
- Department of Neurology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Robert Bowser
- Departments of Neurology and Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Biswas D, Shenoy SV, Chetanya C, Lachén-Montes M, Barpanda A, Athithyan AP, Ghosh S, Ausín K, Zelaya MV, Fernández-Irigoyen J, Manna A, Roy S, Talukdar A, Ball GR, Santamaría E, Srivastava S. Deciphering the Interregional and Interhemisphere Proteome of the Human Brain in the Context of the Human Proteome Project. J Proteome Res 2021; 20:5280-5293. [PMID: 34714085 DOI: 10.1021/acs.jproteome.1c00511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study, which performs an extensive mass spectrometry-based analysis of 19 brain regions from both left and right hemispheres, presents the first draft of the human brain interhemispheric proteome. This high-resolution proteomics data provides comprehensive coverage of 3300 experimentally measured (nonhypothetical) proteins across multiple regions, allowing the characterization of protein-centric interhemispheric differences and synapse biology, and portrays the regional mapping of specific regions for brain disorder biomarkers. In the context of the Human Proteome Project (HPP), the interhemispheric proteome data reveal specific markers like chimerin 2 (CHN2) in the cerebellar vermis, olfactory marker protein (OMP) in the olfactory bulb, and ankyrin repeat domain 63 (ANKRD63) in basal ganglia, in line with regional brain transcriptomes mapped in the Human Protein Atlas (HPA). In addition, an in silico analysis pipeline was used to predict the structure and function of the uncharacterized uPE1 protein ANKRD63, and parallel reaction monitoring (PRM) was applied to validate its region-specific expression. Finally, we have built the Interhemispheric Brain Proteome Map (IBPM) Portal (www.brainprot.org) to stimulate the scientific community's interest in the brain molecular landscape and accelerate and support research in neuroproteomics. Data are available via ProteomeXchange with identifier PXD019936.
Collapse
Affiliation(s)
- Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chetanya Chetanya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Susmita Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - María Victoria Zelaya
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Akash Manna
- Medicine Department, Medical College Hospital Kolkata, 88 College Street, Kolkata 700072, India
| | - Sudesh Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arunasu Talukdar
- Medicine Department, Medical College Hospital Kolkata, 88 College Street, Kolkata 700072, India
| | - Graham Roy Ball
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
15
|
Pham TK, Buczek WA, Mead RJ, Shaw PJ, Collins MO. Proteomic Approaches to Study Cysteine Oxidation: Applications in Neurodegenerative Diseases. Front Mol Neurosci 2021; 14:678837. [PMID: 34177463 PMCID: PMC8219902 DOI: 10.3389/fnmol.2021.678837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 11/15/2022] Open
Abstract
Oxidative stress appears to be a key feature of many neurodegenerative diseases either as a cause or consequence of disease. A range of molecules are subject to oxidation, but in particular, proteins are an important target and measure of oxidative stress. Proteins are subject to a range of oxidative modifications at reactive cysteine residues, and depending on the level of oxidative stress, these modifications may be reversible or irreversible. A range of experimental approaches has been developed to characterize cysteine oxidation of proteins. In particular, mass spectrometry-based proteomic methods have emerged as a powerful means to identify and quantify cysteine oxidation sites on a proteome scale; however, their application to study neurodegenerative diseases is limited to date. Here we provide a guide to these approaches and highlight the under-exploited utility of these methods to measure oxidative stress in neurodegenerative diseases for biomarker discovery, target engagement and to understand disease mechanisms.
Collapse
Affiliation(s)
- Trong Khoa Pham
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Weronika A. Buczek
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Mark O. Collins
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Guldbrandsen A, Lereim RR, Jacobsen M, Garberg H, Kroksveen AC, Barsnes H, Berven FS. Development of robust targeted proteomics assays for cerebrospinal fluid biomarkers in multiple sclerosis. Clin Proteomics 2020; 17:33. [PMID: 32963504 PMCID: PMC7499868 DOI: 10.1186/s12014-020-09296-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Background Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time. Methods Biomarker candidates were located in CSF-PR (proteomics.uib.no/csf-pr), and further filtered based on estimated concentration in CSF and biological function. Peptide surrogates for internal standards were selected according to relevant criteria, parallel reaction monitoring (PRM) assays created, and extensive assay quality testing performed, i.e. intra- and inter-day variation, trypsin digestion status over time, and whether the peptides were able to separate multiple sclerosis patients and controls. Results Assays were developed for 25 proteins, represented by 72 peptides selected according to relevant guidelines and available literature and tested for assay peptide suitability. Stability testing revealed 64 peptides with low intra- and inter-day variations, with 44 also being stably digested after 16 h of trypsin digestion, and 37 furthermore showing a significant difference between multiple sclerosis and controls, thereby confirming literature findings. Calibration curves and the linear area of measurement have, so far, been determined for 17 of these peptides. Conclusions We present 37 high-quality PRM assays across 21 CSF-proteins found to be affected by multiple sclerosis, along with a recommended workflow for future development of new assays. The assays can directly be used by others, thus enabling better comparison between studies. Finally, the assays can robustly and stably monitor biological processes in multiple sclerosis patients over time, thus potentially aiding in diagnosis and prognosis, and ultimately in treatment decisions.
Collapse
Affiliation(s)
- Astrid Guldbrandsen
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway.,Computational Biology Unit, CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Ragnhild Reehorst Lereim
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway.,Computational Biology Unit, CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Mari Jacobsen
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hilde Garberg
- Biobank Haukeland, Haukeland University Hospital, Bergen, Norway
| | | | - Harald Barsnes
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway.,Computational Biology Unit, CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Hernandez-Valladares M, Bruserud Ø, Selheim F. The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives. Int J Mol Sci 2020; 21:ijms21186830. [PMID: 32957646 PMCID: PMC7556012 DOI: 10.3390/ijms21186830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
With the current reproducibility of proteome preparation workflows along with the speed and sensitivity of the mass spectrometers, the transition of the mass spectrometry (MS)-based proteomics technology from biomarker discovery to clinical implementation is under appraisal in the biomedicine community. Therefore, this technology might be implemented soon to detect well-known biomarkers in cancers and other diseases. Acute myeloid leukemia (AML) is an aggressive heterogeneous malignancy that requires intensive treatment to cure the patient. Leukemia relapse is still a major challenge even for patients who have favorable genetic abnormalities. MS-based proteomics could be of great help to both describe the proteome changes of individual patients and identify biomarkers that might encourage specific treatments or clinical strategies. Herein, we will review the advances and availability of the MS-based proteomics strategies that could already be used in clinical proteomics. However, the heterogeneity of complex diseases as AML requires consensus to recognize AML biomarkers and to establish MS-based workflows that allow their unbiased identification and quantification. Although our literature review appears promising towards the utilization of MS-based proteomics in clinical AML in a near future, major efforts are required to validate AML biomarkers and agree on clinically approved workflows.
Collapse
MESH Headings
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Computational Biology
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Mass Spectrometry/methods
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Proteomics/methods
- Robotics/instrumentation
- Robotics/methods
- Workflow
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Correspondence: (M.H.-V.); (Ø.B.); (F.S.); Tel.: +47-55586368 (M.H.-V.); +47-55972997 (Ø.B.); +47-55586368 (F.S.)
| |
Collapse
|
18
|
Bader JM, Geyer PE, Müller JB, Strauss MT, Koch M, Leypoldt F, Koertvelyessy P, Bittner D, Schipke CG, Incesoy EI, Peters O, Deigendesch N, Simons M, Jensen MK, Zetterberg H, Mann M. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease. Mol Syst Biol 2020; 16:e9356. [PMID: 32485097 PMCID: PMC7266499 DOI: 10.15252/msb.20199356] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higher CSF levels of tau, but we lack knowledge of systems-wide changes of CSF protein levels that accompany AD. Here, we present a highly reproducible mass spectrometry (MS)-based proteomics workflow for the in-depth analysis of CSF from minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with previous links to neurodegeneration such as tau, SOD1, and PARK7 differed most strongly by AD status, providing strong positive controls for our approach. CSF proteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature.
Collapse
Affiliation(s)
- Jakob M Bader
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- NNF Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Johannes B Müller
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Maximilian T Strauss
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Manja Koch
- Departments of Nutrition & EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - Frank Leypoldt
- Institute of Clinical ChemistryFaculty of MedicineKiel UniversityKielGermany
- Department of NeurologyFaculty of MedicineKiel UniversityKielGermany
| | - Peter Koertvelyessy
- Department of NeurologyMedical FacultyOtto von Guericke University MagdeburgMagdeburgGermany
- Department of NeurologyCharité Universitätsmedizin BerlinBerlinGermany
| | - Daniel Bittner
- Department of NeurologyMedical FacultyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Carola G Schipke
- Experimental & Clinical Research Center (ECRC), Charité – Universitätsmedizin Berlincorporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, & Berlin Institute of HealthBerlinGermany
| | - Enise I Incesoy
- Department of Psychiatrycorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin & Berlin Institute of Health, Charité Universitätsmedizin BerlinBerlinGermany
| | - Oliver Peters
- Department of Psychiatrycorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin & Berlin Institute of Health, Charité Universitätsmedizin BerlinBerlinGermany
- German Center for Neurodegenerative DiseasesBerlinGermany
| | - Nikolaus Deigendesch
- Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems NeurologyMunichGermany
| | - Majken K Jensen
- Departments of Nutrition & EpidemiologyHarvard T.H. Chan School of Public HealthBostonMAUSA
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- NNF Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
19
|
Determination of a Tumor-Promoting Microenvironment in Recurrent Medulloblastoma: A Multi-Omics Study of Cerebrospinal Fluid. Cancers (Basel) 2020; 12:cancers12061350. [PMID: 32466393 PMCID: PMC7352284 DOI: 10.3390/cancers12061350] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular classification of medulloblastoma (MB) is well-established and reflects the cell origin and biological properties of tumor cells. However, limited data is available regarding the MB tumor microenvironment. Here, we present a mass spectrometry-based multi-omics pilot study of cerebrospinal fluid (CSF) from recurrent MB patients. A group of age-matched patients without a neoplastic disease was used as control cohort. Proteome profiling identified characteristic tumor markers, including FSTL5, ART3, and FMOD, and revealed a strong prevalence of anti-inflammatory and tumor-promoting proteins characteristic for alternatively polarized myeloid cells in MB samples. The up-regulation of ADAMTS1, GAP43 and GPR37 indicated hypoxic conditions in the CSF of MB patients. This notion was independently supported by metabolomics, demonstrating the up-regulation of tryptophan, methionine, serine and lysine, which have all been described to be induced upon hypoxia in CSF. While cyclooxygenase products were hardly detectable, the epoxygenase product and beta-oxidation promoting lipid hormone 12,13-DiHOME was found to be strongly up-regulated. Taken together, the data suggest a vicious cycle driven by autophagy, the formation of 12,13-DiHOME and increased beta-oxidation, thus promoting a metabolic shift supporting the formation of drug resistance and stem cell properties of MB cells. In conclusion, the different omics-techniques clearly synergized and mutually supported a novel model for a specific pathomechanism.
Collapse
|
20
|
Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer's disease. Clin Chim Acta 2019; 494:79-93. [PMID: 30858094 DOI: 10.1016/j.cca.2019.03.243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
Abstract
Detailed knowledge of protein changes in cerebrospinal fluid (CSF) across healthy and diseased individuals would provide a better understanding of the onset and progression of neurodegenerative disorders. In this study, we selected 20 brain-enriched proteins previously identified in CSF by antibody suspension bead arrays (SBA) to be potentially biomarkers for Alzheimer's disease (AD) and verified these using an orthogonal approach. We examined the same set of 94 CSF samples from patients affected by AD (including preclinical and prodromal), mild cognitive impairment (MCI), non-AD dementia and healthy individuals, which had previously been analyzed by SBA. Twenty-eight parallel reaction monitoring (PRM) assays were developed and 13 of them could be validated for protein quantification. Antibody profiles were verified by PRM. For seven proteins, the antibody profiles were highly correlated with the PRM results (r > 0.7) and GAP43, VCAM1 and PSAP were identified as potential markers of preclinical AD. In conclusion, we demonstrate the usefulness of targeted mass spectrometry as a tool for the orthogonal verification of antibody profiling data, suggesting that these complementary methods can be successfully applied for comprehensive exploration of CSF protein levels in neurodegenerative disorders.
Collapse
|
21
|
Lachén-Montes M, González-Morales A, Fernández-Irigoyen J, Santamaría E. Deployment of Label-Free Quantitative Olfactory Proteomics to Detect Cerebrospinal Fluid Biomarker Candidates in Synucleinopathies. Methods Mol Biol 2019; 2044:273-289. [PMID: 31432419 DOI: 10.1007/978-1-4939-9706-0_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nowadays, diagnosis of neurodegenerative disorders is mainly based on neuroimaging and clinical symptoms, although postmortem neuropathological confirmation remains the gold standard diagnostic technique. Therefore, cerebrospinal fluid (CSF) proteome is considered a valuable molecular repository for diagnosing and targeting the neurodegenerative process. It is well known that olfactory dysfunction is among the earliest features of synucleinopathies such as Parkinson's disease (PD). Consequently, we consider that the application of tissue proteomics in primary olfactory structures is an ideal approach to explore early pathophysiological changes, detecting olfactory proteins that might be tested in CSF as potential biomarkers. Data mining of mass spectrometry-generated datasets has revealed that 30% of the olfactory bulb (OB) proteome is also localized in CSF. In this chapter, we describe a method that utilizes label-free quantitative proteomics and computational analysis to characterize human OB proteomes and potential cerebrospinal fluid (CSF) biomarkers associated with neurodegenerative syndromes. For that, we applied peptide fractionation methods, followed by tandem mass spectrometry (nanoLC-MS/MS), in silico analysis, and semi-quantitative orthogonal techniques in OB derived from PD subjects. After obtaining the differential OB proteome across Lewy-type alpha-synucleinopathy (LTS) stages and further validating the method, this workflow was applied to probe changes in NEGR1 (neuronal growth regulator 1) and GNPDA2 (glucosamine-6-phosphate deaminase 2) protein levels in CSF derived from parkinsonian subjects with respect to controls, observing an inverse correlation between both proteins and α-synuclein, the principal component analysis of Lewy pathology.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Andrea González-Morales
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Unit, Clinical Neuroproteomics Laboratory, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Proteored-ISCIII, Pamplona, Spain.
| |
Collapse
|
22
|
Barkovits K, Linden A, Galozzi S, Schilde L, Pacharra S, Mollenhauer B, Stoepel N, Steinbach S, May C, Uszkoreit J, Eisenacher M, Marcus K. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2018; 17:3418-3430. [PMID: 30207155 DOI: 10.1021/acs.jproteome.8b00308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebrospinal fluid (CSF) is in direct contact with the brain and serves as a valuable specimen to examine diseases of the central nervous system through analyzing its components. These include the analysis of metabolites, cells as well as proteins. For identifying new suitable diagnostic protein biomarkers bottom-up data-dependent acquisition (DDA) mass spectrometry-based approaches are most popular. Drawbacks of this method are stochastic and irreproducible precursor ion selection. Recently, data-independent acquisition (DIA) emerged as an alternative method. It overcomes several limitations of DDA, since it combines the benefits of DDA and targeted methods like selected reaction monitoring (SRM). We established a DIA method for in-depth proteome analysis of CSF. For this, four spectral libraries were generated with samples from native CSF ( n = 5), CSF fractionation (15 in total) and substantia nigra fractionation (54 in total) and applied to three CSF DIA replicates. The DDA and DIA methods for CSF were conducted with the same nanoLC parameters using a 180 min gradient. Compared to a conventional DDA method, our DIA approach increased the number of identified protein groups from 648 identifications in DDA to 1574 in DIA using a comprehensive spectral library generated with DDA measurements from five native CSF and 54 substantia nigra fractions. We also could show that a sample specific spectral library generated from native CSF only increased the identification reproducibility from three DIA replicates to 90% (77% with a DDA method). Moreover, by utilizing a substantia nigra specific spectral library for CSF DIA, over 60 brain-originated proteins could be identified compared to only 11 with DDA. In conclusion, the here presented optimized DIA method substantially outperforms DDA and could develop into a powerful tool for biomarker discovery in CSF. Data are available via ProteomeXchange with the identifiers PXD010698, PXD010708, PXD010690, PXD010705, and PXD009624.
Collapse
Affiliation(s)
- Katalin Barkovits
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Andreas Linden
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Sara Galozzi
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Lukas Schilde
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Sandra Pacharra
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik , Klinikstraße 16 , D-34128 Kassel , Germany
| | - Nadine Stoepel
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Simone Steinbach
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Caroline May
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Julian Uszkoreit
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Martin Eisenacher
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Katrin Marcus
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| |
Collapse
|
23
|
Sathe G, Na CH, Renuse S, Madugundu A, Albert M, Moghekar A, Pandey A. Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 2018; 15:29. [PMID: 30220890 PMCID: PMC6136184 DOI: 10.1186/s12014-018-9205-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is an important source of potential biomarkers that affect the brain. Biomarkers for neurodegenerative disorders are needed to assist in diagnosis, monitoring disease progression and evaluating efficacy of therapies. Recent studies have demonstrated the involvement of tyrosine kinases in neuronal cell death. Thus, neurodegeneration in the brain is related to altered tyrosine phosphorylation of proteins in the brain and identification of abnormally phosphorylated tyrosine peptides in CSF has the potential to ascertain candidate biomarkers for neurodegenerative disorders. Methods In this study, we used an antibody-based tyrosine phosphopeptide enrichment method coupled with high resolution Orbitrap Fusion Tribrid Lumos Fourier transform mass spectrometer to catalog tyrosine phosphorylated peptides from cerebrospinal fluid. The subset of identified tyrosine phosphorylated peptides was also validated using parallel reaction monitoring (PRM)-based targeted approach. Results To date, there are no published studies on global profiling of phosphotyrosine modifications of CSF proteins. We carried out phosphotyrosine profiling of CSF using an anti-phosphotyrosine antibody-based enrichment and analysis using high resolution Orbitrap Fusion Lumos mass spectrometer. We identified 111 phosphotyrosine peptides mapping to 66 proteins, which included 24 proteins which have not been identified in CSF previously. We then validated a set of 5 tyrosine phosphorylated peptides in an independent set of CSF samples from cognitively normal subjects, using a PRM-based targeted approach. Conclusions The findings from this deep phosphotyrosine profiling of CSF samples have the potential to identify novel disease-related phosphotyrosine-containing peptides in CSF. Electronic supplementary material The online version of this article (10.1186/s12014-018-9205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gajanan Sathe
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,7Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Chan Hyun Na
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,6Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Anil Madugundu
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,Institute of Bioinformatics, International Technology Park, Bangalore, 560 066 India.,7Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Marilyn Albert
- 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Abhay Moghekar
- 4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Akhilesh Pandey
- 1Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029 India.,3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,5Departments of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
24
|
Macron C, Lane L, Núñez Galindo A, Dayon L. Deep Dive on the Proteome of Human Cerebrospinal Fluid: A Valuable Data Resource for Biomarker Discovery and Missing Protein Identification. J Proteome Res 2018; 17:4113-4126. [PMID: 30124047 DOI: 10.1021/acs.jproteome.8b00300] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cerebrospinal fluid (CSF) is a body fluid of choice for biomarker studies of brain disorders but remains relatively under-studied compared with other biological fluids such as plasma, partly due to the more invasive means of its sample collection. The present study establishes an in-depth CSF proteome through the analysis of a unique CSF sample from a pool of donors. After immunoaffinity depletion, the CSF sample was fractionated using off-gel electrophoresis and analyzed with liquid chromatography tandem mass spectrometry (MS) using the latest generation of hybrid Orbitrap mass spectrometers. The shotgun proteomic analysis allowed the identification of 20 689 peptides mapping on 3379 proteins. To the best of our knowledge, the obtained data set constitutes the largest CSF proteome published so far. Among the CSF proteins identified, 34% correspond to genes whose transcripts are highly expressed in brain according to the Human Protein Atlas. The principal Alzheimer's disease biomarkers (e.g., tau protein, amyloid-β, apolipoprotein E, and neurogranin) were detected. Importantly, our data set significantly contributes to the Chromosome-centric Human Proteome Project (C-HPP), and 12 proteins considered as missing are proposed for validation in accordance with the HPP guidelines. Of these 12 proteins, 8 proteins are based on 2 to 6 uniquely mapping peptides from this CSF analysis, and 4 match a new peptide with a "stranded" single peptide in PeptideAtlas from previous CSF studies. The MS proteomic data are available to the ProteomeXchange Consortium ( http://www.proteomexchange.org/ ) with the data set identifier PXD009646.
Collapse
Affiliation(s)
- Charlotte Macron
- Proteomics , Nestlé Institute of Health Sciences , 1015 Lausanne , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics , CMU, rue Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva , rue Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | | | - Loïc Dayon
- Proteomics , Nestlé Institute of Health Sciences , 1015 Lausanne , Switzerland
| |
Collapse
|
25
|
Carlyle BC, Trombetta BA, Arnold SE. Proteomic Approaches for the Discovery of Biofluid Biomarkers of Neurodegenerative Dementias. Proteomes 2018; 6:32. [PMID: 30200280 PMCID: PMC6161166 DOI: 10.3390/proteomes6030032] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative dementias are highly complex disorders driven by vicious cycles of intersecting pathophysiologies. While most can be definitively diagnosed by the presence of disease-specific pathology in the brain at postmortem examination, clinical disease presentations often involve substantially overlapping cognitive, behavioral, and functional impairment profiles that hamper accurate diagnosis of the specific disease. As global demographics shift towards an aging population in developed countries, clinicians need more sensitive and specific diagnostic tools to appropriately diagnose, monitor, and treat neurodegenerative conditions. This review is intended as an overview of how modern proteomic techniques (liquid chromatography mass spectrometry (LC-MS/MS) and advanced capture-based technologies) may contribute to the discovery and establishment of better biofluid biomarkers for neurodegenerative disease, and the limitations of these techniques. The review highlights some of the more interesting technical innovations and common themes in the field but is not intended to be an exhaustive systematic review of studies to date. Finally, we discuss clear reporting principles that should be integrated into all studies going forward to ensure data is presented in sufficient detail to allow meaningful comparisons across studies.
Collapse
Affiliation(s)
- Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.
| |
Collapse
|
26
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
27
|
Stoop MP, Runia TF, Stingl C, van der Vuurst de Vries RM, Luider TM, Hintzen RQ. Decreased Neuro-Axonal Proteins in CSF at First Attack of Suspected Multiple Sclerosis. Proteomics Clin Appl 2017; 11. [PMID: 28941200 DOI: 10.1002/prca.201700005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/23/2017] [Indexed: 01/10/2023]
Abstract
The pathology of multiple sclerosis is located in the central nervous system, therefore cerebrospinal fluid (CSF) is an attractive biofluid for biomarker research for proteins related to the early stages of this disease. In this study, the CSF proteome of patients with a clinically isolated syndrome of demyelination (CIS, a first attack of multiple sclerosis) is compared to the CSF proteome of control patients to identify differentially abundant proteins. CSF samples of 47 CIS patients and 45 control subjects are enzymatically digested and subsequently measured by LC-MS/MS (LTQ-Orbitrap). Following mass spectrometry differential abundances of the identified proteins between groups are investigated. A total of 3159 peptides are identified, relating to 485 proteins. One protein is significantly more abundant in CSF of CIS patients than in controls: Ig kappa chain C region. In contrast, 35 proteins are significantly lower in CIS patients than controls, most of them with functions in nervous system development and function, such as amyloid-like protein 1 (validated by ELISA in an independent sample set (p < 0.01)), contactin 1, contactin 2 and neuronal cell adhesion molecule. A remarkably lower abundance of neuro-axonal proteins is observed in patients with a first demyelinating event compared to controls.
Collapse
Affiliation(s)
- Marcel P Stoop
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Tessel F Runia
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Christoph Stingl
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Theo M Luider
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Rogier Q Hintzen
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands.,Departments of Immunology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
28
|
Portelius E, Brinkmalm G, Pannee J, Zetterberg H, Blennow K, Dahlén R, Brinkmalm A, Gobom J. Proteomic studies of cerebrospinal fluid biomarkers of Alzheimer's disease: an update. Expert Rev Proteomics 2017; 14:1007-1020. [PMID: 28942688 DOI: 10.1080/14789450.2017.1384697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease affecting the brain. Today there are three cerebrospinal fluid (CSF) biomarkers, amyloid-β consisting of 42 amino acids (Aβ42), total-tau (t-tau) and phosphorylated-tau (p-tau), which combined have sensitivity and specificity figures around 80%. However, pathological studies have shown that comorbidity is a common feature in AD and that the three currently used CSF biomarkers do not optimally reflect the activity of the disease process. Thus, additional markers are needed. Areas covered: In the present review, we screened PubMed for articles published the last five years (2012-2017) for proteomic studies in CSF with the criteria that AD had to be included as one of the diagnostic groups. Based on inclusion criteria, 28 papers were included reporting in total 224 biomarker-data that were altered in AD compared to control. Both mass spectrometry and multi-panel immunoassays were considered as proteomic studies. Expert commentary: A large number of pilot studies have been reported but so far there is a lack of replicated findings and to date no CSF biomarker discovered in proteomic studies has reached the clinic to aid in the diagnostic work-up of patients with cognitive impairment.
Collapse
Affiliation(s)
- Erik Portelius
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Gunnar Brinkmalm
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Josef Pannee
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Henrik Zetterberg
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden.,c Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Kaj Blennow
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Rahil Dahlén
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Ann Brinkmalm
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Johan Gobom
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| |
Collapse
|
29
|
Galicia N, Dégano R, Díez P, González-González M, Góngora R, Ibarrola N, Fuentes M. CSF analysis for protein biomarker identification in patients with leptomeningeal metastases from CNS lymphoma. Expert Rev Proteomics 2017; 14:363-372. [DOI: 10.1080/14789450.2017.1307106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- N. Galicia
- Proteomics Unit, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| | - R. Dégano
- Proteomics Unit, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| | - P. Díez
- Proteomics Unit, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
- Department of Medicine and General Service of Cytometry, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| | - M. González-González
- Proteomics Unit, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
- Department of Medicine and General Service of Cytometry, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| | - R. Góngora
- Department of Medicine and General Service of Cytometry, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| | - N. Ibarrola
- Proteomics Unit, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| | - M. Fuentes
- Proteomics Unit, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
- Department of Medicine and General Service of Cytometry, Cancer Research Centre, IBSAL, University of Salamanca-CSIC, Salamanca, Spain
| |
Collapse
|